
High Assurance Software for Financial

Regulation and Business Platforms

Stephen Goldbaum1, Attila Mihaly1, Tosha Ellison2,
Earl T. Barr3, and Mark Marron4

1 Morgan Stanley, USA
{stephen.goldbaum, attila.mihaly}@morganstanley.com

2 Fintech Open Source Foundation (FINOS), USA
tosha.ellison@finos.org

3 University College London, UK
e.barr@ucl.ac.uk

4 Microsoft Research, USA
marron@microsoft.com

Abstract. The financial technology sector is undergoing a transforma-
tion in moving to open-source and collaborative approaches as it works to
address increasing compliance and assurance needs in its software stacks.
Programming languages and validation technologies are a foundational
part of this change. Based on this viewpoint, a consortium of leaders
from Morgan Stanley and Goldman Sachs, researchers at Microsoft Re-
search, and University College London, with support from the Fintech
Open Source Foundation (FINOS) engaged to build an open program-
ming stack to address these challenges.
The resulting stack, Morphir, centers around a converged core inter-
mediate representation (IR), MorphirIR, that is a suitable target for
existing languages in use in major investment banks and that is amenable
to analysis with formal methods technologies. This paper documents the
design of the MorphirIR language and the larger Morphir ecosystem
with an emphasis on how they benefit from and enable formal methods
for error checking and bug finding. We also report our initial experi-
ences working in this system, our experience using formal validation in
it, and identify open issues that we believe are important to the Fintech
community and relevant to the research community.

Keywords: Fintech · Intermediate Language · Software Assurance

1 Introduction

The financial technology sector is undergoing a transformation in embracing
open-source and collaborative approaches to managing their collective industry
challenges. Many of those challenges involve sharing data models as well as busi-
ness logic and calculations. A prime example is the focus on leveraging commu-
nity initiatives around the digitization of regulatory needs to streamline industry
efficiency. Managing the myriad regulations that any single organization must

comply with is a enormous task. Reuters Regulatory Intelligence tracks regula-
tory changes across 190 countries and reported an average of 257 daily alerts
in 2020.5 Programming languages and the tooling around them play a core role
in managing the complexity and engineering effort involved in fulfilling these
regulatory requirements and implementing critical business applications.

The current approach to high assurance development is based on classical
process quality and provenance. Legal teams review regulations, or process de-
scriptions, to generate a set of rules and compliance examples. Development
teams use these documents to produce the actual code and build an architec-
ture that implements the systems/regulations described in the documents. In
this classic, waterfall style method, the assurance of quality is based on the doc-
umentation, workflow checklists, and conformance tests provided by the legal
team. While effective, this process is a time consuming and expensive way to
develop high assurance systems. Since different companies have different plat-
forms and systems, this work is duplicated multiple times. Beyond the raw costs
inherent to this approach, the increasing complexity of financial rules creates sit-
uations where the rules are interpreted differently by different systems, resulting
in increased regulatory uncertainty and issues with interoperability.

These challenges require broad community engagement to overcome. Thus, a
consortium of leaders from Morgan Stanley and Goldman Sachs and researchers
at Microsoft Research and University College London drove this project, with
support from the Fintech Open Source Foundation (FINOS). The core challenge
involved creating a mechanism to share rules, calculations, and their data mod-
els in a form that spans the wide range of current and future technologies across
the industry. In this paper, we describe our experience in creating a program-
ming and validation ecosystem that can support the needs of financial services
companies in developing and delivering high assurance software and regulatory
compliance software artifacts. Three interlocking goals guided our work:

1. Developing a core IR and programming model that converge existing lan-
guages to leverage the hard won knowledge embedded in them and to max-
imise its deployability in and sharing throughout the ecosystem;

2. Setting up a baseline validation methodology to provide assurance guaran-
tees on programs in the core IR; and

3. Creating workflows that help the wider community integrate their frontend
platforms and backend validation tools into the ecosystem.

To achieve the first two goals, we developed MorphirIR, a converged, core
intermediate representation (IR) with two key properties: 1) it is a suitable target
for existing languages in use in major investment banks and 2) it is amenable to
analysis with formal methods technologies. MorphirIR, described in Section 4,
is based on a convergence of two languages — Morphir from Morgan Stan-
ley [18] and Legend from Goldman Sachs [14] — with simplifications made to
improve its amenability to analysis.

5 According to Thomson Reuters “Cost of Compliance 2021” 78% of market par-
ticipants they surveyed expect the amount of regulatory information published by
regulators and exchanges to increase in 2021.

The Fintech space has many bespoke domain specific and contract languages
(DSLs) that serve valuable purposes in their niche but are not large enough to
justify the cost of building a full toolchain.MorphirIR provides a core set of lan-
guage constructs that are sufficient to describe common business concepts, while
remaining simple enough to provide an easy translation target. As described in
Section 4, the converged MorphirIR language is based on a standard let-style
functional core calculus with algebraic types and polymorphic collections. This
core is augmented with a number of commonly useful types and operators such as
decimal numbers or dispatch tables. This allows a wide range of source languages
used in the community to, with a minimal investment to build a translator, gain
access to the full checking and compilation tooling stack provided.

MorphirIR has many features that make it well suited for formal analysis.
Its language core is purely functional, referentially transparent, fully determin-
istic, and utilizes a small number of collection functors (instead of recursion)
for most iterative processing. To provide a baseline for the effectiveness and
value that formal methods can provide beyond the current stacks, we transpiled
MorphirIR code to Microsoft Research’s Bosque language [3]. As described in
Section 3, the focus is on providing simple ways to encode high-level intents and
approaches to analyzing the code along with the intents to provide actionable
results and/or increased confidence that the code successfully implements the
specified properties.

