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ABSTRACT
Interactive technologies are getting closer to our bodies and per-
meate the infrastructure of our homes. While such technologies
offer many benefits, they can also cause an initial feeling of unease
in users. It is important for Human-Computer Interaction to man-
age first impressions and avoid designing technologies that appear
creepy. To that end, we developed the Perceived Creepiness of Tech-
nology Scale (PCTS), which measures how creepy a technology
appears to a user in an initial encounter with a new artefact. The
scale was developed based on past work on creepiness and a set of
ten focus groups conducted with users from diverse backgrounds.
We followed a structured process of analytically developing and
validating the scale. The PCTS is designed to enable designers and
researchers to quickly compare interactive technologies and ensure
that they do not design technologies that produce initial feelings
of creepiness in users.

CCS CONCEPTS
•Human-centered computing→HCI design and evaluation
methods.
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1 INTRODUCTION
When creating novel interactive technologies, be it for research or
practical purposes, managing first impressions is key [22, 53, 63]. A
technology that looks intimidating, scary or unpleasant is unlikely
to engage the user’s willingness to interact with it. This challenge
becomes even more salient when dealing with technologies that
reflect recent trends in Human-Computer Interaction (HCI) such as
wearable computing [32] or sensory amplification [67]. While such
trends promise attractive technological futures, they also envision
many technologies that could initially be perceived negatively. As a
consequence, designers of future technologies need to understand
how to build technologies that offer positive first impressions. This
gives rise to the need for methods that would enable designers to
compare alternative prototypes in terms of first impressions.

The HCI field has a history of studying technologies that users
perceive as potentially creepy. Privacy research used the term creepy
to describe technologies that were perceived as potentially en-
croaching on the users’ privacy, e.g. [61]. Research in avatars and
robots equated creepy with uncanny [24] to denote humanoid rep-
resentations that produce a certain unease in users. However, the
use of the term was not exclusive to these two domains. Past re-
search has reported that self-driving cars [49], traffic lights [57],
headphones [18], voice assistants [69] or toilets [40] could also be
creepy.

More and more people are beginning to encounter creepy tech-
nologies in their everyday lives. Newspapers report about tech-
nologies from dating apps [7] to speakers [13] being perceived as
creepy. A recent concern is facial recognition technology, which is
beginning to be deployed in physical and online stores to help re-
tailers improve how they customise the shopping experience. Smart
AI platforms are emerging that can detect at a glance our gender,
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race, approximate age, where and how long we have been looking
at something, and in what emotional state we are [23]. Further,
creepy technologies are not only developed by corporations but
also by users themselves. Modern development tools enable profi-
cient users to develop personal apps such as a chatbot for talking
to a late friend based on past conversations [42]. In this case, even
the creator of the chatbot was concerned that the application could
be creepy. As users are increasingly likely to experience creepiness
in everyday interactions, HCI needs to understand more about the
phenomenon to minimise the negative impact of future interactive
technologies.

To this end, this paper explores the qualities in technology that
give users the heebie-jeebies. We propose a structured framing of
the creepiness of interactive technologies and proposes an accom-
panying measurement instrument—the Perceived Creepiness of
Technology Scale (PCTS). We followed a structured scale develop-
ment process where we first formed a conceptual understanding
of creepiness, followed by empirically building the scale using the
guidelines collected by Boateng et al. [4]. We first investigated past
work in HCI and identified papers which reported technologies
being creepy outside of the humanoid or robotics fields. To empiri-
cally explore how users think about creepiness, we then conducted
a set of ten focus groups where users expressed their opinions about
potentially creepy technologies. Based on the literature and our
analysis of the focus group content, we then proposed a general
framing of the concept for HCI. The elements of the model served
as an inspiration to generate initial items for the scale, which were
then subjected to an expert review. We used exploratory factor
analysis to reduce the number of items and obtain the final scale,
which was then validated in a number of evaluation assessments.
For an overview of our scale development process, see Figure 1.
Our work offers the first, to our knowledge, conceptualisation of
creepiness in HCI and a validated scale for assessing the creepiness
of interactive artefacts.

2 RELATEDWORK
To frame our inquiry, we first chart the use of the concept of creepi-
ness and the adjective creepy in past research. We report on how
the terms were used in privacy research and Human-Robot Interac-
tion. We then investigate the relationship between creepiness and
acceptability. Finally, we report on how creepiness was ascribed to
non-humanoid digital artefacts in past HCI research.

2.1 Creepiness in privacy research
Studies in privacy of personal technologies have extensively used
the term creepy to refer to technologies that are perceived as po-
tentially threatening privacy. Creepiness was particularly ascribed
to technologies that collect personal information about their users.
Pierce [61] researched speculative scenarios for home cameras and
concluded that minute details in the design of home devices led
to different levels of creepiness. This work calls for unpacking the
reasons behind creepiness and shows how creepy a device is per-
ceived is influenced by diverse factors. Zhang et al. [82] studied
how targeted advertisements evoked feelings of creepiness in users.
The study focused on the consequences of this on the use of social
media and not the sources of creepiness per se. Also, in the context

of advertising, Ur et al. [77] reported that creepiness was associated
with the feeling of being followed. Importantly for our understand-
ing of creepiness, Shklovski et al. [70] found that creepiness was not
connected to an anticipated negative end result of using a technol-
ogy while studying mobile app use. In this context, both Sklovski et
al. and Phelan et al. [60] equated creepy with disturbing. The later
paper underlined the intuitiveness of the concept with creepiness
(intuitive concern) being less rational than considered concern. Other
research also reported creepiness in the context of privacy violation
when users were involved in unsolicited meetings on social me-
dia [2] and crowdworking [21]. The examples listed here are just a
few, illustrating the breadth of the use of the term creepy in privacy
research. While this body of research addresses a broad scope of
applications, it shares a common understanding of creepiness as an,
often unspoken and innate, anticipation of the technology violating
ethical principles held by the user. Our work is inspired by accounts
of creepiness in privacy research. We aim, however, to broaden the
scope of understanding creepiness beyond privacy concerns.

