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Abstract We study both genotypic and phenotypic convergence in GP float-
ing point continuous domain symbolic regression over thousands of genera-
tions. Subtree fitness variation across the population is measured and shown
in many cases to fall. In an expanding region about the root node, both genetic
opcodes and function evaluation values are identical or nearly identical. Bot-
tom up (leaf to root) analysis shows both syntactic and semantic (including
entropy) similarity expand from the outermost node. Despite large regions of
zero variation, fitness continues to evolve and near zero crossover disruption
suggests improved GP systems within existing memory use.

Keywords: evolutionary computation, stochastic search, diversity, bottom up
incremental evaluation, PIE, propagation, infection, and execution, SIMD par-
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1 Introduction

1.1 Summary

Since this is a long paper, perhaps unusually, we shall start with a brief sum-
mary and sign posting of what is to come and the paper’s goals, novelty, impact
and contributions.

Much Genetic Programming work is aimed at applications where there is
a need for a quick solution and so GP runs tend to be short, e.g. no more than
fifty generations. But the goal of GP should also be to solve problems which
cannot be solved by other methods. Recently Rich Lenski has confounded the
Biological establishment and overturned conventional wisdom by showing that
natural evolution can continue to produce fitter organisms even after tens of
thousands of generations (see Section 1.5). Perhaps a way to open up GP to
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more adventurous applications, will require that the GP population evolves
for far longer?

We have made a start with long term evolution experiments in GP. We
have run GP populations far longer than previously attempted. These have
shown, even in fixed environments, GP can continue to find improvements.
Our goal here is to understand in as much detail as possible what is going
on in these highly evolved populations. In the process we have devised tools
(which are available via my home page) which substantially speed up (and
indeed make feasible) long experimental runs and indeed may be useful in
large GP experiments even in short runs. Results indicate that most of the
GP fitness landscape is far smoother than commonly assumed, with crossover
becoming less phenotypically disruptive as tree grow larger and initial models,
in Section 9.6, suggesting increasing the rigour of the fitness function will only
slowly increase crossover’s effect.

In Section 2 we summarise the GP system recently used and the results ob-
tained. Whilst the following sections start the detailed analysis of these evolved
populations. Section 3 investigates genetic convergence. Section 4 shows that
phenotypic convergence lags behind genetic convergence of the trees. Section 5
shows although operations like multiplication or division by zero can render
large parts of trees ineffective, in the continuous domain such obviously inef-
fective code can be a small (≈0.5%) or a large (91%) part of highly evolved
programs. Thus explaining why automatic intron removal may not always im-
prove GP execution time. Section 6 shows in converged populations many
subtrees have identical phenotypes. In Section 7, in contrast to ordinary hu-
man written computer programs, by studying information flow within evolved
trees we find on average entropy rises monotonically from the inputs (the
leafs) towards the the output (the tree’s root node) and quickly reaches a
maximum, log2 |test suite size|. This means large parts of evolved programs
have identical entropy. In contrast, Section 8 shows typically the phenotypic
disruption of crossover has a limited effect, which tends to be damped in the
region above the crossover point towards the root node. This opens the way
to the implementation of new efficient GP interpreters for large evolving pro-
grams. Finally, Section 9 describes a few of the limitations of our approach
before we conclude in Section 10.

1.2 Background: Convergence in Population Based Search

In all optimisation and machine learning there is an exploration-exploitation
balance to be struck between seeking new solutions (exploring) and exploiting
the best results founds so far by searching in their neighbourhood. In evolu-
tionary computing population convergence gives a measure of how the balance
has been struck so far. A highly converged population suggests, search has been
mostly locally exploiting the neighbourhood of the best seen so far. Whilst a
diverse population suggests search is more explorative. Studying population
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Fig. 1 Example of a converged population of five bit strings. In the 4 leftmost positions
at most one member of the population is different from the rest, whilst in the remainder
they are all the same. Thus although each member of the population is unique, yet they are
similar. Studying bit positions makes this clear, and having a simple fixed representation
makes it easy to do.

diversity may give insights into how well a search technique is performing or
suggest ways to improve it.

In the case of fixed representations, such as fixed length bit strings [1,2],
convergence is often defined by summing the lack of variation in individual
bit positions in the evolved population. This has the advantage of capturing
convergence even when every bit string in the population is different but they
each have many bit positions in common (see Figure 1).

1.3 Background: Convergence of Genetic Programming Populations

Some evolutionary computing techniques, in particular genetic programming
(GP) [3,4], allow the representation [5] to evolve. Although there are many
types of GP [6,4,7,8,9,10,11], and more recently genetic improvement has
been applied to fix bugs [12] in human written code or otherwise increase its
performance [13][14][15][16] [17][18][19][20][21], we will concentrate on Koza’s
evolution of lisp s-expressions in the form of trees [3]. We will study the fixed
arity case where the tree’s internal nodes (functions) have exactly two argu-
ments. In particular, we will use the traditional four GP mathematical func-
tions addition, subtraction, multiplication and protected division [3]1. Again,
to simplify, we follow Koza’s [3] definition of subtree crossover, but select the
crossover points uniformly at random2. From these four functions it is possible
in principle to construct any polynomial and any continuous function can be
approximated by a polynomial.