Our experience with these systems, the corresponding workflows, and our
work to make these systems widely available are described in the Experience Re-
port (Section 5). Our experience translating existing languages, including Elm,
Legend, Bosque, and a few small DSLs show the viability of MorphirIR as a
shared intermediate language for this space. The initial experiences with valida-
tion have been similarly positive. The workflow, which supports full refutations of
errors, generation of witness failure inducing inputs, and partial checking [15,19]
results in an easy to use system that consistently provides actionable feedack
and confidence.

Based on these experiences and community feedback to date, we believe
Morphir establishes the basis for a vibrant software ecosystem in the Fintech
space as well as a unique opportunity to advance the state of the art in formal
methods and their practical application. Section 5 outlines where the expertise
and experience of the formal methods community will be particularly useful.
These areas range from the direct opportunity of demonstrating the effective-
ness and utility of new techniques in the Fintech proving ground by integrating
them intoMorphir’s validation pipeline, to insights on the design of richer spec-
ification languages for MorphirIR, to the challenge of extending Morphir’s
validation stack from just code to the larger ecosystem of data and process com-
pliance, a space that calls for hybridising AI and verification techniques.

The contributions of this paper are:

– A report on our experience of building the MorphirIR core language as a
backend target for regulatory modeling languages and business platforms.

MorphirIR Core

Legend

Annotated

IR

BSQChk

Auditability

&

Observability

Validation

Pipeline

API

Abstraction

BosqueElm …

SQL JavaScriptJava …

⋮
Possible

Error

Proof

or

Witness

Fig. 1. MorphirIR technology stack.

– Mapping of the MorphirIR language into the Bosque language and check-
ing ecosystem as a baseline for formal quality assurance.

– A report on our experience on using this tooling workflow with code coming
from Elm and Bosque applications.

– A fully open source language and analysis stack for the community, including
a suite of annotated code as an evaluation benchmark.

2 MorphirIR Stack

The converged MorphirIR core language provides a shared compiler and run-
time platform. The diagram in Figure 1 shows the components of the Morphir

stack and where various members of the community are interacting with the
core MorphirIR language. The MorphirIR core language (Section 4) sits at
the center of the diagram and is the central component that enables innovation
in the rest of the stack.

2.1 Surface Languages

There are several surface languages, including Elm, Bosque, and Legend, that
can target the MorphirIR language. Currently, each one uses a custom tran-
spiler pass and interoperability requires manually projecting from the Mor-

phirIR representation to the semantics/types of the source language. The dot-
ted API abstraction component is a key open work item needed to develop a
higher level vocabulary of type and operation API’s to make interoperability
more transparent.

2.2 Validation Pipeline

The validation pipeline takes MorphirIR code into an underlying verification
language and tool for analysis. The default checker is currently BSQChk (Sec-
tion 3). Errors or other information are reported back into the original source
code using source maps maintained in the MorphirIR core model.

Our philosophy for validation tooling is pragmatic. In an ideal world, we
would have a full, and stable, specification for a task which we use to prove
that our implementation never fails and satisfies the specification. However, in
the world of under-specified and evolving regulations and business application
platforms, this ideal does not hold. Instead, we must deal with limited to no
specifications and, since our developers do not have time to debug/resolve proof
failures, we should be able to provide useful results even when proofs fail.

Thus, we consider the following hierarchy of confidence boosting results that
ensure useful feedback that either provides assurance the code is free of errors
or provides actionable information to fix a problem:

1a. Proof of infeasibility for all possible executions
1b. Feasibility witness input that reaches target state
2a. Proof of infeasibility on under-approximated executions
2b. No witness input found before search time exhausted

The 1a and 1b cases are our ideal outcomes where the system either proves
that the error is infeasible for all possible executions or provides a concrete
witness that can be used by the developer to debug the issue. The 2a and 2b
cases represent useful best effort results. While they do not entirely rule out the
possibility that a given error can occur, they do provide a substantial boost in
a developer’s confidence that the error is infeasible.

2.3 Monitoring and Compilation

Applications in the Fintech sector often run critical software, subject to exten-
sive compliance and auditing requirements. A common regulatory requirement
involves demonstrating to auditors exactly why any decision was made for up to
several years in the past. The Morphir tooling takes advantage of its functional
purity to reevaluate decisions to produce automated audit-quality explanations.
Explanations can take a variety of forms, such as natural language explanations
or flow charts. Evaluation can be injected into the code to publish explanations
through observability technologies or can be executed after the fact, for example
through an interactive web page that allows users to replay decision evaluation
much as a debugger would. Figure 1 shows a dedicated pipeline for providing ap-
plicaton behavior observability [1], runtime safety monitoring, and explanatory
logic into the final executable images.

The explanatory logic component is an interesting feature that plays an im-
portant role in audit compliance and in many business applications. Consider the
(simplified) regulatory code below derived from the 173 page FR 2052a Liquidity
Reporting instructions [13] for computing the category of an inflow:

function classify(cashflow: CashFlow): FedCode {
if(netCashUSD(cashflow) >= 0) then

if(isOnshore(cashflow)) then IU1 else IU2
else

IU4
}

For a given transaction, an auditor (or analyst) may need to know why a
flow was categorized as IU2. In most systems, this would require looking into
the code and manually tracing the execution flows. Most analysts at a trading
desk, or, in this case, accountants, would not be comfortable with this type of
error prone task. Thus, the Morphir backend can automatically inject auto-
mated logging code for each branch to record which are taken and the values
of the arguments. Thus, if a user sees a flow categorized as IU2 (an Offshore

Placement), the Morphir system can explain this result by noting in the trace
log that the netCashUSD(cashflow) was positive and the flow was offshore e.g.
!isOnshore(cashflow).

