
EuroGP-2021. Ting Hu, Nuno Lourenco, Eric Medvet Eds., LNCS 12691, 229–246,
Internet. 7-9 April 2021. Springer. doi:10.1007/978-3-030-72812-0 15 Preprint

Incremental Evaluation in Genetic Programming

William B. Langdon

W.Langdon@cs.ucl.ac.uk CREST, Department of Computer Science,
UCL, Gower Street, London, WC1E 6BT, UK

Abstract. Often GP evolves side effect free trees. These pure functional
expressions can be evaluated in any order. In particular they can be
interpreted from the genetic modification point outwards. Incremental
evaluation exploits the fact that: in highly evolved children the semantic
difference between child and parent falls with distance from the syntactic
disruption (e.g. crossover point) and can reach zero before the whole child
has been interpreted. If so, its fitness is identical to its parent (mum).

Considerable savings in bloated binary tree GP runs are given by ex-
ploiting population convergence with existing GPquick data structures,
leading to near linear O(gens) runtime. With multi-threading and SIMD
AVX parallel computing a 16 core desktop can deliver the equivalent of
571 billion GP operations per second, 571 giga GPop/s.

GP convergence is viewed via information theory as evolving a smooth
landscape and software plasticity. Which gives rise to functional resilience
to source code changes. On average a mixture of 100 +, -, × and (pro-
tected) ÷ tree nodes remove test case effectiveness at exposing changes
and so fail to propagate crossover infected errors.

Keywords parallel computing, mutational robustness, antifragile cor-
rectness attraction, PIE, SBSE, software resilience, entropy loss, theory

1 Background: Genetic Programming Evolving Functions

Most GP problems, such as symbolic regression or classification, require the evo-
lution of a pure function. I.e., a function without side effects. Exceptions include:
problems with state, such as the truck-backer-upper problem [1] or Santa Fe Trail
problem [1,2], which involve an agent moving in an environment with memory,
where state is embedded in the program itself [3,4] or where genetic program-
ming is applied to existing programs (as in genetic improvement [5],[6,7,8,9,10]).
Typically evolution decides the number and nature of the evolved function’s in-
puts as well as the contents of the function itself. Essentially the idea is we do
not know what we want but we can recognise a good function when GP finds
one. We give evolution some way of recognising better functions from poorer
ones by automatically allocating each function a fitness score. (Although fitness
can be assigned manually [11].) Typically, in both regression and classification,
the fitness function uses multiple examples where all the inputs and the exam-
ple’s expected output are known. (Backer describes dealing with missing input
values [12].) An evolved function’s fitness value is given by calling it with each

1

http://www.evostar.org/2021/eurogp/
http://dx.doi.org/doi:10.1007/978-3-030-72812-0_15
http://www.cs.ucl.ac.uk/staff/W.Langdon/
http://crest.cs.ucl.ac.uk/

example’s inputs and comparing its return value with the expected value. Typi-
cally the differences between the function’s return value and the expected answer
for several test cases are combined into a single scalar fitness value. (Although
multiple objective approaches are increasingly popular [13, Ch. 9].) For classifi-
cation problems, we may use the area under the ROC curve [14], whilst for the
continuous domain regression problems, the mean absolute error remains pop-
ular. Notice, unlike Gathercole’s DSS [15] and Lexicase selection [16] or other
dynamic choice of test data, e.g. [17,6], typically GP systems use all of a fixed
training set of examples throughout evolution. Often a holdout set is needed
to estimate the degree of overfitting [13, p140]. In most cases almost all GP’s
computational cost comes from running the fitness function [1]. As the evolved
functions become deeper, information in their leafs is combined, eventually all
of it being channeled through the limited capacity of the root node. On the way
to the root information is progressively lost. Thus deep functions are resilient
to changes near their leafs this, together with high selection pressure, leads to
converged GP populations. We show that this can be exploited to considerably
reduce fitness evaluation times and hence GP run time.

We follow common tree GP practice by representing each evolved individual
as a separate tree composed of nested binary functions (ADD, SUB, MUL and
DIV1). Each generation a new population of trees is created by recombining two
parent trees from the previous generation to create a new population of trees.
Koza et al. [19, pages 1044-1045] [20] showed it is not necessary to store all of
both populations simultaneously.

We retain GPquick’s [21,22] linear prefix trees [23], although Simon Hand-
ley [24] demonstrated it is possible to store the complete evolving GP in a single
directed acyclic graph (DAG). (See also Nic McPhee’s Sutherland [25].) For pure
functions, at the expense of memory, caches of partial results can be embedded
in the DAG [26]. When a new individual is created it can be evaluated using
the partial results of the subtrees from which its parents are composed. In the
case of sub-tree mutation, the new random subtree (typically small) must be
evaluated. But then and for subtree crossover, the rest of the individual can
be evaluated, using partial results stored in the DAG, requiring only evaluation
from the mutation or crossover point all the way to the root node. Ignoring the
costs of accessing and maintaining the DAG memory structure, the cost of fit-
ness evaluation of the new individual, is the product of the number of fitness
cases (assumed fixed) and the height of the tree. The height of large GP trees is
typically ≈

√
2π|size| [27, page 256] [28] [29] (see Figure 7). I.e. considerably less

than typical implementations, which evaluate the whole tree and so scale O(size)
rather than O(size0.5). However the complexity of implementation, the difficulty
of efficient operation on multi-core CPUs, and limited memory cache, mean
DAGs are not common in GP. In principle, exploiting GP convergence allows
fitness evaluation to scale independently of tree size O(1), although it appears
this is only approached for humongously large trees, Figure 1.

