
ar
X

iv
:2

10
9.

11
96

7v
1

 [
cs

.L
O

]
 2

4
Se

p
20

21

How to write a coequation

Fredrik Dahlqvist* Todd Schmid†

Abstract

There is a large amount of literature on the topic of covarieties, coequations and
coequational specifications, dating back to the early seventies. Nevertheless, coequa-
tions have not (yet) emerged as an everyday practical specification formalism for
computer scientists. In this review paper, we argue that this is partly due to the mul-
titude of syntaxes for writing down coequations, which seems to have led to some con-
fusion about what coequations are and what they are for. By surveying the literature,
we identify four types of syntaxes: coequations-as-corelations, coequations-as-predicates,
coequations-as-equations, and coequations-as-modal-formulas. We present each of these
in a tutorial fashion, relate them to each other, and discuss their respective uses.

1 Introduction

Characterising algebras by the equations they satisfy is common practice. Equations
are simple to write down: they consist of a pair of terms, or elements of an initial al-
gebra. Equations are also simple to interpret: terms denote constructions, so an equa-
tion between two terms asserts that two constructions produce equivalent objects. The
terms-as-constructions interpretation of equations is prevalent in programming language
theory. A programming language is a syntax for denoting programs, so equations state
equivalences between programs. Their importance can be seen in λ-calculus [12, 37, 43,
70], process algebra [78], Kleene algebra [3, 21, 76] and its extensions [28, 83, 91, 79, 94,
96], and related areas [22, 53].

A common thread, running through the many examples of equational reasoning in
computer science, is that equations can be used to state behavioural equivalences between
programs. For the purposes of this review, behaviours are what are obtained from dualiz-
ing, in the category theoretic sense, the concept of term. That is, a behaviour is an element
of a final coalgebra. The dual study to algebra, coalgebra, constitutes a whole subfield of
computer science dedicated to state-based dynamical systems, the sort of systems that
exhibit behaviours [29, 47, 90]. Dualizing algebra not only takes terms to behaviours, but
also equations to coequations, the main focus of this article.

Broadly, a coequation is a constraint on the dynamics of a state-based system. A
coalgebra satisfies a coequation if its dynamics operate within the constraint. This situ-
ation is familiar to those working in automata theory, since deterministic automata are
examples of state-based dynamical systems. For a fixed alphabet A, any set of languages
L Ď 2A

˚

determines a coequation satisfied by those automata that only accept languages
in L. We call these coequations behavioural, as they consist of a set of states in the final
automaton 2A

˚

Ñ 2ˆ p2A
˚

qA. Not all coequations are behavioural: following [69, 75] in

*Department of Computer Science, UCL. https://fredrikdahlqvist.wordpress.com
†Department of Computer Science, UCL. http://www.homepages.ucl.ac.uk/˜ucabtws

1

http://arxiv.org/abs/2109.11967v1
https://fredrikdahlqvist.wordpress.com
http://www.homepages.ucl.ac.uk/~ucabtws

viewing Kripke frames as coalgebraic dynamical systems for the powerset functor, modal
formulas provide illustrative examples of nonbehavioural coequations. For example, re-
flexivity is a modally definable constraint on the dynamics of frames (witnessed by the
modal formula lp Ñ p), despite the following two Kripke frames being behaviourally
indistinguishable.

‚ ‚ ‚ ‚ ¨ ¨ ¨

Rather, reflexivity is a coequation which requires two colours to be stated, p and p. The
concept of colour (or label) is key to moving beyond purely behavioural specifications,
and can be understood as the formal dual to the notion of variable in algebra. Just like the
commutativity of a binary operation requires two variables to be stated, the reflexivity of
a Kripke frame requires two colours.

Coequations have arguably not seen much use by computer scientists, in spite of a
large body of theoretical results. We postulate that one of the main reasons for this is
that there is no one universally accepted way to write down a coequation. It is not hard
to see why: while an equation relates two, finite, tree-structures which can be written-
down unambiguously in one dimension with the use of brackets, there is no universal
syntax for describing constraints on structures which are often inherently infinitary. In fact,
a variety of syntaxes for writing down coequations have been proposed in the literature,
leading to a certain ambiguity surrounding the term coequation, especially since some
of them are less expressive than others. This being said, it could equally be argued that
coequations are used extensively, if unknowingly, by computer scientists, in the shape of
modal logics [67]. For example, languages like Linear Temporal Logic [16, 17, 25] and
Computation Tree Logic [13, 15] are efficient syntaxes for specifying coequations.

The purpose of this paper is three-fold. The first is to survey and organise the lit-
erature on coequations. The second is to act as a tutorial on coequations and coequa-
tional specification. We assume basic knowledge of category theory and focus on Set-
coalgebras. Finally, we aim to present a systematic account of what the various notions
of coequations are, how they are related to one another, and what role they have to play
in theoretical computer science.

The paper is structured as follows. We start with a review of the literature on coequa-
tions in section 2, highlighting a number of formalisms for defining and specifying co-
equations. We group these approaches into four paradigms, which we examine in detail.
First, in section 3, we present a notion of coequation which dualizes exactly the notion
of equation in Universal Algebra, and which we call coequation-as-corelation. Second, we
present the view that a coequation is a predicate on a cofree coalgebra. We call this notion
coequation-as-predicate and discuss it in detail in section 4. Third, we discuss coequations-
as-equations in section 5 and relate them to coequations-as-corelations. The last paradigm
we explore is that of coequations as modal formulas in section 6. Finally, we conclude in
section 7 with some thoughts on the uses of each formalism and some recent appearances
of coequations in computer science.

2 A brief history of coequations

As far as we are aware, the first mention of the word ‘coequation’– or more precisely
‘coequational’ – dates back a series of papers by Davis [4, 5, 6, 9, 10] starting in 1970 and
focusing on finding examples of comonadic/cotripleable categories. The earliest work
that deals with covarieties of coalgebras as we now understand them, seems to be the
1985 paper [14], which presents a category-theoretic account of a dual to Birkhoff’s HSP

2

theorem. This work focuses on coalgebras for polynomial functors on the category Set.
It describes an unusual approach to dualising Birkhoff’s HSP theorem which reduces the
problem to the ordinary version of the theorem by turning every coalgebra X Ñ FX

into an algebra 2FX Ñ 2X , and by introducing an infinitary equational logic extending
that of complete atomic boolean algebras to define varieties of such algebras. The idea of
establishing a bridge between coequations and equations was explored again in [80] and
[88] where conditions for a full duality between equations and coequations are given.

A few years after [14], work on the notion of terminal coalgebra in [18, 19, 23] laid the
ground for [24, 27, 26], which proposed coalgebras as a semantic framework to formalise
behaviours in object-oriented programming and infinite data structures such as streams
and trees. From the onset, the aim of this line of research was to syntactically specify
classes of behaviours and, although the terms ‘covariety’ and ‘coequation’ do not appear
in op.cit., a lot of the questions which we will explore in this paper can already be found
in Hensel and Reichel’s [24] and Jacobs’ [26]. Both approaches propose equational specific-
ations of coalgebras for polynomial functors, based on the signature of the functor. For
example, the equation headptailpxqq “ headpxq, where the ‘destructor’ signature head, tail

can be read off the functor F pXq “ X ˆA, characterises constant streams in the terminal
F -coalgebra Aω . Such equations are called state equations in [24] since they must hold at
every state, and [26] gives a concrete construction of the class of behaviours satisfying
such an equation via the notion of ‘mongruence’ (a terminology which mercifully has
not caught on). This kind of coequational specification via equations, which we refer to
as coequations-as-equations, is also used in Cı̂rstea’s 1999 [34], which is the first full paper
to use the term ‘coequation’ in the sense we understand today. Roşu’s [54] from 2001 fol-
lows the same approach of coequations-as-equations. While intuitive, this way of ‘writing
coequations’ is limited to endofunctors of a specific shape. Another, more powerful, way
of writing coequations-as-equations was developed by Kurz and Rosickỳ in [66] using
an equality relation between terms built from a signature, but with different notions of
(co)operation and term. In this framework, every covariety over Set can be presented in
a coequation-as-equation format.

Jacobs’ [26] pioneered this specification format but also asked the following ques-
tions, which motivated a lot of the subsequent research on the topic: 1) Can a sound
and complete logic to reason about coalgebras be devised? 2) Can a version of Birkhoff’s
theorems be proved for suitable classes of coalgebras? The first step towards answering
these question was taken by Rutten’s influential 1996 technical report [29, 42], which in-
troduces the notion of ‘colours’ of a cofree coalgebra, the concept of covariety, and the first
of many dual versions of Birkhoff’s HSP theorem. The term ‘coequation’ does not appear
in [29, 42], but it is worth noting that a concrete specification of a covariety is given by
a subcoalgebra of a cofree coalgebra, in contrast to the equational presentation of [24, 26, 34,
54]. We refer to this type of coequational specification as coequations-as-predicates.

An important moment in the history of coequations was the first Workshop on Coal-
gebraic Methods in Computer Science (CMCS), organised by Jacobs, Moss, Reichel and
Rutten and held in Lisbon in 1998. Several papers on covarieties were presented [30, 32,
33], and the next few years saw an explosion of research in this area. In retrospect, CMCS
1998 provided much of the momentum behind the subsequent blossoming of this new
field of research.

In their 1998 CMCS paper [30], Gumm and Schröder pick up the study of covarieties
defined via a subcoalgebra in [29]. They isolate precisely which subcoalgebras define a
covariety and describe the closure properties of covarieties closed under bisimulation,

3

which they call complete covarieties. It was subsequently shown in [39, 49] that these co-
varieties, more aptly called behavioural covarieties, are precisely those which can be de-
scribed by a coequation-as-predicate over one colour, that is to say by a subcoalgebra
of the terminal coalgebra. Coequations as subcoalgebras of a cofree coalgebras (or more
abstractly as regular monomorphisms with cofree codomain) and the covarieties they
define are also discussed in detail in [45, 56] where a dual to Birkhoff’s HSP theorem is
given.

Hughes’ 2001 thesis [49] presents a very detailed abstract account of the coequations-as-
predicates perspective. A coequation is no longer required to be defined by a subcoalgebra,
but can simply be a subset of a cofree coalgebra [49, §3.6.3]. Closure operators defined and
studied in [49, 50, 55] connect these two flavours of the coequations-as-predicates paradigm,
by constructing the (invariant) subcoalgebra generated by a subset of behaviours. More ab-
stractly, [49] also considers a coequation as a subcoalgebra of a regular injective coalgebra
(e.g. a cofree coalgebra). This additional abstraction dualizes the description of equations
as quotients of regular projective algebras due to [7], but introduces subtle differences on
the closure properties of covarieties which are discussed by Goldblatt in [64, 63]. In this
paper, we only consider subcoalgebras of cofree coalgebras or subsets of their carriers.

A third version of the coequations-as-predicates paradigm was proposed by Gumm in
[48], where a coequation is a single pattern (i.e. element of a cofree coalgebra), but a pat-
tern that must be avoided. In other words, this is a coequation-as-predicate defined by the
complement of a singleton, i.e. understood as a pattern avoidance constraint. This fruitful
idea was the source of many interesting examples in [56], and the basis for coequational
logics in [61, 71, 74]. These logics are based on two observations which can already be
found in [48], namely that if there exists a state x witnessing a pattern f , then any ‘suc-
cessor pattern’ of f must be witnessed by some state y (namely one of the successors
of x). Similarly, if there exists a state x witnessing a pattern f , there must exist a re-
colouring/relabelling of this state which witnesses a similar relabelling of the pattern
f . Adamek [61] shows that these two observations are enough to define a sound and
complete coequational system in which new coequations (avoidance patterns) can be de-
duced from known ones. This logic is most natural for polynomial functors, but can also
be made to work for very large class of accessible functors through the notion of functor
presentation [61, 71, 74].

