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Abstract

Early detection and mitigation of disease recurrence in non-small cell lung cancer (NSCLC) patients is a nontrivial
problem that is typically addressed either by rather generic follow-up screening guidelines, self-reporting, simple
nomograms, or by models that predict relapse risk in individual patients using statistical analysis of retrospective data.
We posit that machine learning models trained on patient data can provide an alternative approach that allows for
more efficient development of many complementary models at once, superior accuracy, less dependency on the data
collection protocols and increased support for explainability of the predictions. In this preliminary study, we describe
an experimental suite of various machine learning models applied on a patient cohort of 2442 early stage NSCLC
patients. We discuss the promising results achieved, as well as the lessons we learned while developing this baseline
for further, more advanced studies in this area.

Introduction

Lung cancer is the most common cause of cancer related mortality in the world. Globally in 2018, more than 2 million
new cases were diagnosed and more than 1.8 million deaths due to lung cancer occurred (1), where the main risk factor
for the development of the disease is tobacco. In recent years, while mortality in men has decreased slightly due to
smoking cessation, mortality in women has increased and has practically doubled due to its later incorporation into
smoking habit(2). Non-small cell lung cancer (NSCLC) accounts for approximately 80% of all lung malignancies. The
diagnosis of lung cancer in early stages remains a challenge and often occurs incidentally in the study of other diseases
(3). Approximately 70% of patients are diagnosed in locally advanced stages (stage III) or metastatic disease (stage
IV) (4), which contributes to low survival rates. Of note, survival declines progressively with increasing clinical stage.
Overall survival at 5 years in NSCLC is around 10–15% (5). Early stage NSCLC (stage I-II) patients are typically
treated with complete surgical resection of the tumor. However, even after the entire resection of the tumor, 30–55% of
patients will develop disease recurrence within the first 5 years of surgery (6). This encouraged research into applying
survival analysis methods and machine learning models to identify patients with high risk for recurrence to help in
personalizing surveillance plans for these patients.

Predictive approaches for identifying tumor recurrence in NSCLC patients utilize different types of techniques such as
statistical analysis of patient Electronic Health Records (EHRs), machine learning models and patient self-assessment
feed-backs. The simplest form of these methods is the self-assessment techniques which rely on continuous patient
self-evaluation and reporting after successful treatment(7). This technique traditionally requires patients to perform
self-assessment in terms of symptoms, physical abilities and other metrics, and report these metrics to hospitals through
previously specified means e.g. mobile applications, and online forms(8). It then notifies the physician when certain
patterns appear in the patient recorded metrics(8). Due to the simplicity of the approach, it cannot provide early
predictions of the tumor recurrence, and it relies on patients compliance to reporting which is not guaranteed(9).

On the other hand, statistical survival analysis methods and supervised machine learning models are able to provide
early predictions for the tumor recurrence based on the patient characteristics and previous treatments history. One of
the simplest forms of the statistical analysis tools is nomograms(10), which are a graphical representations of equations
that predict medical outcome. Nomograms use a points-based system whereby a patient accumulates points based
on levels of his or her risk factors, where the cumulative points total is associated with a prediction. More complex
techniques such as the Cox hazard model can provide a time-based analysis of the patient hazards e.g. tumor recurrence.
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The Cox hazard model is one of the most widely used techniques in predicting recurrence and other prognosis factors in
NSCLC patient (11–13). Despite its popularity, however, the Cox hazard model operate strictly with multiple assumptions
e.g. feature independence, linear relations, etc, which are not always guaranteed. It also cannot consume heterogeneous
data such as medical imagery, genetic arrays, etc. These two limitations are addressed in supervised machine learning
models such random forests, support vector machines, neural networks, etc, which operate using different techniques
that makes them suitable for modeling complex relations on heterogeneous data(14, 15).

Supervised models were used in different studies to predict NSCLC recurrence from patients EHRs, where different
studies have shown that they provide superior predictive accuracy compared to classical survival analysis methods(16)

such as the Cox hazard model. However, these studies traditionally only examine a limited set of supervised machine
learning approaches, and they also rely on differently structured patient records due to the different data collection
protocols. These two factors make it difficult to perform a more representative comparison between the survival analysis
methods and the different supervised machine learning models. Therefore, it is essential to establish rigorous means for
comparison between the different supervised predictive models and statistical survival analysis techniques on unified
patient EHRs structure to understand the differences between these techniques, and establish informative baselines for
the task of predicting NSCLC recurrence.