Perhaps due to the difficulty of defining convergence of trees, convergence
of bit string GAs has been more studied than that of GP populations. Koza [3]
defined a population variety measure as being the fraction of unique individuals
in the population. He showed in evolved GP populations variety remains near
100% [3]. As with bit string GAs (Figure 1), we can consider convergence of
components of trees [22,23]. Koza, O’Reilly [24], and in particular Poli [25,26,
27,28,29], used mathematical models to analyse the short term evolution of
program fragments in GP populations. They devised various ways to partition

1 We define protected division so that division by zero yields a defined result, i.e. 1.0
2 In [3] Koza uses a 90% bias in favour of internal nodes to reduce the fraction of crossovers

which simply move leafs within the trees.
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trees into schema [30,31] and created increasingly accurate inequalities and
then equations to predict their frequency in the next generation 3. Daida et
al. [38,39] also considered the geometry of the binary tree search space on GP
as well as various ways to visualise it [40]. Gustafson et al. [41] consider GP
population diversity and entropy. (Note Gustafson et al. consider entropy of
the population, rather than, as in Section 7, within GP trees.) A number of
successful extensions to GP have been proposed which are inspired at least in
part by theoretical considerations such as the Schema theorems. For example
Poli and Page’s smooth uniform crossover (GP-UX) [42], Hansen’s homologous
crossover [43], Moraglio and Poli’s geometric crossover [44] and Pawlak’s local
and approximately geometric semantic crossovers (LGX and KLX) [45]. These
take note of the special significance of the root node in GP trees.

1.4 Background: Crossover

In linear representations, crossover can be assumed to be beneficial by allowing
search to combine good components [1]. In diverse populations, crossover can
thus be viewed as a long range search operation, which may jump from a
good region of the search space over bad regions to a distant good point [46].
The effectiveness of crossover in GP remains controversial [47] and this has
prompted studies looking into the effectiveness of Koza’s subtree swapping
crossover or the value of schema in GP populations, for example [48,49,50,
51,52,53]. Finally some GP benchmarks have been subjected to more or less
detailed mathematical run time and convergence analysis [54,55,56,57,58].

1.5 Background: Inspiration from Biology and Earlier GP

Although Biologists are Darwinists [59] at heart, it is often assumed that evolu-
tion was something that took a long time and occurred in the past. Yet studies
of fish in the African great lakes showed that new species have evolved in the
last few thousand years (rather than taking millions of years) [60], and Rich
Lenski’s experiments with E. coli [61] show even in the most stable of envi-
ronments bacteria can still improve their metabolisms after tens of thousands
of generations [62]. McPhee and Poli [63, Fig. 1a v. 1b] showed, even in some-
thing as artificial, simple and mechanical as linear GP, extended evolution can
throw up surprises. Recently we have been studying small genetic program-
ming populations run far longer than usual: for thousands, even hundreds of
thousands, of generations.

3 Schema theory has proved quite popular with GP authors [32,33,34,35,36,37].
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1.6 Background: Assistance from Parallel Hardware

In [64,65] we used Poli’s sub-machine code GP [42,66] to evaluate 64 fitness
cases in parallel and so speed up the evolution of populations of 500 binary
trees allowing for the first time GP evolution for 100 000 generations4.

The advent of AVX parallel vector instructions allows parallel evaluation
of 16 floating point fitness cases. Again parallel hardware allows us to evolve
small genetic programming populations for many thousands of generations.
We have use Koza’s sextic polynomial [3] as a convenient continuous symbolic
regression benchmark [67,68]5 6. The sextic polynomial has often used been
used as an example GP benchmark for symbolic regression, which remains
one of the most popular applications of GP. It uses four functions (+, −, ×
and “protected” division) which are together sufficient in principle to express
any polynomial and thus in theory are able to approximate any continuous
function.

2 Sextic Polynomial, GPavx

Our GP experiments greatly extend [68] but this section primarily gives the
background for the extensive analysis of the first 10 000 generations for a total
of five runs in Section 3 onwards. (To be consistent, where data from five runs
are plotted together, we have used the same colour/line styles: Figures 5, 6,
10, 11, 13, 16, 19, 21, 22.)

Our experiments use Koza’s sextic polynomial (see Figure 2). The 48 fitness
test cases are shown with crosses (×) in Figure 2) and Table 1 gives the GP
parameters. These are the same as our conference paper [68] but we run for
far longer and subject the populations to far more detail analysis. Evolution
of tree sizes over 35 days is shown in Figure 3 7.

In Figure 4 we plot the corresponding convergence of (phenotypic) fitness
(averaged over 100 generations). Showing both the fall in the number of chil-
dren whose fitness is not identical to the best in the population (red solid line)
and also the rise in the number of times where everyone in the population has
the same fitness (blue dashed line). In 884 of the last 1000 generations (88.4%)
all 500 trees have the same fitness.

4 See http://www.cs.ucl.ac.uk/staff/W.Langdon/gggp/#Langdon:2017:GECCO for an-
imations of the evolution of convergence in binary 6-multiplexor populations.
(Also YouTube video: https://youtu.be/gwCwvwJcWbQ.) C++ code available from
http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/gp-code/GPbmux6.tar.gz.

5 See http://www.cs.ucl.ac.uk/staff/W.Langdon/seminars/aigp3/ for an animation of [67,
Figure 8.5].

6 Koza [3] uses 50 fitness cases. However, to run conveniently on AVX-512 hardware we
replaced 50 by the closest multiple of 16, i.e. 3 × 16 = 48 test cases. Therefore we actually
bank together sets of three AVX-512 instructions to evaluate 48 fitness cases together [69,
70,71].

7 Run aborted due to external power failure. We used GPavx, which on publication [69,70],
was the world’s fastest general GP system http://www.cs.ucl.ac.uk/staff/W.Langdon/

ftp/gp-code/GPavx.tar.gz, on a 3.00GHz Intel Xeon Gold 6136 server with 48 cores and
3 TBytes. See also RN/20/01 [72]

http://www.cs.ucl.ac.uk/staff/W.Langdon/gggp/#Langdon:2017:GECCO
https://youtu.be/gwCwvwJcWbQ
http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/gp-code/GPbmux6.tar.gz
http://www.cs.ucl.ac.uk/staff/W.Langdon/seminars/aigp3/
http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/gp-code/GPavx.tar.gz
http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/gp-code/GPavx.tar.gz
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Fig. 2 48 test cases for Sextic Polynomial Benchmark.
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Fig. 3 Evolution 175 973 generations in 5 weeks. Other runs to generation 10 000. (Data
averaged over 100 generations.)
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Table 1 Long Term Evolution Experiment with Sextic Polynomial

Terminal set: X, 250 constants -0.995 to 0.997
Function set: MUL ADD DIV SUB (all binary)
Fitness cases: 48 fixed input -0.97789 to 0.979541 (randomly selected from -1.0 to +1.0

input). y = xx(x−1)(x−1)(x+1)(x+1)

Selection: tournament size 7 with fitness = 1
48

∑48

i=1
|GP (xi)− yi|

Population: 500. Panmictic, non-elitist, generational.
Parameters: Initial population (500) ramped half and half [3] depth between 2 and 6.

