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Abstract—Software programs evolve naturally as part of the
ever-changing customer needs and fast-paced market. Software
evolution, however, often introduces regression bugs, which un-
duly break previously working functionalities of the software.
To repair regression bugs, one needs to know when and where
a bug emerged from, e.g., the bug-inducing code changes, to
narrow down the search space. Unfortunately, existing state-of-
the-art automated program repair (APR) techniques have not
yet fully exploited this information, rendering them less efficient
and effective to navigate through a potentially large search space
containing many plausible but incorrect solutions.

In this work, we revisit APR on repairing regression errors
in Java programs. We empirically show that existing state-of-
the-art APR techniques do not perform well on regression bugs
due to their algorithm design and lack of knowledge on bug
inducing changes. We subsequently present REFIXAR, a novel
repair technique that leverages software evolution history to
generate high quality patches for Java regression bugs. The
key novelty that empowers REFIXAR to more efficiently and
effectively traverse the search space is two-fold: (1) A systematic
way for multi-version reasoning to capture how a software evolves
through its history, and (2) A novel search algorithm over a
set of generic repair templates, derived from the principle of
incorrectness logic and informed by both past bug fixes and their
bug-inducing code changes; this enables REFIXAR to achieve a
balance of both genericity and specificity, i.e., generic common
fix patterns of bugs and their specific contexts. We compare
REFIXAR against the state-of-the-art APR techniques on a data
set of 51 real regression bugs from 28 large real-world programs.
Experiments show that REFIXAR significantly outperforms the
best baseline by a large margin, i.e., REFIXAR can fix correctly
24 bugs while the best baseline can only correctly fix 9 bugs.

I. INTRODUCTION

Software programs naturally evolve, e.g., having new fea-
tures implemented over time, to respond to user requirements.
Code changes during software evolution, however, may intro-
duce regression bugs, which unduly break previously work-
ing functionalities of the software. Regression bugs remain
challenging and prevalent in the software industry [1], [2].
Unfortunately, fixing regression bugs is time-consuming and
error-prone, e.g., they can take up to 8.5 years before they
are detected and fixed by developers [3], and worse still, low-
quality bug fixes can even introduce new regression bugs.

To manually debug and repair a regression error, a human
developer often asks “when and how did the regression bug
occur?”. Imagine, for example, that yesterday the program

still worked, and today, after some changes have been made,
it breaks some tests that were previously passing, then the
changes made can be a clue for debugging. Knowing when
and how a regression occurred helps understand the context
of the bug, localize the potential faulty locations and narrow
down the search space. This is achieved by identifying the
bug-inducing changes, i.e., code changes during software
evolution that introduce the bug. Often, bug-inducing changes
can only be approximated as isolating bug-inducing changes
from multiple changes across different versions of a program
is notoriously difficult. Once bug-inducing changes have been
determined, developers attempt to modify those changes to
repair the bug, e.g., simply reverting the changes to the
version before the bug occurred. Note that, even with just an
approximate set of bug-inducing changes at hand, the search
space for repairs can already be effectively narrowed down.

Regression bugs naturally fit well with the practical pipeline
of automated program repair (APR). Once a regression bug
occurs, there is already, at least, a failing test case that
witnesses the bug. APR takes the bug-witnessing test cases as
input and produces a repair that passes all tests. However, most
APR techniques, unfortunately, have been designed in such a
way that the useful information derived from regression bugs
such as bug-inducing changes are taken for granted. GenProg
and the likes [4], [5] use genetic programming to evolve the
buggy program through using random mutation operators such
as delete, swap, and replace statements. Template-based APR
techniques, such as PAR [5], HDRepair [6], and TBar [7],
mine generic repair templates from past human bug fixes and
then apply the templates to generate patch candidates. These
techniques lack specificity as they attempt to capture generic
patterns via multiple subject programs. Relifix [8] repairs
regression errors for C programs using repair operators derived
from analysing several bug-related program versions. How-
ever, Relifix randomly generates patches and does not rank
patches based on their likelihood of being correct, rendering
it ineffective, as later shown in our experiments.

In this paper, we revisit APR techniques for repairing Java
regression errors. We empirically show that the state-of-the-
art APR techniques do not perform well on regression errors.
Rationales behind this include: (1) random patch generation
without effective patch ranking criteria, and (2) the lack of
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knowledge on bug-inducing changes, which is a useful asset to
repair regression bugs. Motivated by these insights, we propose
a new regression error repair system, namely REFIXAR, that
leverages the software evolution history to generate high-
quality repairs. The key novelty of REFIXAR is two-fold:
(1) it systematically analyzes multiple versions of the buggy
program and generates abstract syntax tree (AST) mappings
between arbitrary versions. This allows REFIXAR to track the
evolution of each specific line of code through the history; and
(2) it applies a search algorithm over a set of repair operators,
derived from the principle of incorrectness logic [9] and
informed by past bug fixes and bug-inducing code changes.
This is empowered by the AST mappings to track changes
across multiple software versions. By doing so, REFIXAR
efficiently and effectively leverages the bug-inducing changes
to constrain the search space to find good repairs.

We evaluate REFIXAR on 51 regression bugs from 28 real-
world large Java programs, and compare REFIXAR against
four state-of-the-art APR techniques: Relifix [8], TBar [7],
GenProg [4] and jMutRepair embedded in ASTOR implemen-
tation [10]. Each of the baseline APR technique is represen-
tative in their categories, e.g., heuristics-based and template-
based APR. To curate the benchmark, we iterate through data
sets of Continuous Integration failures and collect bugs that are
reproducible and witnessed by failing test cases. Experiment
results show that REFIXAR significantly outperforms the base-
lines, i.e., while REFIXAR generates patches for 30/51 bugs
where 24/30 are correct, the best baseline recommends patches
for 20/51 bugs where only 9/20 are correct.

In summary, our contributions include:

• We empirically show although regression bugs naturally
fit well with the practical pipeline of APR, state-of-the-art
APR approaches do not perform well on a data set of 51
regression bugs on 28 real-world Java subject programs.

• Guided by the empirical results, we propose a new novel
regression error repair technique, namely REFIXAR, that
shows superior performance compared to state-of-the-
art APR. REFIXAR tracks the evolution history of the
program under repair and uses the bug-inducing changes
to effectively constrain the search space.

