
PAC-Bayesian Computation

Contributions to learning and
certification strategies for randomised

classification algorithms

Omar Rivasplata

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
in

Statistical Learning Theory

Department of Computer Science
University College London

March 25, 2022





3

I, Omar Rivasplata, confirm that the work presented in this thesis is my own.
Where information has been derived from other sources, I confirm that this has been
indicated in the work.





Abstract

Risk bounds, which are also called generalisation bounds in the statistical learning
literature, are important objects of study because they give some information on the
expected error that a predictor may incur on randomly chosen data points. In classical
statistical learning, the analyses focus on individual hypotheses, and the aim is deriving
risk bounds that are valid for the data-dependent hypothesis output by some learning
method. Often, however, such risk bounds are valid uniformly over a hypothesis class,
which is a consequence of the methods used to derive them, namely the theory of
uniform convergence of empirical processes. This is a source of looseness of these
classical kinds of bounds which has lead to debates and criticisms, and motivated the
search of alternative methods to derive tighter bounds.

The PAC-Bayes analysis focuses on distributions over hypotheses and randomised
predictors defined by such distributions. Other prediction schemes can be devised based
on a distribution over hypotheses, however, the randomised predictor is a typical starting
point. Lifting the analysis to distributions over hypotheses, rather than individual
hypotheses, makes available sharp analysis tools, which arguably account for the
tightness of PAC-Bayes bounds. Two main uses of PAC-Bayes bounds are (1) risk
certification, and (2) cost function derivation. The first consists of evaluating numerical
risk certificates for the distributions over hypotheses learned by some method, while
the second consists of turning a PAC-Bayes bound into a training objective, to learn
a distribution by minimising the bound. This thesis revisits both kinds of uses of
PAC-Bayes bounds. We contribute results on certifying the risk of randomised kernel
and neural network classifiers, adding evidence to the success of PAC-Bayes bounds at
delivering tight certificates. This thesis proposes the name “PAC-Bayesian Computation”
as a generic name to encompass the class of methods that learn a distribution over
hypotheses by minimising a PAC-Bayes bound (i.e. the second use case described
above: cost function derivation), and reports an interesting case of PAC-Bayesian
Computation leading to self-certified learning: we develop a learning and certification
strategy that uses all the available data to produce a predictor together with a tight
risk certificate, as demonstrated with randomised neural network classifiers on two
benchmark data sets (MNIST, CIFAR-10).
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Chapter 1

Prologue

A common question arising in learning theory aims to explain the generalisation ability
of a learner: how can a learner ensure good ‘performance’ on unseen data?

Under statistical assumptions on the data-generating process, the question about
generalisation of a learner may be approached in terms of a suitable measure of perfor-
mance defined at population level, such as the expected error on a random data point
from the same distribution that generated the data on which a classifier was trained in the
case of supervised classification, or in other settings the ‘expected loss’ corresponding
to a choice of loss function that makes sense for the learning task being considered.
The zero-one loss makes sense for classification tasks, because it counts classification
errors; while for regression a typical choice is the squared loss, which measures squared
deviations from the mean. Whatever the case may be, when thinking of expected loss as
measure of performance, ‘expected’ refers to expectation with respect to the distribution
that generates random data points, which is called the data-generating distribution.
Thus, the expected loss, also called the risk or population loss (defined formally in
Section 2.1), is a measure of performance that is valid at population level, in the sense
that it is valid for any random data point from a given distribution. Unfortunately,
the population loss is inaccessible in most learning problems of interest, because the
data-generating distribution is unknown.

One way to answer the question about generalisation of a learner is by studying
upper bounds on the population loss. Such bounds are called generalisation bounds
or risk bounds in the statistical learning literature. Intuitively speaking, if the upper
bound is small, then this ensures that the quantity being upper-bounded by it—namely,
the population loss—must also be small. Often the focus is on bounding the gap (i.e.
the difference) between the population loss (the risk) and its empirical counterpart (the
empirical risk) evaluated on a given data set of a given finite size. Then, giving upper
bounds on the gap is equivalent to giving upper bounds on the risk in terms of the
empirical risk and some other quantities. Due to its importance, this gap has received
its own designation: it is usually referred to as the generalisation gap or the risk gap.
The methods for bounding the gap are typically based on probability inequalities for
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sums of independent random variables, which bound the deviations of such sums from
their means.

There are several types of generalisation bounds we care about in learning theory,
with variations in the way they depend on the training data and the data-generating
distribution. Specifically, this dependence refers to the quantities that upper-bound the
generalisation gap. In the classical bounds (such as bounds based on the VC dimension1)
such quantities depend neither on the data nor the distribution that generates the data.
Distribution-dependent bounds are expressed in terms of quantities related to the data-
generating distribution (e.g. functionals associated to this distribution) and possibly
other quantities, but not the data in any way. These kinds of bounds can be helpful
to study the behaviour of a learning method on different distributions—for example,
some data-generating distributions might give faster convergence rates than others.
Finally, data-dependent bounds are expressed in terms of empirical quantities that can
be computed directly from data. These kinds of bounds can be useful for building
and comparing predictors [Catoni, 2007], and also for self-bounding learning methods
[Freund, 1998, Langford and Blum, 2003], among possibly other purposes.

In classical statistical learning the analyses focus on individual hypotheses, and
the aim is bounding the risk of the hypothesis output by some learning method. The
term hypothesis is just an alternative name for predictor or classifier according to the
task being considered, for instance, a function that maps input feature vectors to class
labels in the case of a classification task. Often, however, the risk bounds of classical
statistical learning are valid uniformly over a hypothesis class, which is a consequence
of the methods used to derive them. This is a source of limitations of the classical
bounds which has lead to debates and criticisms, most notably among which is their
notorious looseness when applied to complex models such as deep learning models.
This has motivated the search of alternative methods to derive tighter bounds.

PAC-Bayes bounds are a newer kind of generalisation bounds whose study started
with the works of McAllester [1998, 1999]. These seminal works contributed the
first PAC-Bayes theorems and in fact coined the name ‘PAC-Bayes’ arguably taking
inspiration from the work of Shawe-Taylor and Williamson [1997] who carried out a
Probably Approximately Correct (PAC) analysis of a Bayesian-style predictor, which
was so called because the predictor was defined by a data-dependent distribution over
hypotheses. The usual PAC-Bayes analysis (details of which are outlined in Section 2.2
below) introduces a reference ‘data-free’ probability distribution on the hypothesis space,
commonly called a ‘prior’ distribution, while the learned data-dependent distribution
that is used to construct a prediction rule is called a ‘posterior’ distribution. This

1VC stands for Vapnik-Chervonenkis. The VC dimension was introduced by Vapnik and Chervonenkis
[1971]. Generalisation bounds based on the VC dimension are presented with detailed proofs by Vapnik
[1998], see also e.g. Devroye et al. [1997], Shalev-Shwartz and Ben-David [2014], Mohri et al. [2018].
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terminology is well-established in the literature on PAC-Bayes bounds. However, in
contrast to Bayesian learning, the PAC-Bayes prior acts as an analytical device and
may or may not be used by the learner, and the PAC-Bayes posterior is unrestricted
and so it may be different from the posterior that would be obtained through Bayesian
inference. This pinpoints essential differences between the PAC-Bayes and Bayesian
learning schools that are important to keep in mind.

PAC-Bayes analyses allow to derive distribution- or data- dependent generalisation
bounds. There are many application areas that have used PAC-Bayes bounds, but there
are essentially two ways that a PAC-Bayes bound is typically applied: either (1) use
the bound to evaluate a risk certificate for a predictor defined by a distributions over
hypotheses learned by some method, or (2) turn the bound into a learning method by
searching a distribution over hypotheses that minimises the bound. The first use case
may be referred to as risk certification, since this use case consists of producing a
numerical risk certificate. For the second use case I propose2 the name PAC-Bayesian
Computation and the corresponding acronym PBC. This generic name may be a conve-
nient way to refer to any learning method that converts a PAC-Bayes bound into a ‘cost
function’ or ‘optimisation objective’ for learning a distribution over hypotheses.

The use cases of PAC-Bayes bounds just described define the two central themes of
this thesis: risk certification for randomised predictors (where the numerical certificates
are evaluated based on a PAC-Bayes bound); and PAC-Bayesian Computation (PBC)
for learning data-dependent distributions over a given hypothesis class.

Then, by a combination of these two central themes, we develop self-certified
learning methods [Pérez-Ortiz et al., 2021b], which are learning methods that use all
the available data to produce simultaneously a predictor and a reasonably tight risk
certificate that is valid at population level, i.e. the certificate is valid for any unseen data
from the same distribution that generated the training data. Self-certified learning is
a re-branding of self-bounding learning [Freund, 1998], and in this thesis we make a
case for it using PAC-Bayes bounds. In particular, Chapter 5 below reports a promising
instance of self-certified learning with randomised neural network classifiers, where a
distribution over network weights is obtained via PAC-Bayesian Computation.

Outline of this thesis and its main contributions
• Chapter 2 covers background on statistical learning and PAC-Bayes bounds. The

content of this chapter consists of previous knowledge that my research builds on.
In particular, this chapter sets the framework and the mathematical notation for the
thesis. This chapter also gives an overview of the related literature.

2Use of the first person is to highlight individual contributions or ideas of mine, and personal opinions;
as opposed to contributions that emerged in collaborations (such as the works reported in Chapter 3,
Chapter 4 and Chapter 5), and opinions or ideas held collectively.
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• Chapter 3 is based on my paper Rivasplata et al. [2020], which reported original
contributions of my research done during my research studies. This work proposed
an extension of the PAC-Bayes analysis to stochastic kernels, and revisiting the
usual assumptions on which PAC-Bayes bounds are based. In this work I am fully
responsible for the generic PAC-Bayes theorem with stochastic kernels, and for the
insight that this theorem is valid with (a) data-dependent priors and (b) unbounded
loss functions. I am largely responsible for the results presented in Section 2.1,
Section 2.2 and Section 2.3 of the paper, which were developed in collaboration with
Ilja Kuzborskij. I am almost entirely responsible for writing the paper.

• Chapter 4 is based on my paper Rivasplata et al. [2018], which reported original
contributions of my research done during my research studies. This work combined
algorithmic stability and a PAC-Bayes bound in order to obtain a tight bound for
randomised support vector machine classifiers. In this work I am largely responsible
for the proof of the stability-based PAC-Bayes bound presented in this paper, which
was developed in collaboration with John Shawe-Taylor and Csaba Szepesvári; and
for designing the framework for the experiments, which were carried out by Emilio
Parrado-Hernández and Csaba Szepesvári. Also I am fully responsible for the section
on Gaussian distributions over infinite-dimensional Hilbert spaces, which elicited
positive reactions from the reviewers who requested to move this section from an
appendix into the main paper. I am almost entirely responsible for writing the paper.

• Chapter 5 is based on my paper Pérez-Ortiz et al. [2021b], which reported original
contributions of my research done during my research studies. This work studied
three (probabilistic) neural network training objectives derived from PAC-Bayes
bounds, and gave an empirical exploration of the properties of the classifiers obtained
by optimising these objectives. In particular, I am fully responsible for the derivation
of the PAC-Bayes-quadratic bound, which is the basis for a new training objective
proposed by this work. I am largely responsible for developing the theoretical
framework of this work and for designing the training strategies implemented in the
empirical studies, which were carried out by Marı́a Pérez-Ortiz, with whom I share
credit as “main contributor” since Marı́a was also largely involved in designing the
training strategies and writing the paper.



Chapter 2

Background on Statistical Learning
and PAC-Bayes bounds

Chapter Layout. This chapter is organised as follows. Section 2.1 defines important
concepts and sets the notation to be used throughout the thesis. PAC-Bayes bounds are
presented in Section 2.2. In particular, we recall a general PAC-Bayes theorem (see
Theorem 2.1) and we discuss how several known PAC-Bayes bounds may be obtained
as consequences of it. Also, in this section we discuss the two main uses of PAC-Bayes
bounds: risk certification (Section 2.2.1) and cost function derivation (Section 2.2.2).
We also discuss some of the related literature (Section 2.2.3). Finally, the technical
Section 2.3 gives a proof of the general PAC-Bayes theorem.

2.1 Definitions and Notation
The context of this thesis is the statistical learning model where the learner observes
training data S = (Z1,Z2, . . . ,Zn) randomly drawn from a distribution over the space
of size-n samples Zn =: S for some fixed positive integer n. The basic example space
is of the form Z = X ×Y for a supervised learning problem where the input space is
X ⊂ Rd and the label set is Y . The latter is a finite set in classification tasks, and it
is an interval in prediction tasks. Then, in this setting, each Zi = (Xi,Yi) encodes an
input-label pair available to the learner.