100% unbiased subtree crossover (no mutation). Five runs.
DIV is protected division (y!=0)? x/y : 1.0f
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Fig. 4 Evolution of population fitness convergence. After generation 120 000 in most gen-
erations everyone has exactly the same fitness, rising to 88.4% on average. Other runs only
to generation 10 000. (Note log scale.)

Figure 5 plots the evolution of the best fitness in the population (note
log scales). Figure 5 shows during the longest run GP found 3588 progressive
improvements. Whilst [68] suggested that crossover might continue to find
improvements, the long flat region at the right of Figure 5 hints that, at least
in this case, GP has got stuck and no further improvements will be found.

In Figure 6 we plot the evolution of size up to generation 175 488 (again
log scales). Notice the surprisingly good agreement with the a power law we
reported in [68] for the first thousand generations.

In [73,74,75], assuming no anti-bloat measures, we predicted that tree sizes
would grow sub-quadratically, i.e. as a power law, with an exponent ≤2.0. This
has been repeatedly seen. (It would be interesting if mathematical models or
theoretical analysis could explain why GP trees tend to grow at about one
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Fig. 5 Evolution of mean absolute error. End of run label gives number of generations
when error was reduced. (Note log scales.) Different runs in different colours and line styles.
Where possible the same colours and line types are used in all the following graphs.

level increase in depth per generation.) In a Boolean problem after evolution
for thousands of generations, we saw extreme fitness convergence, causing ev-
eryone in selection tournaments to have the same fitness [76] and so loss of
selection pressure. This eventually lead to tree size varying at random and no
sustained bloat [65,64]. It appears that, with modest population sizes, in the
continuous domain (such as symbolic regression) the large number of possible
fitness values delays such total fitness convergence. Nonetheless Figure 4 sug-
gests increasing fitness convergence. In even more extend evolution, we might
see total loss of selection pressure and with it and end to bloat. However, al-
though in one case the exponent is slightly above 2, so far the prediction of
subquadratic bloat is holding (Figure 6).

The mathematics of the distributions of binary trees has been extensively
studied [77] [78, page 210]. Average random trees have a somewhat fractal
self similar structure in which subtrees within large random trees have shapes
which are like those of the random tree they inhabit. Approximately half of
large random binary trees have a leaf directly connected to their root node.

A well formed binary tree (of size l) must have a depth d lying between that
of a short dumpy tree of the same size (depth= dlog2 le). And a maximal long
stringy tree, consisting of a single run of functions each a leaf as one argument
and another function as the other, except the last function, all of whose ar-
guments are leafs, (depth= (l+ 1)/2). Therefore log2 l ≤ d ≤ (l + 1)/2. That
is, all binary trees must lie between the “Full” and “Tall” lines in Figure 7. In
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Fig. 6 Evolution of tree size. Straight lines shows best RMS error power law fit between
generation 10 and 1000. Colours as Figure 5.

fact most large binary trees lie close to a parabolic curve: depth ≈
√

2π|size|,
“Flajolet” in Figure 7 (note log scales). As is expected, in the absence of size or
depth limits, even after prolonged evolution, GP trees are somewhat randomly
shaped and tend to lie close to Flajolet large tree limit [74].

3 Syntactic Convergence of Tree Shape and Contents

In this and the following sections (up to Section 8) we analyse the evolved
populations in much more detailed. Due to space and runtime constraints,
this analysis covers the first population created by crossover, i.e. generation 2,
and then every 100 generations up to generation 10 000.

Figure 8 shows, despite the wide range in tree sizes in each generation, the
population does converge from the root out8. The bright yellow indicates the
contents (both program element and tree shape) that are identical. Whereas
black shows subtrees whose contents or location that are unique. Figure 9
shows populations, with genetic convergence explicitly plotted against depth.
Note the non-uniform vertical scale highlights small deviation from perfect
convergence. After thousands of generations, hundreds of nested function calls

8 Figures 8, 15 and 17 use Daida’s [40] lattice in which trees are shown with their root
at the origin and branches splayed out from the centre using the full 360◦. http://www.

cs.ucl.ac.uk/staff/W.Langdon/gp2lattice/gp2lattice.html This circular display allows
populations, indeed multiple generations, of trees to be displayed together, as if plotted on
top of each other. It also highlights the asymmetry of the highly evolved trees.

http://www.cs.ucl.ac.uk/staff/W.Langdon/gp2lattice/gp2lattice.html
http://www.cs.ucl.ac.uk/staff/W.Langdon/gp2lattice/gp2lattice.html
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Fig. 7 Plot of size and depth of the best individual in each generation for Sextic polynomial
runs with population of 500. Binary trees must lie between short fat trees (lower curve
“Full”) and “Tall” stringy trees. Most trees are randomly shaped and lie near the Flajolet

limit (depth ≈
√

2π|size|, solid line, note log-log scales).

from the root node, there are functions or leafs where most members of the
whole population are identical. Turning this around (dashed lines in Figures 10
and 11) there are no unique root nodes and the fraction of unique genes rises
to a maximum of only 5.4 parts per million in the population at depth 420.
The distribution of unique genes (i.e. program elements and their location in
the whole tree) approximately follows the distribution of tree locations in the
whole population (Figure 10).