Finally, the MorphirIR stack supports emitting source code in a variety
of languages for integration into the desired execution environment. The Java
Virtual Machine (via Scala or Java) is the standard output; SQL and JavaScript
are also supported. Each of these target languages currently requires a custom
emitter implementation but, as the MorphirIR language has special support
for types like Decimal and BigNat plus an opinionated container library, it also
requires non-trivial work to ensure full runtime support in each target as well.
The Morphir stack also provides cloud deployment and distributed execution
support via integration with the Dapr [4] platform.

3 Validation Methodology

The validation workflow forMorphirIR programs is modular to enable a variety
of tooling for either general correctness properties or specialized analyses for
specific domains — e.g. checking for numerical stability or applying lint-style
checks to specific sections of code. In this paper, we focus on our experience
with the Bosque language’s validation system [15].

3.1 BSQChk Validation Workflow

The BSQChk checker first builds the code under analysis by translating the
MorphirIR code to the Bosque representation. Given the structure of the
MorphirIR code (Section 4), this translation is mostly a 1-1 process with book-
keeping to build source maps for error reporting. After this translation,BSQChk

loads the code and enumerates all possible error conditions it can check. For each
identified error, BSQChk follows the algorithm shown in Figure 2.

The first action is to check if the error can be refuted under various definitions
of simplified models of the program – limited sizes on input values and numeric
bitwidth sizes ranging from 4-16. If the error can be show to be impossible in
these simplified models then the checker attempts a refutation proof with no

Small

Refute

Error

Full

Refute

Small

Witness

Large

Witness

1a

Success

1b

Success

2b

Success

Yes

Yes

YesYes

No

&

2a Success

No

No

No

Input Size

&

Number Bitwidth

Input Size

&

Number Bitwidth

Fig. 2. BSQChk checker workflow.

limits on the size of inputs and 64 bitwidth sized numbers. If this is successful
then the checker has shown that the error is infeasible on all executions and we
achieved the highest quality, 1a, confidence level.

If we succeeded in proving the error infeasible for simplified models of the
program, but then failed to prove the infeasibility for the full case, we still
achieved the partial, 2a, confidence level.

If the refutation proofs fail then we search for a witness input for the error.
The small model search incrementally expands the input sizes and bitwidths
up to size 16. If we find an input that reaches the target error then we have
succeeded in producing a high value actionable result for the developer, 1b, in
our quality confidence level. With this result we know there is a real failure and
have a small input that can be used to trigger and debug it.

In the case we cannot generate a small witness we make a final witness gen-
eration attempt without limits on the input sizes and at the full 64 bitwidth for
numbers. If we find an input that reaches the target error then we have suc-
ceeded in producing a high value actionable result for the developer. Otherwise
we produce our minimal success result, 2b, where we aggressively explored the
input space.

The code in Figure 3 shows a MorphirIR implementation of a business
application modeling example. The code snippet is focused on the available

function. This function computes the number of items still available to sell based
on the number at start of the day (initialPosition) and the list of buy trans-
actions (buys) so far. As a precondition it asserts that the initialPosition is
non-negative. As a postcondition it asserts that the result $result is bounded
by the initial position value.

The code to compute the number of buy transactions that have been com-
pleted successfully and the sum of the quantities from these purchases is concisely

function available(initialPosition: BigInt , buys: List <Response >): BigInt
requires initialPosition >= 0;
ensures $result <= initialPosition;

{
let sumOfBuys = buys

.filterType <BuyAccepted >()

.map(fn(x) => x.quantity)

.sum()
in
initialPosition - sumOfBuys;

}

...
type Response =

BuyAccepted of {
productId: String;
price: Decimal;
quantity: BigInt; // <--- should be BigNat

}
| BuyRejected of {

...
}

Fig. 3. Bosque implementation of order processing code.

expressed using the functor chain buys.filterType<BuyAccepted>().map(fn(x)=> x.quantity

).sum(). While this code is conceptually simple from a developer viewpoint, its
actual strongest postcondition logic semantics are quite complex. They include
a subset relation and predicate satisfaction relation on the filter, a quantified
user defined binary relation with the map, and an inductively defined relation as
a result of the sum. Thus, trying to prove that the postcondition is satisfied (or
finding an input that demonstrates the error is possible) is a challenging task in-
volving inductive reasoning, relationships between container sizes and contents,
and quantified formula.

Despite these complexities, the BSQChk checker can model this code, in
strongest postcondition form, as a logical formula in a decidable fragment of
first-order logic and instantaneously solve it [15]. The result is the following
assignment which satisfies all the input constraints and violates the ensures
condition:

initialPosition “ 0 ^ buys “ List<Response>pBuyAcceptedp“a”, 0.0,´1qq

A developer can run the application on this witness, investigate the problem,
and identify the appropriate course of action to resolve the issue. In this case,
the fix uses the fact that the MorphirIR language supports BigNat, in addition
to BigInt, numbers to ensure that the buy quantity is always non-negative.

After this simple change, rerunning BSQChk instantaneously reports that
the program state where the ensures clause is false is unreachable for all possible
inputs. All of this analysis and proving is fully automated and does not require
any assistance, knowledge of the underlying theorem prover, or use of specialized
logical assertions by the developer.

4 MorphirIR Core Langauge

The MorphirIR language provides a unified target IR for various modeling
and platform development toolchains in use in the Fintech space and leverages
findings from recent work [15,21] on language design for automated reasoning,
to support advanced verification, error checking, and analysis tooling.