1 (DIV X Y) is protected division which returns 1.0 if Y=0 and X/Y otherwise.
Ni et al. [18] propose the analytic quotient instead of DIV.

2

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

M
e
a

n
 e

v
a

ls
 p

e
r

te
s
t
c
a

s
e
,

p
o

p
u

la
ti
o

n
 (

5
0
0

)
d

e
p

th

Generation

 nups 87.34

Full evaluation
Inc evaluation

mean tree depth
nups

Change fit %

Fig. 1. Convergence of sextic polynomial. Black % parent’s 6= child’s fitness.
After gen 800 most children have identical fitness to mum, and on average (nups,
dotted line) incremental evaluation evaluates subtrees of depth ≈100. Max saving
in eval ops on traditional (top red v. dashed blue) is 100 fold. Note log scale.

Retaining GPquick’s separate linear prefix trees suggests our approach of
incremental evaluation could be used with linear postfix trees common in parallel
GPs running on graphics hardware accelerators, e.g. GPUs [30,31].

2 Incremental Evaluation: How Does it Work

Since there are no side effects, the functional expressions can be evaluated in any
order. In GP it is common to evaluate them recursively from the root down (see
Figure 2 left) for the first test case, then the second test case and so on until all
the test cases have been run. However it is possible to start from the leafs and
work to the root (see Figure 2 right). Particularly when using parallel hardware
[32,33,22], it is possible to evaluate each node in the tree on all the test cases,
generating a vector of sub-results and propagate these vectors (rather than single
scalars) through the tree. Indeed combinations between these extremes are also
valid [34]. The results are identical.

When running evolution for a long time with small populations, evolution
tends to converge [35]. In GPs this can manifest itself with many different large
(and hence expensive to evaluate) individuals producing children with identical
fitness [33,29]. Initially it was assumed, at least in the continuous domain, that
this was due to large amounts of introns [36,37,38], such as multiplication by
zero, which would mean MUL’s other subtree had no effect. However, although
(SUB X X) can readily produce zero and although the fraction of zeros varies

3

−0.826

0.026

SUB

−0.718

X

MUL

SUB

X

DIV

0.966693

−0.940693

−9.40693

0.593068

2

6

9

11

7

4

1 13

3

5 8

10

12

−0.826

0.026

SUB

−0.718

X

MUL

SUB

X

DIV

0.966693

−0.940693

−9.40693

0.593068

8

4

6

21

3

5

7

9

Fig. 2. Left: Conventional top-down recursive evaluation of (SUB 0.026 (DIV
(SUB (MUL -0.826 -0.718) X) X)). X=10. Blue integers indicate evaluation
order, red floats are node return values. Right: an alternative ordering, starting
with leaf -0.826 and working to root node. Both return exactly the same answer.

Table 1. Percentage of functions in evolved trees in ten runs where it gives
the same value (0.0, 1.0 or another constant) on all 48 test cases. Data from
generation 1000 in Figure 3.

Constant 1 2 3 4 5 6 7 8 9 10 mean
0.0 0.73 1.32 0.23 0.12 0.16 0.10 4.36 2.70 1.18 1.07 1.20 %
1.0 0.15 1.47 0.01 0.00 0.00 1.81 1.87 1.36 1.83 1.90 1.04 %

other 9.13 1.11 17.20 9.33 5.21 16.10 6.89 10.58 12.37 4.91 9.28 %

between runs (see Figure 3 and Table 1), on average only about one percent of
tree nodes evaluate to zero for all fitness cases2.

Since the location of GP genetic operations are typically chosen at random
from all the possible locations in the tree, they tend to be far from the tree’s
root. Although, Koza in [1] defined a small bias away from choosing leafs as
crossover points (which we do not use in these experiments), it makes only a
small difference. Effectively moving the average crossover point from near the
leafs to near the outer most functions. I.e. only one level closer to the root.
That is, we can view each child as being the same as the parent (for simplicity
called mum) from which it inherits its root node, plus a small disruptive subtree
inherited from the other parent (dad). Obviously if the dad subtree is identical
to the subtree it replaces from mum, the whole offspring tree is identical to the
mum tree and has identical fitness.

For near converged populations of trees of any size, a first optimisation could
be to compare the child with its mum. If they are identical, the child’s fitness
is identical to its mum’s fitness and the child does not have to be evaluated.
Notice we do not even have to compare the whole of the child and mum trees.

2 Trapping special cases, such as multiplication by zero, and multiplication or division
by one, only sped up GP by a few percent.

4

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0 100 200 300 400 500 600 700 800 900 1000

F
ra

c
ti
o

n
 o

f
tr

e
e

Generations

Other constants ten runs

1.0 ten runs

0.0 ten runs

Fig. 3. Evolution of the fraction of functions in GP trees which give the same
value (0.0, 1.0 or another constant) on all 48 test cases. Average across popula-
tion. Tick marks every 20 generations. See also Table 1.

If the subtree replaced by the subtree donated by the dad are identical, then
the whole of both trees are identical. In these Sextic polynomial [1] runs, by
generation 1000 on average 6% of crossovers swap identical trees.