2.2 Creepiness of humanoid avatars and robots
In research on virtual avatars and Human-Robot Interaction (HRI)
the notion of creepiness is primarily associated with ‘uncanniness’
and the uncanny valley phenomenon, i.e. unsettling feelings expe-
rienced by someone elicited by an artefact’s spooky resemblance
to a human being or other animate beings. Schwind et al. [68]
reported how some representations of the users’ hands evoked feel-
ings of creepiness. Early HRI research showed that creepiness was
prevalent when robots offered emergency help [51]. Lin et al. [39]
reported that parents wanted to explicitly limit the creepiness of
robots when they allowed them to interact with their children. The
representation of faces for both robots [26] and virtual avatars [44]
elicited feelings of creepiness related to the mismatch between
their appearance and the user’s expectations. Löffler et al. [41] pro-
posed a different interpretation of creepiness. They used a scale
where creepy was the opposite of friendly to assess the percep-
tion of animal-like robots. Creepiness has also been viewed as a
pragmatic concern, lowering the effectiveness of interaction when
robotic assistants helped with analytical tasks [71]. HRI work has
contributed a number of understandings of creepiness and identi-
fied technologies being potentially creepy as a key concern when
building new interactive artefacts. In this paper, we extend the no-
tion of creepiness based on HRI experiences and broaden the scope
of potentially creepy technologies beyond robots and human-like
artefacts.

2.3 Acceptability and creepiness in HCI
Previous research in HCI has often associated the term creepy with
social unacceptability. For example, the WEAR scale [32] explic-
itly used the adjective creepy as a contribution to the acceptability
scale. Consequently, it might appear that creepiness is a subor-
dinate concept to acceptability. This, however, is in conflict with
past work discussed above, which reported users willingly using
technologies despite their creepiness, e.g. [60]. In fact, in Koelle et
al.’s [33] review of social acceptability research, the WEAR scale is
the only mention of creepiness. Thus, related work suggests that
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Figure 1: The scale development process which we followed in this paper. The workflow is a selection of development and
evaluation methods suggested by Boateng et al. [4].

creepiness is a distinct concept from acceptability. Here, we inves-
tigate creepiness as one’s personal perception of an artefact, which
is different from acceptability, which is understood as the lack of
negative reactions from others [32, 33]. Thus, while acceptability
has an inherently social dimension [75], we found no previous work
that would suggest that creepiness is necessarily social.

We identified only one paper in HCI which investigated the
notion of creepiness in an explicit manner. Yip et al. [81] studied
perceptions of creepiness in children interacting with technology.
They found that the key factors contributing to creepiness were:
‘deception, lack of control, mimicry, ominous physical appearance,
and unpredictability’. They based their inquiry on the socionorma-
tive formulation of creepiness by Tene and Polonetsky [73]. The
results, however, show that creepiness with regard to technology
is beyond social norms. The different aspects of creepiness identi-
fied by Yip et al. serve as a starting point of our inquiry. The goal
of our research is to develop a more structured understanding of
these dimensions and a measurement instrument that facilitates
comparison in terms of creepiness.

2.4 Creepy Technologies
Having established the two domains where the term creepy was
present, we decided to investigate what other, i.e. non-robot and
outside of privacy research, technologies studied in HCI were re-
ported to be creepy. To this end, we conducted a literature review in
the ACM Digital Library. We used the query ‘creepy NOT privacy
NOT robot’1, which resulted in 178 papers in SIGCHI sponsored
conferences and an additional 9 papers in the ToCHI journal. We
then reviewed all the papers and decided to exclude publications
which: (1) used the verb to creep in a figurative sense or to denote
movement, (2) referred to creep as a term in materials science, (3)
discussed feature creep—a phenomenon in software development
and (4) used the term creepy as part of a citation from prior work.
This filtering process yielded 31 papers, which we then open-coded
to identify key domains where research reported creepy technolo-
gies. While the full results of the review are beyond the scope of
this paper, we report here the main areas which we identified with
selected examples.

Unsurprisingly, the largest group of papers consisted of papers
where the design intention was to make the user feel a certain
unease. Exploration through provocative art pieces [27, 36, 55] or
unconventional artefacts [1, 57, 83] was a prevalent theme in the
reviewed corpus. The reported research illustrates how creepiness
is an aspect of interactive technologies which designers explicitly

1Note that the new ACM DL includes derivative forms of the word, thus, e.g. creep,
creeping and creepiness were included as keywords.

consider, thus showing a need for a deeper understanding of the
concept. We note that all the artefacts in this group featured dif-
fering levels of ambiguity [15]. This suggests that creepiness is
connected to not precisely knowing the nature of the artefact. In a
similar way, unconventional audio interactions [31, 65] led to not
knowing what to expect from a technology and thus experiencing
creepiness. For many of these interactive technologies, creepiness
may not necessarily be a negative property.