The initial source languages targeting this IR are a dialect of Elm (used in
the Morphir [18] stack) and Legend [14]. As these systems were built for mod-
eling financial data, logic, and calculations for business critical operations, their
designs already had most of the features we would want from the viewpoint of
building a high assurance ecosystem. They are pure, functional, and referentially
transparent. From this base, we refined the IR design based on experience with
the Bosque [3] language and tooling stack — making the programming model
fully deterministic, including additional primitive types, and expanding the set
of collection functors in the core library. The full language type grammar is
shown in Figure 4 and the expression language in Figure 5.

4.1 Types and Values

Primitives: MorphirIR provides the standard assortment of primitive types
and values including Bool, Int, and Float values. As the language is focused
on financial computation, we also provide a Decimal type. To support high as-
surance programming, MorphirIR also supports overflow free BigInt numbers,
plus, the generally useful positive only numeric refinement types Nat and BigNat.
The MorphirIR String type represents immutable unicode string values.

Tuples and Records: Structural Tuple and Record types provide standard
forms of self describing types. MorphirIR records and tuples are always closed,
e.g. they must explicitly include all indices/properties.

Algebraic Data Types: The primary means of organizing data inMorphirIR

is classic algebraic datatypes. The members of the ADT can have named or
positional members.

Parametric Containers: Following the design of principles of the Bosque

language, we include List<T>, Set<T>, and Map<K, V> as core types in the
MorphirIR language. These types support a rich set of functors that enable
the majority of iterative processing tasks to be described without the use of
arbitrary iteration or recursion (see Figure 6).

4.2 Expressions

Constants and Variables: MorphirIR has the usual constants for booleans,
numbers, and strings. Variables are used for function parameters and let bind-
ings in the usual way.

Primitive :“ Bool | Nat | Int | BigInt | BigNat | Float | Decimal | String

Tuple :“ rType1, . . . , T ypeks

Record :“ tp1 : Type1, . . . , pk : Typeku

ADT :“ type Ty “ C1 of CRepr
1

| . . . | Ck of CReprk

CRepr :“ rType1, . . . , T ypeks | tf1 : Type1, . . . , fk : Typeku

Container :“ List<T> | Set<T> | Map<K, V>

Function :“ pType1, . . . , T ypekq -> Typeresult

Type :“ Primitive | Tuple | Record | ADT | Container | Function

Fig. 4. MorphirIR Types.

Primitive Operators: The language provides a standard set of operations on
primitive types including, logical, arithmetic, and comparison operations. Arith-
metic operations on numeric types are always checked for overflow, underflow,
and div by 0. We do not allow implicit type coercions, so these operators are
only defined for values of the same types and conversions for mixed types must
be explicit. MorphirIR also provides the specialized // operator for integer
division (as opposed to the / operator for floating point divsion).

Constructors and Destructors: The constructor operations for the tuples, records,
and algebraic data types have familiar semantics. Patterns provide a type safe
way to destruct a value and access the constituent values.

Lambda: The use of functors to process collections is a major part of MorphirIR

programs. However, the widespread use of unrestricted higher order code greatly
increases the complexity and computational cost of program analysis. Combined
with our experiences, and the code style guidelines we have used, we opted to
restrict the use of raw lambdas. Thus, syntactically, lambda constructors are
only permitted in direct application positions. Consider the code:

function okc(l: List <Int >): Int {
return l.filter(fn(x) => x >= 0).size(); //ok - direct position

constructor
}

function okp(l: List <Int >, p: fn(Int) -> Bool): Int {
return l.filter(p).size(); //ok - direct position from parameter

}

function invalid(l: List <Int >): Int {
let fun = fn(x) => x >= 0; // error - lambda not in direct position

return l.filter(fun).size();
}

In the first function, okc, the lambda expression is in the direct call position to
the list filter functor. In the second function, okp, the lambda is a parameter
to the function which must be passed in from a direct declaration. In contrast, in

the invalid function, the lambda expression is indirectly assigned to a variable
before being passed to the filter functor and is an error in MorphirIR.

Function and Lambda Invocation: Function invocations are statically resolv-
able direct calls to the named function, or named lambda parameter, with the
given arguments. Since lambda uses are syntactically restricted to the direct
call positions, these uses can either be defunctionalized, so that all calls become
fully static (which is done when translating to Bosque for verification), or they
can be dynamically constructed as closures when compiling to a language like
JavaScript.

Assert: Assertions can be explicitly added to check for user defined conditions
and take a Bool typed condition expression along with a continuation ok ex-
pression. When the assert expression evaluates to true then the ok expression
is evaluated as the result otherwise the programs fails with an error.

Control Flow: Control flow is handled by a classic if-then-else construct or a
pattern matching and destructuring case operator. The case operation finds the
first condition in the list that matches the type of the value that is dispatched on
and binds variable names to the specified values from the constructor. The case
can be used on algebraic types, records, and tuples. There is a special wildcard
case “ ” which matches everything and the cases must be exhaustive.