The goal of the learning process is finding a function ĥ : X → Y that describes
the relationship between feature vectors x ∈ X and labels y ∈ Y . It is well-known that
searching over all possible functions is computationally intractable and at the same
time it may lead to finding a function that fits the training data perfectly but does very
poorly on unseen data. Therefore, the search is restricted to a suitably chosen function
class H. To find a good function ĥ, we can define a loss function ` : Y ×Y → [0,∞)

that penalises the discrepancies between predicted labels ĥ(x) and true labels y. Then, a
classical learning rule aims to find a function that minimises the empirical loss evaluated



24 Chapter 2.

on the data set S = ((X1,Y1), . . . ,(Xn,Yn)) that is available for training:

ĥ ∈ argmin
h∈H

n

∑
i=1

`(h(Xi),Yi)

This is called Empirical Risk Minimisation (ERM) [Vapnik, 1992], and is the basis of
many learning strategies. It might be worthwhile to recall at this point that, in Vapnik’s
learning framework, the tripe (H,Z, `) characterises a learning problem [Vapnik, 1995,
1998]. Moreover, in this general framework the loss function is defined as a function
` :H×Z → [0,∞) that acts on each pair (h,z) of hypothesis and data point. The choice
of loss function ` is problem-dependent, as are the form of the hypothesis spaceH and
the example space Z . As already mentioned, in supervised learning problems we have
Z = X ×Y where X ⊂ Rd is the set of inputs, and Y is the set of labels. For instance,
a regression task is defined as the problem when Y = R and the loss function is the
squared loss, namely `(h,z) = (y−h(x))2, where z = (x,y) encodes the input-label pair.
A binary classification task is the problem where Y = {0,1} (or Y = {−1,+1}) and
the loss is set to be the zero-one loss: `(h,z) = I[y 6= h(x)], where I[·] is an indicator
function which equals 1 when its predicate is true, and equals 0 otherwise.

The hypothesis space characterises the kinds of functions that the learner is allowed
to search. Throughout this thesis we focus on parametric function classesH= {hw | w∈
W} and we assume that the parameter set isW ⊂ Rp. The parameter dimension p may
or may not coincide with the input dimension d. We think of w ∈W as a weight vector,
and it is understood that each possible weight vector w∈W maps to a predictor function
hw : X → Y . A classical example is that of predictors hw(x) = σ(w>x−b) based on
linear functions (if b = 0) or their affine translations (if b 6= 0 in general) and a threshold
function σ : R→Y that maps reals to the corresponding labels. Another example of
interest is the case of neural network functions, whose form is more involved, but suffice
it to say here that in this case the ‘weight vector’ corresponds to a flattened version of
the matrices of connection weights. Since the focus is on a parametric function class,
the loss function is presented as a function ` :W×Z → [0,∞) acting on each possible
weight vector w and each possible data point z. Thus, `(w,z) is interpreted as the loss of
the hypothesis hw corresponding to weight vector w, on a given data point z.

In order to connect performance on training data with that on unseen data, some
assumption on the data-generating process needs to be made. At an extreme case, if
there are no restrictions on how the data are generated, then it is easy to create problems
in which learning is impossible. For instance, we could consider a prediction problem
aiming to learn to predict the values of a cubic function, combined with the artificial
data-generating example where all training data is generated by a quadratic function;
then the lack of a sensible connection between training and testing data implies that any
learner trained on the former is doomed to do poorly on the latter. In this thesis we rely
on statistical assumptions to connect training and unseen data.
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Typically it is assumed that Z1, . . . ,Zn are independent and share a common distri-
bution1 P1 ∈M1(Z). This is called the i.i.d. data assumption, which means that the
random data points are independent and identically distributed. The subscript in the
notation P1 is meant to suggest that this is the distribution that generates one random
example. We write Z ∼ P1 to indicate that the random variable Z is drawn from P1.

Accordingly, we may write Z1, . . . ,Zn
i.i.d.∼ P1 to indicate the i.i.d. data assumption. In a

general setting, it could be assumed that the size-n random sample S = (Z1,Z2, . . . ,Zn) is
generated by a distribution Pn ∈M1(Zn), written S∼ Pn, where the distribution Pn over
Zn may in general correlate the components. The i.i.d. data assumption is equivalent to
assuming that Pn = P⊗n

1 is the product distribution of n copies of P1. Throughout this
thesis we rely on the i.i.d data assumption unless explicitly stated otherwise.

In principle, a learner should aim to find a weight w ∈ W that minimises the
expected loss on random examples, also called the population loss or the risk:

L(w) = E[`(w,Z)] =
∫
Z
`(w,z)P1(dz) . (2.1)

The name ‘population loss’ is meant to suggest that L(w) is a population-level quantity,
in the sense that it is defined as the expected loss under a given population distribution
P1. However, the distribution P1 is unknown in most practical scenarios, which implies
that the risk functional L(·) defined in Eq. (2.1) is an unobservable objective. This
justifies why in practice the expected loss is replaced with its empirical counterpart, the
average loss over the sample. Replacing the expected loss with the average loss on the
data gives rise to an observable objective called the empirical risk functional:

L̂S(w) =
1
n

n

∑
i=1

`(w,Zi) . (2.2)

Empirical risk minimisation (ERM) is minimisation of the empirical risk functional.
This is approached in a problem-dependent manner, but in practice the minimisation of
L̂S(·) is often done with some version of gradient descent. Then, to justify that ERM
produces a solution w with a small risk, something must be said about the connection
between L̂S(w) and L(w).

From the trivial identity L(w) = L̂S(w)+L(w)− L̂S(w) it is clear that L(w) is small
whenever the empirical risk L̂S(w) and the gap L(w)− L̂S(w) are both small. As already
mentioned, the empirical risk is an observable quantity, in the sense that it is computable
directly from data; hence a small L̂S(w) can be ensured in a data-dependent way. Indeed,
the goal of ERM is finding a weight vector w for which L̂S(w) is as small as possible.
However, the gap L(w)− L̂S(w) is not observable, because L(w) is defined in terms
of the data-generating distribution, which is inaccessible. Then, a reasonable way to
ensure a small gap is via upper-bounding it.

1We writeM1(X ) to denote the family of probability measures over a set X .
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Using deviation inequalities which essentially say that the event L(w)− L̂S(w)> ε

has exponentially small probability, statistical learning theory has derived risk bounds
of the form L(w) ≤ L̂S(w)+ ε(δ ,n) that hold with probability of at least 1− δ over
the draw of size-n i.i.d. random samples, for a given choice of confidence parameter
δ ∈ (0,1). Notice that ε(δ ,n) is an upper bound on the gap. The basic analysis gives
such a bound for an arbitrary hypothesis, while the most important results of the theory
are risk bounds that hold simultaneously for all hypotheses in a given hypothesis class, in
which case the upper bound on the gap is of the form ε(δ ,n,C) where C is some notion
of complexity of the hypothesis class, such as VC dimension [Vapnik and Chervonenkis,
1971] or Rademacher complexity [Koltchinskii and Panchenko, 2000].

A given risk bound may be applied to the solution found by a particular learning
strategy, e.g. ERM over the given class, since the bound holds for any member of the
class. Alternatively, a risk bound could be turned into a learning strategy, by searching
a hypothesis (weight vector) that minimises the bound. This strategy involves using
the bound repeatedly, but this does not affect the form of the bound because the bound
holds uniformly over the class being searched. The bound-minimisation strategy is
the basis of other learning strategies such as Structural Risk Minimisation (SRM) and
self-bounding learning algorithms.

N.B.: The previous paragraphs are based on knowledge that I have accumulated over
the years, likely references are the survey Boucheron et al. [2005] and books such as
Devroye et al. [1997], Shalev-Shwartz and Ben-David [2014], and Mohri et al. [2018];
but there are other sources.

2.2 PAC-Bayes bounds
A randomised predictor is defined by a probability distribution over the weight space.
While in principle an arbitrarily chosen distribution over weights could be used for
defining a randomised predictor, the most interesting case is that of a data-dependent
distribution QS which is obtained as the outcome of the training process based on the
data set S. The notation QS is meant to indicate the data-dependence2 of this distribution
over weights. Then, given a fresh input X , the randomised predictor predicts its label by
drawing a weight vector W at random according to QS and applying the predictor hW to
X . Each new prediction requires a fresh draw. Other prediction rules can be devised
based on a distribution over hypotheses, however, the randomised predictor is a typical
starting point in the PAC-Bayes literature.

2Formally, a data-dependent distribution overW is a stochastic kernel from S toW . The definition
of stochastic kernel is presented in Chapter 3 below, where discussions and an illustration are also given.
This formalisation of data-dependent distributions over predictors was covered recently in my paper
Rivasplata et al. [2020], where references were also pointed out for the concept of stochastic kernel,
which is well-known in the literature on probability and stochastic processes.
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One way, which we adopt in this thesis, to measure the performance of the ran-
domised predictor corresponding to the distribution Q overW is to use the Q-weighted
losses, since these are the expected losses over the random draws of weights defining
the randomised predictor Q. Accordingly, the population loss of Q becomes

L(Q) =
∫
W

L(w)Q(dw) , (2.3)

and the empirical loss of Q becomes

L̂S(Q) =
∫
W

L̂S(w)Q(dw) . (2.4)

This notation extends the loss notions L(w) and L̂S(w) previously defined for a given
weight w, to corresponding notions L(Q) and L̂S(Q) for a given distribution Q over
weights. This notation is well-suited for PAC-Bayes bounds (given below) in view of its
intuitive and readable nature: L(Q) and L̂S(Q) are losses of the randomised predictor
defined by the distribution Q.

To introduce the promised PAC-Bayes bounds we need to recall some further
definitions. Given two probability distributions Q,Q′ ∈M1(W), the Kullback-Leibler
(KL) divergence of Q from Q′, also known as relative entropy of Q given Q′, is defined
as follows:

KL(Q‖Q′) =
∫
W

log
( dQ

dQ′

)
dQ .

This equation defines KL(Q‖Q′) when dQ/dQ′, the Radon-Nikodym derivative of Q
with respect to Q′, is defined; otherwise KL(Q‖Q′) = ∞.

For q,q′ ∈ [0,1] we define

kl(q‖q′) = q log(
q
q′
)+(1−q) log(

1−q
1−q′

) , (2.5)

which is called the binary KL divergence, and is the divergence of the Bernoulli
distribution with parameter q from the Bernoulli distribution with parameter q′.

As acknowledged before, the PAC-Bayes literature started with the works of
McAllester who coined the name ‘PAC-Bayes’ [McAllester, 1998] and proved a clas-
sical form of the PAC-Bayes bound [McAllester, 1999]. This line of work owes a
lot to others: Langford and Seeger [2001], Seeger [2002] obtained a new form of the
bound now called PAC-Bayes-kl; Maurer [2004] clarified that the analysis holds for any
loss function with range [0,1] (not only the zero-one loss) and established the optimal
dependence on the sample size; Catoni [2004, 2007] clarified the form of the optimal
distributions and in particular Catoni [2007] presented a new PAC-Bayes bound. We
present next a general theorem from which all these PAC-Bayes bounds can be derived
as special cases. This theorem follows that of Germain et al. [2009] with a minor
modification which is explained in the nota bene after the theorem.
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Theorem 2.1 (general PAC-Bayes theorem). Let the triple (W,Z, `) consist of a weight
spaceW ⊂Rp, an example space Z , and a loss function ` :W×Z → [0,∞). Let n be a
fixed positive integer, and S = Zn. Let L̂ : S ×W → R be the empirical risk functional
defined as L̂(s,w) = n−1

∑
n
i=1 `(w,zi) for s= (z1, . . . ,zn)∈S; and write L̂s(w) = L̂(s,w).

Let P1 ∈M1(Z) and let L :W → [0,∞) be the risk functional L(w) = E[`(w,Z)] with
Z ∼ P1.

For any convex function F : R2→ R, define f (s,w) = F(L(w), L̂s(w)) for (s,w) ∈
S ×W . For any Pn ∈M1(S) and Q0 ∈M1(W), let ξ be the exponential moment:

ξ =
∫
S

∫
W

e f (s,w)Q0(dw)Pn(ds) . (2.6)

Then for any δ ∈ (0,1), with probability at least 1−δ over the random draw of size-n
sample S∼ Pn, simultaneously for all distributions Q overW we have

F(L(Q), L̂S(Q))≤ KL(Q‖Q0)+ log(ξ/δ ) . (2.7)

N.B.: The minor difference with Germain et al. [2009, Theorem 2.1] is that in our
Theorem 2.1 the sample size is absorbed into the convex function F .