In this work, we study the problem of predicting recurrence in NSCLC patient where we discuss our first-steps towards
building an efficient and accurate recurrence prediction approach within the CLARIFY project — a European project
focused on monitoring health status and quality of life after the cancer treatment (cf. https://www.clarify2020.
eu/). Based on the previously discussed developments and challenges in relation to predicting recurrence in NSCLC
patients, we started our development by assessing the performance of the basic supervised machine learning models in
NSCLC recurrence prediction to establish a baseline benchmark.

In this study, we provide the outcomes of our assessment of the basic supervised machine learning methods on patient
cohort of 2442 early stage NSCLC patients, where we evaluate these models on a binary classification task with the
objective of classifying patients with successful treatments into one of two categories: tumor recurrence or disease-free
survival. We also discuss the challenges associated to the application of these methods in terms of model accuracy, data
quality, and utilized evaluation protocols.

Related Work

In the following, we discuss other works related to our study where we we categorize these works into two categories:
survival analysis methods and other machine learning supervised and unsupervised methods.

• Survival analysis methods. Survival analysis methods such as the Kaplan–Meier and Nelson–Aalen estimators,
the proportional hazards models, etc, are the most common approach for predicting prognosis, relapse and other
clinical outcomes of lung cancer patients. For example, (author?) [17] used the Cox hazard to predict long-term
mortality/survival after lung cancer resection in patients older than 65 years on Medicare data for lung cancer resections.
These models were also used in more specific survival analysis studies which focused on patients’ survival in relation
to specific bio-markers(12) and chemotherapy drug configurations(11). Similarly, study conducted by Wen et.al. (18) in
393 North American patients with NSCLC used Cox proportional hazard model to investigate associations between
functional genetic variants of autophagy-related genes and radiation pneumonitis as well as clinical outcomes after
definitive radiotherapy. The multi-variable Cox model enabled them to predict radiation pneumonitis, local recurrence-
free survival, progression-free survival, and overall survival of NSLC patients.

On a similar note, (author?) [19] used survival analysis methods in their study to examine the causes of death of long-
term survivors of lung cancer where they utilized the Surveillance, Epidemiology and End Results (SEER) database1

(1988–2008). They conducted a survival analysis using a Kaplan–Meier estimator and conducted a multivariate analysis
using a Cox proportional hazard where the study concluded that cardiac as well as non-malignant pulmonary condition
contributes considerable proportion of deaths in long-tern lung cancer survivors.

• Supervised machine learning models. Multiple studies of non-small cell lung cancer (NSCLC) postoperative
recurrence have utilized supervised machine learning model to predict the probability of tumour recurrence and other

1http://seer.cancer.gov/seerstat
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Characteristic Recurrence Survival Total

1275 (52.2%) 1167 (47.8%) 2442 (100.0%)
Age Mean (range) 65.9 (25-89) 65.4 (26-117) 65.6 (25-117)

Gender
Male 989 (77.6) 861 (73.8%) 1850 (75.8%)
Female 286 (22.4%) 306 (26.2%) 592 (24.2%)

Smoking history
Current/Previous 1115 (87.5%) 1000 (85.7%) 2115 (86.6%)
Non smoker 160 (12.5%) 167 (14.3%) 327 (13.4%)

Cancer stage

I 9 (0.7%) 31 (2.7%) 40 (1.6%)
IA 289 (22.7%) 353 (30.2%) 642 (26.3%)
IB 348 (27.3%) 303 (26.0%) 651 (26.7%)
II 18 (1.4%) 8 (0.7%) 26 (1.1%)
IIA 246 (19.3%) 177 (15.2%) 423 (17.3%)
IIB 365 (28.6%) 295 (25.3%) 660 (27.0%)

T stage
T1 333 (26.1%) 387 (33.2%) 720 (29.5%)
T2 610 (47.8%) 475 (40.7%) 1085 (44.4%)
T3 / T4 255 (20.0%) 175 (15.0%) 430 (17.6%)