Decision Tables: Sets of rules that define business logic are a frequent occur-
rence in Fintech applications. These rules can be encoded as nests of case, let,
and if-then-else statements. However, these encodings are complex and result
in the loss of information about the intent of the original rule structure. The
MorphirIR language includes decision tables as a first-class construct (the Ta-
ble row in Figure 5). The argument expressions are evaluated and bound to a
set of variables. Then, in this scope, the Opt clauses are evaluated in order. For
each clause the expressions in the list are evaluated in short circuit && order.
If all the expressions in the list are true then the result of the expression is
the evaluation of the tail Expresult. If the set is not exhaustive or any Opt is
unreachable it is a program error.

function getDecision(f: Facts , env: Jurisdiction): Decision
dispatch(docType = f.documentType , law = getGoverningLaw(env , f)) [

[docType == DRV] => Yes ,
[docType == ISDA , law == England] => Yes ,
[docType == ISDA] => No

]
}

The getDecision program shows a (simplified) table for computing business
rules around derivatives handling. In this code if the docType is DRV the result
is always a Yes. In the other case the result depends on if the governing law is
England. Note that if we accidentally switched the last 2 opt clauses, so that
the opt where law == England was last, this would be an error.

Const :“ true | false | i | f | s

Var :“ v

Operator :“ p!|+|-qExp | Expp+|-|*|/|//qExp | Expp&&|||qExp

Compare :“ Expp==|!=qExp | Expp<|<=|>|>=qExp

Cons :“ rExp
1
, . . . ,Expjs | tf1 “ Exp

1
, . . . , fj “ Expju | TypepExp

1
, . . . ,Expjq

Lambda :“ fnpv1, . . . , vkq => Exp

Invoke :“ fnamepExp
1
, . . . ,Expjq | Exp.inamepExp

1
, . . . ,Expjq

Assert :“ assert Expc then Expok

If :“ if Expc then Expt pelif Expc then Exptq ˚ else Expf

Case :“ case Exp of pPattern => Exp | => Expq ˚

Let :“ let v “ Exp in Exp | let Pattern “ Exp in Exp

Table :“ dispatchpv1 “ Exp
1
, . . . , vj “ ExpjqrOpt

1
, . . . ,Optks

where Opti :“ rExp
1
, . . . ,Expms “ą Expresult

Pattern :“ rv1, . . . , vjs | tf1 “ v1, . . . , fj “ vju | Typepv1, . . . , vjq

where each vi is a variable v or is the ignore match “ ”

Exp :“ Const | Var | Operator | Compare | Cons | Lambda | Invoke

| Assert | If | Case | Table | Let

Fig. 5. MorphirIR Expressions.

Let: The let operation binds a value to a variable name in the expected manner
or binds a set of variables to the destructured value of a tuple/struct/datatype.

4.3 Containers and Operations

The standard collection libraries play a central role in the design and use of
MorphirIR, which does not include looping constructs and where the use of
recursion is discouraged. Instead, we lean heavily on the use of a rich set of
collection operations to support iterative data processing. This has the advantage
of aligning well with development guidelines for high assurance software and,
as Marron and Kapur showed [15], allows us to reason about most container
manipulating code using decidable theories that are amenable to solving using
existing SMT provers. Figure 6 provides a brief summary of these operations.

List Operations: Lists can be constructed using a number of algebraic primitives,
including explicit initialization with fixed values, initialization using the contents
of another container, concatenation, and slicing. In addition, lists also provide
the usual size, get, and find index operations.

The functor family of algorithms provide higher order functions that reshape
lists based on user specified functions. These can filter subsets of elements in

List Cons :“ ListpExp
1
, . . . ,Expjq | ListFrompExpq | ListRangepExplow,Exphighq

| concatpExp
1
,Exp

2
q | slicepExp,Expstart,Expendq

List Primitive :“ sizepExp,Expindexq | getpExp,Expindexq | findpExp,Fnq

List Functors :“ filterpExp,Fnq | mappExp,Fnq | joinpExp
1
,Exp

2
,Fnq

List Ops :“ zippExp
1
,Exp

2
q | reversepExpq | sortpExp,Fnq | uniquepExp,Fnq

List Reduce :“ sumpExpq | minpExpq | maxpExpq | reducepExp,Expinit,Fnq

Set Cons :“ SetpExp
1
, . . . ,Expjq | SetFrompExpq

| unionpExp
1
,Exp

2
q | intersectpExp

1
,Exp

2
q

Set Primitive :“ emptypExpq | haspExp,Expkeyq | isSubsetpExp,Expofq

Set Functors :“ subsetpExp,Fnq

Map Cons :“ MappExp
1
, . . . ,Expjq | MapFrompExpq

| mergepExp
1
,Exp

2
q | restrictpExp,Expelemsq

Map Primitive :“ emptypExpq | haspExp,Expkeyq | getpExp,Expkeyq

| keyspExpq | isSubDompExp,Expofq

Map Functors :“ projectpExp,Fnq | remappExp,Fnq

Fig. 6. MorphirIR Container Operations.

a list, map functions over all elements in a list, or join two lists. We also pro-
vide operations for reorganizing lists, including the usual zip, reverse, sort, and
unique. In contrast to many languages which leave the algorithm used for these
operations under-specified, MorphirIR ensures these operations are always or-
der stable on the input lists.

The reduce family of algorithms is important as, following Mark and Ka-
pur [15], we do not have a general decidable logical specification for these op-
erations. Thus, we explicitly provide sum, min, max as special common cases
of reduction that we can axiomatize fairly effectively and a generic reduce that
involves heuristic inductive and/or unrolling to encode.

Set and Map Operations: The set and map datatypes are defined only for keys
that are numeric or string typed. Further, the map/set enumeration order is
defined to be the order of the underlying keys. These restrictions ensure that
the key based comparisons are decidable and the behavior of the operations is
always full deterministic.

In addition to simplifying the analysis of Sets/Maps via the semantics of the
allowable key types and ensuring ordering, we also explicitly limit some parts of
the API to reduce the introduction of difficult-to-reason-about constraints. No-
tably, there is no direct size operation, as cardinality and set operations are prob-
lematic to reason about simultaneously. With this design, we focus the Set/Map
operations on the core contains, lookup, and set theoretic operations they can

provide while encouraging to use of the rich, and simpler to reason about, list
operations as the default way to organize data.