Creepiness when using mediated touch [12, 17, 25, 37, 56] also
featured highly in the literature. These papers are considered less
relevant to the current paper as the users’ perception of unease
when using mediated touch was previously defined as disfordance
by Mejia and Yarosh [46] and can be measured with a validated
scale. In contrast, our aim is to capture the concept of creepiness
for a larger class of artefacts, while building on the lessons learnt
from previous research.

Earlier research has noted how interacting with technologies
that could be assigned agency was also a source of creepiness.
Studies describing interactions with voice assistants [59, 69] and
with autonomous cars [14, 49, 50] found that both were perceived
as creepy. These examples show that creepiness can be experienced
where artefacts take an assumed social presence and possibly violate
norms related to this presence. An example of this kind of creepiness
is how someone feels when crossing the road in front of a driverless
car [50].

Some of the other papers reported that interactive technologies
that have direct contact with our bodies can be perceived as creepy.
In particular, creepiness has been reported for wearables [16, 18]
and technologies that use physiological sensing [5, 28, 47, 48]. These
works offer two ways to frame creepiness. First, we see the notion
of a certain magical element, i.e. providing insight one should not
have as in Merrill et al.’s [48] where EEG systems were perceived
as mind readers. Second, creepiness is also related to a perception
of possible harm [47].

Experiences of Augmented Reality [29, 52] were also potential
sources of creepiness. Ni et al. [52] reported on an Augmented
Reality system for facilitating communicationwith physicians. They
equated a creepy feeling with emotional discomfort.

Additionally, we noted how the term creepy has often been used
by children [28, 31, 81]. This is explained by child development
research, where it has been found that standards of creepiness are
formed early in life [6]. Furthermore, we even found one paper
that reported on creepiness in interactions between the users of a
makerspace [76] and one describing social media behaviour [38]
(with no direct connection to privacy).
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The variety of findings revealed in our literature review demon-
strates the need for a shared conceptual understanding of creepiness
within the HCI community. We aim to address this gap by develop-
ing a conceptual model of creepiness in HCI and a complementary
measurement instrument.

2.5 Creepiness outside HCI
The concept of creepiness has also been studied more broadly in
the social sciences. For example, Watt and Gallagher [79] studied
how human faces can be defined as creepy. While their study is
not directly relevant to the creepiness of inanimate objects, their
findings echoed some of the qualitative evidence in HCI where
creepiness is linked to violation of norms and the perceived possi-
bility of harm. McAndrew and Koehnke [43] used an online survey
to establish that unpredictability was a key factor in creepiness.
This finding is a relevant aspect for our work as the potentially
creepy technologies in HCI research also contained a certain je ne
sais quoi element. Given the prevalence of the term and its apparent
importance for the evaluation of certain classes of technologies, it
would be beneficial for HCI to develop a structured understanding
of creepiness and the means to evaluate if interactive technologies
are creepy.

The nearest operationalised concept that has been developed for
understanding creepiness in an interactive technology context is
Langer and König’s [35] CRoSS scale. This was designed to rate
the creepiness of situations and some of the examined situations
involved technology. However, Langer and König attributed creepi-
ness purely to context. In contrast, our investigation focuses solely
on creepiness as a property of an interactive technology. By doing
so, our objective is to assess creepiness as part of a design process
as opposed to the context.

3 FOCUS GROUPS
Our literature review revealed that creepiness has been explained in
HCI as a multifaceted concept. Moreover, we found little agreement
on what qualities of an artefact contributed to it being perceived
as creepy. In order to broaden our understanding of creepiness,
we conducted a series of ten focus groups in which participants
communicated their first impressions of technologies that could
be considered creepy. After the first two focus groups, we refined
our focus group protocol. In the first two focus groups, we con-
trasted different interactive technologies to determinewhich stimuli
were perceived as creepy. This informed our remaining eight focus
groups where we focused on one particular creepy technology.

3.1 Participants
Eight participants (𝑀 = 28.4𝑦, 𝑆𝐷 = 3.3𝑦, 4 female, 4 male) took
part in the first two focus groups. Occupations included business
analysts, research associates, students, journalists, project managers
and physiotherapists. All participants either had a master’s (37.5%)
or a bachelor’s (62.5%) degree. Participation was voluntary and
compensated by 10 Euros.

For the following eight focus groups (𝑁 = 24), we targeted a
broader age distribution in order to obtain a more heterogeneous
view of the concept of creepiness. Our participant group included
older (𝑀 = 76.33𝑦, 𝑆𝐷 = 3.01𝑦, 6 female, 6 male) and younger

adults (𝑀 = 27.00𝑦, 𝑆𝐷 = 3.16𝑦, 5 female, 7 male). Participants had
diverse occupations such as teachers, designers, public servants, stu-
dents, engineers in different areas including IT, advertising, human
resources, political science and psychology. Most participants had
a bachelor’s degree (41.7%), followed by a master’s degree (25.0%)
and completed apprenticeships (16.7%). Participation was voluntary
and compensated by 10 Euros. See Table 1 for an detailed overview
of the participants.

Table 1: Participant information for the second set of focus
groups, categorised by age group.