A second possibility is: what if the crossover subtrees are not genetically iden-
tical but yield the same value for all of the fitness cases. For example, we would
expect evaluating (ADD X 0.837) and (ADD 0.837 X) to produce identical val-
ues. Thus a child created by replacing (ADD X 0.837) with (ADD 0.837 X) or
even (SUB (ADD 0.837 X) (SUB X X)) should have have the same fitness as its
mum. Thus if we evaluate the child’s subtree and re-evaluate the subtree which
has just been replaced (from its mum) and for all fitness cases, the mum and
child subtrees return the same value, again the child’s fitness must be identi-
cal to that of the mother. So again, if the evaluation of subtree replaced and
the evaluation of the subtree donated by the dad are identical, then the fitness
of the whole both child and mum trees are identical. Naturally evaluating two
small subtrees is typically much cheaper than evaluating the whole of the child.
However crossovers that replace a subtree with a different one which gives the
same evaluation are rare (about 0.2% by generation 1000).

What if the evaluation on the test cases of the old and new subtrees are
not identical but are similar? We can propagate both vectors of evaluations
up the tree towards the root node to the function which calls the modified
code. (Figure 4 shows a single test case.) Notice the function itself and its other
argument are identical in both mum and child. To minimise cache memory load
we can work with just one, typically the child. (Notice as far as this crossover is

5

SUB

0.397 0.758

DIV

ADD

X

0.979 X

X

DIV

DIV

−0.361

0.00979

9.99 10.0098

−0.0361361 −0.0360647

Fig. 4. Incremental evaluation of fragment of child produced by crossover. In-
serted subtree (DIV (DIV 0.979 X) X) in blue. Nodes common to both mum and
child in black. Red floats (left) are mum node return values. Blue floats (right)
are node return values in the child. (In both X=10.0). Notice (SUB 0.397 0.758)
is not affected by the crossover and has the same value in parent and child and
so is evaluated only once per test case.

concerned we can now discard both parent trees [20].) We evaluate the calling
function’s other argument once (it must yield the same answers in both mum
and child trees). We then evaluate the calling function twice: once for the child
and once for the mum. Notice that if for any fitness test case the old and new
subtrees gave identical values, then for (at least) those test cases, the evaluation
of the calling function must yield the same values. Finally, if the evaluation of
the calling function is identical for all test cases, then the evaluation of the whole
of the child and mum trees must be identical, hence their fitness values must be
the same. So we can stop the evaluation of the child and simply set its fitness
to be the same as its mum.

If the mum and child evaluation at the calling function are different for at
least one test case, we can repeat the process by proceeding up the tree towards
the root node and repeat the evaluation for that calling function. Again we have
to evaluate (once per test case) its other argument and the function itself for both
child and mum vector of evaluations (created by evaluating the lower function).

In terms of efficiency, the first thing to notice is, if we stop well before the
root node, we have not evaluated the vast majority of the child tree. We have
evaluated the other sub tree. But we would have had to do that anyway. And we
have evaluated the calling function twice per test case. Still a large win, if the
evaluation of the child and mum are identical at this point. A possible future work
would be to consider if the evaluations for some test cases are different, are the
difference important? Is it possible given differences in partial evaluation at this
point within the tree to predict if they will have a beneficial or negative impact
on fitness. Indeed will the impact on fitness (particularly where approximate

6

 0

 4

 8

 12

 16

 20

 24

 28

 32

 36

 40

 44

 48

 20 40 60 80 100 120 140 160

T
e

s
t
c
a

s
e
s
 d

if
fe

re
n

t
b

e
tw

e
e
n

 m
u

m
 a

n
d

 c
h
ild

Number moves from crossover point towards root

Ten children
Evaluation reached root (3)

Fig. 5. Incremental evaluation of first ten members of generation 1000. Number
of test cases where evaluation in the root donating parent (mum) and its offspring
are identical never falls. In three cases (×) evaluation is halted by reaching the
root node. Small vertical offset added to separate plots.

answers are good enough [39]) be sufficient to cause a change in breeding pattern
for the next, i.e. the grand-child’s, generation?

In converged populations there are many cases where trees begat other trees
with identical fitness and hence there is hope for this approach to short cut
repeated evaluation of what is substantially the same code in the next generation.
For example, in Figure 1 on average only 2.6% of trees have fitness different from
their mum. Indeed, there are 24 784 generations where everyone in the population
has the same fitness as their mum. (After generation 100, Figure 1 smooths the
plots by showing the means of 50 generations, so the fraction of changed fitness,
lowest dashed black line, is not shown at zero.)

There is a ratchet effect, whereby: if at any point the evaluation of a test
case for both mum and child is identical, it will remain identical all the way up
to the root node (see Figure 5).

If at no point are all the test cases identical, we will reach the root node. But
notice, even in this worst case, the overhead is modest. We will have evaluated
the whole of the child, which we would have had to do anyway, plus re-evaluating
the (usually small) subtree from the mum, plus evaluating all the functions from
the crossover point to the root node. I.e. in the worst case the overhead is less

than O(child’s height), ≤O(size
1
2) (Section 1). Table 2 shows variation between

runs, but even at the start of long runs, saving in terms of opcodes not evaluated
can already result in evaluating on average less than half of each tree. As the

7

Table 2. Mean tree size (“Full”) and mean opcodes incrementally (“Inc”)
evaluated (per test case). “ratio” gives incremental evaluation saving. Ten runs
at generation 1000.