• REFIXAR is the first APR technique specifically targeting
regression bugs in Java programs. It opens up unique
challenges that future research in APR for Java programs
should consider addressing, including how to efficiently
and effectively identify bug-inducing changes and how
to best utilize the bug-inducing changes for APR (See
the discussion in Section V). REFIXAR serves as the
baseline for future regression error repair techniques for
Java programs to build upon.

The remainder of this paper is structured as follows. Sec-
tion II presents a motivating example for APR on regression
bugs. Section III introduces the methodology for our approach
REFIXAR, followed by Section IV that shows the evaluation
of state-of-the-art APR and REFIXAR. Section V discusses
future directions that help improve APR and their applications.

Section VI discusses related work, and Section VII discusses
threats to validity. Finally, section VIII concludes.

II. MOTIVATING EXAMPLE

In this section, we provide an example for revisiting au-
tomated program repair (APR) on regression bugs and the
need for our new novel technique REFIXAR that is specifically
designed for repairing regression bugs in Java programs.

Listing 1 shows a human bug fix in Traccar, a pro-
gram for GPS tracking. The fix adds line 126 (de-
noted by “+” starting symbol), which initializes the
global variable connectionManager as an instance of
ConnectionManager. What could be the possible ways
for this bug to be automatically fixed? Let us discuss a few
scenarios below.

123 public static void init(DataManager dataManager) {

124 properties = new Properties();

125 Context.dataManager = dataManager;

126 + connectionManager=new ConnectionManager();

127 }

Listing 1. A bug fix for Traccar, a Java system for tracking GPS.

Should there be a repair operator that adds a statement that
initializes an object, a repair technique may have been able
to fix this bug. However, the question that naturally follows
is then “what variable to initialize and what instance should
the variable be initialized to?”. Although the repair operator
may sound uncomplicated, it becomes not straightforward to
implement, and also it is unclear whether having the repair
operator would adversely impact the search space.

Another possibility for the bug to be fixed automat-
ically is a copy-paste operator, which copies a state-
ment from elsewhere in the same program, such as
the operator proposed in GenProg [4]. Indeed, we ob-
serve that the statement connectionManager = new
ConnectionManager(); appears elsewhere in the same
buggy file. We experimented with a popular implementation
of GenProg in Java [10] with this bug but, sadly, GenProg was
not able to fix it. Why? A closer look reveals that GenProg’s
operators randomly delete and add statements that render the
search space intractable.

Aside from GenProg, what about other repair techniques?
We experimented with Relifix [8], which we reimplemented
its analogy for Java programs, TBar [7], and jMutRepair [10]
with the bug, but they all failed to repair the bug. The repair
techniques do not have the necessary repair operators to render
the search space tractable to find the solution.

Let us now refresh that this bug is the result of a regression,
meaning that all test cases had passed until some changes
arrived and broke down some tests. What are those changes,
and how do they impact the code and the synthesized repair?
Is there any chance we can learn from the possibly wrong
changes and rectify them to make the test cases pass again? To
answer these questions, we traced back the evolution history
of the subject program to find the bug-inducing commit, i.e.,
the first version in which the tests failed. Listing 2 shows
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an excerpt of the changes made in the bug-inducing commit.
It reveals that the bug-inducing commit changes the same
buggy file and that within that same buggy file, it replaces
the statement at line 92 by line 93. A closer look at the line
93 further reveals that the statement connectionManager
= new ConnectionManager(); was added, but the de-
veloper forgot to add it to line 126 as well, resulting in the
regression bug and thus the bug fix in Listing 1.

It becomes clear that using the bug-inducing changes can
effectively narrow down the search space for the repair of
the regression bug at hand. Motivated by this example, we
implemented a new repair technique, namely REFIXAR, that
takes into account the bug-inducing changes to effectively and
efficiently constrain the search space and derive good repairs.

89 @@ -90,7 +90,7 @@ public static void init(String[]

arguments) throws Exception {

90 }

91 dataManager = new DataManager(properties);

92 - dataCache = new DataCache();

93 + connectionManager=new ConnectionManager();

94 if (!Boolean.valueOf(properties.getProperty("web.

old"))) {

95 permissionsManager = new PermissionsManager();

96 }

Listing 2. The bug-inducing commit of the bug in Listing 1.

III. METHODOLOGY

In this section, we describe and justify the design of our
approach. At a high level, REFIXAR allows for multi-version
reasoning by tracking the evolution of each line of code among
arbitrary program versions. In doing so, REFIXAR keeps track
of which line of code was changed and how it changed. This
is achieved by mappings between abstract syntax trees (ASTs)
of program versions. REFIXAR then searches for good repair
solutions over predefined repair operators taking into account
the changes made in the bug-inducing commit to constrain
the search space. Figure 1 depicts the overall framework of
REFIXAR. We describe in more detail below.

A. Multi-version reasoning via AST mapping

REFIXAR allows to track the evolution of any specific line
of code in the development history via AST mappings. Let us
now justify the need for this reasoning.

Let PB be the buggy program under repair, TF be the set of
tests that fail in PB , PI be the version of the program where
it is the first version that the tests TF fail, PO be the version
right before PI where the tests TF still pass. The bug-inducing
changes CO→I lie in the changes from PO to PI . Our goal
is two-fold: (1) given a potentially buggy line LB in PB , we
need to apply repair operators to LB to fix the bug, and (2) to
do so, we need to track the evolution of LB from PB back to
PI and PO to know how LB evolved from being “correct” (in
PO) to “incorrect” (in PI ). The bug-inducing changes CO→I

serve as an explanation for how and why LB needs to be
repaired, and thus, REFIXAR uses CO→I to guide the repair
process. Particularly, REFIXAR uses CO→I by breaking the

changes down to smaller granularity at the AST level and
using it as repair ingredients. How the repair ingredients are
used depending on the repair operators used by REFIXAR and
we will explain this in detail in Section III-B where the repair
operators are introduced.