N stage
N0 973 (76.3%) 891 (76.3%) 1864 (76.3%)
N1 223 (17.5%) 141 (12.1%) 364 (14.9%)
N2 / N3 13 (1.0%) 8 (0.7%) 21 (0.9%)

M stage
M0 1207 (94.7%) 1039 (89.0%) 2246 (92.0%)
M1 8 (0.6%) 1 (0.1%) 9 (0.4%)

Tumor size Mean (range) 36.0 (0.8-110.0) 33.2 (1.5-110.0 34.6 (0.8-110.0)

ECOG status
0 623 (48.9%) 765 (65.6%) 1388 (56.8%)
1 558 (43.8%) 362 (31.0%) 920 (37.7%)
2 / 3 / 4 91 (7.1%) 37 (3.2%) 128 (5.2%)

Tumor Differentiation
Poorly 98 (7.7%) 79 (6.8%) 177 (7.2%)
Moderately 140 (11.0%) 171 (14.7%) 311 (12.7%)
Well 102 (8.0%) 94 (8.1%) 196 (8.0%)

Table 1: Analysis of the characteristics of the patient cohort examined in our study in relation to tumor recurrence. The
summation of the total percentages of the sub characteristics can be less than 100 for some of the examined features due
to missing data values of this type of data for some patients EHRs.

related factors(14). For example, (author?) [20] have studied the associations between age, comorbidity, and other
patient factors and treatment of postoperative NSCLC recurrence where they used a logistic regression to predict
the postoperative prescribed treatment type – active or palliative. Supervised methods is able to operate on different
types of data such as images, sequence and structured tabular data, therefore, they were utilized in different studies to
consume heterogeneous data types. For example, they have been used for survival prediction of NSCLC patients from a
combination of clinical and micro-array data (15). They were also used to model PET/CT images in order to predict earl
stage NSCLC patients survival (21).

Patient Cohort Analysis

Our study uses electronic health records (EHRs) of patients which are collected and stored by Spanish Lung Cancer
Group (SLCG) which is a multi-disciplinary group focused on finding better treatments for lung cancer. In the following,
we discuss the patient cohort examined in our study and the features and characteristics extracted from the patient
EHRs.
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• Patient cohort. Our study is conducted on a cohort of 2442 early-stage (stage I or II) NSCLC patients where 1275
(52.2%) of these patient had tumor recurrence after successful treatment. The mean age of the patients in our dataset is
65.6 years with little difference between recurrence (65.9) and disease-free survival (65.4) patients. Males represent
around 74% of the patient cohort while 85% of this cohort are current or previous smokers. All the examined patients
are diagnosed with stage I and stage II NSCLC where patient are split between the two stages with a 54.6% for stage I
and 45.4% for stage II. In terms of the TNM staging system, the vast majority of patients have are diagnosed with M
stage and N stage of 0 (92% and 76.3% respectively) while the T stage diagnoses has a more even split. The mean tumor
size was 34.6mm, where patients who suffered a recurrence had a slightly larger mean tumor size (36.0mm) compared
to disease-free survival surviving patients who have a mean tumor size of 33.2mm with a similar range for both. The
ECOG performance status of the patient cohort is mostly divided between the statuses 0 and 1 with approximately 57%
and 38% respectively while other ECOG statuses 2,3 and 4 are associated with approximately 5% of the patients only.
Table 1 provides a more detailed view of the characteristics of our patient cohort in relation to patient tumor recurrence
and disease free survival.

• Feature analysis. The electronic health records of our patient cohort contain a different set of patient information
and features such as the patient’s demographics, diagnosis, bio-markers, treatments and follow up information. Patient
history includes gender, smoking habits, familial cancer history and comorbidities. Diagnosis features detail information
on the tumour classification, histology, etc, at time of diagnosis along with the symptoms the patient suffered. The
bio-marker features record the results of any bio-marker analysis performed on the patient during the course of their
treatments. The treatment records of a patient include the details of any chemotherapy, radiotherapy or surgical
procedures the patient underwent during their treatment. Chemotherapy the features include the drugs used (including
any maintenance drugs), the start and end dates of the treatment and the patients response to the chemotherapy.
Radiotherapy features include the area radiated, the dose and the fractioning. Surgery features contain the type of
surgical procedure, resection degree, the response and the post-surgeric TNM staging values.