5 Experience Report

The initial outcomes of this project have been very positive. The community
is already benefiting from the network effects of sharing a core language and
runtime. The validation capabilities add an additional value proposition: our
initial success with the BSQChk pipeline shows the potential for formal methods
in this space. Based on these experiences, we anticipate growing investment in
and adoption of the MorphirIR language, platform, and ecosystem throughout
the financial services community. Despite (or perhaps because of) these successes,
more work needs to be done. We discuss scenarios that we encountered where
we believe the Morphir stack can be improved and have begun investigating
approaches for realizing those improvements.

5.1 Languages Targeting MorphirIR

To date, the main users of the MorphirIR stack are Morgan Stanley and Gold-
man Sachs. The bulk of models have been written in the Elm programming
language. Elm proved to be a natural match with most constructs directly map-
ping from Elm to the MorphirIR. Elm support for a small number of data
types, such as Decimal and LocalDate, was added via the MorphirIR SDK.

Elm and MorphirIR have fundamentally similar language principles and
design. They are both functional and aim for the simplest language without
sacrificing expressiveness. The result is a lambda calculus with a few, well-known
extensions like if-then-else, let expressions, and pattern-matching. The transpiler
code is ca. 3Kloc and is mostly a one-to-one mapping with a few exceptions where
the Elm code uses constructs that Morphir does not directly support.

The Legend platform uses its own programming language called Pure to
implement many features. One of those features is model-to-model mapping.
The translation from Pure toMorphirIR first runs these mappings to produce a
simplified Pure AST. This core AST is side-effect free and declarative; a subset of
MorphirIR’s semantics directly expresses it. Thus, the AST into MorphirIR

transpilation step is a simple rewrite/rename process.
We are also seeing interest and usage from other members of the Fintech

community. The most common use cases come from other entities that have a
bespoke domain specific modeling language, often encoding business logic rules,
models of financial instruments, or regulatory information, that they use in-
ternally or have developed as part of a product offering. Further afield there
may also be benefit for smart contract languages like Solidity [25,27] or legal
formalization languages like Catala [17].

For these types of DSLs, the MorphirIR platform is very appealing. It
eliminates the cost of maintaining the compiler/toolchain/runtime system for
the DSL. The network effect of the MorphirIR ecosystem also increases the

value of any DSL ported to it, as it gives them a simple, standard way to in-
teroperate with the wider range of definitions and computations available in
MorphirIR. This is particularly valuable in the Fintech space where systems
frequently involve codified rules or regulations, which can be large and costly
to implement. The ability to reuse, instead of re-implementing, them for every
specialized stack has tremendous value. The community interest in expanding
the set of surface languages that target the MorphirIR stack also introduces a
number of (currently) open challenges.

DSL Translation: The current model for adding a new source language (or
DSL) to the MorphirIR stack involves manually translating the source seman-
tics into the MorphirIR semantics and syntax. This is both time consuming
and error prone.

Interestingly, when compared to scenarios dealing with full fledged program-
ming languages, these DSLs are often fairly simple and resemble macro systems
for concisely encoding business or regulatory rules. This suggests the possibil-
ity of partially automating this translation process via the addition of a macro

system or even a specialized structured data transformation language. In partic-
ular, if this language included the capability to connect logical assertions from
the DSL into the MorphirIR code, this would enable us to generate (partially)
verified translations [11].

API Abstraction: As more source languages and DSLs are added to the Mor-

phir system, we believe there will be an increasing need for transparent inter-
operability support. Given the diversity of concepts in the source languages, e.g.
Legend includes multiplicity constraints in its model/type language, and the
desire for flexibility in the stack, we do not believe it is practical to build a shared
universal type language that captures all of these variations.

Instead, we are looking to the world of RESTful systems [7] and the suc-
cess of integrating polyglot systems there. Simplified systems, such as AWS
Smithy [24], have shown great success for building distributed cloud computing
systems. Starting from this perspective, we are very interested in constructing a
layer that combines types, service calls, and logical constraint specifications. This
layer would provide a common interoperation language to components written
in different systems, encoding common information in the type system and ex-
pressing specialized information, such as the multiplicity data in some Legend

constructs, in an expressive constraint language.

5.2 Validation Pipeline

Our experience with the validation pipeline has focused on using BSQChk (Sec-
tion 2). Our work has focused on ca. 4Kloc of regulation code in a dialect of Elm
that implements a portion of the U.S. Liquidity Coverage Ratio rules and ca.

2Kloc of code implementing a sample trading application. These applications
have very few explicit assertions, so error checking is primarily of runtime errors
such as invalid casts, div-by-zero, etc.

In our experience to date with the trading application code, the checker has
found proofs of infeasibility for most errors it analyzes, result 1a in the outcomes
list (Section 3). In the remaining cases, the checker has not found any witness
failure inputs and has completed with result 2b from our outcome list. Our
inspections indicate these situations involve the use of reduction, which is not
contained in the BSQChk decidable fragment, or intensive bitvector operations,
such as converting 64bit ints to/from a Real representation of floating point
numbers, so the errors are very likely infeasible although not yet provably so by
the checker.

This experience led us to rewrite samples into the Bosque source language,
which has a richer type system than Elm and more support for adding pre/post
conditions, asserts, and data invariants. The example in Figure 3 comes from one
of these experiments and shows how the addition of specifications capturing,
even partial, higher-level intents can expose code issues that the checker can
successfully analyze. Thus, the major takeaway from our initial work here is the
need to find ways to increase the scope of checkable properties.