Let us now explain how we build the AST mapping between
arbitrary versions in the evolution history of a subject program.
We use GumTree [11] that allows to compare ASTs. Note
that the mapping between two ASTs can only be approximate
and relied on heuristics [11]. We use a combination of two
approaches, including text and AST diffing, to best match a
node in an AST to the associated node on another AST. Given
a node N to build the mapping, REFIXAR first confirms if the
file containing N has been changed. If not, obviously N can
be mapped to exactly the same node in another AST, i.e., the
same text and location in the file. Otherwise, REFIXAR uses
GumTree to heuristically build an AST mapping and extract
the associated node on another AST. Note that GumTree may
not be able to return any associated node for a given query
due to the complexity of changes between two ASTs.

1 - /**
2 - Long code comments here

3 - */

4 - private static OWLOntology createOntology(...) {

5 - try {

6 - return man.createOntology(axs);

7 - } catch (@SuppressWarnings("unused")

OWLOntologyCreationException e) {

8 - return ont;

9 - }

10 - }

11

12 public SyntacticLocalityModuleExtractor(...) {

13 ...

14 - ontology = checkNotNull(createOntology(man, ont

, collect.stream()));

15 + try {

16 + ontology = checkNotNull(man.createOntology(

axs));

17 + } catch (OWLOntologyCreationException e) {

18 + throw new OWLRuntimeException(e);

19 + }

20 }

Listing 3. An example that GumTree fails to build an AST mapping.

Listing 3 gives an example code, from https:
//github.com/owlcs/owlapi/1, where GumTree fails to
build the AST mapping. The changes in Listing 3 involve
deletion of a method spanning over several lines (from
line 1 to line 10) and the changes from line 14 to lines
15-19. Given a query for finding the associated node at
line 14 of the version before the changes: ontology
= checkNotNull(createOntology(man,
ont, collect.stream())), ideally the mapping
should return the node at line 16: ontology =
checkNotNull(man.createOntology(axs)) of
the version after the changes. However, the AST mapping

1commit: 3cce7fe19517bdc0e67e5905e65bba34d5592b2c
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Fig. 1. Overall framework of our approach REFIXAR

built via GumTree fails to return any mapping for the node
at line 14 because it looses track of node mappings due to
the complex changes, e.g., the deletions of several code lines
(lines 1 to 10). To overcome this issue, REFIXAR resorts to
text differencing to compute the node mapping. REFIXAR
uses JGit [12] to compute differences between two files at
the text level. JGit allows to keep track of change actions
to convert one file to another, e.g., replace line 14 by lines
15-19. Although this does not allow to precisely map line 14
to line 16, it enables REFIXAR to approximately determine
the mapping, complementing GumTree where GumTree fails.

To build the AST mappings to track the evolution of code
through the history of a program, REFIXAR breaks down the
bug-inducing changes to AST level so that it can use them as
repair ingredients for the repair operators later on. Recall that
CO→I captures changes that induce the bug, where PI is the
first version that the tests fail and PO is the immediate version
before PI where all the tests pass. REFIXAR uses GumTree to
break down CO→I to smaller change actions and AST nodes
involved. Particularly, REFIXAR leverages four change actions
on AST node level to represent the transformations needed to
transform one AST to another. The transformations from PO

to PI can be represented by the following operations:
• Update ULO→LI

: update node LO in PO to node LI in
PI .

• Insert ILI

: insert node LI into PI .
• Delete DLO

: delete node LO from PO.
• Move MLO→LI

: move node LO in PO to node LI in PI .
By doing so, the bug-inducing changes CO→I can be repre-
sented as a sequence of change actions to transform the AST of
PO to that of PI . For now, REFIXAR keeps CO→I in a bucket
and uses it later on as repair ingredients for repair operators
that we will discuss next in Section III-B.

B. Repair Operators

Given a potentially buggy statement LB in the buggy
program PB , the repair operators try to manipulate LB to
fix the bug, taking into account the evolution of LB through
the development history such as the program version PI

which is the first version where the regression bug occurs,
and the program version PO which is the immediate version
before PI wherein all tests still pass. Some operators use the
bug-inducing changes CO→I , which capture the sequence of

changes from PO to PI , to effectively constrain the search
space, e.g., using CO→I as repair ingredients. Below, we
describe the principle that justifies the design of our repair
operators and the implementation of the repair operators.

The overall design of our repair operators follows a principle
inspired by incorrectness logic (IL) [9]. In particular, the
reachability of any program point is governed by two con-
straints: path presumption P and program state S (values of
program variables). The path presumption P is a conjunction
of those conditions leading to the location (e.g., branching
conditions of if and loop), and program state S constitutes
updates at assignment statements. Given a reachable location
that potentially induces an error, if S logically implies P (i.e.,
S ⇒ P), then the error is feasible. To eliminate the error, we
need to make some changes to the program such that the fixed
program includes those S ′ and P ′ where S ′ 6⇒ P ′ and P ′ is
satisfiable at the faulty location.

For illustration, let us consider the code in Listing 4.
1 void foo(int x) {

2 ObjectY y; // y = null by default.

3 x = 1;

4 if (x > 0) {

5 + y = new ObjectY(); // bug fix

6 if(y.someBoolVal)

7 ...

8 }

9 }

Listing 4. A Null Pointer Error Example.

At line 6, we ask: “Can an NPE happen when dereferencing
the variable y?”. To answer this question, we make a presump-
tion: P ≡ x>0∧ y=null, which presumes line 6 is reachable
and an NPE happens. The program state right before line 6
comes from the updates at lines 2 and 3: S ≡ y=null∧x=1.
Since S ⇒ P , the method foo definitely contains an NPE
[13]. One possible fix for this bug is to allocate a heap for y
as shown at line 5. The bug fix actually mutates a value in S,
rendering a new program state S ′ such that S ′ 6⇒ P as S ′ can
assert that y points to an object.

Based on this principle, REFIXAR implements repair oper-
ators that are classified into the following three categories.
• W operator to weaken S by, for example, removing a

relevant statement.
• S operator to negate some conjuncts in P or to

strengthen P by, for instance, conjoining additional con-
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dition on a relevant condition statement or adding a new
condition statement wrapping around some code.

• M operator to mutate values of variables in either S or P
by, for example, reverting a statement to a previous one,
replacing a statement by another, or modifying either the
left-hand side or the right-hand side of an assignment.