The proof is outlined in Section 2.3 below. This theorem is a general template for
deriving PAC-Bayes bounds. Conceptually, the derivation of a PAC-Bayes bound via
Theorem 2.1 consists of two components: (i) choose a function F (and a prior Q0) to
use in Eq. (2.7), and (ii) obtain an upper bound on the exponential moment ξ defined in
Eq. (2.6). Notice that ξ depends on the chosen F and the chosen prior Q0. In fact, ξ also
depends on Pn but we do not stress this dependence, considering that the inequality of
Eq. (2.7) is distribution-free. Also notice that in Theorem 2.1 the prior Q0 is a data-free
distribution, i.e. Q0 has no dependence on the data S on which the empirical term L̂S is
evaluated.3 The cost of the generality of Theorem 2.1 is that for each specific choice of
the bound (technically, a choice of a function F and a prior Q0) we need to study the
exponential moment ξ and, in particular, provide a reasonable upper bound on it.

Similar to Germain et al. [2009], the exponential moment is presented in Eq. (2.6)
with the ‘un-swapped’ order for the expectations, which is the default order by definition.
Notice that the ‘swapped’ order is equivalent to the un-swapped one in the current case
where the prior Q0 is a data-free distribution:

ξ =
∫
S

∫
W

e f (s,h)Q0(dw)P(ds) =
∫
W

∫
S

e f (s,h)P(ds)Q0(dw) =: ξswap .

The order has an impact on the techniques used to upper-bound the exponential moment.
In general, the un-swapped order is the default (Cf. Section 2.3.1 below, and Chapter 3).

Next we discuss the derivation of some PAC-Bayes bounds from Theorem 2.1.

3The extension of Theorem 2.1 to data-dependent priors was considered by Rivasplata et al. [2020].
Some highlights of this extension are given in Chapter 3 below.
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Assuming i.i.d. data (Pn = P⊗n
1 ) and boundedness of the loss function, namely

that its range is the interval [0,1], we recover the usual PAC-Bayes bounds by different
choices of the convex function F and a data-free distribution Q0 overW . In particular,
we may use the function F(x,y) = nkl(y‖x) for which Maurer [2004] showed that
the exponential moment satisfies ξ ≤ 2

√
n. This gives the PAC-Bayes-kl inequality,

originally called the PAC-Bayes relative entropy bound [Langford and Seeger, 2001,
Seeger, 2002], which concludes that for any δ ∈ (0,1), with probability of at least 1−δ

over size-n i.i.d. random samples S, simultaneously for all distributions Q overW it
holds that

kl(L̂S(Q)‖L(Q))≤
KL(Q‖Q0)+ log(2

√
n

δ
)

n
. (2.8)

The assumption that Q0 is a data-free distribution over W means that Q0 is fixed
without any dependence on the data on which the bound is evaluated (to be very specific,
Q0 cannot depend on the sample S on which L̂S is evaluated). The original form of
this bound that was derived by Langford and Seeger [2001] had a slightly different
dependence on n, the form presented here has the sharp dependence on n as clarified by
Maurer [2004].

The PAC-Bayes-kl bound can be relaxed in various ways to obtain other PAC-
Bayes bounds [see e.g. Tolstikhin and Seldin, 2013]. For instance, using the well-known
version of Pinsker’s inequality kl(p̂‖p) ≥ 2(p− p̂)2 one can lower-bound the binary
KL divergence, and then solve the resulting inequality for L(Q), which leads to a
PAC-Bayes bound of equivalent form to that of the classic bound of McAllester [1999],
hence we shall call it the PAC-Bayes-classic bound: for any δ ∈ (0,1), with probability
of at least 1−δ over size-n i.i.d. random samples S, simultaneously for all distributions
Q overW we have

L(Q)≤ L̂S(Q)+

√
KL(Q‖Q0)+ log(2

√
n

δ
)

2n
. (2.9)

Notice that the PAC-Bayes-classic bound is an upper bound on L(Q) that holds simul-
taneously for all distributions Q over weights, with high probability (over samples).
In particular, the upper bound may be optimised to choose a distribution Q in a data-
dependent manner. This is the idea behind the generic theme that I call PAC-Bayesian
Computation (PBC). Repeated use of the bound during optimisation over Q is legitimate,
without affecting the form of the bound, because the bound holds uniformly for all
distributions Q.

An alternative way to relax the PAC-Bayes-kl bound is using the refined version
of Pinsker’s inequality kl(p̂‖p)≥ (p− p̂)2/(2p) valid for p̂ < p [see e.g. Boucheron
et al., 2013, Lemma 8.4], which is tighter than the former version when p < 1/4, and
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this refined inequality gives

L(Q)≤ L̂S(Q)+

√
2L(Q)

KL(Q‖Q0)+ log(2
√

n
δ

)

n
. (?)

The difference to the result one gets from the well-known version of Pinsker’s inequality
is the appearance of L(Q) under the square root on the right hand side. This, in particular,
tells us that the inequality is tighter than Eq. (2.9) when the population loss, L(Q), is
smaller (specifically when L(Q)< 1/4). But it is exactly because of the appearance of
L(Q) on the right-hand side that this bound is not immediately useful for optimisation
purposes. However, one can view the above inequality as a quadratic inequality on√

L(Q). Solving this inequality for L(Q) leads to the PAC-Bayes-quadratic bound
[Rivasplata et al., 2019, Pérez-Ortiz et al., 2021b]: for any δ ∈ (0,1), with probability
of at least 1−δ over size-n i.i.d. random samples S, simultaneously for all distributions
Q overW we have

L(Q)≤


√

L̂S(Q)+
KL(Q‖Q0)+ log(2

√
n

δ
)

2n
+

√
KL(Q‖Q0)+ log(2

√
n

δ
)

2n

2

.

(2.10)

Similarly to the PAC-Bayes-classic bound, the PAC-Bayes-quadratic bound is an in-
equality that holds uniformly over all Q; hence the upper bound may be optimised with
respect to Q in order to obtain a data-dependent distribution over weights.

Alternatively, one could combine (?) with the inequality
√

ab≤ 1
2(λa+ b

λ
) which

is valid for all λ > 0. Then substituting a = L(Q) and restricting to λ ∈ (0,2), after
some rearrangement one obtains the PAC-Bayes-λ bound of Thiemann et al. [2017]:
for any δ ∈ (0,1), with probability of at least 1−δ over size-n i.i.d. random samples S,
simultaneously for all distributions Q overW and λ ∈ (0,2) we have

L(Q)≤ L̂S(Q)

1−λ/2
+

KL(Q‖Q0)+ log(2
√

n/δ )

nλ (1−λ/2)
. (2.11)

Notice that λ is independent from the function F(x,y) = nkl(y‖x) chosen to derive the
PAC-Bayes-kl bound. Then the fact that Eq. (2.11) holds for all λ ∈ (0,2) is explained
by the post hoc use of the inequality

√
ab ≤ 1

2(λa+ b
λ
) which is valid for all λ > 0,

while the restriction λ < 2 is to preserve of the inequality sign.
An interesting feature of the PAC-Bayes-λ bound is that this bound holds uniformly

over all Q and λ ∈ (0,2), hence in principle this bound is optimisable over both these
quantities. The work of Thiemann et al. [2017] discussed conditions under which the
PAC-Bayes-λ bound can be optimised alternatingly over Q and λ . Since this bound
holds uniformly over λ ∈ (0,2), it is possible to search a grid of λ -values without
worsening the bound. If the bound was not uniform over λ but instead it was valid for a
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fixed λ , then for a search over a number K of λ -values the bound would worsen by an
additive term of log(K) in the numerator of the second term.

Next we discuss some bounds that, unlike the previous discussed bounds, are not
relaxations of the PAC-Bayes-kl bound.

An important contribution to the PAC-Bayesian literature was made by Catoni.
In particular, Catoni [2007] derived a new PAC-Bayes bound: for any δ ∈ (0,1) and
any given β > 0, with probability of at least 1−δ over size-n i.i.d. random samples S,
simultaneously for all distributions Q overW we have

L(Q)≤ 1
1− e−β

[
1− exp

{
−
(

β L̂S(Q)+
KL(Q‖Q0)+ log(1/δ )

n

)}]
. (2.12)

This inequality can be derived as a consequence of Theorem 2.1 by using the convex
function F(x,y)= n log

(
1

1−x(1−e−β )

)
−βny with a fixed β > 0, for which Catoni [2007]

showed that the exponential moment term satisfies ξ ≤ 1. An important fact to keep in
mind is that the high-probability inequality of Eq. (2.12) holds for a fixed β > 0 only,
not uniformly, which is explained by the fact that the chosen function F depends on a
fixed value of β . This implies that the bound cannot be optimised over β for free.

McAllester [2013] showed that it is possible to obtain a ‘linearised’ form of
Catoni’s bound while restricting the free parameter in the bound: for any δ ∈ (0,1)
and any β > 1/2, with probability of at least 1−δ over size-n i.i.d. random samples S,
simultaneously for all distributions Q overW we have

L(Q)≤ 1
1− 1

2β

[
L̂S(Q)+β

KL(Q‖Q0)+ log(1/δ )

n

]
. (2.13)

This bound was recently studied by Dziugaite et al. [2021] in the context of studying
the role of data in PAC-Bayes bounds, in particular in learning the PAC-Bayes prior
from data.

Unlike the PAC-Bayes-λ bound which holds uniformly over all values of its
parameter λ in its domain, the bound of Catoni [2007] in Eq. (2.12), and likewise that
of McAllester [2013] in Eq. (2.13), holds for a fixed β in its corresponding domain.
Because of this fact, a search over several β -values necessarily worsens the bound. In
particular, by a simple use of the union bound, a grid search over say K possible values
for β would worsen the bound by an additive log(K).

There are many application areas that have used PAC-Bayes bounds, but there are
essentially two ways that a PAC-Bayes bound is typically applied: either (1) use the
bound to give a risk certificate for a predictor based on a distribution over hypotheses
learned by some method, or (2) turn the bound into a learning method by searching
a distribution that minimises the bound. The next two sections discuss further these
two uses of PAC-Bayes bounds. As discussed earlier, these two use cases are the
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central themes of this thesis. The first use case, which can be called risk certification,
is discussed further in Section 2.2.1. The second use case, which I propose to call
PAC-Bayesian computation (PBC), is discussed further in Section 2.2.2. Additional
discussion and some related literature are covered in Section 2.2.3

2.2.1 Risk certification via PAC-Bayes bounds
PAC-Bayes bounds, as well as other kinds of generalisation bounds, have been used
for certifying the risk of various prediction rules. Since the PAC-Bayes bounds involve
distributions over a given hypothesis class, these kinds of bounds are particularly suited
for prediction rules defined by a distribution over the hypothesis class. This includes
the randomised prediction rule and the weighted majority vote rule, which are two
important cases. The risk certificates are obtained evaluating numerical values of the
bounds. Then, a desirable feature is for these numerical values to be tight, so that
the numerical value of the risk certificate can be considered to be informative of the
(unobservable) value of the population risk.

In this context, the interest in PAC-Bayes bounds is their ability to deliver tight
certificates, which has been observed across a variety of learning problems with vari-
ous learning models, such as linear classifiers [Germain et al., 2009], support vector
machines [Ambroladze et al., 2007, Parrado-Hernández et al., 2012], decisions trees
[Lorenzen et al., 2019, Masegosa et al., 2020], among others. Recently, the ability of
PAC-Bayes bounds to give non-vacuous numerical bound values for neural network
models was reported by Dziugaite and Roy [2017], in the regime where the model has
many more parameters than training data; while their ability to give tight risk certificates
for deep learning models was shown by Pérez-Ortiz et al. [2021b] who also pointed out
that learning the PAC-Bayes prior is crucial for achieving tight values. The questions
of tightness of risk certificates for neural networks and the role of data in learning the
PAC-Bayes prior have been considered by Dziugaite et al. [2021].

2.2.2 PAC-Bayesian computation
As mentioned earlier, I propose to call PAC-Bayesian Computation (PBC) the generic
approach to learning a data-dependent distribution over hypotheses by minimising a
PAC-Bayes bound. At a high level, using a generalisation bound as a learning objective
is a strategy that makes sense considering that the minimiser obtained by this approach
will be a predictor whose risk is guaranteed to be bounded by the minimal value of
the learning objective. This approach has been explored in the literature with learning
objectives based on generalisation bounds that hold uniformly over a hypothesis class
[Freund, 1998, Langford and Blum, 2003].