Finally, we mention generalisations of coequations-as-predicates to the case where cofree
coalgebras do not exist. Adámek and Porst generalise coequations-as-predicates by con-
sidering regular monomorphisms into any element of the cofree coalgebra chain, whether
it stabilises or not [56]. Kurz and Rosickỳ in [66] describe the notion of implicit opera-
tions which permits an equivalent notion of coequation-as-predicate for functors which
have no cofree coalgebras. Finally, Adámek describes a comprehensive solution to this
problem by considering generalised coequations-as-predicates as subchains of the entire
cofree-coalgebra chain in [62].

A related but different notion of coequation was proposed in 2000 by Wolter [44]
and Kurz [41], systematically dualizing the picture from categorical Universal Algebra.
Since a set of equations can be understood as a relation between terms in a free algebra
(categorically a span), Wolter proposes that a coequation should be seen as a corelation
on the carrier of a cofree coalgebra over some set of colours (categorically, a cospan).
Similarly, Kurz proposes to consider a cocongruence on the cofree coalgebra. As in the
coequation-as-predicate paradigm, these two approaches reflect the fact that one may con-
sider a coequation as a structure on the carrier of a cofree coalgebra (a corelation), or on

4

the cofree coalgebra itself (a cocongruence). We will refer to this approach as coequations-
as-corelations. This approach neatly dualizes the well-known theory of equations, but the
notion of corelation is not very intuitive, as pointed out by Hughes [49]. Nevertheless,
we hope to provide some intuition in section 3 and section 5.

At the same period Kurz also proposed modal logic as a language for specifying cov-
arieties [31, 41, 51, 52]. This is our last paradigm for coequations: coequations-as-modal-
formulas. Following our discussion in the introduction, we know that for finitely branch-
ing Kripke frames there exists a final Kripke frame coloured by (sets of) propositional
variables, and any modal formula φ selects the states in this Kripke frame in which φ is
valid, i.e. defines a predicate on a cofree coalgebra. A modal formula can thus be seen as
a syntax for coequations-as-predicates. However, these are very particular predicates: they
have a simple and intuitive syntax, access to a countable set of colours (the propositional
variables), and to 1-step ahead colours (through modalities). This idea can easily be ex-
tended to modal logics for polynomial functors [51]. However, the idea of modal logic
as a specification language for covarieties found in [31, 41, 51, 52] was in some way too
prescient: the appropriate extension of modal logic – coalgebraic modal logic – was still in
its infancy. Moss’ logic [36] had only just been published, and neither the predicate lift-
ing formalism of Pattinson [57] nor the abstract formalism of Kupke, Kurz, and Pattinson
[60, 65, 73] had been developed. As a consequence, Kurz’s insight of coequations-as-modal-
formulas was only worked out for standard modal logics [51]. His abstract notion of modal
predicate [41] – where the term ‘modal’ is meant as ‘invariant under bisimulation’ – is not
based on a particular syntax, but is defined as a monomorphism into a cofree coalgebra,
i.e. as a coequation-as-predicate.

3 Coequations-as-corelations

Coequations-as-corelations is the notion of coequation which most faithfully dualizes the
notion of equation from Universal Algebra. It is not the simplest approach, but it exposes
the underlying machinery in its entirety. Syntactically, it is a formalism that resembles
equations because it uses a pairs of expressions. However, whilst an equation between
a pair of expressions forces an equality to be witnessed via a quotient, a coequation-as-
corelation involves a pair of expressions which selects an ‘existing’ equality via an equal-
iser. Much of the material in this section can be found in [44, 41, 39, 50, 49, 81]. We
present the classical picture from Universal Algebra in section 3.1, and then dualize it in
section 3.2.

3.1 Equations, relations and varieties of algebras.

We will not go to the level of generality of [39, 49, 50] but instead focus on algebras for
Set-endofunctors. Let T : SetÑ Set be an endofunctor and let AlgpT q denote the category
of T -algebras and T -algebra morphisms. There exists an obvious forgetful functor UT :

AlgpT q Ñ Set which keeps the carrier and forgets the algebraic structure. A functor T

is called a varietor [20] if this functor has a left-adjoint FT : Set Ñ AlgpT q which builds
free T -algebras over any given set of variables. We will drop the subscripts and simply
write F % U if this causes no ambiguity. It follows from the adjunction that any map
h : X Ñ UpA,αq can be freely extended to a T -algebra morphism ĥ : FX Ñ pA,αq
explicitly constructed as ĥ fi εTpA,αq ˝ Fh, where εT is the counit of the adjunction.

5

For any varietor T we define a set of T -equations over a set of variables X is a pair of
arrows e1, e2 : E Ñ UFX. A set of equations is thus represented as a span, the categorical
embodiment of the notion of relation.

A T -algebra pA,αq satisfies a set of equations e1, e2 : E Ñ UFX if for all valuations
v : X Ñ UpA,αq, Uv̂ ˝ e1 “ Uv̂ ˝ e2, i.e. if the map v̂ which recursively computes the
interpretation in pA,αq of formal terms from FX, returns the same output for the left-
and right-hand-side of each equation in E. This can be rephrased as a universal property
in AlgpT q by saying that pA,αq satisfies a set of equations e1, e2 : E Ñ UFX if any T -
algebra morphism f : FX Ñ pA,αq factors uniquely through the coequalizer q of ê1, ê2.

FE
ê1 //
ê2

// FX
q // //

f

��

pQ, νq

vv♠ ♠
♠
♠
♠
♠

pA,αq

(1)

Since any morphism f : FX Ñ pA,αq is of the shape f “ v̂ for some v : X Ñ UpA,αq, we
recover the standard notion of equation satisfaction. An object pA,αq with the universal
property in (1) is said to be orthogonal to q : FX ։ pQ, νq, written q K pM,αq.

The variety of T -algebras defined by the set of T -equations e1, e2 : E Ñ UFX is defined as
the class of all T -algebras which are orthogonal to the coequalizer of the adjoint morph-
isms ê1, ê2 : FE Ñ FX, notation qK. Equivalently, a variety of T -algebras is a class of
T -algebras orthogonal to a regular epi q : FX ։ Q,1 a definition which dates back to [7].
With this terminology in place we state Birkhoff’s famous HSP theorem.

Theorem 3.1. ([1, 8, 49, 45, 56])

Let T : Set Ñ Set be a varietor. A class of T -algebras is a variety iff it is closed under Homo-
morphic images (H), Subalgebras (S), and Products (P).

Example 3.2. Recall that a monoid is a set M equipped with a binary operation ˚ : M ˆ
M ÑM and a constant e PM satisfying the three equations: x˚py˚zq “ px˚yq˚z, e˚x “ x,
and x˚e “ x. Every monoid is an algebra for the functor ΣM “MˆM`1, and the functor
Σ is a varietor: FΣ builds the set of all formal terms constructed from the signature and a
set of variables (e.g. tx, y, zu), and equips it with the trivial Σ-algebra structure taking the
unit to be the term e, and the product of two terms s, t to be the term s˚t. The equations of
the theory of monoids can be described as the pair of maps e1, e2 : 3 Ñ UF tx, y, zu, where
3 fi t0, 1, 2u and for 0 ď i ď 2, e1piq (resp. e2piq) picks the left-hand-side (resp. right-hand-
side) of the ith equation above. A monoid is a Σ-algebra in the variety defined by the
coequalizer of the adjoint morphisms ê1, ê2 : F3 Ñ F tx, y, zu which homomorphically
sends formal terms on 3 to terms on tx, y, zu, for example ê1p1 ˚ 2q “ pe ˚ xq ˚ px ˚ eq. The
relation defined by the span Uê1, U ê2 : UF3 Ñ UF tx, y, zu is thus closed under the rule

s1 “ t1 s2 “ t2
s1 ˚ s2 “ t1 ˚ t2

p-cong

For example, px ˚ eq ˚ pe ˚ xq “ x ˚ x is an equation belonging to this relation. Such a
relation on terms is called a pre-congruence in [49].

1By taking U kerpqq Ñ UFX as the set of equation and using the fact that U is monadic [59, p. 20.56], it
can be shown that we recover the quotient q as the coequalizer of the lifted equations.

6

The rule p-cong generalizes easily to all polynomial functors, but it is not obvious
how it should be adapted to the general case. Therefore, we simply say that the relation
defined by a span on UFX is a pre-congruence if it is of the shape Uê1, U ê2 : UFE Ñ

UFX.
It is important to note that the quotient pQ, νq in (1) is not a member of the variety. In

example 3.2, y ˚ e and y belong to different equivalence classes in Q since the quotient
q only needs to identify x ˚ e and x. The interpretations of y ˚ e and y are equal in all
objects belonging to the variety of monoids because of the universal quantification over
the morphism f in (1) which takes care of all substitutions. In order to build a quotient
that does belong to the variety we need more equations than those in the set UFE. It is
well known that equational reasoning also adheres to the following rules:

t “ t ref
t “ s
s “ t

sym s “ t t “ u
s “ u trans

A relation on UFX which is closed under ref, sym, and trans is called an equivalence
relation, and a pre-congruence which is also an equivalence relation is called a congruence.
It is easy to turn the relation defined by (1) into a congruence by taking the kernel pair
of the coequalizer q, i.e. by moving to the exact sequence kerpqq Ñ FX ։ pQ, νq. Since
any coequalizer is also the coequalizer of its kernel pair, q remains the coequalizer, and
thus the variety it defines remains the same. We have now increased the collection of
derivable equations. Following example 3.2, the congruence kerpqq Ñ F tx, y, zu contains
the equation e ˚ x “ x ˚ e, for example, which requires sym and trans to derive.

As the reader will have guessed, we need to add substitution instances. Starting from
the pre-congruence of (1), this can be done categorically [81, §1.4] by considering the
coequalizer

š
vPV

FE
rv̂˝ê1s

vPV //
rv̂˝ê2s

vPV

// FX
q1

// // pQ1, ν 1q (2)

where V is the set of all substitutions V “ tv : X Ñ UFXu. It is not difficult to see that
pQ1, ν 1q now does belong to the variety defined by q1 : FX ։ pQ1, ν 1q, i.e. q1 K pQ1, ν 1q.

Since F is a left-adjoint,
š

vPV FE » F p
š

vPV Eq, i.e. (2) involves the free T -algebra
generated by all substitution instances of the axioms UFE. The relation defined by the
span U

š
vPV FE Ñ UFX is a pre-congruence closed under the substitution rule

s “ t v P V
v̂psq “ v̂ptq

subst

Applying (2) to example 3.2, we get that y ˚ e “ y now belongs to the stock of equations.
In fact, it appears several times, since any substitution mapping x to y will produce it.

Following [49] we say that a set of equations e1, e2 : E Ñ UFX is stable if it is closed
under substitutions in the sense that for any v P V there exists a (necessarily unique) map
ṽ : E Ñ E such that ei ˝ ṽ “ Uv̂ ˝ ei, i “ 1, 2. Taking the kernel pair

kerpq1q
//// FX

q1

// // pQ1, ν 1q (3)

constructs a stable set of equations U kerpq1q Ñ UFX by construction [81, §1.4].
We have described three categorical constructions – lifting the equations, closing un-

der (2), and taking the kernel pair of the coequalizer (3) – which, combined, turn a set

7

of equations e1, e2 : E Ñ UFX into an exact sequence kerpq1q Ñ FX ։ pQ1, ν 1q which
defines a stable congruence U ker q1 Ñ UFX. We do not know if this purely categorical
procedure produces the smallest stable congruence, and we do not know if the order in
which the three steps are carried out matters. These questions are also raised in [50, §8],
and as far as we could see, no simple categorical argument can answer them. What is
clear however, is that this construction defines a quotient of the free T -algebra which
belongs to the variety it defines.