In earlier work on a Boolean problem [65,64], we reported tree distribu-
tions were similar to but significantly different from those predicted by Poli
and Dignum [79] for crossover only GP without fitness selection. Poli’s result
holds regardless of problem domain. It appears the initial deviation from the
Lagrange distributions predicted by Poli is caused by fitness selection and its
continuation during evolution may be due to a founder effect, whereby in a fi-
nite population evolution’s long term path is influenced by fit individuals from
many generations ago. It would be interesting to reconcile Poli’s predictions
(which seem related to our prediction of random tree shapes) with actual GP
runs.
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Fig. 8 Genetic convergence in a population of 500 binary trees after 2, 100, 1000 and
10 000 generations (maximum depth 7, 118, 656 and 507). Note 100, 1000 and 10 000 gens at
the same scales, but gen 2 expanded to show detail around the origin. Video online: https:
//youtu.be/TssAIo-vatE Trees are plotted in lattice form with their root at the origin 0,0
and branches spread out radially (see especially top left, generation 2). The whole population
is plotted with their roots aligned. The colour indicates the degree of convergence at that
point in the tree. In Generation 2 less than half the population has identical components
but this grows from the root outwards (bright yellow). Darker colours (black) indicate code
which only occurs in a few trees or is unique.

4 Semantic Convergence

Although we see some convergence of values returned via the root node of the
GP trees, see Figures 12 and 13, it is not as extreme as the genetic convergence
around the root nodes. Figure 12 shows the population evolving step wise
towards zero error. Although the spread of fitness values is small, typically less
than half the population have identical fitness. That is, the small halo of non-
converged, diverse, program element far from their root, still have some impact
and cause some limited spreading of the values returned by the population’s
root nodes, even though the halo’s values pass through hundreds of functions
which are identical across at least 99.6% of the population. This is slightly
different from the loss of entropy seen in traditional hand coded programs,
as the halo of diversity represents many perturbations around the converged
region, rather than a single mutation or error injection point. Nonetheless,
the observed evolution of very close fitness values at the root nodes (see right
hand end of Figure 13), despite large values present in the evolving trees

https://youtu.be/TssAIo-vatE
https://youtu.be/TssAIo-vatE
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Fig. 9 Genetic convergence of contents and shape of 500 GP trees in five runs at generations
2, 1000 or 10 000. Error bars show interquartile range around the median. Note in later
generations the whole population agrees around the root. After thousands of generations
most trees have some genetic diversity only more than 200 nested function calls deep (see
also Figure 10). Note non-uniform scales.

(see Section 4.1) suggests strong perturbation damping in the large evolved
converged nested functions between the halo and the roots.

4.1 Convergence of Values within the Programs

Each function within each tree in the population returns a value for each test
case (48). To summarise these 48 values the fitness function is applied not
just at the root node but at every function in the tree. Giving a floating point
“fitness value” for every executed subtree. (The fraction of non-executed code
is dealt with in the next section, Section 5.)

We look at the spread of fitness values across the population at the same
points in each tree (inter quartile range vs. median) for every tree location in
the population. For the case of the first generation created by crossover (gen-
eration 2), the widest normalised spread 3.0 occurs in a function at depth 4.
In only 28% of the generation 2 functions is the interquartile spread less than
the median. In contrast, in generation 10 000 94.8% of functions have identical
subfitness.

Despite the use of protected division, to prevent division by zero, the huge
numerical expressions evolved cause floating point numerical overflow (-inf)
and subfitness values as small as −2.11 1036 (almost -FLT MAX/48).



Genetic Programming Convergence 13

 1e-10

 1e-09

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 0  500  1000  1500  2000  2500  3000  3500  4000  4500  5000

F
ra

c
ti
o

n
 o

f 
T

re
e

Depth

Generation          2
Generation      100
Gens 1100--2000  
Gens 9100--10000

Fig. 10 Distribution of nodes within population of 500 GP trees by distance from root
node. Note log vertical scale. To smooth data (and be compatible with Figure 11) two longer
traces are the means of ten samples over 1000 generations. Note approximate Gaussian
shape, albeit with long tails. Colours as Figure 5.

Figure 14 shows the evolution of phenotypic convergence in terms of the
population ratio of inter quartile range to median. In almost all cases the
population spread is less than 1000th of the median value. Indeed by generation
10 000, 95% of syntactically converged functions calculate exactly the same
value and in 99.9% the population spread is less than 100th of the median
value. Right of Figure 14 shows the evolution of the tiny fraction of very
diverse subfitness calculations.

Figure 15 shows the distribution of phenotypic convergence across the trees
using Daida’s [40] lattice format for the complete population. As with ge-
netic convergence phenotypic convergence grows outwards from the root node.
(A YouTube video shows the evolution of phenotypic convergence, as a movie
https://youtu.be/_qz1_1AK1gw)

5 Negative Results Sometimes Too Few Introns

It is well known that multiplying by zero produces zero regardless of multiply’s
other argument. Similarly, in “protected” division, division by zero produces
one regardless of the other argument. In GPavx we tried improving the speed
of the GP by recognising the presence of zero as the first argument of multiply
and skipping the evaluation of multiply’s second argument. (The same trick
can be done with protected division, however this requires the order of the

https://youtu.be/_qz1_1AK1gw
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Note non-linear vertical scale (ratio capped at 1000).
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Fig. 15 Phenotypic convergence median/inter quartile range in a population of 500 binary
trees after 2, 100, 1000 and 10 000 generations (see Figure 8). Ratio capped at 1, so yellow
indicates inter quartile range ≤ median. Note 100, 1000 and 10 000 gens at the same scales,
but gen 2 expanded to show detail around the origin. Video online: https://youtu.be/_qz1_
1AK1gw

arguments to be reversed, i.e. the divisor must be evaluated first.) To take
advantage of the Intel AVX vector instructions we require zero to appear in
all the 48 test cases. Despite the evolution of huge bloated trees in some cases
this produced almost no speed up.