1 2 3 4 5 6 7 8 9 10 mean
Full 70268 14873 34546 220163 138145 36619 35890 26943 19522 35723 63269
Inc 33051 12016 22476 103503 103487 17224 7364 14880 8047 15563 33761

ratio 2.13 1.24 1.54 2.13 1.33 2.13 4.87 1.81 2.43 2.30 2.19

 10

 100

 1000

 10000

 100000

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

M
e
a
n
 d

e
p
th

,n
u

p
s

Generation

 93.8

 153.4
 197.7

 35.1

 54.4

10 GP runs depth
10 GP runs nups

Fig. 6. Evolution of mean depth of trees and number of upward steps (nups)
required by incremental evaluation. Notice nups (lower lines) tends to be more
stable than tree depth. Ten runs. Last generation summarised in Table 3. Note
log vertical scale.

population converges, the saving can grow. For example, in the first run by
generation 100 000 on average only 1/70th of each tree is evaluated, Figure 1.

3 Implementing Incremental Evaluation

From a practical point of view it is not hard to implement incremental evalu-
ation. Firstly we need a clean implementation of EVAL, which can be directed
to evaluate a subtree, rather than one dedicated to evaluating the whole of a
tree. For simplicity, and as we use Intel’s Advanced Vector Extensions SIMD
instructions (AVX), we run EVAL on all 48 test cases and it returns a vector
of 48 floats. (It would be possible to exploit the ratchet effect, Section 2, by
keeping track of which fitness cases mum and child evaluations are different and
ensuring EVAL does not executes those that are the same.)

For IncFit we need the child tree, the old crossover fragment removed from
the mum, and the location of the crossover point in the child. We also need an

8

Table 3. Mean tree sizes, mean depths and mean number of upward steps, in
ten GP runs at generation 10 000. ± indicates population standard deviation.
The last column gives means of the ten runs. Data from Figure 6.

run: 1 2 3 4 5
size/1000 349±4 8655±5813 276±4 5066±1095 997±4
depth 486±2 8801±2230 534±8 3985±839 964±3
nups 94±42 172±127 68±32 153±98 198±126

run: 6 7 8 9 10 mean
size/1000 9171±1345 98±2 4653±1075 5232±1548 1567±173 3606
depth 7844±666 359±2 4133±782 1826±178 2228±512 3116
nups 130±51 35±34 69±40 60±33 54±29 103

efficient way to navigate up the tree to the function calling a given subtree and
to find its other subtree.

We start by calling EVAL for both the crossover fragment in the child tree
and for the crossover fragment in the mum tree. Each call to EVAL returns an
array of 48 floats which we bitwise compare with memcmp. If they are identical,
we stop and set the child’s fitness to that of the mum tree. If not, we go up one
level in the child tree. (For the rest of the new tree’s evaluation, it is effectively
identical to its mum tree.) We locate the upper function’s other argument and
call EVAL for it. (I.e., we EVAL the other subtree.) We now have three vectors
each of 48 floats.

The next thing to do is to evaluate the function (ADD, SUB, MUL or DIV),
giving it two vectors of floats (in order). Remember that the other subtree may
be either the function’s first or second argument. For this you perhaps want a
specialised version of EVAL. evalop, rather than having to recursively evaluate
its two arguments, it has them passed to it directly. Our evalop takes two 48
float vectors and returns a 48 float vector of results. We call it twice, once with
the other subtree’s vector and that from the mum and a second time again with
the other subtree’s vector and this time with the child’s evaluation vector.

We compare evalop’s two output vectors (again using memcmp). If they are
the same we stop and use the mum’s fitness, otherwise we proceed up the tree
one more level and repeat. If we reach the root node, we use the child’s vector
of 48 floats to calculate the fitness of the child.

The GP parameters are given in Table 4. We run up to ten experiments with
different pseudo random number seeds.

4 Discussion: Population Convergence

4.1 Why Does Incremental Evaluation Work?

We have a chicken and egg situation. For this (exact) version of incremental
evaluation to work, we need the GP population to show significant convergence,
with many children resembling their parents (i.e. have identical fitness). For
convergence, we may need long runs, which implies the need for fast fitness

9

Table 4. Evolution of Sextic polynomial symbolic regression binary trees

Terminal set: X, 250 constants between -0.995 and 0.997
Function set: MUL ADD DIV SUB
Fitness cases: 48 fixed input -0.97789 to 0.979541 (randomly selected from -1.0 to +1.0).

Target y = xx(x−1)(x−1)(x+1)(x +1)
Selection: Tournament size 7 with

fitness = 1
48

∑48

i=1
|GP (xi)− yi|

Population: 500. Panmictic, non-elitist, generational.
Parameters: Initial population ramped half and half [1] depth between 2 and 6.

100% unbiased subtree crossover. At least 1000 generations
DIV is protected division (y!=0)? x/y : 1.0f

evaluation, which incremental evaluation may provide. With many children with
unchanged fitness, there is hope that chasing up the tree from the crossover point
(i.e. the source of disruption) towards the root node, the difference between child
and parent will dissipate.

This relies on the function set and test set being dissipative, i.e. losing infor-
mation. But if the functions are perfect, i.e. never lose any information (and so
are reversible), then convergence and indeed evolution is impossible [40]. How-
ever, traditional GP systems do evolve, their function sets are not reversible,
they do lose information. Small GP populations, if allowed time and space, can
show elements of convergence, in which case this form of incremental evaluation
may flourish. Indeed by applying information theory to GP function sets, we
may be able to design more evolvable GP systems.