Guided by this principle, REFIXAR employs 12 repair
operators, R1 to R12, each of which belongs to either W,
or S, or M operator, to generate variants of the original buggy
program. Among the 12 repair operators, four operators are
newly proposed by us and the remaining eight operators,
proposed by Relifix for C programs [8], are transferred to
Java by REFIXAR. This allows us to directly study whether
the operators proposed for C programs can be applied to
Java programs, and compare the effectiveness of Relifix and
REFIXAR. Note that it is common among the APR literature
that repair operators are often borrowed from one technique
to another, e.g., HDRepair [6] and PraPR [14] borrowed
operators from mutation testing.

The 12 repair operators are divided into three groups: W
operator includes R3 and R8; S operator consists of R4,
R5, R6, R8, R11 and R12; and M operator is R1, R2, R7,
R9 or R10. We next describe the detail of each repair operator.

1) Transferring operators for C programs to Java pro-
grams: We describehow REFIXAR implements 8 repair oper-
ators that were proposed for fixing C programs in Relifix [8].

R1: Revert to previous statement. Given a potentially buggy
statement LB in program PB , REFIXAR tries to revert LB to
the corresponding statement LO in the program version PO.
The rationale behind this revert operator is that developers
may have done some wrong changes that they should have
left it intact, resulting in the regression bug at hand.

907 - classes.add(cls);

908 + classes.add(0, cls);

Listing 5. A bug fix for a regression in Apache Common Lang.

907 - classes.add(0, cls);

908 + classes.add(cls);

909 ...

910 - if(!ignoreAccess && !MemberUtils.isAccessible(

method)) {

911 + if (!ignoreAccess && !MemberUtils.isAccessible(

method)) {

912 ...

913 - if(annotation == null && searchSupers) {

914 + if (annotation == null && searchSupers) {

915 ...

Listing 6. The bug-inducing changes for the bug depicted in Listing 5.

REFIXAR implements the revert statement operator via AST
mappings of the buggy statement LB , taking into account the
bug inducing changes CO→I . Particularly, LB is first mapped
back to LI in the program version PI , and then LI is mapped
back to the corresponding statement LO in program version
PO. By this two-stage AST mapping, REFIXAR tracks down
the source statement LO that evolved to LI and potentially

created the regression bug. Once LO is identified, the revert
operator translates to the replacement of LB by LO. There is
a special case where LO does not exist, meaning there is no
associated node of LI in PO. This can be because in the bug-
inducing changes CO→I , LO was deleted from PO or that LI

was inserted only in PI . In the former, REFIXAR performs
the revert by adding LI back to the program version PB ,
effectively reverting the deletion of LI . In the latter, REFIXAR
performs the revert by deleting the node LB′

in PB which is
associated with LI , effectively reverting the insertion of LI .

Listing 5 and Listing 6 show the fix and the bug-inducing
changes for a bug in Apache Common Lang. Looking at
Listing 6, the developer made the wrong change at line 907
and the bug fix in Listing 5 reverts the line to the version
before the regression occurs.

R2: Swap changed statement with its neighbouring state-
ment. The goal of this operator is to identify some statement
that changed in the bug-inducing changes CO→I , find its
associated statement in the buggy program version PB and
swap the associated statement with its neighboring statement
in PB . The challenge here involves several AST mappings
back and forth between several program versions such as
PB , PI , and PO. Given a potentially buggy statement LB in
the buggy program PB , REFIXAR finds a set of statements
CO→I

B that have been changed in the bug-inducing changes
CO→I and are associated with LB . Note that CO→I

B contains
statements in one or both program versions PO and PI , e.g.,
delete LO in PO and insert LI in PI . After that, REFIXAR
randomly chooses a statement LC from CO→I

B , which belongs
to either program version PO or PI . REFIXAR then uses the
AST mapping to map LC back to its associated statement LB′

in PB . Note that due to the approximation of AST mapping,
LB′

may or may not be the same as LB . Finally, LB′
is

swapped with one of its neighboring statement in PB .

R3: Remove incorrectly added statement. The goal of this
operator is to identify some statement that was added in the
bug-inducing changes CO→I , find its associated statement in
the buggy program version PB and remove the associated
statement from PB . Similar to the operator R2, given a
potentially buggy statement LB in the buggy program PB ,
REFIXAR finds a set of statements CO→I

B that have been added
in the bug-inducing changes CO→I and are associated with
LB . After that, REFIXAR randomly chooses a statement LC

from CO→I
B , and maps it back to the associated statement LB′

in PB . Finally, REFIXAR deletes LB′
from PB .

R4: Negate added condition. The goal of this operator is to
identify some Boolean condition that was added in the bug-
inducing changes CO→I , find its associated node in PB and
negate it. Similar to R3, given a potentially buggy statement
LB in PB , REFIXAR finds a set of Boolean conditions CO→I

B

that have been added in CO→I and are associated with LB .
It randomly chooses a candidate LC from CO→I

B , and maps
it back to the associated node LB′

of Boolean type in PB .
Finally, REFIXAR negates the condition LB′

in PB .
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R5: Add condition. Given LB in PB , this operator collects a
pool of Boolean conditions appearing in the same file contain-
ing LB in the buggy program version PB . It then randomly
chooses a candidate condition among the pool and adds the
candidate to the condition in LB if LB has a condition, e.g.,
if or loop. Otherwise, it adds a guard condition surrounding
LB , e.g., if(c){LB}.

R6: Add condition to changed expression. Given a statement
LB in PB , REFIXAR finds a set of expressions CO→I

B that
were changed in CO→I and are associated with LB . RE-
FIXAR then randomly chooses a candidate expression LC from
CO→I

B . Note that LC belongs to either program version PO

or PI , and thus, REFIXAR maps LC back to its associated
node LB′

in program version PB . REFIXAR then applies the
operator R5 on LB′

.

R7: Add statement. Given a statement LB in PB , REFIXAR
collects a pool of statements appearing in the same file
containing LB in PB , randomly selects a candidate statement
from the pool and adds the candidate before or after LB .

R8: Convert statement to condition variable statement.
Given a statement LB of Boolean type in PB , REFIXAR
converts LB to an if condition, i.e., if(LB). The if
condition will wrap around a set of sequential statements
ranging from the location of LB to a random sibling of it.