Variables Younger adults Older adults
N % N %

Gender
Women 5 41.7 6 50.0
Men 7 58.3 6 50.0

Education
No degree 1 8.3 1 8.3
Completed apprenticeship 2 16.7 0 0
Bachelor’s degree, equivalent 5 41.7 1 8.3
Master’s degree, equivalent 3 25.0 9 75.0
Not specified, equivalent 1 8.3 1 8.3

Work sector
(Producing) industry 1 8.3 3 25.0
Service sector 3 25.0 6 50.0
Public sector, equivalent 4 33.3 0 0
Education, equivalent 0 0 2 16.7
Social services, equivalent 1 8.3 1 8.3
Undergoing training, equivalent 3 25.0 0 0

3.2 Procedure
The focus groups were divided into an exploratory phase (25𝑚𝑖𝑛)
and a follow-up group interview (20𝑚𝑖𝑛) moderated by one of
the experimenters and accompanied by two short questionnaires
querying demographics, technology adoption and experience with
wearable devices.

In the first two focus groups, participants experienced a set of
four technologies varying in aesthetics, comfort and perceived trust.
We divided the technologies into conventional devices including the
consumer products Fitbit Flex 22 and the Empatica E43. Additionally,
we included two research prototypes; one showing real-time muscle
activity (EMG) through attached electrodes and the other a step-
counter based on a pressure-sensitive shoe sole that was attached to
the participants’ shoes. Under the supervision of two experimenters,
the participants took turns in trying out all four devices.

In the follow-up group discussion, the moderator inquired about
the participants’ first impression of the presented devices. Further
topics included their level of trust in the technologies, aspects
about the interactive technologies that caught their interest and
the perceived interaction with the technologies. Lastly, the group
discussed potential usage scenarios.
2https://www.fitbit.com/de/flex2
3https://www.empatica.com/research/e4/

https://www.fitbit.com/de/flex2
https://www.empatica.com/research/e4/
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Based on our findings in the first set of focus groups, the EMG-
based technology triggered the most creepy feelings amongst the
participants. Thus, we decided to elect the EMG-based device as
stimulus for further inquiries. Three participants took part in each
of the eight focus groups after they had been introduced to the
EMG prototype. After the introduction and an exploration phase,
which lasted 10 minutes, the focus group started. Again, the fo-
cus groups followed a semi-structured protocol and lasted 20𝑚𝑖𝑛.
We inquired about general perception and interaction with the
device. Furthermore, we explored concerns, fears and desires the
participants have when interacting with unknown technology. Fol-
lowing a ladder interview approach [19], we paid special attention
to adjectives associated with creepiness, such as creepy, unpleasant,
strange, threatening, frightening. In such cases, the moderators ex-
plored the topic further. The adjectives were adapted from related
work [35, 43, 52, 79, 81] with the help of the Oxford Thesaurus of
English [78].

3.3 Data analysis
All focus group recordings were transcribed verbatim. Then, four
authors of the paper open-coded a sample of 20% of the material
and conducted a discussion to establish an initial coding tree in line
with Blandford et al. [3]. We further used the factors contributing to
creepiness from our literature review as sensitising concepts [66] in
the analysis. The remaining data was distributed equally amongst
the four coders. We then iteratively refined the coding of the data
that resulted in the construction of three core themes that described
the facets of creepiness—as reported by the focus group participants.
These themes, together with the insights from our literature review
form the foundation of our conceptual model of creepiness.

4 A CONCEPTUAL MODEL OF CREEPINESS
Our model of creepiness consists of three dimensions which de-
scribe creepy experiences derived from our observations of previ-
ous research and the accounts of creepiness derived from our focus
groups. The model consists of three dimensions: implied malice,
undesirability and unpredictability. The model is shown in Figure 2.

4.1 Implied Malice
This dimension describes perceived bad intentions communicated
through the design of a creepy technology. This represents a gen-
eralisation of the understanding of creepy as violating privacy. In
our model, ‘implied malice’ (‘intention or desire to do evil or cause
injury’ [54]) described the perceived potential of an interactive arte-
fact that violates principles, which are important to the user. This
dimension is based primarily on reports of creepiness in privacy
research and interactions with autonomous systems. Violating the
user’s value systems was also discussed in the focus groups:

P8: (...) something completely new. Yes, I’m so scared,
okay, somehow it’s too much (...). For example, when
Alexa came on the market, I thought it was super
creepy. I still think that it is scary and there are friends
of mine and I sometimes think that someone is listen-
ing in, for example. (...) I wouldn’t buy that myself.

4.2 Undesirability
Undesirability in our model refers to users perceiving the interac-
tive technology as a non sequitur; a feeling of unease caused by
the interactive artefact being out of context. The term ‘undesir-
ability’ highlights the feeling of unease inherent to the artefact,
which can be due to a variety of factors such as social context or
aesthetic appearance. This dimension is based on McAndrew and
Koehnke’s [43] research, adapted to the creepiness of inanimate
objects. Focus group participants reflected on negative social conse-
quences of using the technologies with which they were interacting:

P1: But I find it a bit creepy. Imagine you see a person
with it (...). P2: I would mainly be worried.

Undesirability can also imply that the design aesthetic of the
artefact does not match the environment in which it is presented to
the user. This dimension of creepiness is evident in the provocative
technologies discussed above. This was mentioned by one focus
group participant who discussed how the aesthetic of the technol-
ogy did not match its context of use:

P7: Yes. So there must be some serious reason why I
have something like that. P9: So when you use some-
thing like that; you mentioned suitability for everyday
use, [the way this looks] you can’t just walk around
with it.