The fraction of introns varies between runs. In the first run (solid line in
Figure 16) although multiply is common and zero is computed in the evolved
trees (e.g. by x-x=0), 0.0 is not common (we are after all trying to evolve
non-zero values Figure 2 page 6) and so, as the lowest line in Figure 16 shows,
typically more than 99.5% of the evolved code is evaluated. However in another
run (upper line), we can avoid executing almost all the code by simply treating
multiply by zero as a special case.

6 Distribution of Subtree Fitnesses

Not only does the population evolved to have very little genetic variation (Fig-
ure 15) but the values passing through them during evaluation also converge.
Figure 17 shows the evolution of the typical sub-fitness values in a typical tree.
Although fitness improves markedly (see colour bar and note log10 scale) the

https://youtu.be/_qz1_1AK1gw
https://youtu.be/_qz1_1AK1gw
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Fig. 16 Evolution of introns. I.e. fraction of functions not executed because they follow
multiplication by zero. Colours as Figure 5.

general behaviour is locked-in and evolutionary improvement is channeled via
the branches connecting the large subtree to the root node. The channel here
typically has relatively poor fitness and so is shown in blue.

Figures 18 and 19 show the values calculated by functions within the popu-
lations. In the first run in only two functions do the huge expressions overflow
floating point arithmetic to give -inf, nonetheless the wide range of values can
be seen. Figure 18 highlights the long term phenotypic stability of the evolv-
ing populations, showing similar pattern of values calculated over thousands of
generations. It seems the expected highly repetitive nature of trees evolved by
crossover [80] is responsible for the enormous number of times certain values
are calculated. E.g. 9% of function calculations have a subfitness of -0.509019
(the subfitness of SUB -0.129 X). 1

3 of the functions return just 12 values.
Other runs lock into other phenotypic values, Figure 19.

7 Information Flow and Entropy during Execution

Conventional tree GP can be readily thought of in terms of information flow
and the entropy of value distributions within the tree. This detailed examina-
tion of GP trees as executable functions gives another view of how offspring
trees can retain their mother’s high fitness by returning the same values as her
and so how populations of programs can converge despite continual syntactic
modification. We can think of information flowing in from the leafs, moving
though the tree and exiting at the root node. Each node within the tree takes
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Fig. 17 Evolution of consensus subfitness (− log10 |median|) near the root in a popula-
tion of 500 binary trees after 2, 100, 1000 and 10 000 generations (see Figure 15). Note
bright center at root, where true fitness is calculated. After generation 2, only parts of trees
represented by 490 members of the population plotted. (For gen 2 more than 10.)

Fig. 18 Evolution of distribution of subfitness within populations of 500 GP trees. (Note
log horizontal scale, generation 10 000 detailed in Figure 19 with solid lines.)
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Fig. 19 Distribution of values calculated by functions in generation 10 000. Values in red
refer to first run, subfitness 0.509019 is the most common (see Figure 18). The 12 most
common values together represent a third of all the functions in the population. Values rep-
resenting less than 0.1% of the population are group into 1/8th bins. Note despite variation
between runs, some subtree values are much more common than others. (Note log horizontal
scale.) Colours as Figure 5.

information from two incoming paths (its arguments) transforms it (using its
inherent mathematical operation) and then passes the transformed informa-
tion towards the root node. At the root node the information is gathered via
the fitness function into a final value of the GP individual.

As is common in programming, our functions are not reversible [81]. This
means, given a function’s output, it is impossible in general to infer what its
inputs were. E.g. if ADD(x,y) returned 3.1 (without additional information)
we cannot say what x or y where. E.g. x,y could be 2.1,1, 2.2,0.9, 2.3,0.8,
1003.1,-1000, etc., etc. That is, we can think of functions as destroying infor-
mation. Similarly we can think of the fitness function (as it too is irreversible)
as also destroying information. For example, here the fitness function takes 48
float values and condenses them to a single float error value9.

9 In pretty much any GP system the huge growth with tree size in the number of possible
tree shapes (the Catalan number), and the exponential rise in the number of ways of labeling
each tree with functions from the function set and leafs from the terminal set, means there
must be multiple GP trees with the same fitness value. For example, in our sextic polynomial
representation, the number of trees with up to 7 nodes is 1.25 1012, whilst the number of
fitness values cannot exceed 232 = 4.29 109.
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In digital computing entropy is usually defined as H=−
∑
i pi log2(pi) where

pi is the probability of the system being in state i and the summation is over
all possible states. It can also be thought of as the expected value of the un-
expectedness of the event that the system is in state i (log2( 1

pi
)) [82, page 27].

Multiplying by the probability and summing over all possible states to calcu-
late the expected value, gives an equivalent formula H=

∑
i pi log2( 1

pi
).

In the case of a simple evolved GP tree, the possible states are easy
to define and fixed. For example a constant leaf has exactly one state, its
value, e.g., -0.995, whereas the leaf x takes one of the 48 fixed unique val-
ues -0.97789 to .979541 (see Figure 2). Thus for a constant H=0 and for x
H=log2(48) = 5.58 (Notice that the GP uses 48×32 bits = 1536 bits to store
the values calculated by evaluating leaf x and 1536� 5.58, meaning that the
representation is highly redundant.) Since there are no side effects, the tree
cannot create information, meaning at every node in the GP tree, entropy will
be between 0 and 5.58 bits.

In an ordinary programming language we would expect each function to
destroy information meaning that entropy would fall monotonically from the
start of the program to its end. However, although we start with random
expressions, at every generation we are selecting for programs that match the
target function as accurately as possible (Figure 2). Thus any GP individual
with less than 48 distinct values at its root node will suffer a severe fitness
penalty and is liable not to have children. The action of fitness selection with
crossover means functions inside the GP trees tend to use x leafs to generate
48 distinct values and trees evolve under our fitness function (which tends to
maximise entropy10). Therefore evolution tries to ensure that much of each
tree has maximum entropy. This is confirmed by Figure 20.