2) Operators proposed by REFIXAR for Java programs:
REFIXAR implements 4 repair operators newly proposed in
this paper. We describe the operators in detail below.

R9: Revert to previous expression. This operator is similar
to the operator R1, except that it focuses in the expression
level instead of statement level like R1. Operator R9 prevents
reverting the whole statement, which can range over several
lines, and instead enables partial revert, i.e., revert of an
expression which is part of a statement only. Given a statement
LB in PB , REFIXAR finds a set of expressions CO→I

B that
were changed in the bug-inducing changes CO→I and are
associated with (parts of) LB . REFIXAR randomly selects
an expression LC from CO→I

B and finds the associated node
LO in program version PO. REFIXAR also maps LC to its
associated node LB′

in PB . The revert operator now translates
to the replacement of LB′

by LO.

R10: Replace a changed expression by another changed
expression. Given a statement LB in PB , REFIXAR finds
a pool of expressions CO→I

B that were changed in the bug-
inducing changes CO→I and are associated with (parts of) LB .
REFIXAR then randomly chooses an expression LC from the
pool CO→I

B , and maps it to the corresponding expression LB′

in PB . REFIXAR then replaces LB′
with another randomly

chosen expression from CO→I
B .

64 if (streamingTrack.getTrackExtension(

TrackIdTrackExtension.class) == null) {

65 - long maxTrackId = 1;

66 + long maxTrackId = 0;

Listing 7. A bug fix to illustrate operator R10.

Listing 7 and Listing 8 show a bug fix and the bug-inducing
commit for the bug. The bug fix replaces the line 65 by
line 66, which indeed changes the expression on the right-
hand side of the assignment from 1 to 0. The bug-inducing
commit contains the ingredients needed for repair, i.e., the
expression 0, which is an expression that was changed in
the bug-inducing commit (see the comparison ts.size()
> 0 on right-hand side of line 66). The operator R10 takes
the changed expressions in the bug-inducing commit as repair
ingredients to effectively constrain the search space, resolving
the bug presented in Listing 7.

64 if (streamingTrack.getTrackExtension(

TrackIdTrackExtension.class) == null) {

65 ...

66 - TrackIdTrackExtension tiExt = new

TrackIdTrackExtension(ts.size() > 0 ? (ts.get(ts.

size() - 1) + 1) : 1);

67 + long maxTrackId = 1;

68 + for (Long trackId : trackIds) {

69 + maxTrackId = Math.max(trackId, maxTrackId);

70 + }

Listing 8. An excerpt of bug-inducing commit for the bug in Listing 7.

R11: Add null-check guard for changed expression. This
operator helps repair bugs where the developer changes some
expression but forgot to add a null check for the changed
expression. Given a statement LB in PB , REFIXAR finds
a set of expressions CO→I

B that were changed in the bug-
inducing changes CO→I and are associated with (parts of)
LB . REFIXAR then randomly chooses an expression LC from
CO→I

B , and maps LC to its corresponding expression LB′

in PB . REFIXAR collects all object names appearing in LB′

and adds a null-check guard for a randomly chosen object
name, e.g., if(c != null){LB} where c is an object
name appearing in LB′

.

R12: Add try-catch for changed statements. This operator
wraps a try-catch around a statement that was changed in the
bug-inducing changes CO→I to prevent an exception from
crashing the program under repair. Given a statement LB in
PB , REFIXAR checks if LB was changed in CO→I . If so,
REFIXAR simply adds a try-catch surrounding LB .

C. Generating and exploring the search space

In this section, we discuss how REFIXAR uses the repair
operators introduced in Section III-B to generate the search
space and how it traverses the search space to find repairs.

Algorithm 1 depicts the generation and traversal of search
space in REFIXAR. REFIXAR first performs fault localization
using a spectrum-based technique, namely Ochiai [15], which
outputs a ranked list of potentially buggy locations/lines.
REFIXAR groups the lines as three groups, including: (1) lines
that lie in the methods that were changed in bug-inducing
changes CO→I , (2) lines that lie in the files that were changed
in CO→I , and (3) others. REFIXAR iterates through each group
in order, and within each group, it then iterates through each
line in the descending order of the likelihood of a line being
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faulty. Given a potentially buggy line LB in the buggy program
version PB , REFIXAR iterates through all repair operators and
find operators that are applicable at LB , e.g., operator R10
(Replace a changed expression by another changed one) would
be inapplicable at LB if the bug-inducing changes CO→I do
not include those expressions that are associated with (parts of)
LB , meaning CO→I

B is empty. REFIXAR applies the operators
at LB several times to create candidate repairs. To do so,
REFIXAR is parameterized by the number of times (N) that a
location can be mutated and the maximum number of solutions
(M) that it should collect. Particularly, REFIXAR randomly
chooses an operator from the applicable operators, applies the
operator on LB , and repeats this process N times. REFIXAR
stops whenever it finds M solutions.

REFIXAR reports the solutions that it found and then ranks
them by the ascending order of the number of transformations
needed to transform the buggy program to the solution. This
ranking mechanism follows the Occam’s Razor principle that
the simpler solution is more likely to be correct [16]. We note
that the number of transformations is measured by using AST
transformation actions provided by GumTree [11].

Algorithm 1: Algorithm to generate and traverse the
search space by REFIXAR

Input:
• N: number of mutants to create on a location
• M: maximum number of solutions to collect
• RO: set of repair operators
• PB : buggy program under repair
• L: potentially faulty locations

Output: S: Solutions/Repairs

1 S← {}
2 foreach LB ∈ L do
3 RA ← {}
4 foreach R ∈ RO do
5 if R is applicable at LB then
6 RA ← RA

⋃
R

7 end
8 end
9 for i← 0 to N do

10 R← choose one operator(RA)
11 X← apply mutation(R, LB)
12 if X passes all tests then
13 S← S

⋃
X

14 if size of(S) = M then
15 sort(S)
16 return
17 end
18 end
19 end
20 end

IV. EVALUATION

In this section, we describe the data set that we use for
our experiments, the baseline automated program repair (APR)

techniques that we compare with our technique REFIXAR,
experiment settings, and experiment results.