The approach of using a PAC-Bayes bound as learning objective was mentioned
already by McAllester [1999], credit for this approach in various contexts is due also
to Germain et al. [2009], Seldin and Tishby [2010], Keshet et al. [2011], Noy and
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Crammer [2014], Keshet et al. [2017], possibility among others. Recently, the use of
this approach has also found success in training neural networks, see Dziugaite and Roy
[2017]. In fact, the recent resurgence of interest in PAC-Bayes bounds has been to a
large extent motivated by the interest in generalisation guarantees for neural networks.
Langford and Caruana [2001] used McAllester [1999]’s classical PAC-Bayesian bound
to evaluate the error of a (stochastic) neural network classifier. Dziugaite and Roy [2017]
obtained numerically non-vacuous generalisation bounds by optimising the same bound.
Subsequent studies (e.g. Rivasplata et al. [2019], Pérez-Ortiz et al. [2021b]) continued
this approach, sometimes with links to the generalisation of stochastic optimisation
methods (e.g. London [2017], Neyshabur et al. [2018], Dziugaite and Roy [2018b]) or
algorithmic stability.

The data-dependent distributions obtained by optimising a PAC-Bayes bound are
usually called ‘posterior’ distributions in the PAC-Bayesian literature. However, these
PAC-Bayes posterior distributions should not be confused with Bayesian posteriors. In
the frequentist PAC-Bayes analysis, what is called ‘prior’ is a reference distribution and
what is called ‘posterior’ is an unrestricted distribution, in the sense that there is no
likelihood-type factor connecting these two distributions. When learning ‘posteriors’ via
PBC, asking whether learned distribution approximates the true posterior is meaningless,
as the notion of ‘true PAC-Bayes posterior’ is nonexistent. The prior is used by a learner
only via the KL term in the bound. For this reason, PAC-Bayesian computation affords
an extra level of flexibility in the choice of distributions, even compared to generalised
Bayesian approaches [Bissiri et al., 2016].

Having said that, in practice the PAC-Bayes bounds are optimised over a restricted
class of distributions. The restriction to a specific class of distributions (e.g. Gaussian)
has desirable effects such as explicit analytic expressions for the KL term in the bound,
and computational tractability. Gaussian and Laplace distributions are two typical
choices of classes of distributions over which to optimise a PAC-Bayes bound [Noy
and Crammer, 2014, Blundell et al., 2015, Dziugaite and Roy, 2017, Pérez-Ortiz et al.,
2021b]. Arguably, the posterior Gibbs distributions [Dziugaite and Roy, 2018a] are
a sensible choice to explore, considering that these distributions are optimal for the
PAC-Bayes bounds [Catoni, 2007, Alquier et al., 2016, Guedj, 2019].

2.2.3 Additional discussion and related literature
The literature on PAC-Bayes bounds and their applications is vast. We briefly mention
the usual references McAllester [1999], Langford and Seeger [2001], Seeger [2002],
and Catoni [2007]; but see also Maurer [2004], and Keshet et al. [2011]. Note that
McAllester [1998, 1999] proved the first PAC-Bayesian theorems, and in fact coined
the name “PAC-Bayes” arguably taking inspiration from the work of Shawe-Taylor and
Williamson [1997] who carried out a PAC analysis of a Bayesian-style estimator. We
acknowledge the tutorials of Langford [2005] and McAllester [2013], the mini-tutorial
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of van Erven [2014], and the primer of Guedj [2019].

The general PAC-Bayes theorem presented in Theorem 2.1 is essentially equivalent
to the one of Germain et al. [2009], which was later re-used by Bégin et al. [2014,
2016]. A similar general theorem was given before by Audibert [2004]. The general
PAC-Bayes theorem presented in Theorem 2.1 makes it clear that there are essentially
two steps in deriving a PAC-Bayes bound: (i) Choose a function F and a prior Q0 to use
in Theorem 2.1, and (ii) find an upper bound for the corresponding exponential moment
ξ . The latter step, controlling the exponential moment, usually takes a considerable
part of the analysis, and typically this step informs the choices of F that are viable (i.e.
those for which bounds on ξ can be obtained).

Recently Rivasplata et al. [2020] reformulated the PAC-Bayes analysis in terms
of stochastic kernels, from which they derived a novel PAC-Bayes bound with a data-
dependent Gibbs prior. This work built on that of Dziugaite and Roy [2018a]. Another
salient contribution of Rivasplata et al. [2020] was revisiting the usual assumptions on
which PAC-Bayes bounds are derived, namely (a) data-free priors, (b) bounded losses,
and (c) i.i.d. data; and discussing ways to relax these assumptions. (Rivasplata et al.
[2020] gave examples relaxing (a) and (b).)

A line of work related to connecting PAC-Bayes priors to data was explored
by Catoni [2007], Lever et al. [2013], Pentina and Lampert [2014] and more recently
by Rivasplata et al. [2018], who assumed that priors are distribution-dependent. In
that setting the priors are still ‘data-free’ but in a less agnostic fashion (compared to
an arbitrary fixed prior), which allows to demonstrate improvements for “nice” data-
generating distributions. Data-dependent priors were investigated recently by Awasthi
et al. [2020], who relied on tools from the empirical process theory and controlled the
capacity of a data-dependent hypothesis class (see also Foster et al. [2019]).

The PAC-Bayes literature does contain a line of work that investigates relaxing
the restriction of bounded loss functions. A straightforward way to extend PAC-Bayes
inequalities to unbounded loss functions is to make assumptions on the tail behaviour of
the loss [Alquier et al., 2016, Germain et al., 2016a] or its moments [Alquier and Guedj,
2018, Holland, 2019], leading to interesting bounds in special cases. Recent work has
also looked into the analysis for heavy-tailed losses. For example, Alquier and Guedj
[2018] proposed a polynomial moment-dependent bound with f -divergence replacing
the KL divergence, while Holland [2019] devised an exponential bound assuming that
the second moment of the loss is bounded uniformly across hypotheses. An alternative
approach was explored by Kuzborskij and Szepesvári [2019], who proposed a stability-
based approach by controlling the Efron-Stein variance proxy of the loss. Least squares
regression (squared loss) was studied by Shalaeva et al. [2020] who improved results
of Germain et al. [2016a] and also relaxed the data-generation assumption to non-iid
data. It is worth mentioning other works related to extending PAC-Bayes bounds to
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statistically dependent data, see e.g. Alquier and Wintenberger [2012] who applied
Rio [2000]’s version of Hoeffding’s inequality, then derived PAC-Bayes bounds for
non-i.i.d. data, and used them in model selection for time series.

As we mentioned earlier, besides randomised predictions, other prediction schemes
may be derived from a distribution over hypotheses. Aggregation by exponential weight-
ing was considered by Dalalyan and Tsybakov [2007, 2008], weighted majority vote for
ensembles of decision trees were considered by Lorenzen et al. [2019], Masegosa et al.
[2020] and others, and the weighted majority vote in other settings has been studied
by Lacasse et al. [2006], Germain et al. [2015] and others. This list is far from being
complete.

Finally, it is worth mentioning that the PAC-Bayesian analysis extends beyond
bounds on the gap between population and empirical losses: A large body of lit-
erature has also looked into upper and lower bounds on the excess risk, namely,
QS[L]− infh∈H L(h), we refer e.g. to Catoni [2007], Alquier et al. [2016], Grünwald
and Mehta [2019], Kuzborskij et al. [2019], Mhammedi et al. [2019]. The approach
of analyzing the gap (for randomised predictors), which we follow in this work, is
generally complementary to such excess risk analyses.

N.B.: The discussion of the related literature just presented is borrowed from the
corresponding section of my paper Rivasplata et al. [2020].

2.3 Mathematical technicalities
Different communities use different notations to represent expectations, which at the
very bottom are integrals with respect to probability measures. In mathematics and
probability theory, the notations ρ[ f ] and 〈 f ,ρ〉 are often used as shorthand for the
integral

∫
W f (w)ρ(dw) whenever ρ is a measure overW and the function f :W → R

is integrable. Then if ρ is a probability, these notations are alternative ways to write
the expectation E[ f (W )] with respect to the random W ∼ ρ . In the PAC-Bayesian
literature, and more generally in the machine learning literature, it is common to write
the latter in the form EW∼ρ [ f (W )] arguably to show explicitly the random variable and
the distribution with respect to which the expectation is taken.

The population loss L(Q) and the empirical loss L̂S(Q), as defined in Eq. (2.3) and
Eq. (2.4), are written alternatively as Q[L] and Q[L̂S], respectively, using the notation
just described above. The latter was the notation used by Rivasplata et al. [2020] as it is
convenient for the proofs, by compressing the notation; while the former is convenient
for presenting the PAC-Bayes bounds in view of its intuitive and readable nature, as
discussed in Section 2.2.

In this thesis we follow the convention that random quantities are denoted with
capitals, while the possible values they may take are denoted with their lower case
counterparts, and their corresponding spaces (of all possible values) with calligraphic.
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Thus, for instance, we use W for the random weight vector; we use w for an arbitrary
realisation (possible value) of this weight vector, and we useW for the space of all
possible weight vectors. Similarly, the tripples Z,z,Z and X ,x,X and Y,y,Y follow this
convention, as does the triple S,s,S related to samples.

When f : S ×W → R is a sample- and weight-dependent function, we use the
shortcut fs(w) = f (s,w); then we may regard fs as a weight-dependent function for a
given s ∈ S. Note that if ρS is a data-dependent distribution, where S is random data,
and f : S ×W → R is integrable, then ρS[ fS] =

∫
W fS(w)ρS(dw) should be interpreted

as the conditional expectation E[ f (S,W )|S]. As a general rule, conditional expectation
will be made explicit as just indicated, while when using the expectation operator E[·]
we assume that it integrates over all the enclosed random variables. Similar comments
for the use of the probability operator P[·].

2.3.1 Proof of the general PAC-Bayes theorem
We start with a technical lemma that recalls a well-known inequality which can be
traced back to Csiszár [1975] and Donsker and Varadhan [1975].

Lemma 2.2 (Change of measure inequality). For any measurable function f :W → R
and any distributions Q,Q0 overW , the following inequality holds:

Q[ f ]≤ KL(Q‖Q0)+ logQ0[e f ] .

In particular, for any measurable function f : S ×W → R and any distributions Q,Q0

overW , and for any given s ∈ S , we have Q[ fs]≤ KL(Q‖Q0)+ logQ0[e fs].

Proof. Let f :W → R be measurable, and let Q,Q0 be any distributions overW . By a
simple change of measure, and Jensen’s inequality, we have:

log
∫
W

exp( f )dQ0 = log
∫
W

exp( f )
dQ0

dQ
dQ

≥
∫
W

log
(

exp( f )
dQ0

dQ

)
dQ

=
∫
W

f dQ+
∫
W

log
(dQ0

dQ

)
dQ .

Rewriting in terms of the notation introduced before, the inequality between the first and
last expressions is logQ0[e f ]≥Q[ f ]−KL(Q‖Q0), which is equivalent to the inequality
of the lemma.

The proof for f : S×W →R is similar. In particular, for any given s ∈ S we have:

log
∫
W

exp( fs)dQ0 ≥
∫
W

fs dQ+
∫
W

log
(dQ0

dQ

)
dQ ,

which translates into logQ0[e fs]≥ Q[ fs]−KL(Q‖Q0).
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Next we present the proof of Theorem 2.1. The theorem was stated for S = Zn

the space of size-n samples, and a distribution Pn ∈M1(S) that generates the size-n
random samples. For simplicity (and generality) in the proof given below we consider
an abstract measurable space S and a distribution P ∈M1(S).

Proof of Theorem 2.1. Let F : R2→ R be a convex function, and let f : S ×W → R
be the function defined by f (s,w) = F(L(w), L̂s(w)) for (s,w) ∈ S ×W .

Fix a distribution Q0 overW , and consider the function φ : S → [0,∞] defined by

φ(s) = sup
Q

{∫
W

fs dQ−KL(Q‖Q0)

}
where the supremum is over all distributions Q overW .

Let P ∈M1(S). By Lemma 2.2,

E[eφ(S)] =
∫
S

eφ dP≤
∫
S

∫
W

e f (s,w)Q0(dw)P(ds) =: ξ .

Then, applying Markov’s inequality, for any δ ∈ (0,1) we have:

P[φ(S)> log(ξ/δ )] = P[eφ(S) > ξ/δ ]≤ E[eφ(S)]

ξ/δ
≤ ξ

ξ/δ
= δ .

Therefore, with probability of at least 1−δ over the random draw of S∼ P we have the
inequality φ(S)≤ log(ξ/δ ), i.e. simultaneously for all Q we have∫

W
fS(w)Q(dw)≤ KL(Q‖Q0)+ log(ξ/δ ) .

Finally, by the convexity of F and Jensen’s inequality, we have∫
W

fS(w)Q(dw) =
∫
W

F(L(w), L̂S(w))Q(dw)

≥ F
(∫

W
L(w)Q(dw),

∫
W

L̂S(w)Q(dw)
)
= F(L(Q), L̂S(Q)) .

This completes the proof of Theorem 2.1 upon replacing P with Pn.