Enriched MorphirIR Language: In the example code (Figure 3), the fix
involves using a refined numeric type. This example is a simple case of the wide
range of ways numbers are heavily used in specific, and semantically distinct,
ways in these financially focused applications. In practice, base numeric types,
like Int and Decimal, are typedef ’d into many other conceptually distinct types
like currency, quantities, conversion rates, etc. This simple typedef is insufficient,
as the typedef mechanism maps to underlying types before checking, and can
result in errors with confused types. Conversely, creating a full, new nominal
type for each concept generates an unwieldy amount of boiler plate code to
provide the needed operations on each numerical value. It is unclear if there
is a compact unit-of-measure [10] algebra, as for physical quantities, that can
model these types. In our experience, the ontology of numeric types present in
financial software systems does not fit into a simple system that depends on a
small number of base units. Instead, this may be an opportunity to introduce a
novel, language-level typed numeric feature.

The example code in Figure 3 illustrates the utility of first class support for
including specifications in the language and the need for simple ways to specify
properties of interest. Many interesting properties, like the strict reduction in the
initialPosition value, can be easily expressed in code directly as part of an
assertion. For such properties, there is a need to provide language support to ease
the insertion of conditions, like first class pre/post conditions, data invariants,
etc., and we also are working to provide a library of commonly used predicates
for properties like primary key uniqueness, domain/range subset relations for
maps, etc.. However, other properties are not so easily expressed in code, such
as implicit global quantification like the multiplicity constraints in Legend. An
open question here is “Do we need to introduce a single (or perhaps dialects of)
specialized domain modeling languages for expressing assertions?”.

Lifting Checkers to the Data Layer: The semantic information that is added
to the MorphirIR code often contains information about data types (shapes)
and invariants on them. These implicit data invariants present a rich source of
information that can be used in data quality [23] assurance tasks. At the basic
level, we can look at data flows and type information to extract core type and
structure checks including numeric, string, enum values, and record or tuple
structures. To the extent that ADT constructors contain validation rules (or
invariants) and functions have pre/post conditions, we would also like to use a
weakest-precondition style analysis to infer other checks.

For example, a Trade record might have tradeDate and settlementDate

with a check in the constructor that tradeDate < settlementDate. We can
use this check both for analysis that the code does not construct any invalid
objects internally but if we push this condition to the interface with the data
sources, say a SQL database, we can also generate and check this assertion on
the appropriate tables. This ensures that any data flowing into the system, even
if entered manually, will be validated.

Alternative and Specialized Checkers: The focus of our experience in the
validation pipeline has been on checking language level assertions, like invalid
casts or div-by-0, and user defined assert conditions. Many applications and
DSLs have richer sets of conditions that are of interest. In some cases, these are
additional checks that should be applied to all code in a certain domain and look
like linter rules [9] and could be checked with the same underlying approaches
as for other semantic errors. Other conditions may need to be addressed with
specialized checking methodologies. One specific example that we explored was
numerical stability checking [2,20], as we noticed that our application makes
extensive use of float and decimal types. Interestingly, the outcome of this inves-
tigation for our target applications was that the combination of a true Decimal

type combined with a business rule specified rounding and computation ordering
resulted in numerical stability being a very low priority concern. As other users
of the MorphirIR stack emerge, e.g. in the algorithmic trading space, this may
become a property of substantial interest.

Outside of the need for checkers for specialized properties, we are also inter-
ested in supporting a range of checkers in the validation pipeline. The BSQChk

checker we currently use is SMT based (using Z3 [5]) so, as our experience with
inductive code illustrated, it is limited when dealing with certain scenarios and,
at some point, we will experience scalability issues. Many of the features of
the MorphirIR language that enable BSQChk to perform well should also
boost the performance and effectiveness of other verification and error detec-
tion techniques. The elimination of mutation and aliasing alone eliminate two
of the major causes of information loss and scalability problems for automated
reasoning systems. Combined with the additional benefits of specialized code
for common loop patterns [16,15,6], we expect the MorphirIR stack to be a
place where formal methods are able to showcase [21] the value they can have
in software development.

5.3 Injection of Compliance and Audit Logs

Centralizing the injection of cross-cutting auditing and observability logic at a
single point in the stack has a major benefit in ensuring compliance requirements
and business needs. An example is code that is part of a regulated system that
takes in data from various upstream sources. The lineage of this data, includ-
ing the origin, the decisions made using it, and the outcome are all subject to
compliance checks and audits. This data is usually stored, and when needed,
processed to produce flow and provenance graphs. Those same tools can be used
at modeling time to provide quick interaction with domain experts to ensure
that the model reflects their ideas. In a report, users might want to look up the
associated definition for a field and what data sources are used in the calculation.
As these tasks become more complex, tools can navigate the call path on the
fly and display relevant information to help users understand how a particular
value was calculated.

These problems have many interesting flavors from the topics of taint anal-
ysis [22], program question answering [12], and logging management [26]. The
ability to prove that a given set of values recorded in the audit (or observability)
pipeline are sufficient to answer specific questions or demonstrate the reasoning
for a given decision will have massive value. This type of proof would ensure
that the application satisfies the relevant regulations, which today is often done
by verbose logging, and would position us to confidently optimize the logging
and data retention code to remove redundant output.

Our experience with program and flow visualization to understand data lin-
eage and computation flows indicates that it is very effective for smaller applica-
tions or small numbers of data sources. However, the output becomes noisy and
too complex to be reasonably understood [8,12] as system size increases. Devel-
oping heuristic or analytic techniques that abstract, organize, and visualize the
most relevant aspects of these flows and lineages are of great interest.