4.3 Unpredictability
In our model, we use the term ‘unpredictability’ to denote the neg-
ative feelings connected to users not being able to anticipate the
interactive technologies’ actions and/or exhibit a desired level of
control. In our model, ‘unpredictability’ refers to the inability of the
user to immediately operate and understand the device. Control
was a key dimension in Yip et al.’s [81] work. Other works demon-
strated that a perceived lack of control may lead to a perception
of threat [57]. This dimension also covers the feelings elicited by
users not knowing the intended use of an artefact, as discussed by
Oozu et al. [55]. Unpredictability was also a concern for the focus
group participants:

P12: For example, I always think about the question,
okay, what can the device actually do - the devices of
today can do more and more. And you can no longer
estimate the [functional] range, (...) I don’t even know
what it can do.

5 THE PERCEIVED CREEPINESS OF
TECHNOLOGY SCALE

Having proposed an understanding of the creepiness of interac-
tive artefacts, our next goal is to understand how to ascertain how
creepy a given system is. To this end, we decided to build a struc-
tured questionnaire. A validated questionnaire would allow design-
ers and researchers to compare artefacts in terms of creepiness
levels. Furthermore, through choosing scale items, we could gain
additional insight into how users understand creepiness.

We used a structured process to develop our scale, based on the
methods recommended by Boateng et al. [4]. Given the lack of
local standards in HCI for developing questionnaires, our method
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Figure 2: A Conceptual Model of Creepiness. We built the model based on our literature review and qualitative data gathered
in the focus groups. The primary task of the model is to inform our design of a scale for measuring creepiness of technology.

decisions were also influenced by Mejia and Yarosh’s [46] work on
a related questionnaire designed specifically for use in HCI.

5.1 Initial Scale Items
Four researchers participated in generating initial items for the
scale. Researchers first worked independently, creating items based
on related work in the three dimensions and quotes from focus
group participants. We then conducted a coordination meeting
where all the generated items were merged and discussed. After
removing duplicates and near-duplicates, we obtained an initial list
of 47 items.

5.2 Expert Feedback
For the next step, we contacted four experts to provide their feed-
back on the list of possible scale items. We chose a diverse set of
experts to gather broad feedback. The experts were a professor in
user modelling, a researcher in machine learning, a researcher in
psychology and a user experience lead at a major software company.
They provided feedback through commenting on existing items
and suggesting new items. Having obtained the feedback, we built a
table where we identified problematic items and discussed possible
new additions. This process resulted in a final list of 61 items.

5.3 Survey
In the next stage of our process, we designed an online survey
using the Qualtrics platform to gather data from participants to
perform exploratory factor analysis and item reduction. Boateng
et al. [4], referring to Comrey [10], recommends a sample size of a
minimum of 200 participants for studies of this kind and we applied
this guideline.

5.3.1 Participants. We recruited a total number of 𝑛 = 209 par-
ticipants, which corresponds to the guidelines proposed by Com-
rey [10]. The participants were recruited over the Amazon Mechan-
ical Turk Service (MTurk) and reimbursed with 1$4. Out of these
participants, 109 resided in the European Economic Area and 100

4We used the Qualtrics survey duration estimate, rewarded at a rate approved by the
institution of the first author. Based on median completion time, the remuneration
was provided at a rate of USD 14 per hour.

lived in the USA. We informed all participants that study partic-
ipation was voluntary and if they felt uncomfortable, they could
leave at any point. We also informed them that the data collected
would be in anonymised form. The survey was conducted online
and could be completed in 15 minutes. The average age of the par-
ticipants was 36𝑦 (𝑆𝐷 = 10.6𝑦) with 33% identifying as female, 66%
as male and one preferring not to fill in their gender. We asked all
participants about their demographics and to fill out a technology
adaption scale before the survey.

5.3.2 Survey content. In order to evaluate the informative value
of our items, we selected four research prototypes in accordance
with our model of creepiness. Two prototypes include attaching
technology to a user’s skin. While one explores opportunities for
crafting on-skin interfacing using woven materials [72], the other
looks at the user’s hand as a part of an on-skin printed circuit
board [30]. The other works include prototypes from the domain
of mobile devices: a Finger-Navi [74] integrating the smartphone
with a physical finger; and hygiene devices: a teleoperated bottom
wiper [20].

Each participant in the survey was randomly given a short de-
scription and a representative image of exactly one prototype. Af-
terwards, we asked them how much they agreed with each item
of our final list about the presented technology on a 7-item Likert
scale (strongly agree to strongly disagree).