Theorem 3.3. ([49] Thm 3.5.3)

Let T be a varietor, let e1, e2 : E Ñ UFX be a stable set of T -equations over X, and consider the
coequalizer

FE
ê1 //
ê2

// FX
q // // pQ, νq.

Then q K pQ, νq. Conversely, if q K pQ, νq, then kerpqq is stable.

We finish by stating Birkhoff’s completeness theorem for equational reasoning. Given
a collection V of T -algebras (e.g. a variety), define EqpVq as the set of equations satisfied
by every T -algebra in V, i.e.

EqpVq “ te1, e2 : 1 Ñ UFX | @pM,αq P V,@v : X ÑM,Uv̂ ˝ e1 “ Uv̂ ˝ e2u.

Theorem 3.4. (Birkhoff’s completeness theorem, e.g. [1, 8, 49])
Let Σ be a polynomial functor, and let E Ñ UΣFΣX be a set of equations. Then E “ EqpVq for
some variety V iff E is closed under p-cong, subst, ref, sym and trans .

3.2 Coequations, corelations and covarieties of coalgebras

Next, we dualize the concepts developed in section 3.1. We denote by CoAlgpT q the
category of T -coalgebras and T -coalgebra homomorphisms. A functor T : Set Ñ Set is
called a covarietor [45] if the forgetful functor UT : CoAlgpT q Ñ Set has a right adjoint
CT : Set Ñ CoAlgpT q, called the cofree functor. For any set X, the coalgebra CTX is
called the cofree coalgebra over the set of colours X, or the cofree coalgebra in X colours. We
omit subscripts if there is no risk of confusion. Intuitively, CTX is the collection of X-
patterns, T -processes (histories of states in a T -transition system) whose states are labelled
by elements of X.

Given a covarietor T we dualize the notion of equation by defining a T -coequation
in X colours [44] to be a cospan c1, c2 : UCX Ñ 2. The role of 2 fi t0, 1u is dual to the
role of 1 in the definition of a T -equation, since 2 is a cogenerator in Set, whilst 1 is a
generator. Following [44], we define a T -coequational specification S as a pair of maps
c1, c2 : UCX Ñ S. This concept dualizes the notion of a set of T -equations, and whilst a
set of T -equations is equivalent to a relation on UFX, a coequational specification defines
a corelation, i.e. a map UCX ` UCX ։ S. One should think of a corelation on UCX as
two different classification schemes – in the case of a coequation, two binary classification
schemes, accepting or rejecting behaviours – used to select the behaviours/patterns that
they cannot distinguish.

The dual to the notions of valuation and interpretation/substitution are the notions of
colouring and recolouring map. Given a T -coalgebra pV, γq, a function k : V Ñ Y is called
a Y -colouring map, as it labels the states of the coalgebra with the colours of Y . Given
such a colouring map, we call its cofree extension k̂ : pV, γq Ñ CY a recolouring map,

8

k̂ fi CTk ˝ η
T
pV,γq. Starting at a state v P V , this map follows the history of the T -transition

system pV, γq, reads the colour(s) of the successor state(s) at each time step, and uses this
information to construct the T -transition system of observed colours. The original T -
history is typically infinite, and therefore so is the T -history of its colours. Thus, k̂ is a
map which typically processes an entire infinitary structure in one go.

Colouring maps of the shape k : UCX Ñ Y are important to understanding coequa-
tions. Imagine an omniscient being that can examine the entire (possibly infinite) history
of an X-pattern in UCX and then classify it according to a rule of her choosing with
a set of labels Y . This is a colouring map on UCX. In particular, for a colouring map
k : UCX Ñ X, the omniscient being can examine the entire X-labelling history of a
T -process and aggregate this information into a single X-label. Every cofree coalgebra
comes with such a canonical colouring map εTX : UCX Ñ X provided by the counit εT

of the adjunction U % C , which returns the colour of the initial state. Given a colouring
map k : UCX Ñ Y , the associated recolouring map k̂ : CX Ñ CY can be understood
as the process by which our omniscient being can follow an entire T -process and, at each
time-step, classify the remaining history of the T -process according to the colouring map
k. In this way the omniscient being can build the labelling history of the entire process in
one single evaluation.

The covariety defined by a T -coequational specification c1, c2 : UCX Ñ S over a set (of
colours) X, is the class of coalgebras pV, γq such that for every colouring map k : V Ñ X,
there is a unique coalgebra morphism from pV, γq to the equaliser pH, ξq of ĉ1, ĉ2 such that

pH, ξq // m // CX
ĉ1 //
ĉ2

// CS

pV, γq

k̂

OOii❙
❙
❙
❙
❙
❙
❙

(4)

commutes.2 The coalgebra pV, γq is said to be co-orthogonal to the regular mono m, writ-
ten m J pV, γq, and the covariety defined by (4) can be described as the collection of coal-
gebras mJ which are co-orthogonal to m. With this definition, we can state the dual to
theorem 3.1:

Theorem 3.5. (co-Birkhoff (HSC) theorem, e.g. [41, 49, 45, 56])

Let T : Set Ñ Set be a covarietor. A class of T -coalgebras is a covariety iff it is closed under
Homomorphic images (H), Subcoalgebras (S) and Coproducts (C).

Dual to the case of varieties, closure properties of the corelation c1, c2 : UCX Ñ S can
ensure that we obtain an equaliser which belongs to the covariety. Most of the literature
focuses on closure properties on the subobject side of (4), e.g. the notion of mongruence
[26], the (modal) closure operators of [49, 50], and the notion of invariant subcoalgebra of
[30]. Since we dedicate section 4 to this perspective, we follow [44, 41] and focus on the
quotient.

Merging the nomenclatures of [49] and [41], we call the cospan ĉ1, ĉ2 : CX Ñ CS a
pre-cocongruence, the notion dual to a pre-congruence. Thus a pre-cocongruence is a co-
relation that has a coalgebra structure compatible with that of CX, i.e. which is closed
under taking successors.3 Following [44], we will say that a corelation c1, c2 : UCX Ñ S

2For any Set-endofunctor the category CoAlgpT q always has equalisers [47, p. 5.1]
3This is what Kurz calls a cocongruence in [41].

9

is coreflexive if there exists a map s : S Ñ UCX such that s ˝ rc1, c2s “ ridUCX , idUCXs, i.e.
if it is only allowed to identify a behaviour p1, tq in the first component of the coproduct
with a behaviour p2, sq in the second if t “ s. There is also a notion of cosymmetric, co-
transitive, and of coequivalence corelation, but it turns out that in Set these are implied
by being coreflexive [44]. Following our earlier definition of pre-congruence and congru-
ence, we will say that a pre-cocongruence is a cocongruence if it is coreflexive. It is easy
to turn any corelation into a coreflexive corelation, it suffices to consider the cokernel of its
equaliser. Finally, dual to the notion of a stable set of equations, we will say that a corela-
tion c1, c2 : UCX Ñ S is invariant if for any colouring map k : UCX Ñ X there exists a
(necessarily unique) morphism k̃ : S Ñ S such that ci ˝ k̃ “ Uk̂ ˝ ci, i “ 1, 2. By dualiz-
ing (2)-(3) we can turn any corelation into an invariant corelation by first considering the
equalizer of the cospan

pH 1, ξ1q // m1

// CX

xĉ2˝k̂y
kPK

//

xĉ1˝k̂y
kPK // ś

kPK

CS (5)

where K “ tk : UCX Ñ Xu is the set of X-colouring maps. Since C is right-adjoint,
it preserves products and

ś
k CS » C

ś
k S. Thus, we are considering as corelation a

pair of maps which can perform two ‘S-classifications’ of an X-pattern and all its X-
recolourings, simultaneously. Clearly, m1 J pH 1, ξ1q, so pH 1, ξ1q belongs to the covariety it
defines.

By taking the cokernel pair of the equalizer m1 above pH 1, ξ1q CX Ñ cokerpm1q we
get a corelation which is invariant by construction. In fact, we get an invariant cocongru-
ence, which are to cofree coalgebras what stable congruences are to free algebras. We can
now state the dual of theorem 3.3:

Theorem 3.6. Let T be a covarietor, let c1, c2 : UCX Ñ S be an invariant T -coequational
specification, and consider the equalizer

pH, ξq // m // CX
ĉ1

//
ĉ2 //

CS.

Then m J pH, ξq. Conversely, if m J pH, ξq, then cokerpmq is invariant.

Example 3.7. Let us consider the same endofunctor as in example 3.2, namely the functor
ΣX “ XˆX`1. This functor is a covarietor and the cofree Σ-coalgebra CΣX over X is the
set of finite and infinite binary trees whose nodes are labelled by the elements of X [56].
Consider in particular the cofree Σ-coalgebra over a set of two colours, which we shall
write as tb, wu for ‘black’ and ‘white’. We now define the coequation c1, c2 : UCtb, wu Ñ 2

c1ptq “

#
1 if LeftChildptq is labelled b

0 else
c2ptq “

#
1 if RightChildptq is labelled b

0 else

where LeftChildptq being labelled b assumes that it exists, i.e. that t is not a leaf state, and
similarly for RightChildptq. Recall that a coequation-as-corelation defines the set of beha-
viours which cannot be distinguished by the two classification schemes. The coequation
above defines the covariety of finite and infinite binary trees with the property that if a
state has left and a right children states, then they must be equal; i.e. the covariety of
deterministic binary trees. To see this, consider the equalizer m : pH, ξq Ñ CX of ĉ1, ĉ2.

10

It contains all binary trees such that left- and right-successors share a colour. Its cokernel
defines the cocongruence on CX`CX Ñ Ctb, wu, which only identifies p1, sq and p2, tq if
s “ t belongs to H . This cocongruence is not invariant: the two copies in CX`CX of the
left-hand tree tl below are identified by the corelation c1, c2 (and its coreflexive closure),
but can be recoloured into two copies of the right-hand tree tr, which will be kept distinct
by the corelation.

k̂
ÝÑ

By constructing the invariant closure of the corelation using the construction of (5), the
two trees above become components in the tuple of all recolourings of tl. Applying ĉ1
and ĉ2 component-wise to this tuple will yield two tuples which will disagree at the
coordinate of tr. In fact, the equalizer pH 1, ξ1q of xĉ1˝ k̂ykPK , xĉ2˝ k̂ykPK : Ctb, wu Ñ

ś
k C2

contains precisely the trees whose nodes at depth n all have the same colour, in other
words the equalizer is isomorphic to tb, wu˚ Y tb, wuω . From this it follows that given
an arbitrary Σ-coalgebra pV, γq, if any recolouring map k̂ : pV, γq Ñ Ctb, wu has to factor
through tb, wu˚ Y tb, wuω it must be the case that π1pγpxqq “ π2pγpxqq or γpxq P 1 for all
x P V .

4 Coequations-as-predicates

The coequations-as-predicates paradigm provides a picture of coequations that is very
flexible with regard to how they can be written. In this paradigm, a coequation is a subset
of a cofree coalgebra, so any method of describing subsets can be used. In practice, the
elements of a cofree coalgebra carry some structure, for eg. a tree or a stream of numbers,
allowing the user to describe coequations in terms of this structure.

In section 4.1 and section 4.2, we will see some examples of predicate coequations and
their descriptions. We then give a brief account of Adámek and Schwencke’s observation
that there is an inherent logical structure to coequations in section 4.3. Finally, in sec-
tion 4.4, we talk about the expressiveness of predicate coequations in general, and give a
generalization of predicate coequations when there are no cofree coalgebras.