6 Conclusion

This paper outlines our thoughts on the development of and initial experiences
with the Morphir stack. This open-source platform is a collaboration across
the Fintech community, academic researchers, and partners in the technology
space with the goal of building a standard platform for implementing, executing,
and validating regulatory compliance code as well as financial business platform
applications. In these domains, building high assurance code is a foundational
requirement for the system and the Morphir stack is explicitly designed to
support the use of formal methods. Our experiences with the system have vali-
dated these designs and are already showing the value of this collaborative and
assurance focused approach to the wider Fintech community. These experiences
have also highlighted areas where we believe the system can be further improved
or where innovation in verification and error checking can happen. Our hope
with this experience report paper is to start a wider collaboration that will fuel
the development of a vibrant software ecosystem in the Fintech space as well as

create a unique opportunity to advance the state of the art in formal methods
and their practical application.

Acknowledgments

We would like to thank Beeke-Marie Nelke, Pierre De Belen, and Jianglai (Teddy)
Zhang at Goldman Sachs for their technical contributions and feedback on this
work. Thanks to our reviewers and numerous colleagues for their constructive
comments and insights.

References

1. AppInsights, 2021. https://docs.microsoft.com/en-us/azure/azure-monitor/
app/app-insights-overview.

2. Earl T. Barr, Thanh Vo, Vu Le, and Zhendong Su. Automatic detection of floating-
point exceptions. POPL, 2013.

3. Bosque repository, 2021. https://github.com/microsoft/BosqueLanguage.
4. Dapr, 2021. https://dapr.io/.
5. Leonardo de Moura, Nikolaj Bjørner, and et. al. Z3 SMT Theorem Prover.

https://github.com/Z3Prover/z3, 2021.
6. Isil Dillig, Thomas Dillig, and Alex Aiken. Precise reasoning for programs using

containers. POPL ’11, 2011.
7. Roy Thomas Fielding and Richard N. Taylor. Architectural Styles and the Design

of Network-Based Software Architectures. PhD thesis, 2000.
8. K.B. Gallagher and J.R. Lyle. Using program slicing in software maintenance.

IEEE TSE, 17, 1991.
9. David Hovemeyer and William Pugh. Finding bugs is easy. SIGPLAN Notices,

39:92–106, 2004.
10. Lingxiao Jiang and Zhendong Su. Osprey: A practical type system for validating

dimensional unit correctness of C programs. In ICSE, 2006.
11. C. Kirkegaard, A. Moller, and M.I. Schwartzbach. Static analysis of XML trans-

formations in Java. IEEE TSE, 30, 2004.
12. Amy J. Ko and Brad A. Myers. Designing the Whyline: A debugging interface for

asking questions about program behavior. CHI, 2004.
13. Complex Institution Liquidity Monitoring Report, 2019. https://www.

federalreserve.gov/reportforms/forms/FR_2052a20190331_f.pdf.
14. Legend repository, 2021. https://github.com/finos/legend.
15. Mark Marron and Deepak Kapur. Comprehensive reachability refutation and wit-

nesses generation via language and tooling co-design. Technical Report MSR-TR-
2021-17, 2021.

16. Mark Marron, Darko Stefanovic, Manuel Hermenegildo, and Deepak Kapur. Heap
analysis in the presence of collection libraries. PASTE, 2007.

17. Denis Merigoux, Nicolas Chataing, and Jonathan Protzenko. Catala: A program-
ming language for the law. In ICFP, 2021.

18. Morphir repository, 2021. https://github.com/finos/morphir.
19. Peter W. O’Hearn. Incorrectness logic. In POPL, 2019.
20. Pavel Panchekha, Alex Sanchez-Stern, James R. Wilcox, and Zachary Tatlock.

Automatically improving accuracy for floating point expressions. PLDI, 2015.
21. Grant Passmore, Simon Cruanes, Denis Ignatovich, Dave Aitken, Matt Bray, Elijah

Kagan, Kostya Kanishev, Ewen Maclean, and Nicola Mometto. The Imandra
automated reasoning system (system description). IJCAR, 2020.

22. A. Sabelfeld and A.C. Myers. Language-based information-flow security. IEEE

Journal on Selected Areas in Communications, 21, 2003.
23. Sebastian Schelter, Dustin Lange, Philipp Schmidt, Meltem Celikel, Felix Biess-

mann, and Andreas Grafberger. Automating large-scale data quality verification.
Proc. VLDB Endow., 11, 2018.

24. smithy, 2021. https://awslabs.github.io/smithy/.
25. Solidity repository, 2021. https://docs.soliditylang.org/.
26. Ding Yuan, Jing Zheng, Soyeon Park, Yuanyuan Zhou, and Stefan Savage. Im-

proving software diagnosability via log enhancement. ASPLOS, 2011.
27. Jakub Zakrzewski. Towards verification of ethereum smart contracts: a formaliza-

tion of core of solidity. In VSTTE, 2018.

https://docs.microsoft.com/en-us/azure/azure-monitor/app/app-insights-overview
https://docs.microsoft.com/en-us/azure/azure-monitor/app/app-insights-overview
https://github.com/microsoft/BosqueLanguage
https://dapr.io/
https://www.federalreserve.gov/reportforms/forms/FR_2052a20190331_f.pdf
https://www.federalreserve.gov/reportforms/forms/FR_2052a20190331_f.pdf
https://github.com/finos/legend
https://github.com/finos/morphir
https://awslabs.github.io/smithy/
https://docs.soliditylang.org/

	High Assurance Software for Financial Regulation and Business Platforms