• Patient labelling. In order to label patients as having relapsed (i.e., positive cases for training the machine learning
models) we rely on 2 feature groups in the SLCG dataset. The primary source for labelling comes from the patients’
progression records. If a patient has a progression record with status "Progression" or "Relapse" they are labelled
positive. A secondary source for labelling comes from the patients’ follow-up records. If a patient has a follow-up
status of "Alive with disease" or a follow-up status of "Dead" with cause of death "Lung cancer" they are also labelled
as positive. All other patients are considered negative examples for the purposes of training our models.

• Patient consent. The patient data used in this study was collected under the provisions of the Law 14/2007 on
Biomedical Research at all times along with the confidentiality of the data of patients according to the requirements of
the law 15/9 [54] on Protection of Personal Data and Implications of EU General Data Protection Regulation 2016/679
(GDPR), applicable from 25 May 2018, Directive 95/46/EC.

The data collected was identified with a code. Access to patients’ personal information was restricted to the study
doctors/investigators, the ethical clinical research committee of Puerta de Hierro-Majadahonda University Hospital and
specialized authorized personnel to verify the study data and procedures, always keeping the confidentiality of the latter
in accordance with current legislation. Only clinical data regarding the disease were used for subsequent analysis by the
technical partners of the consortium, no personal data that could reveal the patients’ identity was used. The signature of
the informed consent for entry into the study is revocable since the patients can withdraw their consent at any time so
that we stop using their personal data or their own samples for this research; this revocation can be done simply by
notifying the investigator. The entry in this study was totally voluntary so in case of revocation or refusal to enter the
study the patient would continue to be clinically treated by their doctor whether or not participating in the study.

Methods

In this section we discuss the data preparation and preprocessing step, analysis of the features included in the investigated
patients EHRs and the learning models that we use in our study.

• Data preprocessing. We have applied a set of data preprocessing operations on the patients’ EHRs to be consumable
by our learning models and to decrease feature sparsity. We have fixed some corrupted date values where the date
contains an invalid day or month value by replacing these values with a a placeholder value 1. We have also filled some
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Figure 1: An illustration of the data processing and model training pipeline that we executed to apply the predictive
models on the patient EHR data.

empty boolean fields with expected default values. For example, empty comorbidities annotations were assumed absent.
This have been executed carefully with manual expert support to enrich the patient features extracted from their EHRs.

We have then formulated the patient records in a tabular dataset form, where we convert each patient record into a row
of features. In this step, we have one included numerical and categorical feature values and we have excluded free text
annotations and date values. We have attempted to preserve the order events in the patient row values by using different
indexed columns for the same event which are indexed based on their order.

• Data censorship. In our study, we use the patient records to the full of their length to decide whether the patient had a
tumour recurrence where we use all the available follow-up data points to detect recurrence. On the other hand, when
build the patient features, we censor the patient data features using two criteria defined by experts to ensure that the
learning models are only trained on features which are extracted from events successful treatment. First, if the patient
had chemotherapy and radiotherapy treatments and did not have a surgery, we only consider the patient’s features prior
to the first successful chemotherapy (the chemotherapy which results in absence of tumor). Secondly, when the patient
have a successful surgery, we only consider features prior to this surgery and including the surgery detail.

• Learning models. In this study, we use a set of four supervised machine learning models: Random Forest (RF),
Multi-Layer Perceptron (MLP), Support Vector Machine (SVM) and Logistic Regression (LR). In the following, we
provide a short description of each of these models and how they work:

? Random Forests are supervised machine learning models which uses a large number of small decision trees called
estimators to produce predictions, where aggregates the prediction of these estimators to produce a more robust
overall prediction. Random Forests can provide explanations for their predictions based on its decision trees
(estimators) feature weights.

? Multi-Layer Perceptrons are artificial neural networks composed of multiple neural layers, where each layer is
composed by an affine transformation followed by an element-wise non-linear operation. In our implementation,
MLPs use stochastic gradient descent to optimize the log-loss on the training data.

? Support Vector Machines are supervised machine learning models which performs binary classification by
learning a linear decision boundary by optimizing a margin-based loss function.