In this section, we entirely focus on coalgebras in Set. Many of the results can be
generalized to coalgebras over other base categories, see for example [56] and the thesis
[49].

4.1 Behavioural coequations

Fix a covarietor T on Set with forgetful-cofree adjunction U % C , and let pZ, δq denote the
final coalgebra C1. Given two coalgebras pV1, γ1q, pV2, γ2q, two states v1 P V1 and v2 P V2

are said to be behaviourally equivalent (e.g. [72]) if there is a third coalgebra pV 1, γ1q and
homomorphisms hi : Vi Ñ V 1 such that h1pv1q “ h2pv2q. Behavioural equivalence is an
equivalence relation: it is reflexive and symmetric, and since the category CoAlgpT q has
pushouts, it is also transitive. Furthermore, since every coalgebra pV, γq admits a unique
coalgebra homomorphism !V : pV, γq Ñ pZ, δq, the state !V pvq of Z is a representative
of the behavioural equivalence class of v for any state v P V . This is the motivation for
calling the states of pZ, δq behaviours (for the functor T).

11

A behavioural coequation is a subset of Z . A coalgebra pV, γq satisfies W Ď Z , written
pV, γq |ù W , if imp!V q Ď W , i.e. a coalgebra satisfies a behavioural coequation if the co-
equation contains all of the behaviours exhibited by the coalgebra. A behavioural covariety
is a class of coalgebras of the form CovpW q “ tpV, γq | pV, γq |ùW u for some W Ď Z .

Example 4.1. Coalgebras for the functor Tdet “ 2 ˆ IdA are deterministic automata. The
final deterministic automaton is p2A

˚

, xǫ?, Byq, where A˚ is the set of empty or nonempty
words in the alphabet A (here, ǫ is the empty word), and

ǫ?pLq “

#
1 if ǫ P L

0 otherwise
BpLqpaq “ tw P A˚ | aw P Lu

for any L Ď A˚ and a P A [29, 2]. Recall that the set Reg Ď 2A
˚

of regular languages is
the smallest subset of 2A

˚

closed under concatenation, iteration, and finite unions, and
containing tǫu and tau for each a P A. The class CovpRegq of deterministic automata that
accept regular languages is a behavioural covariety.

By Kleene’s theorem, a deterministic automaton satisfies Reg if and only if it is bisim-
ilar to a locally finite automaton. There are many examples of deterministic automata
that satisfy Reg but are not locally finite: The following automata are bisimilar and both
accept the language a˚, but only one of them is locally finite.

v1 v2 v3 ¨ ¨ ¨
a a a

v a

The relationship between regular languages and finite automata in example 4.1 is
typical of behavioural coequations. Behavioural coequations constrain dynamics by con-
straining behaviour, and behaviour is preserved under many of the useful operations on
coalgebras. In general, behavioural coequations carve nicely structured categories out of
CoAlgpT q. Following the co-Birkhoff result of theorem 3.5, we will say that a class of coal-
gebras is a structural covariety if it is closed under homomorphic images, subcoalgebras
and coproducts. Note that this concept makes sense whether T is a covarietor or not.

Proposition 4.2. (Rutten [29])

For any W Ď Z , CovpW q is a structural covariety.

However, not every structural covariety is carved out of CoAlgpT q by a behavioural
coequation. As we saw in example 4.1, locally finite deterministic automata are not beha-
viourally specified: if they were, their defining coequation would be Reg. On the other
hand, we will see in section 4.2 that (under mild conditions) locally finite coalgebras form
a structural covariety.

The mismatch between behavioural coequations and covarieties does not detract from
the importance of behavioural constraints in the computer science literature. Behavioural
coequations are particularly common in fields like automata theory and process algebra
where specification languages play an important role.

Example 4.3. Fix a set A of atomic actions, and consider the following BNF grammar

E ::“ a P A | x P Var | E ` E | apEq | µx.F F ::“ a P A | F ` F | apEq | µx.F

12

A specification is an expression e P E in which every variable x P Var appears within the
scope of a µx. The set of specifications can then be given the structure of a PωptXu` IdqA-
coalgebra pExp, Bq using the GSOS law below. For any a P A, e, e1, e2, f P Exp, infer

a a
ÝÑX apeq a

ÝÑ e

e1 ` e2
a
ÝÑ f

ei
a
ÝÑ f

µx.f a
ÝÑ e

f rµx.f{xs a
ÝÑ e

Here, e a
ÝÑ ξ means that ξ P Bpeqpaq. The functor PωptXu` IdqA has a final coalgebra pZ, δq

consisting of A-decorated trees with transitions carrying labels from A and leaves carry-
ing the label X [38]. Every specification e gives rise to a unique behaviour !Exppeq, and
therefore also a tree. In analogy with regular languages (see example 4.1), one might call
the set of behaviours arising from specifications the regular coequation. A process satis-
fies the regular coequation if every of its states mimics the behaviour of a specification.

Many pairs of specifications give rise to identical behaviours: For example, e ` f

and f ` e are behaviourally equivalent for any e and f , and so are f rµx.f{xs and µx.f .
Studying behavioural equivalences like these is a popular topic in process algebra [78].

The reader familliar with process algebra should note that in many cases, including
example 4.3, behavioural equivalence and bisimilarity coincide. For a general T , a bisimu-
lation between T -coalgebras pV1, γ1q and pV2, γ2q consists of a coalgebra pR, ρq and a pair
of coalgebra homomorphisms πi : pR, ρq Ñ pVi, γiq. Image factorisations exist in Set, so
every bisimulation is equivalent to one in which R Ď V1 ˆ V2 and the homomorphisms
π1, π2 are the projections of R onto the first and second components of R [29]. If two
states v1 P V1, v2 P V2 are related by a bisimulation, we say that v1 and v2 are bisimilar and
write v1Ø v2. Important examples of bisimulations include graphs of homomorphisms:
in fact, a function V1 Ñ V2 is a coalgebra homomorphism if and only if its graph is a
bisimulation [29, 47].

Lemma 4.4. (Rutten [29])

Let pV1, γ1q and pV2, γ2q be a coalgebras, and v1 P V1 and v2 P V2 be states. If T preserves weak
pullbacks, then v1Ø v2 if and only if v1 and v2 are behaviourally equivalent.

Many of the covarietors familliar to computer scientists preserve weak pullbacks, in-
cluding every polynomial functor, the covariant powerset functor P and its κ-accessible
variants Pκ, and every product, coproduct, and composition of these functors [35]. Among
the resulting class of functors are the deterministic automaton functor B ˆ IdA and the
nondeterministic automaton functor B ˆ PpIdqA for any output set B. The added as-
sumption that T preserve weak pullbacks leads to a rich coalgebraic theory, and much of
[29] depends on it.

Under the additional assumption that T preserves weak pullbacks, Gumm and Schrö-
der obtain the following characterisation of behavioural covarieties.

Theorem 4.5. (Gumm and Schröder [30])

Let T preserve weak pullbacks. Then a structural covariety C in CoAlgpT q is behavioural if and
only if it is closed under total bisimulations, i.e. if pV1, γ1q P C and there is a bisimulation
pR, ρq between pV1, γ1q and pV2, γ2q such that π1 and π2 are surjective, then pV2, γ2q P C as well.

Example 4.6. Consider the functor Talt “ ptXu ` Idqta,bu. In a Talt-coalgebra pV, γq, write
v a
ÝÑ v1 if v1 “ γpvqpaq and v ñ a if X “ γpvqpaq, and similarly for b. The functor Talt

preserves weak pullbacks, and the final Talt-coalgebra is the set of all ta, bu-decorated

13

trees t such that every node n of t has at most one n a
ÝÑ n1 transition and at most one

n b
ÝÑ n1, and all other transitions are of the form n ñ a or n ñ b. The coalgebra structure

δ is the obvious parent-child transition structure.
The class of sequence coalgebras, consisting all those Talt-coalgebras pV, γq such that

|γ´1pXq| “ 1, is closed under total bisimulations. By theorem 4.5, the covariety of se-
quence coalgebras is determined by a set Wseq of behaviours. One way to describe this
coequation is as follows: Wseq is the set of all behaviours t such that the first layer of t is
one of

‚

‚
b

a
‚

a

‚

b

Of course, many of the trees in Wseq are not behaviours exhibited by sequence Talt-
coalgebras, as nodes from deeper layers might accept too many or too few of a, b. This
can easily be fixed once we have made the following observation.

Lemma 4.7. (Rutten [29])

Let pV, γq, pV 1, γ1q be T -coalgebras and h : V Ñ V 1 be a T -coalgebra homomorphism. Then hpV q
is a subcoalgebra of pV 1, γ1q.

Consequently, if pV, γq |ù W for some W Ď Z , then !V pV q is a subcoalgebra of
pZ, δq contained in W . It follows from CoAlgpT q being cocomplete and having image
factorisations that an arbitrary union of subcoalgebras of a fixed coalgebra is a subcoal-
gebra. In particular, there is a largest subcoalgebra lW contained in W , and it satisfies
CovplW q “ CovpW q for any W Ď Z . In fact, lW is the final object of CovplW q! The
operator l is known as the “henceforth” operator in [55], and is studied in more general
settings by Hughes in [50].

4.2 Beyond behaviour

A predicate coequation in X colours is a set of X-patterns, or a subset of the cofree coalgebra
CX. A coalgebra pV, γq satisfies the predicate coequation W Ď CX if, for any colouring
c : V Ñ X, the homomorphism ĉ : pV, γq Ñ CX induced by the adjunction U % C factors
through W (that is, ĉpV q ĎW).

Theorem 4.8. (Rutten [29], Gumm [35])

Let T be a covarietor, X be a set, and W Ď UCX. The class CovpW q “ tpV, γq | p@c : V Ñ
Xq ĉpV q ĎW u is closed under subcoalgebras, coproducts, and homomorphic images.

Under mild assumptions on T , every structural covariety is presentable by a coequa-
tion. The key to proving the converse to theorem 4.8 is to give an upper bound on the
number of colours that only depends on T . This is possible when T is κ-bounded for some
cardinal κ, meaning that for any coalgebra pV, γq and any state v P V , there is a subcoal-
gebra S of pV, γq such that v P S and |S| ď κ. An endofunctor on Set is bounded if it is
κ-bounded for some κ.4 The class of bounded functors is broad enough to capture most
functors in everyday use by computer scientists [29, 46]. At the beginning we assumed
that T is a covarietor, but boundedness actually implies this.

4Equivalently, T is accessible or small [45].

14

Theorem 4.9. (Kawahara & Mori [40])

If T : SetÑ Set is bounded, then T is a covarietor.

Let C be a structural covariety and κ an infinite cardinal, and assume that T is κ-
bounded. Given a state v of a coalgebra pV, γq, there is a subcoalgebra S of pV, γq contain-
ing v such that |S| ď κ. By a simple renaming of states, S is isomorphic to a coalgebra
whose state space is a set of numbers in κ. This means that every T -coalgebra is locally
isomorphic to a coalgebra of the form pS, σq where S Ď κ, and in particular that every
coalgebra in C is locally of this form. Writing G “ tpS, σq P C | S Ď κu, the coequation
WG “

Ť
tĉpSq | pS, σq P G and c : S Ñ κu determines C, meaning that C “ CovpWGq.

Theorem 4.10. (Rutten [29])

If T is κ-bounded and C is a structural covariety in CoAlgpT q, then C “ CovpW q for some
W Ď Cκ.

Behavioural coequations are instances of predicate coequations: They are the coequa-
tions in 1 colour. We have already seen in examples 4.1, 4.3 and 4.6 that some covari-
eties are presentable by behavioural coequations despite the type functor failing to be
1-bounded.5 The bound on the number of colours provided by theorem 4.10 is rarely
optimal in practice.