A. Data set, baselines, evaluation metrics and settings

Data set. We collect a data set of 51 regression bugs from
28 large real-world Java programs. The largest and smallest
programs in the data set have ≈200K and ≈52K lines of code,
respectively. Table I shows details of the five largest subject
programs in our dataset. For each program, #Bugs depicts the
number of bugs, #Commits the number of commits in the
development history, and #LOC the number of lines of code.

TABLE I
TOP FIVE LARGEST SUBJECT PROGRAMS IN OUR DATA SET.

Project #Bugs #Commits #LOC
INRIA/spoon 5 3.1K 200K
raphw/byte-buddy 2 5.2K 170K
FasterXML/jackson-databind 7 7K 120K
traccar/traccar 11 6.3K 65K
openpnp/openpnp 3 3.1K 52K

To collect this data set, we iterate through two existing
data sets for Continuous Integration (CI) failures, namely
Bears [17] and BugSwarm [18]. Criteria to collect our bench-
mark include: (1) each bug involves fixes to Java source
files, and (2) there is at least one bug-witnessing test case
in the existing test suite that reveals the buggy behavior of the
program. Bears and BugSwarm contain CI failures, each of
which can be a compilation error or a test case failure. We
filter out failures that involve fixes to files that are not Java
source, e.g., build configuration files, and only retain bugs
that satisfy our two criteria described above. We next filter
out bugs that we cannot reproduce, e.g., bugs that require
complex environment settings. Furthermore, to ensure the
retained bugs are indeed regression bugs, we assure that each
bug has a program version before the bug occurs that passes
all the test cases (including the bug-witnessing tests). To do
this, we traverse back along the development history before a
bug happens and find the bug-inducing commit, i.e., the first
commit where the bug-witnessing test cases fail. We do this
by using git bisect testing. The git bisect does a
binary search starting from the commit hash of the current
buggy program version and finds the first commit that the
bug-witnessing test cases fail. The buggy program version,
the bug-witnessing test cases and the bug-inducing commits
are then used as input to REFIXAR and the baselines.

Baseline techniques. We experiment with REFIXAR against
state-of-the-art APR techniques, each of which is representa-
tive in their category: TBar [7], the most recent state-of-the-art
template-based repair technique; GenProg [4], a well-known
classic repair technique using genetic programming; jMutRe-
pair [10], a mutation-based technique; and Relifix [8], a re-
gression repair technique originally designed for C programs.
TBar [7] uses several repair templates for Java programs. The
templates are manually derived from past successful human
bug fixes. GenProg [4] uses random mutation operators such
as delete, replace, append or swap nodes on abstract syntax
tree level and uses these operators and genetic programming
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to evolve the buggy program. GenProg relies on the so-called
redundancy assumption that it assumes that the fix ingredients
appear elsewhere in the same program, e.g., a null check added
at some location but forgotten to be added to another location.
jMutRepair [10] uses random mutation operators to mutate the
buggy program to create repair candidates. None of the above
techniques (TBar, GenProg, and jMutRepair) take into account
the evolution of the buggy program under repair, and thus
they take for granted the bug-inducing changes. Relifix [8]
was proposed to fix regression errors in C programs. We
reimplemented the Relifix’s repair operators (as discussed in
Section III-B) and its repair algorithm such that they work
on Java programs. We discuss further the differences between
Relifix and our technique REFIXAR and the rationale behind
their performances in Section V.

Evaluation metrics. To evaluate the effectiveness, we measure
the patch generation rate and correct patch rate for each APR
technique on our benchmark, following [19]. Patch generation
rate measures the number of bugs that an APR technique can
generate patches for out of the total number of bugs considered
in experiments. Correct patch rate measures the number of
correct patches out of the total number of patches generated
by an APR technique. The higher the patch generation rate
and correct patch rate, the better.

Experiment settings. We run all repair techniques on the
same machine (8GB of RAM and Intel(R) Core(TM) i7-
6820HK CPU). We set one hour as the time limit for each
run. For REFIXAR, each repair run of each bug is terminated
as soon as REFIXAR finds five solutions. Note that other repair
techniques used in our experiments do not generate multiple
repair solutions in the same run. We will discuss this limitation
of the baseline techniques in detail in Section V.

B. Research questions and experiment results

Research questions. We answer three research questions:
• RQ1: How effective are state-of-the-art APR and RE-

FIXAR on the data set of 51 Java regression errors? To
answer this question, we evaluate REFIXAR and the four
baseline techniques on our benchmark.

• RQ2: How is the contribution of each repair operator to
the success of REFIXAR? To answer this question, we
investigate which ones help REFIXAR repair more bugs.

• RQ3: Case studies on the effectiveness of the APR tech-
niques. What are cases where they fail and succeed? What
should be improved to increase the APR effectiveness?

Experiment results. We report the results for the above
research questions below.

RQ1: repair effectiveness. We compare REFIXAR against Reli-
fix [8], TBar [7], GenProg [4], and jMutRepair [10], which we
explained in detail in Section IV-A. Table II shows the results
on the effectiveness of the tools (where PGR denotes the
patch generation rate and CPR denotes the correct patch rate).
The results show that REFIXAR significantly outperforms the
baselines in terms of patch generation rate (PGR) and correct

patch rate (CPR). Particularly, REFIXAR has a PGR of ≈59%
(30/51), followed by Relifix with ≈39% (20/51) of PGR,
TBar with ≈ 33% (17/51) of PGR, GenProg and jMutRepair
of ≈16% (8/51) and ≈6% (3/51) respectively. In terms of
correct patch rate (CPR), REFIXAR achieves ≈80% (24/30),
followed by Relifix with ≈45% (9/20), TBar with ≈41%
(7/17), jMutRepair with ≈30% (1/3), and GenProg with ≈0%
(0/8). We note that the results for jMutRepair and GenProg are
in line with recent studies, e.g., [10] and [20]. All bugs that are
fixed by the baseline techniques are also fixed by REFIXAR.

TABLE II
RESULTS OF APR TOOLS ON 51 JAVA REGRESSION BUGS.