Notice, in particular, the part of the proof that applies Markov’s inequality to the
random variable φ(S). Since the function φ is defined by taking a supremum over Q,
this explains why the high-probability inequality of Theorem 2.1, namely Eq. (2.7),
holds uniformly over all distributions Q over W , which was expressed equivalently
by the phrase “simultaneously for all distributions Q over W” in the conclusion of
Theorem 2.1 as well as the statement of PAC-Bayes bounds derived from it.





Chapter 3

PAC-Bayes analysis with stochastic
kernels

N.B.: The content of this chapter comes from my paper Rivasplata et al. [2020]. Minor
updates were made to improve the clarity.

Chapter Layout. This chapter is organised as follows. Section 3.1 discusses
the definition of stochastic kernels and proposes to use it to formalise data-dependent
distributions over weights. Section 3.2 presents the main results of this work, namely,
the basic inequalities for stochastic kernels of Theorem 3.1 and the general PAC-Bayes
theorem for stochastic kernels of Theorem 3.2. Then, Section 3.3 gives a discussion
of the implications of these results, including how from Theorem 3.1 one may derive
various PAC-Bayes style bounds that have similar forms to the well-known PAC-Bayes
bounds in the literature, and also new kinds of PAC-Bayes bounds. Finally, Section 3.4
concludes the chapter and discusses future work.

3.1 Data-dependent distributions as stochastic kernels
The formal definition presented in this section requires explicit reference to the sigma
algebras on the spaces of interest (sample space and weight space). Accordingly, the
space of size-n samples S is equipped with a sigma algebra1 that we denote ΣS , and the
weight spaceW is equipped with a sigma algebra that we denote ΣW .

A data-dependent (or sample-dependent) distribution overW is formalised as a
stochastic kernel from S toW , which is defined as a mapping Q : S×ΣW → [0,1] such
that (i) for each B ∈ ΣW the function s 7→ Q(s,B) is measurable; and (ii) for each s ∈ S
the function Qs : B 7→ Q(s,B) is a probability measure overW . We write K(S,W) to
denote the set of all stochastic kernels from S to —distributions over—W , and we
reserve the notationM1(W) for the set of ‘data-free’ distributions overW . Notice that
M1(W)⊂K(S,W), since every ‘data-free’ distribution can be regarded as a constant
kernel.

1Recall that a sigma-algebra on a space X is a collection of subsets of X that contains the set X itself,
and is stable under complements and countable unions and intersections.
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In the definition of stochastic kernel, the condition (ii) says that for each fixed
sample s one has an associated distribution overW , and in fact this condition defines
the notation Qs for the distribution associated to a given sample s under the kernel Q.
On the other hand, condition (i) is mainly technical and its role is ensuring measurability
of the mapping that takes in samples and outputs distributions.

Stochastic kernels are well-known in the literature on stochastic processes, where
they are also called transition kernels or probability kernels; see for instance Kallenberg
[2017], Meyn and Tweedie [2009] and Ethier and Kurtz [1986]. The name ‘kernel’
is arguably justified by the fact that these objects are the basic building blocks for
constructing the finite-dimensional distributions of some kinds of stochastic processes.
Stochastic kernels have appeared in the learning theory literature under the names of
regular conditional probabilities [Catoni, 2004, 2007, Alquier, 2008] or Markov kernels
[Xu and Raginsky, 2017].

To have a tangible example of stochastic kernel, we may consider a Gaussian kernel
which takes in an arbitrary sample s ∈ S and produces a Gaussian distribution over
W = Rp with sample-dependent mean m(s) ∈ Rp and sample-dependent covariance
Σ(s) ∈ Rp×p. This kernel is the function Q : S ×ΣW → [0,1] with formula

Q(s,B) =C
∫

B
exp
{
−‖w−m(s)‖2

Σ(s)−1

}
µ(dw) ,

where C > 0 is the normalisation factor, µ is the Lebesgue measure on Rp, and we used
the notation ‖w‖2

M = w>Mw so that ‖·‖M is the norm induced by the matrix M ∈ Rp×p

when this matrix is positive definite. Then, conditions (i) and (ii) are met. Furthermore,
following the notation convention declared in condition (ii), for any given sample s we
then denote by Qs the probability measure (overW) defined by the right-hand side of
the preceding equation; this measure acts on sets B ∈ ΣW as follows:

Qs(B) =C
∫

B
exp
{
−‖w−m(s)‖2

Σ(s)−1

}
µ(dw) .

Moreover, given a random sample S drawn from some distribution over S , we then have
an associated random measure QS overW .

In general, if Q ∈ K(S,W) is a stochastic kernel from S toW , then the notation
Qs stands for the distribution over W corresponding to an arbitrary sample s, and
accordingly the notation QS stands for the distribution over W corresponding to a
randomly drawn sample S. One well-known example of data-dependent distributions,
which will be used in Chapter 4 and Chapter 5, is that of Gaussian distributions with a
data-dependent mean vector and a possibly data-dependent covariance matrix, such as
described in the previous paragraph. Another important example is the data-dependent
Gibbs distribution, where QS is of the form QS(dw) ∝ e−γL̂S(w)µ(dw) for some γ > 0,
with µ a base measure overW .
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In this work we present a basic inequality for stochastic kernels (Theorem 3.1
below) and a general PAC-Bayes style theorem for stochastic kernels (Theorem 3.2
below). These results are applicable to data-dependent distributions over a hypothesis
space, which can be represented as stochastic kernels. To make a case for the usefulness
of this approach, we show that Theorem 3.2 encompasses PAC-Bayes style bounds of
similar forms to the usual PAC-Bayes bounds in the literature [McAllester, 1998, 1999,
Seeger, 2002, Catoni, 2007, Thiemann et al., 2017], while at the same time Theorem 3.2
enables new PAC-Bayes bounds. Importantly, this study takes a critical stand on the
“usual assumptions” on which PAC-Bayes inequalities are based, namely, (a) data-free
prior, (b) bounded loss, and (c) i.i.d. data observations. We aim to clarify the role
of these assumptions and to illustrate how to obtain PAC-Bayes inequalities in cases
where these assumptions are removed. As we will soon see, the analysis leading to our
Theorem 3.2 shows that the PAC-Bayes priors can be data-dependent by default, and
also that the underlying loss function can be unbounded by default. Furthermore, the
proof of our Theorem 3.2 does not rely on the assumption of i.i.d. data observations,
which may enable new results for statistically dependent data in future research.

3.2 Main results: Two theorems for stochastic kernels
The following results involve data- and weight-dependent functions f : S ×W → R.
Notice that the order S ×W is immaterial—functionsW×S → R are treated the same
way. It will be convenient to define fs(w) = f (s,w).

If ρ ∈ M1(W) is a ‘data-free’ distribution, we will write ρ[ fs] to denote the
ρ-weighted average of fs(·) for fixed s, that is, ρ[ fs] =

∫
W fs(w)ρ(dw). When ρ is

data-dependent, that is, ρ ∈ K(S,W) is a stochastic kernel, we will write ρs for the
distribution over W corresponding to a fixed s, so ρs(B) = ρ(s,B) for B ∈ ΣW , and
ρs[ fs] =

∫
W fs(h)ρs(dw).

The joint distribution over S×W defined by P ∈M1(S) and Q ∈ K(S,W) is the
measure denoted by P⊗Q that acts on functions φ : S ×W → R as follows:

(P⊗Q)[φ ] =
∫
S

P(ds)
∫
W

Q(s,dw)[φ(s,w)] =
∫
S

∫
W

φ(s,w)Qs(dw)P(ds) .

The notation P⊗Q is standard for this construction, see e.g. Kallenberg [2017]. Drawing
a random pair (S,W ) ∼ P⊗Q is equivalent to drawing S ∼ P and drawing W ∼ QS.
In this case, with E denoting the expectation under the joint distribution P⊗Q, the
previous display takes the form E[φ(S,W )] = E[E[φ(S,W )|S]].

The joint distribution over S ×W defined by P ∈M1(S) and Q ∈ K(S,W), as
just constructed above and denoted P⊗Q, corresponds to what in Bayesian learning is
commonly written QW |SPS.

The first main result is the following theorem.
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Theorem 3.1 (Inequalities for stochastic kernels). Fix a probability P ∈M1(S), a
stochastic kernel Q0 ∈ K(S,W), and a measurable function f : S ×W → R, and let

ξ =
∫
S

∫
W

e f (s,w)Q0
s (dw)P(ds) .

(i) For any stochastic kernel Q ∈ K(S,W), for any δ ∈ (0,1), with probability of at
least 1−δ over the random draw of a pair (S,W )∼ P⊗Q we have

f (S,W )≤ log
(

dQS

dQ0
S
(W )

)
+ log(ξ/δ ) .

(ii) For any stochastic kernel Q ∈ K(S,W), for any δ ∈ (0,1), with probability of at
least 1−δ over the random draw of S∼ P we have

QS[ fS]≤ KL(QS‖Q0
S)+ log(ξ/δ ) .

Proof. Let Q0 ∈ K(S,W), and let E0 denote expectation under the joint distribution
P⊗Q0. Thus if S∼ P and W ∼ Q0

S we then have ξ = E0[E0[e f (S,W )|S]].
Let Q ∈ K(S,W) and let us denote by E the expectation with respect to the joint

distribution P⊗Q. Then, by a change of measure, we may re-write ξ = E0[e f (S,W )] as
ξ = E[e f̃ (S,W )] = E[eD] with

D = f̃ (S,W ) = f (S,W )− log
(

dQS

dQ0
S
(W )

)
.

Recall that when Y is a positive random variable, by Markov’s inequality, for any
δ ∈ (0,1), with probability of at least 1−δ we have: logY ≤ logE[Y ]+ log(1/δ ).

(i) Applying the previous inequality to Y = eD, with probability of at least 1−δ

over the random draw of the pair (S,W )∼ P⊗Q we get D≤ logE[eD]+ log(1/δ ).
(ii) Recall fS(W ) = f (S,W ). Notice that the conditional expectation given S

satisfies E[D|S] = QS[ fS]−KL(QS‖Q0
S) . By Jensen’s inequality, E[D|S]≤ logE[eD|S],

while from the previous inequality applied to Y = E[eD|S], with probability of at least
1−δ over the random draw of S∼ P we have logE[eD|S]≤ logE[eD]+ log(1/δ ).

Notice that in Theorem 3.1 the ‘prior’ Q0 is a stochastic kernel from S toW . Hence,
given a data set S, the corresponding Q0

S is by default a data-dependent distribution over
weights. Also note that the function f is unrestricted, and the distribution P ∈M1(S)
is unrestricted, except for integrability conditions to ensure that the exponential moment
ξ is finite.

Suppose the function f is a composition of the form f =F ◦A with A :S×W→R2

given by A(s,w) = (L(w), L̂s(w)) and F : R2→ R a convex function. In this case, by
Jensen’s inequality we have F(Qs[As])≤ Qs[F(As)] and Theorem 3.1(ii) then gives our
second main result:
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Theorem 3.2 (general PAC-Bayes for stochastic kernels). Let the triple (W,Z, `)
consist of a weight space W ⊂ Rp, an example space Z , and a loss function ` :
W×Z→ [0,∞). Let n be a fixed positive integer, and S =Zn. Let L̂ :S×W→R be the
empirical risk functional defined as L̂(s,w) = n−1

∑
n
i=1 `(w,zi) for s = (z1, . . . ,zn) ∈ S;

and write L̂s(w)= L̂(s,w). Let P1 ∈M1(Z) and let L :W→ [0,∞) be the risk functional
L(w) = E[`(w,Z)] with Z ∼ P1.

For any convex function F : R2→ R, define f (s,w) = F(L(w), L̂s(w)) for (s,w) ∈
S×W . For any Pn ∈M1(S) and Q0 ∈K(S,W), let ξ = (P⊗Q0)[e f ] be the exponen-
tial moment:

ξ =
∫
S

∫
W

e f (s,w)Q0
s (dw)Pn(ds) . (3.1)

Then for any Q ∈ K(S,H) and any δ ∈ (0,1), with probability of at least 1−δ over
the random draw of S∼ Pn we have

F(QS[L],QS[L̂S])≤ KL(QS‖Q0
S)+ log(ξ/δ ) . (3.2)

Notice the similarity with Theorem 2.1. There are, however, two important dif-
ferences: First, Theorem 2.1 is for a data-free distribution Q0, which means that Q0

cannot depend on the data set S on which L̂S is evaluated, whereas Theorem 3.2 is for a
stochastic kernel Q0 (from S toW), which in particular implies that Q0 can depend on
the same data set S used for evaluating L̂S. Second, the conclusion of Theorem 2.1 is a
high-probability inequality that holds simultaneously for all distributions Q; while that
of Theorem 3.2 holds for a fixed stochastic kernel Q.