Figure 20 shows in the first population created by crossover, generation 2
(left most violet line), more than half the functions for which both inputs are
leafs (i.e. minimum depth=1) calculate 48 different values. In highly evolved
trees this climbs to 68%. After generation 100 this reaches 100% for parts of
the tree at least four nested function calls from a leaf. That is, apart from near
their leafs, GP trees evolve to have the maximum possible entropy (5.58 bits)
during fitness execution.

8 Evolution of Phenotypically Robust Code

The fraction of children which are syntactically identical to their parent (be-
cause by chance crossover over writes a subtree with an identical one) remains
about 5.58% throughout the run. Although some identical subtrees inserted
by crossover have three of more nodes, most are caused by replacing a leaf
by the same leaf. In these large trees half the tree is composed of leaves, even
after prolonged evolution the fraction of x leafs remains near that in the initial

10 We could even imagine entropy as being a secondary fitness objective, e.g. to penalise
initial random trees which calculate fixed values near the average of the target function,
rather than trying to match its variation.
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Fig. 20 Evolution of average distribution of maximum (48) possible different evaluation
values in GP trees. Y-axis is minimum distance to a leaf.

population, i.e. about 50% of the leafs (25% of all the tree). So the observed
fraction of non-syntax disrupting crossovers is approximately the same as the
fraction expected in random trees from swapping an x leaf with another x leaf
(6.25% = 25%× 25%).

It is easy to check if the inserted subtree is identical to the subtree it
replaces. If it is, then the offspring is identical to the parent and, since the
fitness function is static, we can skip evaluating it and simply set the child’s
fitness to be identical to the parent from which it inherited its root node
(mum).

Since we are dealing with trees without side effects, they can be evaluated
in any order. For example, evaluation from the leafs to the root will give
the same result as the usual recursive depth first evaluation from root to the
leafs11.

It is clear that most crossover subtrees are neither genetically nor pheno-
typically identical. Nonetheless (due to having only pure functions, i.e. with
out of side effects) we can independently evaluate both the old and the inserted
subtrees. In both cases we will get a vector of floats, each with an element per
test case. (In our case the vectors are 48 elements long.) If the two vectors
are identical, then the evaluation of the whole of the rest of the child must
be identical to that of its parent. And in particular, their fitness must be the
same. So, as with genetically identical crossovers, if there is no phenotypic dis-
ruption at the crossover point, then there is no phenotypic disruption in the
rest of the tree and we can skip the rest of the child’s evaluation and simply
set its fitness to be the same as its parent. Notice, since the child is identical to

11 Where recursion is not well supported, interpreting trees as reverse polish expressions
can be efficient [83,84].
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the parent except below the crossover point, we only need the parent’s fitness
and the old crossover subtree. Despite the enormous changes to the population
during evolution, the fraction of children which are not genetically identical
but are phenotypically identical at the crossover point, remains near 0.04%.
This means that, by itself, checking for phenotypic convergence of different
crossover subtrees can make little difference overall to GP run time. However
it is cheap to include more checks for phenotypic convergence.

To check for phenotypic convergence we need only two vectors (of length 48,
i.e. 192 bytes each). If the child is phenotypically different from its parent at
the crossover point, unless we are at the root node, we can move up one level in
the tree towards the root and check again. At the next level up, before we can
evaluate the function, we evaluate its other argument, i.e. the other subtree.
This avoids saving the complete phenotypic state for every tree (although this
can be done somewhat efficiently [85,86]). Notice in the child and the parent,
the other subtree will be identical and so it need only be evaluated once.
This gives us a third vector. Using these three vectors, we can now evaluate
the function above the crossover point for both the child and for the parent,
giving two result vectors. If they are the same, everything else in the child is
not only genetically identical to the parent but also phenotypically identical
and so the child’s fitness must be identical to that of its parent and we can
stop the evaluation and simply copy the parent’s fitness value. Obviously we
can repeat this for the next level up, until we either find a level where the child
phenotypic disruption caused by a random crossover event has died away to
nothing or we reach the root node.

If we find phenotypic convergence between the child and parent then we
have saved evaluating part of the child. The best case saving is almost |size|. If
we do not, then, in theory, we have paid a small price by evaluating every node
on the path from the crossover point to the root node twice (once for the child
and again for the parent). As the evolved trees are approximately randomly
shaped, on average the length of the path from crossover point to the root
will be ≈ 0.5

√
2π|size|. I.e., in theory the worst case fractional overhead is

only ≈
√

π/2
|size| (see dotted lines in Figure 22). However in practice repeatedly

using EVAL on subtrees, rather than once on the whole child, is liable to be
inefficient.

Figure 21 shows initially most crossovers lead to phenotypic disruption
throughout the offspring (i.e. from crossover point all the way to the root).
However as the population converges and the trees get deeper the fraction falls.
Over the first 10 000 generations, on average in between 3% and 19% of children
the evaluation cannot be short cut in this way. Depending upon run, there is
a clear downward trend so it appears from Figure 21 that the fraction will
fall to near zero after prolonged evolution. Indeed Figure 4, page 7, suggests
that as the trees become substantially deeper the fraction of phenotypically
destructive crossovers does continue to fall. On average, over the last 1000
generations of the longest run, only 0.025% of crossovers disrupt fitness. This
hints that, provided the penalty of calling EVAL multiple times is not too big,



Genetic Programming Convergence 23

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  1000  2000  3000  4000  5000  6000  7000  8000  9000  10000

M
e
a

n
 f

ra
c
ti
o

n
 c

h
ild

re
n
 w

it
h

o
u

t 
a

n
y
 p

h
e

n
o
ty

p
e
 c

o
n
v
e

rg
e

n
c
e

Generations

Fig. 21 Evolution of lack of any internal phenotypic convergence. Initially most trees
must be fully evaluated but this falls, so over the first 10 000 generation between 81% and
97% of evaluations can be short cut. Data smoothed by plotting running means over 100
generations. Colours as Figure 5.

and so by taking advantage of internal phenotypic convergence between the
crossover point and the root, huge evaluation time savings are possible [87,
88]. Figure 22 again concentrates upon the first 10 000 generations.