? Logistic Regression is a machine learning model which assumes a linear relation between the input features and
the output predictions. The predictions of the logistic regression model are easily interpreted in terms of the
coefficients corresponding to each of the input features contributing to the final model prediction.

• Model training pipeline. We trained the previously mentioned models on the patient EHRs using a multiphase-
procedure as illustrated in Fig. 1, where we perform the data preprocessing and censorship as previously discussed.
We then train the models using a k-fold cross-validation strategy, where models’ hyperparameter tuning process is
executed using the hyperparameters optimization framework optuna (22) across at least 10 trials per model class. Further
discussion on the model training and evaluation process is included in the Results section.
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Model Accuracy Precision Recall F1 Score Avg. Precision AUC-ROC

Random Forest 0.69 (0.032) 0.71 (0.028) 0.74 (0.059) 0.72 (0.034) 0.67 (0.023) 0.68 (0.031)
SVM 0.66 (0.015) 0.7 (0.015) 0.69 (0.027) 0.69 (0.016) 0.65 (0.011) 0.66 (0.015)
Neural Net. (MLP) 0.64 (0.019) 0.67 (0.019) 0.7 (0.026) 0.69 (0.018) 0.64 (0.014) 0.64 (0.019)
Logistic Regression 0.65 (0.019) 0.68 (0.018) 0.68 (0.026) 0.68 (0.019) 0.64 (0.014) 0.64 (0.019)

Table 2: A Comparison between four supervised learning models on 5-fold cross validation to predict recurrence in
NSCLC patients as a binary classification task.
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Figure 2: (a) Receiver operating curve (ROC) and (b) Precision-recall (PR) curve of the best performing models across
10 trials.

Results

In this section, we discuss the setup of our experiments where we describe the details of our evaluation protocol, metrics
and the outcomes of our evaluation.

• Evaluation protocol. We cast the problem of assessing risk of tumour recurrence for a patient as a binary classification
task which answers the question: whether a patient will have a recurrence or not. We execute our task on a cohort of
2242 patients where we use a 5-fold cross validation strategy. The 5-fold cross validation strategy is an evaluation
technique where we split the patient cohort into 5 different random splits and evaluated our learning model on the five
different splits independently. In each split evaluation, we use the other splits as training data and we evaluated our
model on the specified splits. This technique produces a generalized view of the model predictive accuracy on the
whole patient cohort with no data leakage between the training and testing cohorts.

• Metrics. We report the evaluation results of our examined models using a range of conventional binary classification
metrics such as accuracy, precision, recall and the F1 score. We also use ranking metrics such as the average precision
(i.e. the area under the precision-recall curve) and the are under the ROC curve(AUC-ROC).

• Model hyperparameter tuning. Our experiments were focused on four models as described in the methods section :
Random Forest (RF), Logistic Regression (LR), Multi Layer Perceptron (MLP), and Support Vector Machine (SVM).
The hyperparameters for these models were chosen using a hyperparameter search procedure executed using the
hyperparameter optimization framework optuna (22). For each model, we execute a set of 10 trials to find the optimal
hyperparameter configuration where each trial corresponding to a single hyperparameter configuration chosen from a
predefined search space. We then choose hyperparameters corresponding to the best performing configuration as the
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Figure 3: One of the best performing Logistic Regression model’s coefficients. As a linear model, LR is interpretable
through its coefficients that are tuned to give weights to the input features. Top chart presents features yielded by model
as relevant (coefficients > 0) which contributes the most to recurrence prediction, while the bottom one non-relevant for
prediction (coefs <= 0) which contributes the most to predicting disease-free survival.

model best hyperparameters for each of the examined models.

• Evaluation results. Table 2 shows the results of our computational experimental evaluation of the four examined
models using a 5-fold cross validation evaluation strategy. The results show that the random forest model achieved the
best results in terms of all the used evaluation metrics where it achieves 0.69, 0.71, 0.74, 0.72, 0.67 and 0.68 scores in
terms of accuracy, precision, recall, F1 score, average precision and the are under the ROC curve metrics respectively.
However, the results also show that the margin between the metric scores of the random forest model and the other
examined models in not significantly large, where the standard deviation of the metric scores of all the models is 0.02,
0.02, 0.03, 0.02, 0.01 and 0.02 in respect to the accuracy, precision, recall, F1 score, average precision and the are under
the ROC curve metrics scores respectively. The results also show that all the examined model have consistent results
through the different 5-fold cross validation runs where the reported standard deviation of the their reported metrics is
always less than 0.05.