In view that the ‘PAC-Bayes prior’ in Theorem 3.2 is a stochastic kernel, this
theorem may enable new bounds for data-dependent priors, while at the same time
it can be used to recover PAC-Bayes bounds of similar form to the usual ones which
were proved for ‘data-free’ priors, with the caviat that in this case the bounds hold for a
given ‘PAC-Bayes posterior’ (a given stochastic kernel). This implies that PAC-Bayes
bounds derived from Theorem 3.2 are not suitable for optimisation. Nevertheless, these
PAC-Bayes bounds that hold for a given stochastic kernel are applicable to the case of
risk certification for data-dependent distributions.

We emphasise that a ‘data-free’ distribution is equivalent to a constant stochastic
kernel: Q0

s = Q0
s′ for all s,s′ ∈ S. Hence M1(W) ⊂ K(S,W), which implies that

Theorem 3.2 does cover the usual case of data-free priors considered before in the
literature. However, an attempt to ‘recover’ the usual bounds from Theorem 3.2 would
give weaker conclusions that hold for a fixed posterior. Nevertheless, Theorem 3.2 can
be regarded as a general template for deriving PAC-Bayes style bounds, not just with
the usual ‘data-free’ priors such as those considered previously in the literature, but also
more generally with data-dependent priors.
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3.3 Discussion on implications of the main results
From Theorem 3.2 it is possible to derive PAC-Bayes style bounds of similar forms
to the usual bounds (namely, those discussed in Section 2.2). This is done by suitable
choices of the function F and a data-free prior Q0, with the clarification that in this case
the bounds hold for a given kernel (PAC-Bayes posterior) Q. For instance, F(x,y) =
2n(x− y)2 yields a PAC-Bayes style bound akin to the classical bound of McAllester
[1999], F(x,y) = nkl(y‖x) gives a bound akin to the bound of Langford and Seeger
[2001], Seeger [2002] (which is also known as the PAC-Bayes-kl bound), and for a
fixed β > 0 the function F(x,y) = n log

(
1

1−x(1−e−β )

)
−βny gives a bound of similar

form to the bound of Catoni [2007]. Furthermore, the choice F(x,y) = n(x− y)2/(2x)
leads to a bound akin to the PAC-Bayes-quadratic bound of Rivasplata et al. [2019], or
to one of similar form to the PAC-Bayes-λ bound of Thiemann et al. [2017].

An important role is played by ξ , the exponential moment of the chosen function
under the joint distribution Pn⊗Q0. As discussed above in Section 2.2, there are
essentially two main steps involved in obtaining a PAC-Bayes bound: (i) choose a
function F (and a prior Q0) to use in Theorem 2.1, and (ii) upper-bound the exponential
moment ξ . The same two steps are needed for obtaining bounds based on Theorem 3.2.

We emphasise that the “usual assumptions” on which PAC-Bayes bounds were
based, namely, (a) data-free prior, (b) bounded loss, and (c) i.i.d. data, played a role
only in the technique for controlling the exponential moment ξ . This is because with a
data-free Q0 we may swap the order of integration:

ξ =
∫
S

∫
W

e f (s,h)Q0(dw)P(ds) =
∫
W

∫
S

e f (s,h)P(ds)Q0(dw) =: ξswap .

Then bounding ξ proceeds by calculating or bounding ξswap for which there are readily
available techniques under the assumptions of bounded loss and i.i.d. data (see e.g.
Maurer [2004], Germain et al. [2009], van Erven [2014]). However, in principle these
restrictions may be relaxed if other techniques are used to control ξ that do not rely on
them, which is one of the important points that this work tries to highlight.

The novelty of Theorem 3.2 is in enabling PAC-Bayes style bounds where the
PAC-Bayes prior Q0 a data-dependent distribution. We discus below in Section 3.3.1 a
novel PAC-Bayes bound with a data-dependent Gibbs prior, which is a first example
of the new kinds of generalisation bounds that may be enabled by Theorem 3.2. The
trade-off is that the bounds based on Theorem 3.2 are for a fixed stochastic kernel
Q, while those based on Theorem 2.1 hold simultaneously for all distributions Q. In
particular, the bounds based on Theorem 2.1, such as those discussed in Section 2.2,
are suitable for optimisation over Q (because the bound holds uniformly for all Q). By
contrast, the bounds derived from Theorem 3.2 are suitable for risk certification (for the
data-dependent distribution QS found by some method).
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Interestingly, Theorem 3.2 does not impose any restrictions on the loss function `

that is used in defining L(w) and L̂s(w). This feature is shared by Theorem 2.1. Hence,
these theorems are, in principle, valid for any loss function: convex or non-convex,
bounded or unbounded. Previous PAC-Bayes bounds imposed a restriction of bounded
loss functions but, as pointed out above (and in Section 2.2), such restriction only played
a role in the technique used to control ξ .

Notice also that Theorem 3.2 and Theorem 2.1 hold for any data-generating
distribution Pn ∈M1(Zn), i.e. without restrictions on the data-generating process. In
particular, at the level of generality at which these general theorems are presented, they
hold beyond the i.i.d. data assumption. Hence, these theorems could potentially enable
new generalisation bounds for statistically dependent data.

The next two subsections try to illustrate the novel kinds of PAC-Bayes style
bounds with data-dependent priors that are enabled by Theorem 3.2.

3.3.1 A PAC-Bayes bound with a data-dependent Gibbs prior
We discuss a PAC-Bayes bound with a data-dependent prior that was given by Rivasplata
et al. [2020]: Choosing the function F(x,y) =

√
n(x− y) and choosing as ‘prior’ an

empirical Gibbs distribution Q0
s (dw) ∝ e−γL̂(w,s)µ(dw) for some fixed γ > 0 and base

measure µ overW , we proved that for any kernel Q ∈ K(S,W) and δ ∈ (0,1), with
probability of at least 1−δ over size-n i.i.d. random samples S we have

QS[L]−QS[L̂S]≤
1√
n

(
KL(QS‖Q0

S)+2
(

1+
2γ√

n

)
+ log

(1+
√

e
δ

))
. (3.3)

This bound follows from Theorem 3.2 and a stability analysis for the empirical Gibbs
distribution to control the exponential moment (the details are in [Rivasplata et al.,
2020, Appendix B]). To the best of my knowledge, this was the first work to extend the
PAC-Bayes analysis to stochastic kernels. The PAC-Bayes bound with a data-dependant
(Gibbs) prior just discussed shows the versatility of the approach. This framework
appears to be a promising theoretical tool to obtain new results, which potentially could
lead to tighter bounds.

Notice that this prior allowed to remove ‘log(n)’ from the usual PAC-Bayes
bounds (Cf. Section 2.2, the PAC-Bayes-kl bound and its relaxations). This was
one of the important contributions of Catoni [2007], who also used a data-dependent
Gibbs distribution, see Catoni [2007, Theorem 1.2.4, Theorem 1.3.1, & corollaries].
Interestingly, the choice Q = Q0 gives the smallest right-hand side in Eq. (3.3) (however,
it does not necessarily minimize the bound on QS[L]) which leads to the following for
the Gibbs learner: QS[L]−QS[L̂S]. 1/

√
n+ γ/n . Notice that this latter bound has an

additive 1/
√

n compared to the bound in expectation of Raginsky et al. [2017].
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3.3.2 PAC-Bayes bounds with d-stable data-dependent priors
Next we discuss an approach to convert any PAC-Bayes bound that is valid for a usual
‘data-free’ prior into a bound with a stable data-dependent prior, which is accomplished
by generalising a technique from Dziugaite and Roy [2018a]. We need a definition:
When we say that π ∈K(S,W) satisfies the DP property with ε > 0 (written DP(ε) for
short) we mean that whenever s and s′ differ only at one element, the corresponding
distributions overW satisfy:

dπs

dπs′
≤ eε .

This condition on the Radon-Nikodym derivative is equivalent to the condition that,
whenever s and s′ differ at one entry, the ratio π(s,A)/π(s′,A) is upper bounded by eε ,
for all sets A∈ΣW . Thus, the property entails stability of the data-dependent distribution
πs with respect to small changes in the composition of the n-tuple s. This definition
goes back to the literature on privacy-preserving methods for data analysis [Dwork
et al., 2015b]; however, we are interested in its formal properties only. It captures a
kind of ‘distributional stability’ which we refer to as ‘d-stability’ for short.

Essentially, Dziugaite and Roy [2018a] show that for any fixed ‘data-free’ distribu-
tion Q∗ ∈M1(W) and stochastic kernel Q0 ∈ K(S,W) satisfying the DP(ε) property,
one can turn the inequality F(QS[L],QS[L̂S])≤ KL(QS‖Q∗)+ log(ξ (Q∗)/δ ) into

F(QS[L],QS[L̂S])≤ KL(QS‖Q0
S)+ log(2ξ (Q∗)/δ )+

nε2

2
+ ε

√
n
2

log(
4
δ
) . (3.4)

In other words, if Eq. (3.2) holds with a data-free prior Q∗, then Eq. (3.4) holds with
a data-dependent prior that is distributionally stable (i.e. satisfies DP(ε)). Note that
different choices of F would lead to different bounds on ξ (Q∗) —essentially, upper
bounds on the exponential moment typically considered in the PAC-Bayesian literature.
For example, taking F(x,y) = nkl(y‖x) one can show that ξ (Q∗) ≤ 2

√
n [Maurer,

2004], and this leads to Theorem 4.2 of Dziugaite and Roy [2018a]: if Q0 ∈ K(S,W)

satisfies the DP(ε) property, then for any kernel Q ∈ K(S,W) and δ ∈ (0,1), with
probability at least 1−δ over size-n i.i.d. samples S we have

kl(QS[L̂S]‖QS[L])≤
1
n

(
KL(QS‖Q0

S)+ log(
4
√

n
δ

)+
nε2

2
+ ε

√
n
2

log(
4
δ
)

)
.

Eq. (3.4) is a general version of this result, whose derivation uses the notion of max-
information [Dwork et al., 2015a] and, in particular, an inequality that upper-bounds
this quantity. The details of the general conversion recipe (from ‘data-free’ prior to
‘data-dependent d-stable’ prior) are given in [Rivasplata et al., 2020, Appendix C].

N.B.: Rivasplata et al. [2020, Section 2.3] also presented an inequality for randomised
linear classifiers with the unbounded square loss and a data-dependent prior. That result
is not reproduced here because it is a bit of a detour from the topics of this thesis.
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3.4 Conclusion and Future Work
This chapter is based on my paper Rivasplata et al. [2020]. This work presented two
basic high-probability inequalities for stochastic kernels, and a general PAC-Bayes
theorem for stochastic kernels, from which one may derive PAC-Bayes style bounds
similar to the various known PAC-Bayes bounds, as well as novel bounds. The chapter
discussed the generality of the new framework, and its trade-offs compared to the
standard PAC-Bayes bounds. Most importantly, the new framework enabled PAC-Bayes
style bounds where the prior is a data-dependent distribution (kernel) by default, at the
price of conclusions that hold with high probability for a fixed ‘posterior’ distribution,
whereas the classical PAC-Bayes bounds hold uniformly for all distributions.

Notice that despite their variety and attractive properties, the results in the vast
majority of the previous literature on PAC-Bayes bounds shared two crucial limitations:
the prior Q0 cannot depend on the training data S and the loss function has to be bounded.
These limitations had been removed in the PAC-Bayesian literature in special cases
under strong assumptions. Additionally, the i.i.d. data assumption could be seen as
a third crucial limitation, since it prevents the applicability of PAC-Bayes bounds to
learning problems with statistically dependent data.

The work presented in this chapter (and in Section 2.2) clarified the role of the
requirements of fixed ‘data-free’ priors, bounded losses, and i.i.d. data, highlighting that
those requirements were used in the techniques to upper-bound an exponential moment
term, while the essential part of the PAC-Bayes argument remains valid without those
restrictions. This is an important insight indicating that to develop bounds that hold
without those classical requirements, one needs to find techniques for upper-bounding
the exponential moment corresponding to suitably chosen functions.

The chapter presented two bounds that illustrate the use of data-dependent priors.
The first example, that of Section 3.3.1, involved a data-dependent Gibbs distribution
and its proof used a stability analysis to upper-bound the exponential moment of a
suitably chosen function, which led to a novel PAC-Bayes style bound (Eq. (3.3)). The
second example, that of Section 3.3.2, generalised a technique from Dziugaite and Roy
[2018a] thus allowing to convert any PAC-Bayes bound which is valid for a data-free
prior into a bound for a d-stable data-dependent prior (Eq. (3.4)).

Future work should aim to derive novel PAC-Bayes bounds with data-dependent
priors. This may require novel techniques to control the exponential moments of suitably
chosen functions. Of particular interest is deriving tight bounds which could be helpful
for risk certification. Additional interesting questions concern deriving novel bounds
with unbounded losses, and bounds for statistically dependent data.