By generation 1000 the populations have bloated and on average incremental
evaluation has to process about 100 nested function calls, Table 3. Figure 8 and
Table 5 show that the change in the difference between mum and her offspring
as we evaluate each opcode during incremental fitness evaluation. The data are
grouped by run and by function. There is a clear distinction between the linear
functions, ADD and SUB, and the non-linear functions, MUL and DIV.

Most linear functions do not noticeably change the difference between the
parent evaluation and that of the child. This is expected. E.g. if on each of
the 48 test cases, the difference between the re-evaluation of the root donating
parent (the mum) and that of its offspring is 1.0, we would expect after ADD,
the difference would remain 1.0 no matter what ADD’s other argument. However
ADD is a floating point operator and so is potentially subject rounding errors.
Suppose on one test case, ADD’s other argument is 1023, it may be that ADD’s
output, for both mum and child is 1023 and therefore on that test case their
difference is now zero. Notice that ratchet effect does not apply to differences,
only to the special case of values being identical (Section 2), and while differences
tend to decrease, monotonic decrease is not guaranteed.

With non-linear operations we expect them to change the difference between
mum and offspring evaluations. E.g. if MUL’s other argument was 2.0 for all
test cases, we would expect the difference between mum eval and child eval to
double for every test cases. Table 5 largely confirms this and shows that only
about 1% of MUL or DIV operations do not change the difference. Indeed MUL

10

 10

 100

 1000

 100 1000 10000 100000 1e+06

M
e

a
n

 t
re

e
 d

e
p
th

Mean tree size

Full

 Flajolet

 Tall

Ten GP runs

Fig. 7. Evolution of mean program size and depth in ten runs of Sextic poly-
nomial up to generation 1000. Cross hairs show population standard deviations
every 20 generations. Dotted lines show tree limits. Flajolet line is height of
random trees

√
2π(size) [27]. Note log scales.

and, in particular, DIV can magnify the difference enormously (dotted purple
line in Figure 8). However there are more operations which reduce the difference
than increase it. Rounding error is still active and causing information loss and
although differences may rise or fall, once they reach zero on a particular test
case, the difference on that test case must remain zero (Section 2). Typically
over about one hundred evolved function calls the difference on all 48 test cases
is zero and incremental fitness evaluation can stop.

There are of course considerable differences between individual crossovers
but averaging at generation 1000 over the whole population and ten runs, shows
on average each ADD reduces the number of test cases which are different by
13%, and the other functions by similar amounts: SUB 12%, MUL 10% and
DIV 19%. If we grossly simplify by assuming the test cases are independent and
there is a fixed chance of an operation clearing the difference for a given test
case. The chance of test case difference being non-zero will fall geometrically
(pnups), with number of moves up the tree, nups. The chance of all test cases

having non-zero difference is (pnups)
48

, which is also geometric. Using the mean
of the geometric distribution (here 1/p48) and the observed mean number of
steps required (103.433800), and taking logs of both sides gives − log(p48) =
log(103.433800) rearranging log(p) = − log(103.433800)/48 = -0.0966444. This
suggests each upward move has about a 9% chance of synchronising the evalu-
ation of a test case. I.e. each function destroys about three bits of information

11

 1e-05

 1

 100000

 1e+10

 1e+15

 1e+20

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
a
ti
o

 c
h

a
n

g
e

 R
M

S
 d

if
fe

re
n
c
e

 C
h
ild

 v
.
M

u
m

Ten runs, population 500. Generation 1000. Opcode Evaluated (sorted by disruption)

ADD
SUB
MUL
DIV

No change

Fig. 8. Ratio of difference between mum and child before and after each function
at generation 1000. Most linear functions (i.e. ADD and SUB) do not change
difference. On average 86% MUL and 56% DIV decrease difference. X-axis nor-
malised to allow easy comparison between ten runs. Note log scale.

per test case. Rather more than the minimum 0.5 bits expected of well behaved
floating point rounding, but similar to the last row (nups) of Table 3.

As Figure 9 shows incremental fitness evaluation does better as the popula-
tion converges and trees become larger.

4.2 Implications for Software Engineering

By software engineering standards our pure functions, even though large by GP
standards, are simple. Nevertheless it is interesting that even such a pure func-
tional program loses information and our analysis allows us to track dissipation
of disruption from its cause (in the case of GP, the crossover point). Like human
written software the disruption may or may not lead to a visible external affect.
(In the case of GP, to be visible, the disruption must reach the root node.)

Although information loss is a general effect, in Software Engineering it is
known mostly by its specific effects. In mutation testing, inserted bugs that cause
no visible impact are known as equivalent mutants [41,42,43]. One off run time
bit flips which fail to impact the program’s output are known as correctness
attraction [44], indeed Danglot et al. say programs are Antifragile. Coincidental
correctness is another term used to describe when a program produces a cor-
rect answer despite an error in its source code, even though the error has been
executed [45]. Bugs which have no visible impact (so far) are known as latent
bugs [46]. The PIE (propagation, infection, and execution) view [47] considers

12

Table 5. Percentages of functions in GP trees which leave unchanged, reduce
or increase difference between mum and offspring in ten GP runs at generation
1000. Last column gives means of the ten runs. Data from Figure 8.

run 1 2 3 4 5 6 7 8 9 10 mean
No change ADD 75.21 88.31 75.25 77.19 77.96 72.76 68.52 87.34 76.88 64.72 76.41%