Rate REFIXAR GenProg jMutRepair TBar Relifix
PGR 30/51 8/51 3/51 17/51 20/51
CPR 24/30 0/8 1/3 7/17 9/20

RQ2: contribution of repair operators. In this research ques-
tion, we attempt to understand deeper which repair operators
(described in Section III-B) contribute the most to the superior
performance of REFIXAR. Out of the 12 operators proposed
in Section III-B, the operator Revert to previous statement
(R1) is the most effective, which helps REFIXAR generated
patches for 9 bugs, out of which 7 of them are correctly
fixed by REFIXAR. The next useful operators are R5, R11,
and R12. Some operators do not help REFIXAR fix any bugs,
e.g., operators R2 and R8. Indeed, R2 and R8 are transferred
from C to Java. This implies that operators that work for C
programs may not directly transfer to Java programs.

RQ3: Case studies. We present some case studies and discuss
on why some techniques succeed and fail to repair the bugs.

Listing 9 shows a human-written bug fix for LANG-1317
issue in Apache Commons Lang. The bug fix replaces the
method call classes.add(cls) by an overloaded method
call classes.add(0, cls), which has an additional pa-
rameter, namely the constant 0, to the call. REFIXAR and
Relifix generate the exact same fix to the human-written fix.
One may be surprisingly skeptical and ask “Where does
the constant parameter 0 come from so that the tools can
automatically fix the bug?”. It might be challenging to find
the ingredients from which an automated repair tool can use
to generate repair candidates. Indeed, traditional APR tools
such as GenProg, jMutRepair, and TBar failed to fix this bug
because the repair ingredients do not appear in their search
space. There is no exact statement classes.add(0, cls)
appearing elsewhere in the same program and thus GenProg
failed to fix the bug due to its redundancy assumption.
jMutRepair, despite having an operator to mutate a method
call, could not find the ingredients, e.g., the constant 0, to put
in place. Similarly, TBar failed for the same reason.

The true power of REFIXAR and Relifix comes from
the ability to analyze over the development history of the
program under repair, utilizing the bug-inducing changes as
repair ingredients to its repair operators. Particularly, among
dozens of lines of code changes in the bug-inducing changes,
REFIXAR detects that the bug-inducing commit touches
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the line classes.add(cls), in which it was changed
from classes.add(0, cls). REFIXAR uses the AST
mappings that it built to track down the evolution of the
line classes.add(cls), detecting the suspicious change
which could be responsible for the bug. An operator revert
then helps REFIXAR repair this bug, effectively reverting the
buggy line to its corresponding statement in the version before
the bug occurs. By utilizing the bug-inducing changes to con-
strain the search space, REFIXAR efficiently and effectively
locate the repair ingredients needed to repair the bug at hand.

905 List<Class<?>> classes = (searchSupers ?

getAllSuperclassesAndInterfaces(cls)

906 : new ArrayList<Class<?>>());

907 - classes.add(cls);

908 + classes.add(0, cls);

Listing 9. An excerpt of a bug fix for Apache Commons Lang

Listing 10 shows a human-written bug fix for which all
APR tools used in our experiments failed to produce a fix.
The bug involves moving an if statement in a for-loop
body. Should there be a repair operator that moves a sub-tree
in an abstract syntax tree, a repair technique might have been
able to fix this bug. REFIXAR traces back to the bug-inducing
commit, which appears to not even touch the buggy file, and
thus REFIXAR fails to repair this bug because of the reliance
on the bug-inducing commit that it found. However, whether
git bisect testing that REFIXAR relies on is accurate in
finding bug-inducing commit or not is still a question. We
conjecture that the accuracy of the method to find bug-inducing
commit affects the performance of REFIXAR. We will discuss
this more as a future work in the Section V.

373 for (...) {

374 + if (buffer.readIdProperty(propName)) {

375 + continue;

376 + }

377 ...

378 - if (buffer.readIdProperty(propName)) {

379 - continue;

380 - }

Listing 10. An excerpt of a bug fix for jackson-databind

V. DISCUSSION & FUTURE WORK

We discuss the key differences between REFIXAR and
Relifix and the rationale behind the superior performance of
REFIXAR. We also discuss the challenges and opportunities.

REFIXAR shares the similar spirit as Relifix, in which they
both rely on multi-version reasoning for automated repair.
However, there are several important obstacles that prevent
Relifix to reach the performance of REFIXAR. First, Relifix’s
algorithm to generate and traverse the search space is conser-
vative, blocking a repair operator from being reused during
repair process once the operator creates a candidate that is not
compilable [8]. Furthermore, Relifix’s search space is limited
by the fact that it only returns one solution that it found to
pass all tests. We argue that a repair operator may generate

several candidates, of which many do not compile, but the
repair operator may ultimately help generate a good repair
at the end. By realizing this, REFIXAR’s algorithm does not
block repair operators like Relifix, allowing REFIXAR to more
flexibly explore the search space and find several good quality
solutions. Next, REFIXAR ranks the solutions based on the
widely-accepted Occam Razor principle, which prefers simpler
solutions that involve fewer transformations on abstract syntax
trees to create repairs. Indeed, this helps REFIXAR rank the
correct solutions among top five for all the bugs (24 bugs) that
it can correctly fix. Last but not least, Relifix was proposed for
repairing regression bugs in C programs and our experiment
partly showed that some operators for C programs do not
directly transfer to repairing Java programs.

REFIXAR opens up several challenges and opportunities
for automated repair of regression errors and related research
areas. First, REFIXAR can serve as the baseline technique
for automated repair of Java regression errors that future
techniques can build upon. Second, future work can address
how much the accuracy of methods that find bug-inducing
changes (BIC) affects REFIXAR. In other words, REFIXAR
can be used as an underlying technique to automatically assess
the effectiveness of methods that find BIC, e.g., SZZ [21],
as opposed to manual analysis done in recent studies [22].
That is, a BIC finder is considered better than others if it
helps REFIXAR repair more bugs. We believe that this is an
interesting direction that REFIXAR enables us to explore.

REFIXAR also enables an automatic way to compare the
accuracy of tree differencing methods such as GumTree [11]
and ChangeDistiller [23]. REFIXAR’s current implementation
uses GumTree to build mappings between Abstract Syntax
Trees (ASTs) and to represent transformations needed. Indeed,
assessing correctness or performance of AST differencing
methods is a challenging task as it is tedious and error prone
to manually assess them on AST level. By using REFIXAR,
one can automatically and objectively assess the accuracy of
tree differencing algorithms in the sense that a better tree
differencing algorithm would help REFIXAR repair more bugs.
We plan to incorporate several AST differencing methods other
than GumTree and perform this study in the near future.