Notice that Figure 22 is telling us that, later in the runs, the phenotypic
disruption caused by crossover almost never reaches the root node.

If we look at this disruption in software engineering terms using Voas’ [89]
PIE (Propagation, Infection, Execution) model of software bugs, we can view
the tree as a program. The whole program (the whole GP tree) is “Executed”.
Its output is the value returned by the root (the outer most) node. We then
view subtree crossover as almost always changing the tree and so injecting an
error (“Infecting” the source code). Almost all such errors start to “Propagate”
up the tree towards the program’s end (the root node). However in large trees,
most crossover points lie far from the root node and the “error” (semantic
change) must pass through many floating point arithmetic functions to have
an impact on the program’s final value (the output of the root node). Most
functions do propagate the error. But every so often, on a given test case,
a function lying between the crossover point (the error) and the root will
return the same value as it did on that fitness test case as it did in the parent,
i.e. before the crossover. When this happens, above the function the error is no
longer visible on that test case. Indeed the error does not reach the program’s
output (for that test case). What we see, in highly evolved GP trees, is it is
highly likely that the error will vanish on all 48 test cases.
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Colours as Figure 5.

Although we have seen this for the four arithmetic operations and evolved
GP trees, we expect (due to information loss) [90], that this is a general phe-
nomenon in side effect free digital computing.

9 Limitations

Whilst we have investigated many aspects of convergence in GP, it is not pos-
sible to fully answer them all. This section discusses some of these important
questions, speculates on their answers, preempts a very initial experiment and
speculates on the outcome of possible future experiments.

9.1 Impact of Bloat Prevention

The growth of solution size without commensurate increase in fitness (bloat)
has been repeatedly investigated and numerous solution proposed. A common
approach is to limit the depth of the evolved trees. In earlier experiments [74]
we reported that the impact of a limit on tree depth can be to drive the
population from initially straggly randomly shaped trees towards larger more
bushy trees of near or exactly the maximum allowed depth. Conversely limiting
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the tree size can tend to drive the population towards the denser part of the
search space which has many more randomly shaped trees. The most numerous
trees of a given size lie near to the “Flajolet” line in Figure 7.

In Figure 7 a depth limit corresponds to a horizontal line. Whilst a size
limit corresponds to a vertical line. In the absence of other changes, we can use
Figures 6 and 7 to hopefully predict the outcome of imposing either a depth or
a size limit. We would expect the population to initially approximately follow
Figure 6 with subquadratic growth in size with number of generations. Notice
Figures 6 and 7 are plotted with log scales, so there is quite some variation
between individual runs. Nonetheless we would expect the population mean
tree size in a possible future run to initially lie somewhat near the solid straight
line in Figure 6 until it starts to approach the limit (which can be plotted on
Figure 7 as a straight line).

In the case of a size limit, we would anticipate the population would evolve
so that its mean size lies near (but below) the intersection of the size limit
and the Flajolet line. In the case of a depth limit, we would anticipate the
population mean to lie close to but below the limit but continue to move to
the right. Eventually it might be constrained by the lower limit (“full” trees
on Figure 7).

Notice we are implicitly assuming bloated populations, where discovery of
improved fitness is rare and many members of the population have the same
fitness. Thus fitness plays only a small role, and evolution is actually driven
mostly by the interplay of the genetic operators and the geometry of the search
space.

A possible confounding factor, is we are assuming the trees are never very
small. In a few cases it has been observed [91] that the whole population can
converge to a tiny tree (e.g. five nodes), provided it has a relatively high fitness
and every self crossover leads to a child of lower fitness. In which case, given
moderately strong selection (e.g. tournament selection), the population cannot
escape in reasonable time.

In some Boolean experiments [70] we were able to evolve small populations
for many generations when everyone in the population had identical fitness for
many generations. Under these circumstances there is no fitness driving evo-
lution and instead the population executes a random walk under the genetic
operations. Here any biases in the genetic operations will dominate. Subtree
crossover has no size bias. However, we would expect any mutation operator
with a bias in favour of smaller trees would quickly collapse the population.
Conversely we would expect a mutation operator with a positive bias, to con-
tinue to drive bloat.

One of the goals of these experiments was to see if a similar limit exists
in the continuous domain. We did not find it. My feeling is that it does exist
but it requires everyone in the population to have identical fitness for many
generations. That is, every crossover must not disrupt fitness. It appears this
is only possible when every crossover point is far from the root node. For
symbolic regression we could attempt to put some numbers to this. It seems
reasonable to assume the trees are randomly shaped, and so a limit on the
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number of crossover points near the root can be given by the the mathematics
of random trees [77]. For a small number of test cases, we might say we want
the chance of any crossover point in 100 generations lying within 400 nodes of
the root node to be no more than 50%. Notice we want to limit the number of
nodes near the root, which is only weakly related to the distance to furthest
node (the tree depth). For a given population size and number of test cases, it
might be possible using this approach to estimate the size of trees after which
bloat will stop [70].

9.2 Impact of Benchmark Choice

We have intensively studied only one application. Although we have argued
in Section 1.6 that the sextic polynomial is typical of symbolic regression,
evolution is notorious for throwing up surprises. We cannot say definitively
that other problems will behave the same way. For example there are a range
of benchmarks will rely on inspection of the tree’s contents, require limits on
the trees or where the primitives (e.g. move forward) do have side effects, for
which at least parts of our analysis will not hold. Nonetheless we expect that
it would hold for problems, such as symbolic regression, without limits on the
trees or side effects and where fitness is derived from treating the trees as
mathematical expressions.