5.4 Exploratory Factor Analysis
We conducted factor analysis on the survey data collected, us-
ing a varimax rotation, thus replicating the method by Mejia and
Yarosh [46]. We expected the factors to be orthogonal in light of
the lack of an established model of creepiness. We chose to perform
an orthogonal rotation as the qualitative data suggested that creepi-
ness could be a result of different independent qualities. Further, the
different sources of creepiness present in related work suggest an
independent relationship [11]. We used parallel analysis and scree
plots to determine the optimal number of factors. The examination
of the scree plot suggested an optimal solution with three factors.
We then began the process of reducing the number of items. First,
we removed all loadings below 0.30 [4]. We then removed the items
which loaded on multiple factors. This item list was further refined
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by iteratively removing low loading items and optimising for inter-
item reliability. We computed current and theoretical Cronbach’s
alpha coefficients. Our goal was to create a final scale to be as short
as possible for practical reasons—so that it could be deployed by
others—be they in industry, academia, government or other—to
be able to rapidly compare interactive technologies. The resulting
structure consisted of two items loading on one factor and three
items loading on the other two factors. We made the non-obvious
decision to only use two items for one of the factors as the items
loading on that factor were highly correlated and relatively uncor-
related with other items. Worthington and Whittaker [80] note that
two-item constructs are allowable in such cases. While the uneven
number of items is not desirable (due to more complicated scor-
ing), this theoretical scale structure offered the best performance in
terms of Cronbach’s alpha for the scale, 𝛼 = 0.74, and all subscales.
The theoretical factor model fit also presented correct parameters
at 𝑇𝐿𝐼 = 0.96 and 𝑅𝑀𝑆𝐸𝐴 = 0.06. The theoretical composition of
the scale is shown in Table 2. The percentage of variance explained
was 67.7% and item communalities were sufficient according to
the guidelines set by Hair et al. [A]. The proposed factor structure
matched our conceptual model.

6 SCALE EVALUATION
Having built a proposed scale with a theoretical underlying factor
model, we proceeded to evaluate the PCTS. We first conducted
Confirmatory Factor Analysis to verify the underlying model. Next,
we conducted a series of tests to check the scale’s construct validity
and reliability.

6.1 Survey
6.1.1 Participants. We recruited 𝑛 = 100 participants over MTurk
following the first survey. The reimbursement was 0.8$4 and the
study was conducted online. The study took 5 minutes to complete.
The average age of the participants was 34.4𝑦 (𝑆𝐷 = 10.1𝑦), 30%
identified as female and 70% as male.

6.1.2 Survey content. In order to evaluate the scale, we created two
videos of different methods of logging into a computer. One method
was typing a password by hand using a keyboard. For the second
method, we used an EEG device and participants were told that the
user authenticates with their brain waves. Both methods are shown
in Figure 3. We randomly presented each participant with one of
the two videos. Afterwards, we asked them how much they agreed
with each item of our final list about the presented technology on
a 7-item Likert scale (strongly agree to strongly disagree).

6.2 Confirmatory Factor Analysis
Up to this point, the structure of our scale was only theoretical,
i.e. it had not been validated. As a first step in the evaluation of
our scale, we conducted Confirmatory Factor Analysis (CFA). This
analysis enabled us to conduct a test of dimensionality, which could
determine the correctness of our proposed factor model. We used a
three-factor model with the latent variables defined as in Table 2.
We obtained a fit, which conformed to the required criteria [4] with
𝑇𝐿𝐼 = 1.02 and 𝑅𝑀𝑆𝐸𝐴 < 0.05. This suggests that the scale was
internally consistent. Additionally, the model showed moderate to
high correlations between the subscales, showing that the overall

Figure 3: The two different conditions for the scale evalua-
tion. A user entering a password (top) via keyboard and au-
thenticating using their brain waves (bottom).

construct of creepiness as proposed was valid. The CFA model is
shown in Figure 4.

6.3 Construct validity
Next, we examine the construct validity of the PCTS. We decided
to test the scale in two ways. First, we checked if the scale was
effectively differentiating between ‘known groups’, i.e. interactive
technologies that differ in creepiness. Second, we investigated if
the scale was different from possibly related concepts measured in
other questionnaires.

6.3.1 Differentiation by ‘known groups’. Boateng et al. [4] listed
comparison between ‘known groups’ as a method of establishing
concept validity. Mejia and Yarosh [46] also used this method. In our
work, we conducted a comparison between a system known (albeit
qualitatively) to be creepy in the literature [48]—an EEG system,
and a conventional solution with which the users were familiar—
the keyboard. We hypothesised that logging in with EEG would
be significantly more creepy than logging in with only a keyboard.
Shapiro-Wilk tests revealed that the samples were not normally
distributed. Thus, we applied non parametric statistics. Table 3
shows Mann-Whitney U test results for PCTS and its subscales.

6.3.2 Discriminant validity. Discriminant validity refers to how a
scale measures concepts that are different from other scales. Given
the conceptual model behind building the PCTS, we wanted to
check if creepiness was not simply a reflection of social acceptabil-
ity or anticipated usability. As such, a comparison is only possible
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Table 2: The reduced, eight-item Perceived Technology Creepiness Scale (PCTS). The reported Cronbach’s alphas and factor
loadings were calculated using the data from the exploratory survey.

Subscale/Item Factor Loading

Implied Malice, 𝛼 = 0.83

Q1: I think that the designer of this system had immoral intentions. 0.86
Q2: The design of this system is unethical. 0.72

Undesirability, 𝛼 = 0.75

Q3: Using this system in public areas will make other people laugh at me. 0.77
Q4: I would feel uneasy wearing this system in public. 0.85
Q5: The system looks bizarre to me. 0.70

Unpredictability, 𝛼 = 0.80

Q6: This system looks as expected. (R) 0.55
Q7: I don’t know what the purpose of the system is. 0.84
Q8: This system has a clear purpose. (R) 0.78

Table 3: Scale evaluation throughdifferentiation byknowngroups for PCTS.Non-parametric tests show that logging in via EEG
was significantly more creepy than using only the keyboard using the full scale and the subscales. Table reports Bonferroni-
corrected p-values.