SUB 82.32 87.84 83.94 76.48 73.07 78.69 75.62 83.60 79.20 64.71 78.55%
MUL 0.52 1.68 0.18 3.33 1.54 0.65 5.52 0.19 0.93 2.59 1.71%
DIV 0.63 1.77 0.14 na na 0.33 0.84 0.29 0.58 1.40 0.75%

Reduce ADD 24.34 11.60 24.52 22.62 21.77 26.81 31.39 12.47 22.62 34.60 23.27%
SUB 17.50 12.03 15.80 23.33 26.84 21.08 23.96 16.21 20.54 34.76 21.21%
MUL 94.84 83.80 91.22 73.40 78.25 92.30 85.16 94.21 82.13 87.84 86.32%
DIV 39.43 69.33 47.49 na na 58.96 50.99 54.94 70.05 58.03 56.15%

Increase ADD 0.45 0.09 0.23 0.19 0.26 0.43 0.09 0.19 0.50 0.67 0.31%
SUB 0.18 0.13 0.26 0.19 0.09 0.23 0.42 0.19 0.26 0.53 0.25%
MUL 4.64 14.52 8.60 23.27 20.20 7.05 9.31 5.59 16.94 9.57 11.97%
DIV 59.94 28.90 52.37 na na 40.72 48.18 44.77 29.37 40.57 43.10%

the impact of bugs and if it propagates to the program’s outputs. Failed error
propagation [48] acknowledges the PIE frameworks and shows that the impact
of bugs can be hidden by entropy loss and explained in terms of information
theory. These can be summarised as the robustness of software [49].

5 Conclusion: Information Loss is Essential to Converge

Incremental fitness evaluation can be easily implemented and in even the worst
case imposes little overhead. With very large trees, it can speed up GP by an
order of magnitude. Using 48 cores of a 3.0GHz server gave the equivalent of
749 billion GPop/s, exceeding the best direct interpreters [50, Tab. 3] [51] [34].

We had assumed that the considerable bloat seen here was due to simple
introns, such as multiplication or division by zero, and so runtime could be re-
duced by exploiting obvious fitness evaluation short cuts. However this produced
only a 1% saving. Instead something much more interesting is happening.

Information flows from the leafs of GP trees via arithmetic functions to the
root node. These functions are not reversible and inevitably loose information.
This information loss gives rise to semantic convergence. That is, if we regard
GP children as being the same as their parent plus a syntactic change (or error)
made by crossover or mutation and trace fitness evaluation from the error to
the root node, we see the values flowing in the parent and in the child to be
increasingly similar. If the trees are large these information flows can becomes
identical. If the information flow leaving the child and parent are identical then
their fitness is also identical. Note GP has evolved a smooth fitness landscape.

Many GP systems do not have side effects and so their trees can be eval-
uated in any order. Our incremental approach evaluates trees by following the
information flow. It can stop early when the data flow in the child is the same
as that in its parent.

13

 0

 1

 2

 3

 4

 5

 6

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

S
e

c
o
n
d

s
 p

e
r

G
e
n

e
ra

ti
o
n

 (
s
u
m

 o
f
1

6
 t

h
re

a
d

s
)

Generations

Full Evaluation
Incremental evaluation

Fig. 9. Time per generation for top down recursive and bottom up incremen-
tal evaluation. 16 core 3.80GHz i7-9800X, g++ 9.3.1. Performance equivalent
of 53.1 billion GP operation per second (full, top down) and 179 109 GPop/s
(incremental, bottom up).

It is possible to measure the disruption to the information flow caused by
the injected code. From that it may be possible to predict in advance, e.g. given
the size and nature of the parent tree and the location of the injected error, how
much disruption will reach the child’s root node and so estimate if the injected
code will change its fitness and if so by how much. Turning this about: from such
an information based model, it may be possible to choose where to place new
code in highly fit trees to avoid simply reproducing exactly the same fitness and
perhaps even avoiding changes which will cause fitness to fall enormously.

Acknowledgements

Funded by EPSRC grant EP/P005888/1.
Code http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/gp-code/GPinc.tar.gz

References

1. Koza, J.R.: Genetic Programming: On the Programming of Computers by Natural
Selection (1992)

2. Langdon, W.B., Poli, R.: Why ants are hard. In: Koza, J.R., et al. (eds.) GP. pp.
193–201 (1998)

3. Teller, A.: The internal reinforcement of evolving algorithms. In: Spector, L., et al.
(eds.) AiGP 3, pp. 325–354 (1999)

14

https://gow.epsrc.ukri.org/NGBOViewGrant.aspx?GrantRef=EP/P005888/1
http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/gp-code/GPinc.tar.gz
http://mitpress.mit.edu/books/genetic-programming
http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/WBL.antspace_gp98.pdf
http://www.cs.ucl.ac.uk/staff/W.Langdon/aigp3/ch14.pdf

4. Langdon, W.B.: Genetic Programming and Data Structures (1998)
5. White, D.R., et al.: Evolutionary improvement of programs. IEEE TEVC 15(4),

515–538 (2011)
6. Langdon, W.B., Harman, M.: Optimising existing software with genetic program-

ming. IEEE TEVC 19(1), 118–135 (2015)
7. Petke, J., et al.: Using genetic improvement and code transplants to specialise a

C++ program to a problem class. In: Nicolau, M., et al. (eds.) EuroGP. LNCS,
vol. 8599, pp. 137–149 (2014)