Chapter 4

PAC-Bayes bounds for stable
algorithms with
distribution-dependent priors

N.B.: The content of this chapter is my paper Rivasplata et al. [2018], with minor
modifications to make the content consistent with other chapters of this thesis.

This work combined two directions of research: algorithmic stability, and PAC-
Bayes bounds for algorithms that randomise with a data-dependent distribution. The
combination of these ideas enabled the development of risk bounds that exploit stability
of the learned hypothesis but are independent of the complexity of the hypothesis class.
Specifically, Rivasplata et al. [2018] derived PAC-Bayes bounds for Hilbert space valued
algorithms whose output is stable with respect to small changes in the composition of
the training set (the precise definition of stability is given in Definition 4.1 below). This
is an example of using a PAC-Bayes bound for risk certification. The PAC-Bayes-kl
bound is used here with ‘priors’ defined in terms of the data-generating distribution, as
introduced by Catoni [2007] and developed further e.g. by Lever et al. [2010, 2013]
and Parrado-Hernández et al. [2012].

The stability analysis carried out by Bousquet and Elisseeff [2002] followed and
extended the work of Lugosi and Pawlak [1994] and was further developed by Celisse
and Guedj [2016], Abou-Moustafa and Szepesvári [2017], Liu et al. [2017], Bousquet
et al. [2020], among others. This analysis shows that stability can be used to give
bounds on the generalisation of the learned functions if the learning algorithm is stable,
in the sense that slightly different training sets give similar solutions. Intuitively, this is
because stable learning should ensure that the output is not too sensitive to small changes
in the training set, and stability-based bounds depend on a quantity that measures this
sensitivity.

In this work stability is measured by the sensitivity coefficients (see Definition 4.1
below) of a Hilbert space valued algorithm. This setting encompasses learning algo-
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rithms whose output is a ‘weight vector’ in a Hilbert space of arbitrary dimension. We
provide an analysis leading to a PAC-Bayes bound for randomised classifiers under
Gaussian randomisation. As a by-product of the stability analysis we derive a concen-
tration inequality for the learned weight vector. Applying it to the solution of a Support
Vector Machine (SVM) we deduce a concentration bound for the SVM weight vector,
and a PAC-Bayes bound for the randomised predictor defined by Gaussian randomi-
sation centered at the SVM solution. Experimental results compare our new bound
with other stability-based generalisation bounds, and with a more standard PAC-Bayes
bound for randomised Gaussian classifiers. We also report experiments with their use
in model selection.

Chapter Layout. This chapter is organised as follows. Section 4.1, after briefly
going over some chapter-specific notations, defines the meaning of weight stability,
based on weight sensitivity coefficients. This is the stability notion on which the main
results (Theorem 4.2 and Corollary 4.3) are based. Then, Section 4.2 gives a side-by-
side comparison to other generalisation bounds. Section 4.3 presents the detailed proofs
of the main results. The technical Section 4.4 is about Gaussian distributions over an
infinite-dimensional Hilbert space. Section 4.5 shows the results of the experiments.
Finally, Section 4.6 concludes the chapter and discusses future work.

4.1 Definition and Main Results
N.B.: This chapter presents the results of Rivasplata et al. [2018] reformulated in terms
of the notation introduced in Chapter 2, for the sake of consistency.

A supervised learning algorithm is a function that maps finite lists of labelled
examples to hypotheses, where the latter are functions that belong to some hypothesis
class H. As discussed in Chapter 2, we focus on function classes of the form H =

{hw | w ∈W} corresponding to a weight spaceW . Each possible weight vector w ∈W
maps to a predictor function hw : X →Y . For the sake of simplicity we may consider
learning algorithms that take in a set of labelled examples and output a weight vector.
Writing Z = X ×Y for the space of input-label pairs, such a learning algorithm can be
formalised as a mapping A : ∪nZn→W .

We consider classification tasks, in which case it is natural to use the zero-one loss
as the loss function for defining the performance measures (risk, empirical risk). We use
the notation `01(y′,y) = 1[y′ 6= y] for the zero-one loss, where 1[·] is an indicator function
equal to 1 when the argument is true and equal to 0 when the argument is false. Under
this loss function the risk of w (see Eq. (2.1)) takes the form L01(w) = E[1[hw(X) 6=
Y ]] = P[hw(X) 6= Y ], i.e., L01(w) equals the probability of misclassifying the random
example (X ,Y )∼ P when using w; and the empirical risk of w (see Eq. (2.2)) over the
list of examples s = ((x1,y1), . . . ,(xn,yn)) is given by L̂01

s (w) = 1
n ∑

n
i=1 1[hw(xi) 6= yi],

i.e., L̂01
s (w) is the in-sample proportion of misclassified examples when using w.
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The main theorem of Rivasplata et al. [2018] concerns Hilbert space valued algo-
rithms, in the sense that the hypothesis space is a Hilbert space. Again, for the sake
of simplicity we consider algorithms whose output is a weight vector w from a weight
spaceW . In this case the norm ‖w‖ =

√
〈w,w〉 is defined by the inner product 〈·, ·〉,

and we may use this norm to measure the difference between the algorithm’s outputs
corresponding to different samples.

Some notation related to lists will be used to shorten the notation. We define
[n] := {1, . . . ,n} as the initial segment consisting of the first n positive integers. For
a list ξ1,ξ2,ξ3, . . . where the list members may belong to any given set, and for any
indexes i < j, we define ξi: j := (ξi, . . . ,ξ j), i.e. ξi: j is a shortcut for the segment of the
list from ξi to ξ j.

Definition 4.1. Consider a learning algorithm A : ∪nZn→W whereW is a separable
Hilbert space, and let ‖ · ‖ be the norm induced by the inner product of this space. We
define the weight sensitivity coefficient of A at sample size n as follows:

βn = sup
i∈[n]

sup
zi,z′i

‖A(z1:i−1,zi,zi+1:n)−A(z1:i−1,z′i,zi+1:n)‖ .

This definition is close in spirit to what is called “uniform stability” in the literature,
except that our definition concerns stability of the learned weight vector (measured
by a distance on the weight space), while e.g. Bousquet and Elisseeff [2002] deal
with stability of the loss functional. The latter could be called “loss stability” (in
terms of “loss sensitivity coefficients”) for the sake of informative names. A more
sensible definition than our definition of weight stability could be to consider a notion
of hypothesis stability quantified by hypothesis sensitivity coefficients where a suitable
notion of distance is assumed in the hypothesis space directly. The latter definition
could be better suited to account for the existence of symmetries where different weight
vectors may encode the same hypothesis.

Writing z1:n ≈ z′1:n when these n-tuples differ at one entry (at most), an equivalent
formulation to the above is βn = supz1:n≈z′1:n

‖A(z1:n)−A(z′1:n)‖. In particular, if two
random samples Sn and S′n differ only on one example, then ‖A(Sn)−A(S′n)‖ ≤ βn.
Thus our definition implies stability with respect to replacing one example with an
independent copy. Alternatively, one could define βn = esssupSn≈S′n ‖A(Sn)−A(S′n)‖,
which corresponds to the “uniform argument stability” of Liu et al. [2017]. We avoid
the ‘almost-sure’ technicalities by defining our βn’s as the maximal difference (in norm)
with respect to all n-tuples z1:n ≈ z′1:n. The extension to sensitivity when changing
several examples is natural: ‖A(z1:n)−A(z′1:n)‖ ≤ βn ∑

n
i=1 1[zi 6= z′i]. Note that βn is a

Lipschitz factor with respect to the Hamming distance. The “total Lipschitz stability” of
Kontorovich [2014] is a similar notion for stability of the loss functional. The “collective
stability” of London et al. [2013] is not comparable to ours (different setting) despite
the similar look.
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We consider randomised classifiers that operate as follows. Let Q ∈M1(W) be a
probability distribution over the weight space. To make a prediction the randomised
classifier picks a random W ∈W according to Q and predicts a label with hW . Each
prediction is made with a fresh draw of W . For simplicity we use the same label Q
for the probability distribution and for the corresponding randomised classifier. The
risk measures L(w) and L̂s(w) are extended to randomised classifiers by averaging:
L(Q)≡

∫
W L(w)Q(dw) is the average true risk of Q, and L̂s(Q)≡

∫
W L̂s(w)Q(dw) is

its empirical counterpart.
Recall that given two distributions Q,Q0 ∈M1(W), the Kullback-Leibler diver-

gence (a.k.a. relative entropy) of Q with respect to Q0 is

KL(Q‖Q0) =
∫
W

log
( dQ

dQ0

)
dQ .

Of course this makes sense when Q is absolutely continuous with respect to Q0, which
ensures that the Radon-Nikodym derivative dQ/dQ0 exists. For Bernoulli distribu-
tions with parameters q and q0 we write kl(q‖q0) = q log( q

q0
)+(1−q) log( 1−q

1−q0
), and

kl+(q‖q0) = kl(q‖q0)1[q < q0].

4.1.1 Main theorem: a PAC-Bayes bound for stable algorithms
with Gaussian randomisation

Theorem 4.2. Let A : ∪nZn→W be a Hilbert space valued algorithm. Suppose that
the post-training predictions are to be randomised according to Gaussian distributions
Q =N (A(S),σ2I). If A has weight stability coefficient βn at sample size n, then for any
randomisation variance σ2 > 0, for any δ ∈ (0,1), with probability of at least 1−2δ

over size-n i.i.d. samples S we have1

kl(L̂S(Q)‖L(Q))≤
nβ 2

n
2σ2

(
1+
√

1
2 log

( 1
δ

) )2
+ log(2

√
n

δ
)

n
.

The proof, which is given in Section 4.3 below, combines stability of the learned
weight vector (as in our Definition 4.1) and the PAC-Bayes-kl bound (see Eq. (2.8)
in Section 2.2). Notice that the randomising distribution Q is data-dependent, since
it is a Gaussian distribution centered at the data-dependent weight vector output by
the learning algorithm. Notice also that the scale parameter σ , which is the standard
deviation of Q in each direction, is fixed independently of the learning algorithm. This,
in particular, implies that one cannot optimise σ for free: Using the bound to find the
best out of K possible values for σ would worsen the bound by an additive log(K) in
the numerator of the upper bound.

1The log term in the corresponding result of Rivasplata et al. [2018] followed the form of the bound
presented by Langford [2005]. The form presented here is with the sharp dependence on n clarified by
Maurer [2004].
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4.1.2 Application: a PAC-Bayes bound for SVM with Gaussian
randomisation

For a Support Vector Machine (SVM) with feature map ϕ : X →W into a separable
Hilbert space W , we may identify2 a linear classifier cw(·) = sign(〈w,ϕ(·)〉) with a
vector w∈W . With this identification we can regard an SVM as a Hilbert space3 valued
mapping that based on a training sample S learns a weight vector W = SVM(S) ∈W .
In this context, stability of the SVM’s solution then reduces to stability of the learned
weight vector.

To be specific, let SVMλ (S) be the SVM that regularises the empirical risk over
the sample S = ((X1,Y1), . . . ,(Xn,Yn)) by solving the following optimisation problem:

argmin
w

(
λ

2
‖w‖2 +

1
n

n

∑
i=1

`(hw(Xi),Yi)

)
. (4.1)

Our stability coefficients in this case satisfy βn ≤ 2
λn (Example 2 of Bousquet and

Elisseeff [2002], adapted to our setting). Then a direct application of our Theorem 4.2
together with a concentration argument for the SVM weight vector (see our Corollary 4.8
below) gives the following:

Corollary 4.3. Let W = SVMλ (S). Suppose that the post-training predictions are ran-
domised according to Gaussian4 distributions Q =N (W,σ2I). For any randomisation
variance σ2 > 0, for any δ ∈ (0,1), with probability of at least 1−2δ over size-n i.i.d.
samples S we have

kl(L̂S(Q)‖L(Q))≤
2

σ2λ 2n

(
1+
√

1
2 log

( 1
δ

) )2
+ log(2

√
n

δ
)

n
.

In closing this section we mention that our main theorem is general in the sense
that it covers any Hilbert space valued algorithm. This result may be specialised to any
regularised ERM algorithm [Liu et al., 2017]. We applied it to SVM’s whose weight
sensitivity coefficients (as in our Definition 4.1) are known. It can be argued that neural
networks (NN’s) fall under this framework as well. Then an appealing future research
direction, with deep learning in view, is to figure out the sensitivity coefficients of NN’s
trained by Stochastic Gradient Descent. Then our main theorem could be applied to
provide non-vacuous bounds for the performance of NN’s, which we believe is very
much needed.