Scale/Subscale 𝑀𝐾𝑒𝑦𝑏𝑜𝑎𝑟𝑑 𝑆𝐷𝐾𝑒𝑦𝑏𝑜𝑎𝑟𝑑 𝑀𝐸𝐸𝐺 𝑆𝐷𝐸𝐸𝐺 𝑈 𝑝

PCTS 22.24 13.62 35.12 7.80 1978.0 < 0.001
PCTS-IM 7.74 5.72 9.73 4.55 1670.5 < 0.05
PCTS-UD 7.52 5.37 14.80 4.02 2144.0 < 0.001
PCTS-UP 6.98 3.89 10.58 3.53 1931.5 < 0.001

Figure 4: The factor model for PCTS with the three correlated subscales resulting from confirmatory factor analysis. Note that
the graph users inverse scores for reverse-scored items, thus all correlations are positive.
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with other validated questionnaires, and so our choice of alterna-
tive concepts was limited. So, we decided to investigate if the PCTS
provided measures different from the dimensions of the Technology
Acceptance Model, as measured by a highly-cited questionnaire by
Park [58]. This questionnaire featured a number of factors which
could be potential confounding concepts for the PCTS: perceived
ease of use (PE), perceived usefulness (PU), Attitude (AT) and Be-
havioural intent (BI). Furthermore, we ensured that the PCTS mea-
sured properties of the artefact and not the user’s personality in
terms of attitudes towards technology. To this end, we compared
PCTS scores with McKnight et al.’s Propensity to Trust in General
Technology (PTT, [45]). We computed Spearman correlations be-
tween the different scales. The results, shown in Table 4, show at
most medium to low correlations between the PCTS or its subscales
and the other measurement instruments. The medium correlation
suggests that some of the instruments may be measuring contextual
factors related to the PCTS. There might also be an overlap between
some of the dimensions of the PCTS and the dimensions developed
by Park [58], which does not impact the overall scores of the PCTS.
These results show that the PCTS is a novel concept and validates
PCTS’s underlying model.

6.4 Test-Retest Reliability
As a final evaluation of the scale, we tested its temporal stability,
i.e. whether the scale can produce reliable results at different time
points. To this end, we administered the PCTS to a group of 𝑛 = 20
participants, aged𝑀 = 29.15𝑦, 𝑆𝐷 = 3.12𝑦, 15 male and 5 female,
twice, with a minimum 14-day break in between the studies.

There is a lack of consensus in the literature about how long the
time between the two surveys should be. We decided to replicate
Mejia and Yarosh’s [46] approach, albeit with a larger participant
sample. In an online survey, the participants were asked to rate
an artefact previously qualitatively reported to evoke feelings of
creepiness—the HEXBUG [71]. Contrary to the previous studies,
we used snowball sampling and social media posts to recruit the
participants. This allowed us to ensure we could reach participants
effectively to ask them to conduct the survey for the second time.

Boateng et al. [4] list a number of ways to assess test-retest
reliability. We chose to compute the intra-class correlation coef-
ficient [34] to investigate the relationship between the two mea-
surement moments. There was a high reliability with ^ = 0.82,
𝑝 < .001. The 95% confidence interval ranged from 0.65 to 0.91,
indicating that PCTS exhibited moderate to excellent test-retest reli-
ability [9]. The results show that the PCTS is temporally stable and
can be administered at different times or used for between-groups
or repeated-measures designs.

7 DISCUSSION
In this section, we provide the necessary details for administering
the PCTS as well as information on how to analyse the results. In
addition, we discuss the limitations of our approach and possibilities
for further development.

7.1 Scoring and Analysis
The PCTS is scored on a seven-point Likert scale from Strongly
Agree (7) to Strongly Disagree (1). Items 6 and 8 in the scale are

reverse-scored. Our scale has a 2 + 3 + 3 item composition, which
makes computing scores less than trivial. One possible solution
to optimally balance the items would be extracting the weights
from the factor models developed and then assigning those weights
to the three subscales. However, the review by Boateng et al. [4]
concluded that using weighted averages is unlikely to improve the
performance of questionnaires. Consequently, we suggest assigning
equal weights to the individual subscales. The PCTS-IM score is
thus calculated as the sum of the two items multiplied by 1.5. Con-
sequently, the PCTS is scored as (reverse-scored items are marked
with the subscript 𝑅):

𝑃𝐶𝑇𝑆 = 𝑃𝐶𝑇𝑆𝐼𝑀 + 𝑃𝐶𝑇𝑆𝑈𝐷 + 𝑃𝐶𝑇𝑆𝑈𝑃

𝑤ℎ𝑒𝑟𝑒 𝑃𝐶𝑇𝑆𝐼𝑀 = (𝑄1 +𝑄2) × 1.5
𝑎𝑛𝑑 𝑃𝐶𝑇𝑆𝑈𝐷 = 𝑄3 +𝑄4 +𝑄5
𝑎𝑛𝑑 𝑃𝐶𝑇𝑆𝑈𝑃 = 𝑄6𝑅 +𝑄7 +𝑄8𝑅

Thus, the lowest score on the scale is 9 and the highest is 63. Higher
scores indicate that the interactive artefact evokes stronger feel-
ings of creepiness. This scoring offers a transparent and actionable
way for designers and researchers to use the PCTS. The evalua-
tion of the scale presented in this paper suggests that conducting
null-hypothesis testing using PCTS scores and its subscales score
is permitted. We recommend checking the normality of the data
and possibly using non-parametric statistics when conducting ex-
periments using the scale.