In the Fig 2, we demonstrate plots of the ROC and precision recall curves of the examined models. The ROC curve
shows that all the examined models a better predictive accuracy than random the random baseline with marginal
differences between the performance of all the models. On the other hand, the precision-recall curve demonstrate some
disparities between the model performance especially in terms of the models precision in relation to changes of the
model’s recall. For example, the logistic regression and SVM model suffer from a significant decrease of precision
when the model’s recall is less than 0.2 in comparison to other models.

• Feature importance analysis. In Fig. 3, we provide an example of model feature prioritization, where demonstrate
the highest and lowest coefficient values learnt by the logistic regression model and their corresponding features.
These coefficients represent the weight of contribution of their corresponding features towards the recurrence/survival
predictions. The top part of figure demonstrates the features with the highest coefficient which contributes the most to
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predicting that a patient would have a recurrence. For example, the highest contributing feature to predicting recurrence
is have a stable disease at the end of the last successful chemotherapy treatment. Other major contributing features
include smoking, previous cancers, comorbidities such as hepatitis and COB disease, and large tumor size at diagnosis
represented by the T stage. The bottom part of Fig. 3, however, demonstrates the features with the lowest coefficient
(negative values) which contributes the most to predicting that a patient would have a disease-free survival. The figure
shows that the most significant features in this category are outcomes of the last successful surgery e.g. TNM stages and
resection grade, and the final response to last successful chemotherapy treatments.

Discussion

The main goal of this work has been to assess the suitability of off-the-shelf machine learning models to the task of
predicting relapse in early stage non-small cell lung cancer patients. To that end, we have used data on a comprehensive
patient cohort from the Medical Oncology Department of Hospital Universitario Puerta de Hierro Majadahonda in
Madrid, Spain. While the standard methods used in this context (such as models based on Cox proportional hazard
analysis) were reported to produce competitive results, they do have their limitations.

First, they use purely statistical, local features based on frequency for the predictions, and thus they cannot, by definition,
use complex, long-range relationships between the particular data elements. This is an aspect some readily-available
binary classification machine learning models such as neural networks may address better, as they can naturally model
non-linear boundaries between the classes of relapsing and non-relapsing patients.

The Cox models also cannot work with heterogeneous data (e.g. patient data together with biomedical database and
publication data), even though such data are more likely to provide a truly comprehensive representation of the patients
and their disease. This is an aspect models based on extensible and semantically integrated machine learning data sets,
which we plan to incorporate in the next stages of this work, can address more naturally than purely statistical models.

Furthermore, using predictive models based on machine learning allows for rapid prototyping and easy experimentation
with a broad range of possibly complementary models, as shown in this preliminary work.

While a rigorous clinical validation of the model predictions is a part of our future work, our experiments have
demonstrated the feasibility of the machine learning-based approach in the context of relapse prediction. All explored
models significantly outperformed a naive baseline in standard machine learning metrics, and thus established a solid
non-trivial stepping stone for further experiments in this area.

Perhaps the most important lesson learned was the crucial role of clinical data preprocessing with direct involvement of
the oncologists, who were instrumental in defining the scope of features applicable for training the machine learning
models. They were also essential for devising specific strategy for labelling positive and negative patient examples
that is a must for optimal and clinically-relevant model performance. We believe the strategy is generally applicable
across similar datasets and clinical needs. However, there is certainly lot of space for improvement in terms of data
cleansing and conversion of qualitative values of patient features into quantitative data that are more suited for the
machine learning models. This aspect would require a dedicated publication on its own and is a part of our future work.

Another critical aspect we intend to address in future research is the clinical validation of the predictive models. One
would ideally like to compare the performance of the models with a human baseline, which is, however, possible only
in a prospective study we are currently performing. In these settings, the models will be trained on retrospective data
and tested on prospective patients, which will let us assess the capability of the models to predict high risk scores of
patients who did indeed relapse, and low scores of patients who did not, in the follow-up period. This will allow for
much more realistic assessment of the machine learning models, and overcome the main limitation of the presented
preliminary work.
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