8. Petke, J.: Constraints: The future of combinatorial interaction testing. In: SBST.
pp. 17–18 (2015)

9. Petke, J., et al.: Specialising software for different downstream applications using
genetic improvement and code transplantation. TSE 44(6), 574–594 (2018)

10. Petke, J., et al.: Genetic improvement of software: a comprehensive survey. IEEE
TEVC 22(3), 415–432 (2018)

11. Takagi, H.: Interactive evolutionary computation: Fusion of the capabilities of EC
optimization and human evaluation. Proc. IEEE 89(9), 1275–1296 (2001)

12. Backer, G.: Learning with missing data using genetic programming. In: The 1st
Online Workshop on Soft Computing (WSC1). Nagoya University, Japan (1996)

13. Poli, R., et al.: A field guide to genetic programming. Published via
http://lulu.com and freely available at http://www.gp-field-guide.org.uk

(2008)
14. Langdon, W.B., Buxton, B.F.: Evolving receiver operating characteristics for data

fusion. In: Miller, J.F., et al. (eds.) EuroGP. LNCS, vol. 2038, pp. 87–96 (2001)
15. Gathercole, C., Ross, P.: Dynamic training subset selection for supervised learning

in genetic programming. In: Davidor, Y., et al. (eds.) PPSN. LNCS, vol. 866, pp.
312–321 (1994)

16. Spector, L.: Assessment of problem modality by differential performance of lexi-
case selection in genetic programming: A preliminary report. In: McClymont, K.,
Keedwell, E. (eds.) GECCO Comp. pp. 401–408 (2012)

17. Teller, A., Andre, D.: Automatically choosing the number of fitness cases: The
rational allocation of trials. In: Koza, J.R., et al. (eds.) GP. pp. 321–328 (1997)

18. Ni, J., et al.: The use of an analytic quotient operator in genetic programming.
IEEE TEVC 17(1), 146–152 (2013)

19. Koza, J.R., et al.: Genetic Programming III: Darwinian Invention and Problem
Solving (1999)

20. Langdon, W.B.: Multi-threaded memory efficient crossover in c++ for generational
genetic programming. SIGEVOlution 13(3), 2–4 (2020)

21. Singleton, A.: Genetic programming with C++. BYTE pp. 171–176 (1994)
22. Langdon, W.B.: Parallel GPQUICK. In: Doerr, C. (ed.) GECCO Comp. pp. 63–64

(2019)
23. Keith, M.J., Martin, M.C.: Genetic programming in C++: Implementation issues.

In: Kinnear, Jr., K.E. (ed.) AiGP, pp. 285–310 (1994)
24. Handley, S.: On the use of a directed acyclic graph to represent a population of

computer programs. In: WCCI. pp. 154–159 (1994)
25. McPhee, N.F., et al.: Sutherland: An extensible object-oriented software framework

for evolutionary computation. In: Koza, J.R., et al. (eds.) GP. p. 241 (1998)
26. Ehrenburg, H.: Improved directed acyclic graph evaluation and the combine oper-

ator in genetic programming. In: Koza, J.R., et al. (eds.) GP. pp. 285–291 (1996)
27. Sedgewick, R., Flajolet, P.: An Introduction to the Analysis of Algorithms (1996)
28. Langdon, W.B.: Fast generation of big random binary trees. Tech. Rep. RN/20/01,

Computer Science, University College, London (2020)

15

http://dx.doi.org/10.1007/978-1-4615-5731-9
http://dx.doi.org/10.1109/TEVC.2010.2083669
http://dx.doi.org/10.1109/TEVC.2013.2281544
http://dx.doi.org/10.1007/978-3-662-44303-3_12
http://dx.doi.org/doi:10.1109/SBST.2015.11
http://dx.doi.org/10.1109/TSE.2017.2702606
http://dx.doi.org/doi:10.1109/TEVC.2017.2693219
http://dx.doi.org/10.1109/5.949485
http://gpbib.cs.ucl.ac.uk/gp-html/backer_1996_WSC.html
http://www.gp-field-guide.org.uk
http://dx.doi.org/10.1007/3-540-45355-5_8
http://dx.doi.org/10.1007/3-540-58484-6_275
http://dx.doi.org/10.1145/2330784.2330846
http://www.cs.cmu.edu/afs/cs/usr/astro/public/papers/GR.ps
http://dx.doi.org/10.1109/TEVC.2012.2195319
http://www.genetic-programming.org/gpbook3toc.html
http://dx.doi.org/10.1145/3430913.3430914
http://www.assembla.com/wiki/show/andysgp/GPQuick_Article
http://dx.doi.org/10.1145/3319619.3326770
http://gpbib.cs.ucl.ac.uk/gp-html/kinnear_keith.html
http://dx.doi.org/10.1109/ICEC.1994.350024
http://facultypages.morris.umn.edu/~mcphee/Research/Sutherland/sutherland_gp98_announcement.ps.gz
http://gpbib.cs.ucl.ac.uk/gp-html/ehrenburg_1996_iDAGcGP.html
https://arxiv.org/abs/2001.04505

29. Langdon, W.B., Banzhaf, W.: Continuous long-term evolution of genetic program-
ming. In: Fuechslin, R. (ed.) ALIFE. pp. 388–395 (2019)