7.2 Guidelines for using the PCTS
The robust structure of the PCTS allows using it for different study
designs within HCI research as well as for quick assessments of
research prototypes. We particularly recommend using the PCTS in
early stages of the design process. The scale is relatively short, easy
to use and can offer rapid feedback. This can help in identifying
artefacts early in the design process which appear creepy to users
and help raise awareness of how to steer the design process in a
more desirable direction.

We developed the PCTS primarily to capture users’ first im-
pressions of experiencing an artefact. Consequently, the scale is
particularly suited to studying initial encounters with technologies,
discovering new (physiological) sensing modalities or interacting
with previously unknown aesthetic forms. The scale examines an
aspect of user experience beyond acceptance and usability, as in-
dicated by our results. We recommend using the PCTS to identify
features of artefacts that may be creepy early in the design process.
Using the PCTS enables for effectively managing first impressions
of technologies and ensuring that the technology does not intim-
idate the user to a point where they are unwilling to verify its
usability. PCTS can facilitate rapid selection of solutions at the
prototype generation phase in the user-centred design process.

In this context, future users of the scale should recognise that
creepiness is not necessarily a negative aspect of technologies. The
provocative or intentionally ambiguous technologies discussed in
this paper may use creepiness for the benefit of users. This sug-
gests that creepiness is a highly contextualised concept. Hence, our
scale is best used when comparing between different technologies
within the same context. Consequently, future users of the PCTS
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Table 4: Spearman correlations between the PCTS, its subscales and potential alternative questionnaires that could measure
creepiness. Significant correlation tests are marked with an asterisk.

PCTS PCTS-IM PCTS-UD PCTS-UP PTT PE PU AT
PCTS-IM 0.85*
PCTS-UD 0.89* 0.66**
PCTS-UP 0.70* 0.43** 0.52*

PTT -0.22* -0.24* -0.09 -0.32*
PE -0.38* -0.31* -0.44* -0.67* 0.34*
PU 0.03 0.22* -0.03 -0.19 0.20* 0.39*
AT -0.38* -0.30* -0.48* -0.59* 0.31* 0.72* 0.55**
BI -0.42* -0.24* -0.45* -0.50* 0.29* 0.70* 0.54* 0.86*

should carefully control the context in which the participants are
introduced to the artefacts studied in order to avoid bias.

The psychometric properties of the PCTS indicate that the scale
can be used for between- andwithin-subject studies and for repeated-
measures designs. If particular aspects of a given technology are
of importance, e.g. its ethical underpinnings, the subscales of the
PCTS can also be analysed. However, we recommend that the use
of PCTS be accompanied by pre-studies and rich qualitative data
gathering. Potential users of the PCTS should be sure that the tech-
nology studied may evoke creepiness in the understanding of the
PCTS, i.e. an innate, hard to define feeling of unease. Here, the
PCTS may be used to help the designer reflect on the potential
creepiness. Alternative, more detailed questionnaires can be used if
the main concern about ‘creepiness’ is indeed a question of privacy
encroachment [8] or social acceptability [64]. Our results show
that the PCTS measures a concept different than usability or social
acceptability. Thus, our scale broadens the apparatus available to
HCI researchers in quantitatively understanding impressions of
new technologies.

7.3 Limitations
We recognise that the development and possible use of the PCTS is
prone to certain limitations. First, we made the decision to focus
the development of the scale on assessing the initial impressions
of technologies. This implies that the usefulness of the PCTS for
long-term studies is unknown. We envision that the scale could
be used to measure how users gradually get more acquainted with
a technology and their perception of it changes. This would be
particularly relevant for better understanding interactive technolo-
gies with which users develop long-term relationships, e.g. voice
assistants [62]. In future research, we plan to evaluate if the PCTS
can be used effectively beyond first impressions.

While we used a number of recruitment strategies and study
methods, we recognise that the development of the PCTS is biased
by the participant sample used. The focus groups which highly
influenced our conceptual model of creepiness were conducted
solely among residents of Europe. The majority of the participants
in the studies which used MTurk recruitment in our work had a
Western cultural background. The term creepy is a modern English
word that is difficult to translate to many languages. Consequently,
we note that the PCTS is most likely only applicable to users with
a selected subset of cultural backgrounds. We hope that future

research can develop alternative versions of the scale for other
cultural contexts.

8 CONCLUSION
In this paper, we presented the development and evaluation of the
Perceived Creepiness of Technology Scale (PCTS). Based on a litera-
ture review and focus groups, we developed a conceptual model for
creepiness. We then describe howwe constructed, reduced and eval-
uated the scale. We illustrated the discriminant validity of the scale,
its ability to differentiate between known groups and test-retest
reliability. Our scale enables designers and researchers to rapidly
ascertain possible feelings of unease caused by novel interactive
technologies. The PCTS can be used to conduct rapid comparative
studies of novel artefacts, especially ones that exhibit elements of
autonomy or feature direct contact with the body.

We designed the PCTS with the goal of enabling a broader un-
derstanding of how current and future technologies make us feel
and how to build technologies that do not cause negative emotions
in users. We also note that our scale can help in studying possibly
provocative artefacts that could foster engagement. We hope that
our scale can foster new research avenues into increasing our under-
standings of creepiness and to enlighten those designing to avoid
(or to promote) creepiness by providing them with a creepiness
metric they can easily use to conduct studies of novel technologies.
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