Towards a better bound, recall the definition of behavioural equivalence from sec-
tion 4.1. Let C be a covariety that is closed under behavioural equivalence, meaning that
it contains every coalgebra pV, γq such that every state v P V is behaviourally equi-
valent to a state of a coalgebra in C. Then C is necessarily behavioural. Indeed, if
WC “ t!Spxq | x P S, pS, σq P Cu, then pS, σq |ù WC for any pS, σq P C. Conversely,
every state of a coalgebra satisfying WC behaves like a state from a coalgebra in C, and
by assumption such a coalgebra must be in C.

This argument generalizes to the λ-pattern situation by saying that a class C of coal-
gebras is closed under λ-pattern equivalence if pV, γq P C whenever the following condition
is met: for any v P V and any colouring c : V Ñ λ, there is a pS, σq P C with a state x P S

and a colouring c1 : S Ñ λ such that ĉpvq “ ĉ1pxq. We thus have:

Proposition 4.11. Let C be a covariety closed under λ-pattern equivalence. Then C “ CovpW q
for some W Ď UCλ.

Example 4.12. Consider the deterministic automaton endofunctor Tdet “ 2 ˆ IdA from
example 4.1. Fix two words w1, w2 P A˚ and let C be the class of deterministic automata
pV, γq in which v

w1ÝÑ v1 and v
w2ÝÑ v2 implies v1 “ v2. Consider an automaton pV, xo, Byq,

v P V , and c : V Ñ 2 the colouring cpxq “ 1 ðñ x “ Bpvqpw1q,
6 and assume there

is an automaton pV 1, xo1, B1yq P C with v1 P V 1 and a colouring c1 : V 1 Ñ 2 such that
ĉpvq “ ĉ1pv1q. Then cpBpvqpw2qq “ c1pB1pv1qpw2qq “ c1pB1pv1qpw1qq “ cpBpvqpw1qq, so that
Bpvqpw2q “ Bpvqpw1q by construction of c. It follows that C is closed under 2-pattern
equivalence, and is therefore determined by a coequation in 2 colours. Indeed, where ε

is the counit, it is given by

W “ tt P UC2 | ε2pBptqpw1qq “ ε2pBptqpw2qqu.

In section 4.1, we saw that bisimilarity and behavioural equivalence coincide when

5It is straightforward to check that each is ω-bounded, on the other hand.
6Here, Bpvq : A˚ Ñ V is defined by Bpvqpǫq “ v and Bpvqpwaq “ BpBpvqpwqqpaq.

15

T preserves weak pullbacks. This gave way to theorem 4.5, which characterised behavi-
oural covarieties in terms of total bisimilarity. Adámek applies the same reasoning in [61]
to give a bound like the one in proposition 4.11 in terms of bisimulations: For a cardinal
λ, say that a covariety C is closed under λ-colour bisimilarity if pV, γq P C whenever the fol-
lowing condition is met: For any c : V Ñ λ there is a pS, σq P C, a colouring c1 : V 1 Ñ λ,
and a total bisimulation pR, ρq between pV, γq and pV 1, γ1q such that c ˝ π1 “ c1 ˝ π2.

Theorem 4.13. (Adámek [61])

Suppose T is a covarietor that preserves weak pullbacks. A covariety in CoAlgpT q is presentable
by a predicate coequation in λ colours if and only if it is closed under λ-colour bisimilarity.

Example 4.14. The class C of simple graphs (of finite degree) can be seen as a covariety
in CoAlgpPωq. In a Pω-coalgebra pV, γq, write v1 Ñ v2 to denote v2 P γpv1q. Then pV, γq
is a simple graph if Ñ is a reflexive symmetric relation on V .7 Reflexivity and symmetry
are given by the coequations Wref “ tt | pDsq ε2psq “ ε2ptq and t Ñ su and Wsym “ tt |
p@sq pt Ñ s ùñ pDuq ε2puq “ ε2ptq and s Ñ uqu respectively. The modal logician will
recognise the axioms (T) pÑ ♦p and (B) pÑ l♦p, the roles of the propositional variable
p being played by the colouring map ε2. The coequation we are looking for is therefore
Wsim “ Wref X Wsym. By theorem 4.13, C is closed under 2-colour bisimilarity. This
covariety is also not behavioural: ‚ ý and ‚ Ñ ‚ Ñ ‚ Ñ ¨ ¨ ¨ are bisimilar, for example.

Example 4.15. Recall that a coalgebra pV, γq is locally finite if for any v P V , there is a
subcoalgebra S of pV, γq such that v P S and S is finite. If T preserves weak pullbacks,
then the class Cω of locally finite T -coalgebras is a covariety in ω colours.

To see why, let pV, γq be a coalgebra such that for any c : V Ñ ω, there is a locally
finite pV 1, γ1q, a colouring c1 : V 1 Ñ ω, and a total bisimulation pR,σq between pV, γq and
pV 1, γ1q such that c ˝ π1 “ c1 ˝ π2. If v P V and c : V Ñ ω is any colouring, and we take
pV 1, γ1q, pR, ρq, c : V 1 Ñ ω as before, then vRv1 for some v1 P V 1. Since pV 1, γ1q is locally
finite, c1pS1q is finite for some subcoalgebra S1 of pV 1, γ1q containing v1. The projection π2
is surjective, so P “ π´1

2 pS1q is a subcoalgebra of pR, ρq containing pv, v1q. Taking images,
we see that cpπ1pP qq “ c1pπ2pP qq “ c1pS1q, so that π1pP q is a subcoalgebra of pV, γq with
finite image under c. Since T preserves weak pullbacks, there is a smallest subcoalgebra
xvy of pV, γq containing v [29]. This subcoalgebra is contained in every P as constructed
above, so has finite image under c for any c. A set is finite if and only if every image of
the set under a map into ω has a finite image, so xvy must be finite. It follows that pV, γq
is locally finite, so by theorem 4.13, Cω is presentable with a coequation in ω colours.
The desired coequation consists of those ω-patterns in which only finitely many colours
appear.

4.3 Logic and Avoiding Patterns

As we have already seen, it is possible for distinct coequations, like lW and W in ex-
ample 4.6 for instance, to specify the same covariety. In this short section, we describe
Adámek and Schwencke’s framing of this equivalence between coequations as a logical
equivalence in [61, 71, 74], and discuss Adamék’s sound and complete deduction system
for the resulting logic of coequations for a polynomial endofunctor T .

7A simple graph in this sense contains the same information as the more traditional concept from com-
binatorics. However, Pω-coalgebra homomorphisms are not graph homomorphisms. For a coalgebraic
depiction of traditional directed graphs, see pg. 22 of [42], or [84].

16

Given two coequations W1 and W2, W1 is said to imply W2, written W1 |ù W2, if for
any coalgebra pV, γq, pV, γq |ùW2 whenever pV, γq |ù W1. For example, W1 ĎW2 implies
W1 |ù W2, and W |ù lW and lW |ù W . The inference relation |ù also interacts with
recolourings: every h : X Ñ X induces ĉ : CX Ñ CX such that W |ù ĥpW q.

Further analysis of the inference relation |ù is possible with a notation used by Gumm.
In [35], Gumm gives a negative description of coequations, as predicates of the form
at “ pCXq ´ ttu for a pattern t. This is a particularly useful notation for coequations
when patterns are easily described but general predicates are not. Such is the case when
T is a polynomial functor, as patterns are identifiable with certain trees.

Fix a polynomial functor TΣ “
Ť

pPΣ Idarppq, where κ is a cardinal, Σ is a set, and
ar : Σ Ñ κ. For a set of colours X, an X-pattern is a tree t in which every node n is
labelled with a pair pp, xq P ΣˆX and a transition function that maps each α ă arppq to
each child of n. The structure map of CX is given by parentÑchild transitions: if n is a
node of t and n1 is the αth child of n, then t α

ÝÑ s when s is the subtree of t rooted at n1.
There is a unique node of t with no incoming transitions, called its root. Each node of t is
the root a tree, and we call trees of this form subtrees of t. We write s Ď t to denote that s
is a subtree of t.

Given t, s P UCX, if s Ď t and pV, γq |ù as, then pV, γq |ù at as well. This is because, if
ĉpvq “ t for some colouring c : V Ñ X and v P V , then every path t α1ÝÑt1ÝÑ¨ ¨ ¨ÝÑtn´1

αnÝÝÑs

is witnessed in pV, γq by a path v α1ÝÑv1ÝÑ¨ ¨ ¨ÝÑvn´1
αnÝÝÑu such that ĉpuq “ s.8 Furthermore,

if s is a recolouring of t, i.e. s “ k̂ptq for some colouring k : UCX Ñ X, then pV, γq |ù as

implies pV, γq |ù at as well. This is due to the composition c1 “ k ˝ ĉ, where c : V Ñ X

is any colouring of pV, γq, since s “ ĉ1pvq when t “ ĉpvq. We obtain the following proof
rules.

$ as tÑ s
$ at child

$ as s “ k̂ptq

$ at k-rec

For any t, s P UCX, if $ at can be deduced from $ as with k-rec (here, k is allowed to
vary) and child, we write as $ at.

Theorem 4.16. (Adámek [61])
For a polynomial endofunctor TΣ, a set X, and any s, t P CX, as |ù at if and only if as $ at.

As shown in Adámek’s [61] and Schwencke’s [71, 74], the logic of coequations for
polynomial functors (described above) can be extended to include many bounded func-
tors. The extended logic relies on the fact that every bounded functor is a natural quotient
of some polynomial functor [58], and by extension every cofree coalgebra for a bounded
functor is a quotient of a cofree coalgebra for a polynomial functor. The subtree and re-
colouring rules apply to representatives, and with the right natural quotient9 TΣ ñ T ,
the ensuing logic is sound and complete with respect to coequational reasoning.

4.4 Generalized coequations

If T is not bounded, T is likely not a covarietor. In such a case, we cannot always use
predicates to specify classes of coalgebras over the base category Set. However, as Aczel
and Mendler showed in [19], every endofunctor on Set extends to a covarietor on the
category of classes. By approximating cofree coalgebras, which may be proper classes in

8Here, v α
ÝÑ u in pV, γq if u “ γpvqpαq.

9Namely, a so-called regular presentation. See [74] for details.

17

the case that T is unbounded, Adámek recovers generalized coequations in [62], and shows
they are sufficient for specifying structural covarieties in general.

To approximate the cofree coalgebra in X colours, we follow Barr in [23] and construct
its final sequence, the ordinal-indexed diagram

X0 X1

φ1
0oo X2

φ2
1oo ¨ ¨ ¨oo Xω

oo Xω`1

φω`1
ωoo ¨ ¨ ¨oo

Here, X0 “ 1 and φ1
0 “ !, Xα`1 “ X ˆ TXα, and φ

β`1
α`1 “ idX ˆ T pφβ

αq for any ordinals

α ă β, and pXλ, tφ
λ
αuαăλq “ limÐÝtφ

β
α : Xβ Ñ Xα | α ă β ă λu for λ a limit ordinal.

For any T -coalgebra pV, γq and any colouring c : V Ñ X, let c0 “ ! : V Ñ X0 be
the unique such function, and define cα`1 “ xc, T pcαq ˝ γy at successor ordinals, and
cλ : V Ñ Xλ to be the unique cone homomorphism tcαuαăλ Ñ tφλ

αuαăλ when λ is a
limit ordinal. A generalized X-pattern is an ordinal indexed sequence ttαuαPOrd such that

tα P Xα, and tα “ φ
β
αptβq for any α ă β. A generalized coequation is a class W of generalized

patterns, and pV, γq |ùW if for any c : V Ñ X and v P V , we find tcαpvquαPOrd PW .