Another future work would be to combine REFIXAR with
the compositional analysis using incorrectness logic [9]. This
analysis was designed to find bugs in continuous integration
systems (CI) over large codebases. We envision that multi-
version reasoning APR such as REFIXAR is a good fit to
close the loop for bug catching and repair for CI. Indeed,
such an integration of static reasoning into syntactic reasoning
of REFIXAR not only backs a theory for those pre-defined
operators or even a proof search for sound repairs, but also
would help further reduce the repair search space.

VI. RELATED WORK

The closest to our work is Relifix, a technique for repairing
regression errors in C programs [8]. As discussed in Section V,
REFIXAR and Relifix share a similar spirit but differ in
generating and traversing the search space. Moreover, in our
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experiments, we showed that some repair operators proposed
for C programs do not directly transfer to Java programs.
The work in [24] studies how bugs arise through the bug-
inducing commits and recommends patches based on only
revert operator. Ming et al. [25] study the correlations of
commits between bug-inducing and bug-fixing. Based on that,
they can obtain specific fix patterns. In line with these works,
REFIXAR uses bug-inducing changes to constrain the search
space. Different from them, REFIXAR builds AST mappings
to track the evolution of each line of code. The AST mappings
help REFIXAR form a compact search space and thus enable
it to tractably find good solutions.

Bohme et al. [3] propose a collection of regression errors
in C programs together with a comprehensive study on the
complexity of regression errors. Their data set was later on
used in the experiments of Relifix [8]. We followed steps
in [3] to construct our data set of regression errors for Java
programs and also to find bug-inducing commits. Sliwerski et
al. [21] propose a classical technique, namely SZZ, to uncover
bug-inducing changes based on git blame. REFIXAR, in
contrast, uses git bisect testing to find bug-inducing
changes. REFIXAR can help complement recent studies on
assessing the accuracy of SZZ and its variants [25], [26].

The works in [27]–[30] generate context-sensitive patches
consistent with inferred specifications. While SemFix [27],
Angelix [31], and S3 [29] use symbolic execution and con-
straint solving to generate specifications based on a test suite,
[28] relies on static deductive verification with specifications
in the form of Hoare triples. Different from these works, RE-
FIXAR purely bases on syntactic reasoning via Abstract Syntax
Tree mappings. We, however, envision that we can enhance
REFIXAR with a semantic analysis for better accuracy.

PAR [5] introduces templates that were manually derived
from human-patches. TBar [7] revisits and improves the
template-based repair approach proposed in PAR. Recent
approaches explored ways to automatically mine bug fix
patterns and use them for program repair, e.g., [6], [32], [33].
HDRepair uses data mining to mine repair templates and
use mutation operators to generate the search space [6]. It
uses the repair templates to traverse the search space in a
way that repair candidates that more frequently match with
bug-fix templates in the history are ranked higher. DeepFix
[33] proposes to use sequence-to-sequence deep learning for
program repair. It first encodes a program as a sequence of
primitive commands and then searches for minimal transfor-
mations to fix the buggy programs. Similarly, SequenceR [32]
was also based on the sequence-to-sequence approach. While
DeepFix concentrates on C programs, SequenceR focuses on
Java programs. PraPR [34] proposes to use mutation operators
on the bytecode level for program repair. SimFix proposes
to use existing patches and similar code for program repair
[35]. While these approaches complement REFIXAR, none of
them performs multi-version reasoning and uses bug-inducing
changes to constrain the search space like REFIXAR.

VII. THREATS TO VALIDITY

External validity. Threats to external validity correspond
to the generalizability of our findings. Our study considers
51 regression bugs from 28 large real-world Java programs
and 4 popular baseline APR techniques. Still, this may not
represent all APR and bugs and thus may affect our study’s
generalizability. To mitigate this risk, we constructed the data
set of real bugs from many subject programs and experimented
with APR techniques that are representative in their categories,
e.g., heuristic-based and template-based APR. In the future, we
plan to experiment with more subject programs and tools.

Internal validity. Threats to internal validity refer to possible
errors in our implementation and experiments. To mitigate
this risk, we have carefully examined our implementation and
experiments and investigated the rationale for the obtained
results via the three research questions. We re-implemented
Relifix’s algorithm following its original paper [8]. We con-
firmed with the first author of Relifix via email correspondence
on implementation details that need clarifications to ensure
that our implementation of Relifix is as close as possible to
its algorithm presented in its paper. We have also manually
analyzed our constructed data set to ensure that each bug used
in our experiment is indeed a reproducible regression.

Construct validity. Threats to construct validity correspond
to the suitability of our evaluation. We manually examined the
machine-generated patches to assess their correctness, which
may be subject to potential biases. To mitigate this risk,
we have double-checked the results carefully. Employing an
independent test suite can help further improve the confidence
in patch validation, although obtaining an independent test
suite can be difficult for large real-world programs. We plan
to explore this further in future work.

VIII. CONCLUSION

We presented REFIXAR, the first automated repair tool
specifically designed to target regression bugs in Java pro-
grams. REFIXAR renders a tractable search space by tracking
the evolution history of each line of code, utilizing the bug-
inducing changes and a compact set of repair operators. We
compared REFIXAR against four state-of-the-art automated
repair techniques, each of which is the representative in their
categories, on a data set of 51 regression bugs in 28 large
real-world Java programs. Experiment results showed that
REFIXAR is significantly superior compared to the baselines
in terms of patch generation rate and correct patch rate. We
answered three research questions to analyze the rationale
behind the superior performance of REFIXAR.

In the future, we would study how the effectiveness of
methods that find bug-inducing changes, e.g., SZZ [21], affects
REFIXAR. Next, we also plan to use REFIXAR to evaluate
the accuracy of tree differencing algorithms as we discussed
in Section V. We also plan to study the use of automated test
case generation tools for program repair as in [36]. Overall, we
believe that REFIXAR can serve as a useful common ground
that underpins these future research challenges.
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