30. Langdon, W.B., Banzhaf, W.: A SIMD interpreter for genetic programming on
GPU graphics cards. In: O’Neill, M., et al. (eds.) EuroGP. LNCS, vol. 4971, pp.
73–85 (2008)

31. Langdon, W.B., Harrison, A.P.: GP on SPMD parallel graphics hardware for mega
bioinformatics data mining. Soft Computing 12(12), 1169–1183 (2008)

32. Poli, R., Langdon, W.B.: Sub-machine-code genetic programming. In: Spector, L.,
et al. (eds.) AiGP 3, pp. 301–323 (1999)

33. Langdon, W.B.: Long-term evolution of genetic programming populations. In:
GECCO. pp. 235–236 (2017)

34. Langdon, W.B.: Genetic improvement of genetic programming. In: Brownlee, A.S.,
et al. (eds.) GI @ CEC 2020 Special Session (2020)

35. Langdon, W.B., et al.: The evolution of size and shape. In: Spector, L., et al. (eds.)
AiGP 3, pp. 163–190 (1999)

36. Altenberg, L.: The evolution of evolvability in genetic programming. In: Kinnear,
Jr., K.E. (ed.) AiGP (1994)

37. Tackett, W.A.: Recombination, Selection, and the Genetic Construction of Com-
puter Programs. Ph.D. thesis (1994)

38. Langdon, W.B., Poli, R.: Fitness causes bloat. In: Chawdhry, P.K., et al. (eds.)
Soft Computing in Engineering Design and Manufacturing. pp. 13–22 (1997)

39. Mrazek, V., et al.: Evolutionary approximation of software for embedded systems:
Median function. In: Langdon, W.B., et al. (eds.) GI. pp. 795–801 (2015)

40. Langdon, W.B.: The distribution of reversible functions is Normal. In: Riolo, R.L.,
Worzel, B. (eds.) GPTP, pp. 173–187 (2003)

41. Yao, X., et al.: A study of equivalent and stubborn mutation operators using human
analysis of equivalence. In: Briand, L., et al. (eds.) ICSE. pp. 919–930 (2014)

42. Jia, Y., et al.: Learning combinatorial interaction test generation strategies using
hyperheuristic search. In: Bertolino, A., et al. (eds.) ICSE. pp. 540–550 (2015)

43. Langdon, W.B., et al.: Efficient multi-objective higher order mutation testing with
genetic programming. Journal of Systems and Software 83(12), 2416–2430 (2010)

44. Danglot, B., Preux, P., Baudry, B., Monperrus, M.: Correctness attraction: A study
of stability of software behavior under runtime perturbation. Empr. Soft. Eng.
23(4), 2086–2119 (2018)

45. Abou Assi, R., et al.: Coincidental correctness in the Defects4J benchmark. Soft.
TVR 29(3), e1696 (2019)

46. Timperley, C.S., et al.: Crashing simulated planes is cheap: Can simulation detect
robotics bugs early? In: ICST. pp. 331–342 (2018)

47. Voas, J.M., Miller, K.W.: Software testability: The new verification. IEEE Software
12(3), 17–28 (May 1995)

48. Clark, D., et al.: Normalised squeeziness and failed error propagation. Info. Proc.
Lets 149, 6–9 (2019)

49. Langdon, W.B., Petke, J.: Software is not fragile. In: Parrend, P., et al. (eds.)
CS-DC. pp. 203–211 (2015)

50. Langdon, W.B.: Large scale bioinformatics data mining with parallel genetic pro-
gramming on graphics processing units. In: Tsutsui, S., Collet, P. (eds.) Massively
Parallel Evolutionary Computation on GPGPUs, pp. 311–347 (2013)

51. de Melo, V.V., et al.: A MIMD interpreter for genetic programming. In: Castillo,
P.A., et al. (eds.) EvoApps. LNCS, vol. 12104, pp. 645–658 (2020)

16

http://dx.doi.org/10.1162/isal_a_00191
http://dx.doi.org/10.1007/978-3-540-78671-9_7
http://dx.doi.org/10.1007/s00500-008-0296-x
http://www.cs.ucl.ac.uk/staff/W.Langdon/aigp3/ch13.pdf
http://dx.doi.org/10.1145/3067695.3075965
http://dx.doi.org/10.1109/CEC48606.2020.9185771
http://www.cs.ucl.ac.uk/staff/W.Langdon/aigp3/ch08.pdf
http://dynamics.org/~altenber/PAPERS/EEGP/
http://digitallibrary.usc.edu/cdm/ref/collection/p15799coll20/id/187980
http://dx.doi.org/10.1007/978-1-4471-0427-8_2
http://dx.doi.org/10.1145/2739482.2768416
http://dx.doi.org/10.1007/978-1-4419-8983-3_11
http://dx.doi.org/10.1145/2568225.2568265
http://dx.doi.org/10.1109/ICSE.2015.71
http://dx.doi.org/10.1016/j.jss.2010.07.027
http://dx.doi.org/10.1007/s10664-017-9571-8
http://dx.doi.org/10.1002/stvr.1696
http://dx.doi.org/10.1109/ICST.2018.00040
http://dx.doi.org/10.1109/52.382180
http://dx.doi.org/10.1016/j.ipl.2019.04.001
http://dx.doi.org/10.1007/978-3-319-45901-1_24
http://dx.doi.org/10.1007/978-3-642-37959-8_15
http://dx.doi.org/10.1007/978-3-030-43722-0_41

	Incremental Evaluation in Genetic Programming