9.3 Impact of Number of Functions

We have evolved trees with only four functions. Although we have argued in
Section 1.6 that they are sufficient for symbolic regression, it is often wise
in GP experiments to include more functions. Often additional functions are
included because they may suit the application. Although we certainly have
not demonstrated this; since practical implementations of other mathematical
functions also lose information, we would expect in many cases increasing the
number of functions would still mean that GP continues to converge in ways
similar to those we have seen with a near minimal set of functions.

9.3.1 Support for AVX SIMD Parallel Vector Processing

Intel’s AVX functions include square root, exp and log, trigonometric, and
hyperbolic functions. Other mathematical functions may be supported via
open source AVX libraries, or the GP experimenter may need to roll their own
AVX code. Also, by using for loops, scalar functions can be incorporated into
our AVX framework (but will lose the parallel processing speed up that AVX
provides on some more recent Intel hardware).
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9.3.2 Mixed Arity Trees

We have deliberately started with a function set composed of only binary
functions as this gives rise to binary trees, which have been extensively studied.
However there is work on distributions of trees of mixed arity [77]. Surprisingly
the distributions of random mixed arity trees are similar to those of random
binary trees. So perhaps future work could carry over our analysis to the mixed
arity case.

Our extension of Singleton’s GPquick [92] to allow incremental evaluation
from the crossover point to the root node, has to navigate up the tree. This
navigation currently relies on internal nodes having exactly two lower subtrees.
It would need extending to cope with other arities or a mixture of arities.
(GPquick allows functions to have 0, i.e. be a leaf, 1, 2, 3 or 4 arguments.)

9.4 Impact of Population Size

From a practical point of view, population size is one of the key GP parameters.
A larger population will be more expensive, however if set too small, the
population may quickly get trapped by a suboptimal solution. Restarting the
GP, rather than continuing an unpromising run may help. Machine resources
and the huge size of GP trees we anticipated evolving, necessitated using
a modest population size. However both smaller and larger populations are
common in GP.

Some mathematical schema models use expected behaviour, i.e. assume an
infinite population size, whereas the convergence we have described is in real
GP runs with finite populations. In a Boolean problem (rather than floating
point symbolic regression), we estimated the final size of the trees would be
proportional to the population size [65]. As we argued in Section 9.1, we an-
ticipate this would hold here. That is, we anticipate reducing the population
size, will reduce the size of the eventual trees.

Additionally reducing the population size, may mean there is more chance
of the population starting from a bad place and converging to a suboptimal so-
lution. For a fixed selection method, reducing the population size, also reduces
the “take over time” [2].

9.5 Impact of Tournament Size

The mathematics of tournament selection, has been extensively studied [93,91].
The relationship between tournament size and selection pressure has been for-
mally derived. However typically it is assumed that the population is itself not
evolving when extrapolating forward a few generations to calculate Goldberg’s
“take over time” [2].

As is common in GP, we have used a fixed tournament size of seven (see
Table 1). Given we are using a smallish population size, we anticipate either
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increasing or reducing the tournament size, particularly at the start of the
run, will change in detail the course of evolution and the performance of the
evolved solutions. Nonetheless, we anticipate as the trees grow to enormous size
the details of the selection technique will become unimportant and provided
there is sufficient selection pressure to prevent lower fitness tree reproducing,
convergence will (in the absence of other changes) be similar to that we have
found. That is, we anticipate a tournament size of 2 or more will cause similar
convergence.

9.6 Impact of Test Set Size

We anticipate changes to the fitness function due to changing the number of
test points will lead to changes to the relative fitness of various members of the
population. As with the selection mechanism (previous section), particularly
at the start of the run, this will lead to differences in the detailed path of
evolution and the quality of the solutions found. However again, we anticipate
as the trees become large, a change in the number of fitness tests will not in
itself make a substantial difference to convergence.

In the case of increasing the strength of the test oracle by increasing the
number of tests, we can go a little further. If we have n tests and we assume
each test is independent, we can very crudely model our incremental bottom
up evaluation. Each step up the tree, we run n tests. Let us assume each test
has the same chance p of giving the same result in parent and child. If this
happens on a particular test, then that test will yield the same result on mum
and offspring on every further node up the tree. We proceed evaluating up the
tree until all n tests give identical values in the mum and her child.

This is analogous to the coupon collector problem, except instead of col-
lecting a coupon each turn: 1) we have only a chance p of an individual test
giving us a coupon (i.e. mum and offspring evaluating to identical values).
2) We are going to run n tests at once. Given p is fixed, the time taken to
first drawing a coupon will follow a geometric distribution with mean 1/p. If
we draw one coupon at a time, the expected time to draw all n coupons is
n times the nth harmonic number, so a little more than n log n.

Supposing a particular crossover does not change fitness. Since we have to
try on average 1/p times to get a coupon but we are playing all n tests at each
level up the tree, the expected number of levels required before we can stop
bottom up incremental evaluation is ≈ n/(np) log n = 1

p log n.
That is, the depth of trees needed before crossover tends to stop being

disruptive will scale as O(log n) and so tree size would scales as O((log n)2).
In a very initial experiment, we saw that if we increased the number of test

cases from 48 to 1000 (i.e. by 20.8 fold) then incremental evaluation needed
approximately twice as many steps up the trees (log(1000)/log(48) = 1.78).
We should stress again that these are very crude models and very initial results,
nevertheless they tend to suggests convergence will be relatively insensitive to
the number of tests in the fitness test set.
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10 Conclusions

From an optimisation exploration–exploitation view point, evolution has de-
feated a disruptive crossover operator to produced highly converged popula-
tions, which exploitatively search the local neighbourhood of the best solution
without long range exploration. Although here we see tremendous bloat, Sec-
tion 5 shows not evaluating easily recognised introns can sometimes fail to
reduce computational cost overmuch. Convergence makes optimisation slow
and expensive, nevertheless, in Section 8, our study has given hints for reduc-
ing the computational cost of long term GP experiments.

We have measured GP convergence in multiple ways. In our very simple
GP computer system, evolution builds on top of conserved code. In genetic
programming the conserved code is around the tree’s root node.
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