Theorem 4.17. (Adámek [62])

For any endofunctor T , a class C of T -coalgebras is a structural covariety if and only if there is a
generalized coequation W such that C “ CovpW q.

Generalized coequations are indeed generalisations of coequations for a covarietor. If
T is a covarietor, then φλ`1

λ is an isomorphism for some ordinal λ [56].10 As φλ`1
λ is an

isomorphism, it has an inverse xk, δXy : Xλ Ñ X ˆ TXλ, and the cofree coalgebra CX

is precisely pXλ, δ
Xq. In this setting, cλ and ĉ coincide, and the satisfaction relation from

section 4.2 coincides with the satisfaction of generalized coequations. Note, however, that
while the set of colours is fixed in theorem 4.10, the colours appearing in theorem 4.17
can vary.

Example 4.18. The powerset functor P is not bounded, as no φλ`1
λ can be a bijection. Nev-

ertheless, the class of simple graphs from example 4.14 forms a covariety. The presenting
coequation is 2-coloured and can be visualised as a subset of X3. Here, X3 “ 2 ˆ Pp2 ˆ
Pp2ˆ 2qq, so elements of X3 can be thought of as extensional trees with 2-coloured nodes
and height at most 3. The desired subset, call it W , is obtained by restricting the coequa-
tion in example 4.14 to such trees. The generalized coequation Wsim then consists of all
ordinal-indexed sequences ttαuαPOrd such that t3 PW .

Example 4.19. For a set V , let FV be the set of filters on V , upwards-closed subsets of
PpV q ´ tHu that are closed under pairwise intersection. For a function f : V Ñ V 1, let
FpfqpF q “ rfpF qsfil be the smallest filter containing tfpsq | s P F u. Then F is an un-
bounded functor. As Gumm points out in [46], the category Top of topological spaces
and open continuous maps is a covariety of F-coalgebras. The structure map of a topolo-
gical space sends every point to its filter of neighbourhoods. The coequation presenting
Top appears in [66] in modal form, but in principle can be translated into a generalized
coequation.

10Worrell shows in [38] that if T is κ`-bounded, φλ`1

λ
is an isomorphism when λ “ κ ` κ.

18

5 Coequations-as-equations

Our main sources for this section are [26, 24, 34, 54]. The last two papers are written in
the language of visible and hidden sorts, making them relatively difficult to read. Here, we
follow the single-sorted setup of [26, 24]. The generalisation to multiple sorts (i.e. to the
category SetS for some set of sorts S) presents only notational difficulties.

Following [26], let At be a set of atomic types and consider the grammars of types:

S ::“ A P At | 0 | 1 | S` S | Sˆ S T ::“ A P At | 0 | 1 | T` T | Tˆ T | X

A destructor signature is a set of pairs of types σi fi pSi, Tiq, i P I , called destructors. The
interpretation of a type is determined inductively given interpretations JAK of A P At

and JXK as sets, and by taking ` to be the coproduct, ˆ the product, 0 the empty set,
and 1 the set t0u in Set. An interpretation of a destructor σ fi pS, Tq is a map JσK :

JSK ˆ JXK Ñ JTK, and an interpretation of a destructor signature is an interpretation of
each of its destructors.

As Set is Cartesian closed, every destructor can equally be interpreted as a map JσK :

JXK Ñ JTKJSK. This means that the interpretation of a destructor signature can be described
as a coalgebra for the functor

T JXK fi

ź

iPI

JTiK
JSiK (T typically depends on X).

Example 5.1. Jacobs provides the example of a simple class for a bank account where At “
tNu, and the destructor signature is tp1, Nq, pN, Xqu. An interpretation of this destructor
signature can be defined by choosing JNK “ N and two maps bal : JXK Ñ N and credit :

Nˆ JXK Ñ JXK returning the balance on the account and crediting the account by a given
amount respectively. Alternatively, the interpretation of this destructor signature can be
a coalgebra for Nˆ IdN.

The definition of a term for a destructor signature is fairly elastic (see op.cit.) but
includes at least the following rules. First, define for each atomic type A P At a set VarA of
variables of type A. We also define a unique variable x of type X. The following rules [26,
34] are used to build terms in context:

1. Variables are terms of the corresponding type: if a P VarA then $ a : A,$ x : X.

2. If σ “ pS, Tq is in the destructor signature, then s : S, t : X $ σps, tq : T.

Any constructions which might be useful, such as projections and coprojections or built-
in functions, can be added to the grammar of terms. In the case of example 5.1 it is useful
to add the function p´q`p´q : Nˆ NÑ N which allows the term n : Nx : X $ balpxq`n : N

to be constructed. A coequation-as-equation is defined as an equation a1 : A1, . . . , an : An, x :

X $ s “ t : T between two terms of the same type, in the same context. The interpretation
of terms follows in the obvious way from the interpretation of the destructor signature
(and any other build-in operations like p´q ` p´q) and function composition.

As in the case of coequations-as-corelations, the purpose of these equations is not to
identify terms via a quotient, but to select certain behaviours. The connection with corela-
tions can be made explicit by observing that every term will be typed like a1 : A1, . . . , an :

An, x : X $ t : T with a context containing a unique variable x : X, and variables of
atomic type. This means that its interpretation JtK can always be Curried, and since an

19

interpretation of the destructor signature is a coalgebra γ : X Ñ TX, we can view a
coequation-as-equation s “ t as a corelation:

X
JsK //
JtK

// JTKJA1Kˆ...JAnK

or a pre-cocongruence

pX, γq
JsK //
JtK

// CT JTKJA1Kˆ...JAnK

Returning to example 5.1, Jacobs gives the financially sound equation n : N, x : X $
balpcreditpn, xqq “ n`balpxq. By interpreting the basic destructors as a coalgebra γ : X ÞÑ
NˆXN, and Currying the interpretation of the two terms in the equation, we get a corela-
tion X Ñ N

N classifying behaviours according to what the functions λn. Jbalpcreditpn, xqqK
and λn.n ` JbalpxqK do at state x. The coequation-as-equation selects the bank accounts
whose behaviours cannot be distinguished by these two functions.

6 Coequations-as-modal-formulas

Modal logic, and its generalisation coalgebraic modal logic, is an intuitive and powerful
syntax to write predicate coequations. We follow the abstract formalism of [60, 65, 73], as
it naturally lends itself to interpreting modal formulas as coequations. In this formalism,
the syntax of a modal logic is given by an endofunctor L on some base category C , typic-
ally either the category BA of Boolean Algebras for boolean modal logics (see op.cit. and
[57, 69, 75]), or the category DL of Distributive Lattices (see [77, 82, 89]) for positive modal
logics. The base category C encodes all the basic logical connectives whilst the functor L
constructs terms with modal operators. Since one is typically interested in finitary logics,
we also make the natural assumption that L is finitary, and in particular a varietor [56,
Thm. 3.17]. We thus have a free-forgetful adjunction FL % UL, FL : C Ñ AlgC pLq. We
also assume that there exists a free-forgetful adjunction F % U,F : C Ñ Set, which we
write in sans-serif font to keep it distinct from the other adjunctions.

Example 6.1. Normal modal logic is defined by the functor L : BA Ñ BA which sends a
boolean algebra A to the boolean algebra of formal terms LA “ Ftla | a P UAu{ ”, where
” is the stable congruence generated by the equations lJ “ J,lpa^ bq “ la^lb. Usu-
ally, A is also freely generated, specifically A “ FAt where At is the set of propositional
variables.

Coalgebraic modal logics are interpreted in coalgebras, so let us fix an endofunctor
T : D Ñ D describing both the kind of carrier (D-objects) and the kind of transition
systems in which modal formulas are to be interpreted. We now need two pieces of
categorical data.

1. A dual adjunction G % P,G : C Ñ Dop connecting the ‘logical category’ C to the
‘model category’ D whose objects carry the models of the interpretation.

2. A semantic natural transformation δ : LP Ñ PT to recursively compute the se-
mantics.

20

The framework of coalgebraic modal logic can thus be summarized as the categorical
data:

Set

F

++
K C

L

��

U

kk

G
++

K Dop

T op

��

P

kk δ : LP Ñ PT

By using P and δ, one can turn any T -coalgebra γ : X Ñ TX into an L-algebra Pγ ˝ δX :

LPX Ñ PTX Ñ PX. We denote this construction, which is functorial since δ is natural,
by pP pX, γq. The semantics can now be defined as follows: given a T -coalgebra pX, γq
and a set At of variables, a valuation is a map v : AtÑ UPX, which lifts to a C -morphism

v̂ : FAt Ñ PX. Since PX is the carrier of pP pX, γq, we can re-type v̂ as a C -morphism

v̂ : FAtÑ UL
pP pX, γq. Since L is a varietor, this map freely extends to a unique L-algebra

morphism J´Kv : FLFAt Ñ pP pX, γq, which recursively computes the interpretation of
a modal formula in FLFAt as an element of PX via the semantic transformation δ. A
formula ϕ P FLFAt is said to be satisfied at x P X for the valuation v, written pX, γ, xq |ùv φ,
if x P JφKv. A formula ϕ P FLFAt is said to be valid in pX, γq, written pX, γq |ù ϕ, if it is
satisfied at every x P X and for every valuation v : AtÑ UPX.

Example 6.2. In the case of the normal modal logic described in example 6.1 we take
D “ Set, the dual adjunction is given by the powerset functor P : Setop Ñ BA and the
ultrafilter functor U : BA Ñ Setop, and models are coalgebras for the powerset functor
P : Set Ñ Set. The semantic transformation δ : LP Ñ PP thus turns a modal formula
over a predicate on the carrier into the set of successors which must satisfy this predicate,
from the perspective of the modality. It is defined by δplW q “ tW 1 | W 1 Ď W u. Given
a coalgebra γ : X Ñ PX and a valuation v : At Ñ UPX, it follows from the definition
of δ and J´Kv that for any ϕ P FLFAt, JlϕKv is computed recursively via JlϕKv “ tx P
X : γpxq Ď JϕKvu, where JpKv fi vppq. This is the usual semantics for normal modal logic,
rephrased coalgebraically.

A set of modal axioms Φ Ď UULFLFAt defines a set of equations

e1, e2 : Φ Ñ UULFLFAt,

in the sense of section 3.1, since each axiom ϕ P Φ is shorthand for the equation ϕ “ J,
i.e. e1pϕq “ ϕ, e2pϕq “ J. We can then consider the variety defined by the coequalizer
q : FLFAt ։ Q of the free extensions ê1, ê2 : FLFΦ Ñ FLFAt, exactly as in section 3.1.
We obtain, immediately from the definitions, that every set of modal axioms defines a

variety, and these axioms are valid in a coalgebra pX, γq precisely when pP pX, γq belongs
to the variety.

Proposition 6.3. Using the notation above, pX, γq |ù Φ iff q K pP pX, γq.

A set of modal axioms Φ can also be seen as a coequation-as-predicate which defines
a covariety. To see this, assume that T is a covarietor, i.e. that there exists forgetful-cofree
adjunction UT % CT , UT : CoAlgDpT q Ñ D , and consider the cofree coalgebra CTGFAt

over the D-object of colours GFAt. The reason for choosing these colours is that by using
the counit ε of the adjunction UT % CT , we can construct a canonical interpretation via

21

the adjunctions G % P and FL % UL, and the fact that UL
pP » PUT :

UTCTGFAt
ε
ÝÑ GFAt ðñ FAt ÝÑ PUTCTGFAt

ðñ FLFAt
J´K

εÝÑ pPCTGFAt.

With this canonical interpretation map we can view Φ as a coequation-as-predicate in
GFAt colours selecting the elements t P CTGFAt such that pCTGFAt, tq |ùε ϕ for all ϕ P Φ.

Example 6.4. Returning to the classical modal logic of examples 6.1 and 6.2, we modify
the semantics slightly by considering coalgebras for an accessible version of P , e.g. we
take T fi Pκ with κ “ |At| so that PκAt “ PAt. The coalgebraic semantics is now
given in terms of a covarietor. The cofree coalgebra CTUFAt » CTPAt is then the set of
all κ-branching strongly-extensional trees labelled by sets of propositional variables [38].
By definition of J´Kε, if p P At then pCTPAt, tq |ùε p iff p belongs to the set of pro-
positional variables labelling t. The semantics of modal formulas works in the expected
way, namely lϕ holds at a tree t if ϕ holds at all its children (should it have any). Thus,
every modal formula ϕ P FLFAt defines the subset of JϕKε Ď UTCTPAt, i.e. a predicate
coequation. More generally, every set Φ of modal axioms defines the predicate coequa-
tion

Ş
ϕPΦ JϕKεT Ď UTCTPAt, containing only those trees for which all formulas in Φ are

satisfied.

Now, which covarieties can be defined from a coequation-as-modal-formula in the
way we just sketched? An answer to this question has long been part of the canon of
modal logic, and is known as the Goldblatt-Thomason theorem [67, Thm. 3.19]. A coal-
gebraic version of this theorem was developed by Kurz and Rosickỳ in [68]. This the-
orem can only be stated for (and is therefore only applicable to) coalgebraic modal logics
such that the semantic transformation δ : LP Ñ PT has an inverse natural transforma-
tion δ´1 : PT Ñ LP 11,12. From this inverse we can construct a natural transformation
h : GLÑ TG, called its mate [68]. For our purposes, it is enough to say that h and G allow
us to turn every L-algebra α : LAÑ A into a T -coalgebra hA ˝Gα : GAÑ GLAÑ TGA.

We denote this operation pGpA,αq. In some sense, it is dual to the functor pP defined earlier.

Given a T -coalgebra pX, γq, its ultrafilter extension is the T -coalgebra pG pP pX, γq. A class C

of T -coalgebras is closed under ultrafilter extensions if pX, γq P C implies pG pP pX, γq P C. A

class C of T -coalgebras reflects ultrafilter extensions if pG pP pX, γq P C implies pX, γq P C.

Theorem 6.5. (Coalgebraic Goldblatt-Thomason Theorem [68])

Let T : SetÑ Set preserve finite sets, and assume the existence of a natural inverse δ´1 : PT Ñ
LP to the semantic transformation, then a class of T -coalgebras closed under ultrafilter exten-
sions is definable by coequations-as-modal-formulas iff it is closed under homomorphic images,
subcoalgebras, coproducts, and if it reflects ultrafilter extensions.

11The naturality of the inverse in not strictly necessary, but makes the presentation easier, see [68].
12The existence of a natural transformation δ´1

: GL Ñ TG is also key to the duality between variet-
ies and covarieties and between equations and coequations developed in [88]. It is also crucial to strong
completeness proofs in coalgebraic modal logic [81, 86].

22

7 Conclusion

In this review we have presented four types of syntaxes for ‘writing a coequation’: coequa-
tions-as-corelations, which come with the special syntax of coequations-as-equations for func-
tors of the type

ś
iPI Ai ˆ P

Bi

i where each Pi is polynomial, and coequations-as-predicates,
which come with the special syntax of coalgebraic modal logic. It is worth emphasising
that the corelation and the predicate perspective are semantically equivalent and one can
move from one to the other by taking an equalizer or a cokernel pair respectively. How-
ever, both the syntax and the intuition are different, and these aspects matter a great deal
in practice.

A rule of thumb for which syntax to use in which situation might be the following.
Thinking of the elements of a cofree coalgebra as generalized trees, if the aim is to specify
a behaviour defined by a relationship between a tree and (some of) its children, then the
corelation perspective is probably the most useful. This perspective was illustrated in
section 5, but can also be found in the beautiful work on stream differential equations of
Hansen, Kupke and Rutten [87]. On the other hand, if the aim is to enforce or avoid a
particular behavioural pattern, then the predicate perspective is probably the most useful.

Although much of our discussion focused on literature written decades ago, coequa-
tions continue to find new uses. It was recently observed that coequations appear in
formal language theory as varieties of languages [80, 85], which play a dual role to monoid
equations. A vastly wider perspective on this relationship was explored in subsequent
work [92, 93]. For another example, a behavioural coequation appeared in a proof of
the completeness of an axiomatisation of guarded Kleene algebra with tests (GKAT) [96], an
algebraic framework for reasoning about simple imperative programs. There, the co-
equation is the set of behaviours specified by terms in the expression language of GKAT,
much like the coequation in example 4.3, and is used to present the covariety of automata
that implement GKAT programs. This usage of coequations may also be possible in the
context of an open problem posed by Milner [11], as a covariety implicitly appears in a
recent partial solution [95].

As the examples above illustrate, the use value of coequations is emerging, slowly,
from the literature. Given the scope of their applications, we hope that our synthesis
of the literature will make coequations more accessible to the general computer science
community.

Acknowledgements

The authors are most grateful to Alexander Kurz for his services as history consultant.
The responsibility for any mistake or mischaracterisation lie solely with the authors.

References

[1] Garrett Birkhoff. “On the structure of abstract algebras”. In: Proceedings of the Cam-
bridge (1935).

[2] Janusz A. Brzozowski. “Derivatives of Regular Expressions”. In: J. ACM 11.4 (1964),
pp. 481–494.

[3] Arto Salomaa. “Two Complete Axiom Systems for the Algebra of Regular Events”.
In: J. ACM 13.1 (1966), pp. 158–169.

23

[4] Robert Davis. “Universal coalgebra and categories of transition systems”. In: Math-
ematical systems theory 4.1 (1970), pp. 91–95.

[5] Robert Davis. “Multivalued operations and universal coalgebra”. In: Proceedings of
the American Mathematical Society 32.2 (1972), pp. 385–388.

[6] Robert Davis. “Quasi cotripleable categories,” in: Proceedings of the American Math-
ematical Society 35 (1972), pp. 43–48.

[7] Bernhard Banaschewski and Horst Herrlich. Subcategories defined by implications.
McMaster Univ., 1975.

[8] Hanamantagouda P Sankappanavar and Stanley Burris. A course in universal al-
gebra. Vol. 78. Citeseer, 1981.

[9] Robert Davis. “Combinatorial examples in universal coalgebra”. In: Proceedings of
the American Mathematical Society 89.1 (1983), pp. 32–34.

[10] Robert Davis. “Combinatorial examples in universal coalgebra. III”. In: Proceedings
of the American Mathematical Society 92.3 (1984), pp. 332–334.

[11] Robin Milner. “A Complete Inference System for a Class of Regular Behaviours”.
In: J. Comput. Syst. Sci. 28.3 (1984), pp. 439–466.

[12] Hendrik Pieter Barendregt. The lambda calculus - its syntax and semantics. Vol. 103.
Studies in logic and the foundations of mathematics. North-Holland, 1985. ISBN:
978-0-444-86748-3.

[13] E Allen Emerson and Joseph Y Halpern. “Decision procedures and expressiveness
in the temporal logic of branching time”. In: Journal of computer and system sciences
30.1 (1985), pp. 1–24.

[14] Michal Marvan. “On covarieties of coalgebras”. In: Archivum Mathematicum 21.1
(1985), pp. 51–63.

[15] Edmund M. Clarke, E Allen Emerson and A Prasad Sistla. “Automatic verification
of finite-state concurrent systems using temporal logic specifications”. In: ACM
Transactions on Programming Languages and Systems (TOPLAS) 8.2 (1986), pp. 244–
263.

[16] Moshe Y Vardi and Pierre Wolper. “An automata-theoretic approach to automatic
program verification”. In: Proceedings of the First Symposium on Logic in Computer
Science. IEEE Computer Society. 1986, pp. 322–331.

[17] Robert Goldblatt. Logics of time and computation. Center for the Study of Language
and Information, 1987.

[18] Peter Aczel. Non-Well-Founded Sets. Lecture Notes 14. Center for the Study of Lan-
guage and Information (CSLI), 1988.

[19] Peter Aczel and Nax Mendler. “A final coalgebra theorem”. In: Category theory and
computer science. Springer. 1989, pp. 357–365.

[20] Jiřı́ Adámek and Vera Trnková. Automata and algebras in categories. Vol. 37. Springer
Science & Business Media, 1990.

[21] Dexter Kozen. “A Completeness Theorem for Kleene Algebras and the Algebra of
Regular Events”. In: Proceedings of the Sixth Annual Symposium on Logic in Computer
Science (LICS ’91). IEEE Computer Society, 1991, pp. 214–225.

24

[22] Wolfgang Wechler. Universal Algebra for Computer Scientists. Vol. 25. EATCS Mono-
graphs on Theoretical Computer Science. Springer, 1992.

[23] Michael Barr. “Terminal coalgebras in well-founded set theory”. In: Theoretical Com-
puter Science 114.2 (1993), pp. 299–315.

[24] Ulrich Hensel and Horst Reichel. “Defining equations in terminal coalgebras”. In:
Recent Trends in Data Type Specification. Springer, 1994, pp. 307–318.

[25] Rob Gerth et al. “Simple on-the-fly automatic verification of linear temporal logic”.
In: International Conference on Protocol Specification, Testing and Verification. Springer.
1995, pp. 3–18.

[26] Bart Jacobs. “Mongruences and cofree coalgebras”. In: International Conference on
Algebraic Methodology and Software Technology. Springer. 1995, pp. 245–260.

[27] Horst Reichel. “An approach to object semantics based on terminal co-algebras”.
In: Mathematical Structures in Computer Science 5.2 (1995), pp. 129–152.

[28] Dexter Kozen and Frederick Smith. “Kleene Algebra with Tests: Completeness and
Decidability”. In: Computer Science Logic, 10th International Workshop, CSL ’96, An-
nual Conference of the EACSL, 1996. Vol. 1258. LNCS. Springer, 1996, pp. 244–259.

[29] Jan JMM Rutten. Universal coalgebra: a theory of systems. Tech. rep. CWI, 1996.

[30] Heinz-Peter Gumm and Tobias Schröder. “Covarieties and complete covarieties”.
In: Electronic Notes in Theoretical Computer Science 11 (1998), pp. 42–55.

[31] Alexander Kurz. “A Co-Variety-Theorem for Modal Logic.” In: Advances in Modal
Logic 2 (1998), pp. 367–380.

[32] Alexander Kurz. “Specifying coalgebras with modal logic”. In: Electronic Notes in
Theoretical Computer Science 11 (1998), pp. 56–70.

[33] Grigore Roşu. “A Birkhoff-like axiomatizability result for hidden algebra and coal-
gebra”. In: Electronic Notes in Theoretical Computer Science 11 (1998), pp. 176–193.

[34] Corina Cı̂rstea. “A coequational approach to specifying behaviours”. In: Electronic
Notes in Theoretical Computer Science 19 (1999), pp. 142–163.

[35] H Peter Gumm. Elements of the general theory of coalgebras. 1999.

[36] Lawrence S Moss. “Coalgebraic logic”. In: Annals of Pure and Applied Logic 96.1-3
(1999), pp. 277–317.

[37] Antonino Salibra and Robert Goldblatt. “A Finite Equational Axiomatization of the
Functional Algebras for the Lambda Calculus”. In: Inf. Comput. 148.1 (1999), pp. 71–
130.

[38] James Worrell. “Terminal sequences for accessible endofunctors”. In: Coalgebraic
Methods in Computer Science, CMCS 1999. Ed. by Bart Jacobs and Jan J. M. M. Rutten.
Vol. 19. Electronic Notes in Theoretical Computer Science. Elsevier, 1999, pp. 24–38.

[39] Steve Awodey and Jesse Hughes. The Coalegebraic Dual of Birkoff’s Variety Theorem.
Tech. rep. Carnegie Mellon University, 2000.

[40] Yasuo Kawahara and Masao Mori. “A small final coalgebra theorem”. In: Theor.
Comput. Sci. 233.1-2 (2000), pp. 129–145.

[41] Alexander Kurz. “Logics for coalgebras and applications to computer science”.
PhD thesis. Ludwig-Maximilians-Universität München, 2000.

25

[42] Jan JMM Rutten. “Universal coalgebra: a theory of systems”. In: Theoretical computer
science 249.1 (2000), pp. 3–80.

[43] Antonino Salibra. “On the algebraic models of lambda calculus”. In: Theor. Comput.
Sci. 249.1 (2000), pp. 197–240.

[44] Uwe Wolter. “On corelations, cokernels, and coequations”. In: Electronic Notes in
Theoretical Computer Science 33 (2000), pp. 317–336.

[45] Jiřı́ Adámek and Hans-E Porst. “From varieties of algebras to covarieties of coal-
gebras”. In: Electronic Notes in Theoretical Computer Science 44.1 (2001), pp. 27–46.

[46] H Peter Gumm. “Functors for coalgebras”. In: Algebra universalis 45.2 (2001), pp. 135–
147.

[47] H Peter Gumm and Tobias Schröder. “Products of coalgebras”. In: Algebra Univer-
salis 46.1 (2001), pp. 163–185.

[48] Heinz-Peter Gumm. “Equational and implicational classes of coalgebras”. In: The-
oretical Computer Science 260.1-2 (2001), pp. 57–69.

[49] Jesse Hughes. “A study of categories of algebras and coalgebras”. PhD thesis. Carne-
gie Mellon University, 2001.

[50] Jesse Hughes. “Modal operators for coequations”. In: Electronic Notes in Theoretical
Computer Science 44.1 (2001), pp. 205–226.

[51] Alexander Kurz. “Modal rules are co-implications”. In: Electronic Notes in Theoret-
ical Computer Science 44.1 (2001), pp. 241–253.

[52] Alexander Kurz. “Specifying coalgebras with modal logic”. In: Theoretical Computer
Science 260.1-2 (2001), pp. 119–138.

[53] Boris I. Plotkin and Tanya Plotkin. “Universal Algebra and Computer Science”. In:
Fundamentals of Computation Theory, 13th International Symposium, FCT 2001. Pro-
ceedings. Vol. 2138. LNCS. Springer, 2001, pp. 35–44.

[54] Grigore Roşu. “Equational axiomatizability for coalgebra”. In: Theoretical Computer
Science 260.1-2 (2001), pp. 229–247.

[55] Bart Jacobs. “The temporal logic of coalgebras via Galois algebras”. In: Mathematical
Structures in Computer Science 12.6 (2002), pp. 875–903.

[56] Jiřı́ Adámek and Hans-E Porst. “On varieties and covarieties in a category”. In:
Mathematical Structures in Computer Science 13.2 (2003), p. 201.

[57] Dirk Pattinson. “Coalgebraic modal logic: Soundness, completeness and decidab-
ility of local consequence”. In: Theoretical Computer Science 309.1-3 (2003), pp. 177–
193.

[58] Jirı́ Adámek and Hans-E. Porst. “On tree coalgebras and coalgebra presentations”.
In: Theor. Comput. Sci. 311.1-3 (2004), pp. 257–283.

[59] Jiřı́ Adámek, Horst Herrlich and George E Strecker. Abstract and concrete categories.
The joy of cats. 2004.

[60] Clemens Kupke, Alexander Kurz and Dirk Pattinson. “Algebraic semantics for
coalgebraic logics”. In: Electronic Notes in Theoretical Computer Science 106 (2004),
pp. 219–241.

[61] Jiřı́ Adámek. “A logic of coequations”. In: International Workshop on Computer Sci-
ence Logic. Springer. 2005, pp. 70–86.

26

[62] Jiřı́ Adámek. “Birkhoff’s Covariety Theorem without limitations”. In: Commenta-
tiones Mathematicae Universitatis Carolinae 46.2 (2005), pp. 197–215.

[63] Ranald Clouston and Robert Goldblatt. “Covarieties of coalgebras: comonads and
coequations”. In: International Colloquium on Theoretical Aspects of Computing. Springer.
2005, pp. 288–302.

[64] Robert Goldblatt. “A comonadic account of behavioural covarieties of coalgebras”.
In: Mathematical Structures in Computer Science 15.2 (2005), pp. 243–269.

[65] Clemens Kupke, Alexander Kurz and Dirk Pattinson. “Ultrafilter extensions for
coalgebras”. In: International Conference on Algebra and Coalgebra in Computer Science.
Springer. 2005, pp. 263–277.

[66] Alexander Kurz and Jirı́ Rosickỳ. “Operations and equations for coalgebras”. In:
Mathematical Structures in Computer Science 15.1 (2005), p. 149.

[67] Patrick Blackburn, Johan FAK van Benthem and Frank Wolter. Handbook of modal
logic. Elsevier, 2006.

[68] Alexander Kurz and Jiřı́ Rosickỳ. “The Goldblatt-Thomason theorem for coalgeb-
ras”. In: International Conference on Algebra and Coalgebra in Computer Science. Springer.
2007, pp. 342–355.

[69] Yde Venema. “Algebras and coalgebras”. In: Handbook of Modal Logic. Ed. by Patrick
Blackburn, J. F. A. K. van Benthem and Frank Wolter. Vol. 3. Studies in logic and
practical reasoning. North-Holland, 2007, pp. 331–426.

[70] Giulio Manzonetto and Antonino Salibra. “From lambda-Calculus to Universal Al-
gebra and Back”. In: Mathematical Foundations of Computer Science 2008, 33rd Interna-
tional Symposium, MFCS 2008. Proceedings. Vol. 5162. LNCS. Springer, 2008, pp. 479–
490.

[71] Daniel Schwencke. “Coequational logic for finitary functors”. In: Electronic Notes in
Theoretical Computer Science 203.5 (2008), pp. 243–262.

[72] Clemens Kupke and Raul Andres Leal. “Characterising Behavioural Equivalence:
Three Sides of One Coin”. In: Algebra and Coalgebra in Computer Science, Third In-
ternational Conference, CALCO 2009. Proceedings. Vol. 5728. LNCS. Springer, 2009,
pp. 97–112.

[73] Bart Jacobs and Ana Sokolova. “Exemplaric expressivity of modal logics”. In: Journal
of logic and computation 20.5 (2010), pp. 1041–1068.

[74] Daniel Schwencke. “Coequational logic for accessible functors”. In: Information and
Computation 208.12 (2010), pp. 1469–1489.

[75] Corina Cı̂rstea et al. “Modal logics are coalgebraic”. In: The Computer Journal 54.1
(2011), pp. 31–41.

[76] John Horton Conway. Regular algebra and finite machines. Courier Corporation, 2012.

[77] Adriana Balan, Alexander Kurz and Jiřı́ Velebil. “Positive fragments of coalgeb-
raic logics”. In: International Conference on Algebra and Coalgebra in Computer Science.
Springer. 2013, pp. 51–65.

[78] W. Fokkink. Introduction to Process Algebra. Texts in Theoretical Computer Science.
An EATCS Series. Springer Berlin Heidelberg, 2013.

27

[79] Peter Jipsen. “Concurrent Kleene Algebra with Tests”. In: Relational and Algebraic
Methods in Computer Science - 14th International Conference, RAMiCS 2014. Proceed-
ings. Ed. by Peter Höfner et al. Vol. 8428. Lecture Notes in Computer Science.
Springer, 2014, pp. 37–48.

[80] Adolfo Ballester-Bolinches, Enric Cosme-Llópez and Jan J. M. M. Rutten. “The dual
equivalence of equations and coequations for automata”. In: Inf. Comput. 244 (2015),
pp. 49–75.

[81] Fredrik Dahlqvist. “Completeness-via-canonicity for coalgebraic logics”. PhD thesis.
Imperial College London, 2015.

[82] Fredrik Dahlqvist and David Pym. “Completeness via canonicity for distributive
substructural logics: a coalgebraic perspective”. In: International Conference on Rela-
tional and Algebraic Methods in Computer Science. Springer. 2015, pp. 119–135.

[83] Nate Foster et al. “A Coalgebraic Decision Procedure for NetKAT”. In: Proceedings
of the 42nd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL 2015. ACM, 2015, pp. 343–355.

[84] Christian Jäkel. A unified categorical approach to graphs. 2015. arXiv: 1507.06328 [math.CO].

[85] Julian Salamanca et al. “Regular Varieties of Automata and Coequations”. In: Math-
ematics of Program Construction - 12th International Conference, MPC 2015. Vol. 9129.
LNCS. Springer, 2015, pp. 224–237.

[86] Fredrik Dahlqvist. “Coalgebraic Completeness-via-Canonicity”. In: International Work-
shop on Coalgebraic Methods in Computer Science. Springer. 2016, pp. 174–194.

[87] Helle Hvid Hansen, Clemens Kupke and Jan Rutten. “Stream differential equa-
tions: specification formats and solution methods”. In: arXiv preprint arXiv:1609.08367
(2016).

[88] Julian Salamanca, Marcello Bonsangue and Jurriaan Rot. “Duality of Equations
and Coequations via Contravariant Adjunctions”. In: Coalgebraic Methods in Com-
puter Science. Ed. by Ichiro Hasuo. Cham: Springer International Publishing, 2016,
pp. 73–93. ISBN: 978-3-319-40370-0.

[89] Fredrik Dahlqvist and Alexander Kurz. “The Positivication of Coalgebraic Logics”.
In: 7th Conference on Algebra and Coalgebra in Computer Science (CALCO). 2017.

[90] Bart Jacobs. Introduction to Coalgebra. Vol. 59. Cambridge University Press, 2017.

[91] Tobias Kappé et al. “Concurrent Kleene Algebra: Free Model and Completeness”.
In: CoRR abs/1710.02787 (2017).

[92] Julian Salamanca. “Unveiling Eilenberg-type Correspondences: Birkhoff’s Theorem
for (finite) Algebras + Duality”. In: CoRR abs/1702.02822 (2017).

[93] Jiřı́ Adámek et al. “Generalized Eilenberg Theorem: Varieties of Languages in a
Category”. In: ACM Trans. Comput. Logic 20.1 (2018).

[94] Steffen Smolka et al. “Guarded Kleene Algebra with Tests: Verification of Uninter-
preted Programs in Nearly Linear Time”. In: CoRR abs/1907.05920 (2019).

[95] Clemens Grabmayer and Wan Fokkink. “A Complete Proof System for 1-Free Reg-
ular Expressions Modulo Bisimilarity”. In: Proceedings of the 35th Annual ACM/IEEE
Symposium on Logic in Computer Science (July 2020).

28

https://arxiv.org/abs/1507.06328

[96] Todd Schmid et al. “Guarded Kleene Algebra with Tests: Coequations, Coinduc-
tion, and Completeness”. In: CoRR abs/2102.08286 (2021).

29

	1 Introduction
	2 A brief history of coequations
	3 Coequations-as-corelations
	3.1 Equations, relations and varieties of algebras.
	3.2 Coequations, corelations and covarieties of coalgebras

	4 Coequations-as-predicates
	4.1 Behavioural coequations
	4.2 Beyond behaviour
	4.3 Logic and Avoiding Patterns
	4.4 Generalized coequations

	5 Coequations-as-equations
	6 Coequations-as-modal-formulas
	7 Conclusion