2Riesz representation theorem is behind this identification.
3W may be infinite-dimensional (e.g. Gaussian kernel).
4See Section 4.4 about the interpretation of Gaussian randomisation for a Hilbert space valued

algorithm.
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4.2 Comparison to other bounds
For reference we list several risk bounds (including ours). They are in the context of
binary classification (Y = {−1,+1}). For clarity, risks under the 0-1 loss are denoted
by L01 and risks with respect to the (clipped) hinge loss are denoted by Lhi. Bounds
requiring a Lipschitz loss function do not apply to the 0-1 loss. However, the 0-1 loss
is upper bounded by the hinge loss, allowing us to upper bound the risk with respect
to the former in therms of the risk with respect to the latter. On the other hand, results
requiring a bounded loss function do not apply to the regular hinge loss. In those cases
the clipped hinge loss is used, which enjoys boundedness and Lipschitz continuity.

4.2.1 P@EW: Our new instance-dependent PAC-Bayes bound
Our Corollary 4.3, with Q =N (Wn,σ

2I), a Gaussian centered at Wn = SVMλ (Sn) with
a fixed randomisation variance σ2, gives the following risk bound which holds with
probability ≥ 1−2δ :

kl(L̂01
S (Q)‖L01(Q))≤ 2

σ2λ 2n2

(
1+

√
1
2

log
( 1

δ

) )2

+
1
n

log
(2
√

n
δ

)
.

As will be clear from the proof (see Section 4.3 below), this bound is obtained from
the PAC-Bayes-kl bound (see Eq. (2.8)) using a prior Q0 =N (E[Wn],σ

2I) centered
at the expected weight. This bound is with λ as in our formulation of SVM given in
Eq. (4.1) above.

4.2.2 P@O: Prior at the origin PAC-Bayes bound
The PAC-Bayes-kl bound Eq. (2.8) again with Q =N (Wn,σ

2I), gives the following
risk bound which holds with probability ≥ 1−δ :

∀σ2, kl(L̂01
S (Q)‖L01(Q))≤ 1

2σ2n
‖Wn‖2 +

1
n

log
(2
√

n
δ

)
.

This is the PAC-Bayes bound for SVM given by Corollary 5.4 of Langford [2005],
which is obtained by using a prior Q0 =N (0,σ2I) centered at the origin.

4.2.3 Bound of Liu et al. [2017]
From Corollary 1 of Liu et al. [2017] (but with λ as in the formulation of Eq. (4.1)) we
get the following risk bound which holds with probability ≥ 1−2δ :

L01(Wn)≤ Lhi(Wn)≤ L̂hi
S (Wn)+

8
λn

√
2log

( 2
δ

)
+

√
1
2n

log
( 1

δ

)
.

We use Corollary 1 of Liu et al. [2017] with B = 1, L = 1 and M = 1 (clipped
hinge loss).
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4.2.4 Bound of Bousquet and Elisseeff [2002]

From Example 2 of Bousquet and Elisseeff [2002] (but with λ as in the formulation of
Eq. (4.1)) we get the following risk bound which holds with probability ≥ 1−δ :

L01(Wn)≤ Lhi(Wn)≤ L̂hi
S (Wn)+

2
λn

+
(

1+
4
λ

)√ 1
2n

log
( 1

δ

)
.

We use Example 2 and Theorem 17 (based on Theorem 12) of Bousquet and
Elisseeff [2002] with κ = 1 (normalised kernel) and M = 1 (clipped hinge loss).

In Section 4.2.5 below there is a list of different SVM formulations, and how to
convert between them. We found it useful when implementing code for experiments.

There are obvious differences in the nature of these bounds: the last two (Liu et al.
[2017] and Bousquet and Elisseeff [2002]) are risk bounds for the (un-randomised)
classifiers, while the first two (P@EW, P@O) give an upper bound on the KL-divergence
between the average risks (empirical to theoretical) of the randomised classifiers. Of
course inverting the KL-divergence we get a bound for the average theoretical risk in
terms of the average empirical risk and the (square root of the) right hand side. Also, the
first two bounds have an extra parameter, the randomisation variance (σ2), and one may
naturally ask when and how this parameter could be optimised. Note that P@O bound
is not based on stability, while the other three bounds are based on stability notions.
Next let us comment on how these bounds compare quantitatively.

Our P@EW bound and the P@O bound are similar except for the first term on
the right hand side. This term comes from the KL-divergence between the Gaussian
distributions (i.e. KL(Q‖Q0)). Our P@EW bound’s first term improves with larger
values of λ , which in turn penalise the norm of the weight vector of the corresponding
SVM, resulting in a small first term in P@O bound. Note that P@O bound is equivalent
to the setting of Q =N (µWn, I), a Gaussian with identity covariance and with center
along the direction of Wn at distance µ = 1/σ from the origin, and Q0 = N (0, I) a
Gaussian with identity covariance and center at the origin of the system of coordinates
(as discussed by Langford [2005] and implemented by Parrado-Hernández et al. [2012]).
This also explains why the P@O bound holds uniformly over σ , which is an important
difference with P@EW since the latter holds for a fixed σ .

The first term on the right hand side of our P@EW bound comes from the con-
centration of the weight vector (see our Corollary 4.8). Lemma 1 of Liu et al. [2017]
implies a similar concentration inequality for the weight vector, but it is not hard to see
that our concentration bound is slightly better.

Finally, in the experiments we compare numerically our P@EW bound with
Bousquet and Elisseeff [2002].
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4.2.5 SVM weight vector: clarification about formulations
We have a sample of size n. In the standard implementation the weight vector Wn(C)

found by SVM is a solution of the following optimisation problem:

Wn(C) = argmin
w

(
1
2
‖w‖2

H+C
n

∑
i=1

ξi

)
. (svm1)

In our work the weight vector W OURS
n (λ ) found by SVM is a solution of the following

optimisation problem (cf. Eq. (4.1)):

W OURS
n (λ ) = argmin

w

(
λ

2
‖w‖2

H+
1
n

n

∑
i=1

ξi

)
. (svm2)

In Bousquet and Elisseeff [2002] and Liu et al. [2017] the weight vector W B&E
n (λ )

found by SVM is a solution of the following optimisation problem:

W B&E
n (λ ) = argmin

w

(
λ‖w‖2

H+
1
n

n

∑
i=1

ξi

)
. (svm3)

The minimum is over w ∈H (an appropriate Hilbert space) and subject to some
constrains for the ξi’s in all cases. The relation between them is:

• W OURS
n (λ ) =W B&E

n (λ/2)

• W B&E
n (λ ) =Wn(C) with C = 1

2nλ

• W OURS
n (λ ) =Wn(C) with C = 1

nλ

4.3 Proofs
As we said before, the proof of our Theorem 4.2 combines stability of the learned weight
vector (in the sense of our Definition 4.1) and the PAC-Bayes-kl bound (see Eq. (2.8) in
Section 2.2), quoted next for reference: For any data-free distribution Q0 ∈M1(W),
and for any δ ∈ (0,1), with probability of at least 1−δ over the random draw of size-n
i.i.d. samples S, simultaneously for all distributions Q ∈M1(W) we have

kl(L̂S(Q)‖L(Q))≤
KL(Q‖Q0)+ log(2

√
n

δ
)

n
.

Consider a learning algorithm A : ∪nZn→W We use the PAC-Bayes-kl bound
with a Gaussian ‘posterior’ distribution Q = N (A(Sn),σ

2I) centered at the random
output A(Sn), and a Gaussian ‘prior’ Q0 =N (E[A(Sn)],σ

2I) centered at the expected
output, both with covariance operator σ2I. The KL-divergence between those Gaussians
scales with ‖A(Sn)−E[A(Sn)]‖2. More precisely:

KL(Q‖Q0) =
1

2σ2‖A(Sn)−E[A(Sn)]‖2 .
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Therefore, bounding ‖A(Sn)−E[A(Sn)]‖ will give (via the PAC-Bayes-kl bound) a
corresponding bound on the divergence between the average empirical risk L̂S(Q)

and the average population risk L(Q) of the randomised classifier Q. Then inverting
kl(L̂S(Q)‖L(Q)) with respect to its second argument we get an upper bound for L(Q) in
terms of the empirical L̂S(Q) and the stability coefficients, which holds with high proba-
bility. Stability (in the form of our Definition 4.1) implies a concentration inequality for
‖A(Sn)−E[A(Sn)]‖. This is done in our Corollary 4.7 (see Section 4.3.3 below) and
completes the circle of ideas to prove our main theorem. The proof of our concentration
inequality is based on an extension of the bounded differences theorem of McDiarmid
[1989] to vector-valued functions discussed next.

4.3.1 McDiarmid’s inequality for real-valued functions of the
sample

The training sample is Z1:n = (Z1, . . . ,Zn) where each example Zi is a random vari-
able taking values in the (measurable) space Z . We quote a well-known theorem of
McDiarmid [1989]:

Theorem 4.4. (McDiarmid’s inequality) Let Z1, . . . ,Zn be independent Z-valued
random variables, and f : Zn→ R a real-valued function such that for each i and for
each list of ‘complementary’ arguments z1, . . . ,zi−1,zi+1, . . . ,zn we have

sup
zi,z′i

| f (z1:i−1,zi,zi+1:n)− f (z1:i−1,z′i,zi+1:n)| ≤ ci .

Then for every ε > 0, P{ f (Z1:n)−E[ f (Z1:n)]> ε} ≤ exp
(
−2ε2

∑
n
i=1 c2

i

)
.

McDiarmid’s inequality applies to a real-valued function of independent random
variables. Next we present an extension to vector-valued functions of independent
random variables.

4.3.2 McDiarmid’s inequality for vector-valued functions of the
sample

Let Z1, . . . ,Zn be independent Z-valued random variables and f : Zn→W a function
into a separable Hilbert space. We will prove that bounded differences in norm5 implies
concentration of f (Z1:n) around its mean in norm, i.e., that ‖ f (Z1:n)−E f (Z1:n)‖ is
small with high probability.

Notice that McDiarmid’s theorem can’t be applied directly to f (Z1:n)−E f (Z1:n)

when f is vector-valued. We will apply McDiarmid to the real-valued ‖ f (Z1:n)−
E f (Z1:n)‖, which will give an upper bound for ‖ f −E f‖ in terms of E‖ f −E f‖. The
next lemma upper bounds E‖ f −E f‖ for a function f with bounded differences in

5The Hilbert space norm, induced by the inner product ofW .
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norm. The proof follows the steps of the proof of the classic result of McDiarmid [1989]
quoted above, we give the details in Section 4.3.4.

Lemma 4.5. Let Z1, . . . ,Zn be independent Z-valued random variables, and f : Zn→
W a function into a Hilbert spaceW satisfying the bounded differences property: for
each i and for each list of ‘complementary’ arguments z1, . . . ,zi−1,zi+1, . . . ,zn we have

sup
zi,z′i

‖ f (z1:i−1,zi,zi+1:n)− f (z1:i−1,z′i,zi+1:n)‖ ≤ ci .

Then E‖ f (Z1:n)−E[ f (Z1:n)]‖ ≤
√

∑
n
i=1 c2

i .

If the vector-valued function f (z1:n) has bounded differences in norm (as in
Lemma 4.5) and C ∈ R is any constant, then the real-valued function ‖ f (z1:n)−C‖
has the bounded differences property (as in McDiarmid’s theorem). In particular this
is true for ‖ f (z1:n)−E f (Z1:n)‖ (notice that E f (Z1:n) is constant over replacing Zi by
an independent copy Z′i) so applying McDiarmid’s inequality to it, combining with
Lemma 4.5, we get the following theorem:

Theorem 4.6. Under the assumptions of Lemma 4.5, for any δ ∈ (0,1), with probability
of at least 1−δ we have

‖ f (Z1:n)−E[ f (Z1:n)]‖ ≤

√
n

∑
i=1

c2
i +

√
∑

n
i=1 c2

i
2

log
( 1

δ

)
.

Notice that the vector c1:n = (c1, . . . ,cn) of difference bounds appears in the above

inequality only through its Euclidean norm ‖c1:n‖2 =
√

∑
n
i=1 c2

i .

4.3.3 Stability implies concentration
The weight sensitivity coefficients give concentration of the learned weight vector:

Corollary 4.7. Let A be a Hilbert space valued algorithm. Suppose A has weight
sensitivity coefficient βn at sample size n. Then for any δ ∈ (0,1), with probability
≥ 1−δ we have

‖A(S)−E[A(S)]‖ ≤
√

n βn

(
1+

√
1
2

log
( 1

δ

))
.

This is a consequence of Theorem 4.6 since ci ≤ βn for i = 1, . . . ,n, hence ‖c1:n‖ ≤√
n βn.

Last (not least) we deduce concentration of the weight vector W = SVMλ (S).

Corollary 4.8. Let W = SVMλ (S) be the weight vector output by SVM with regulari-
sation λ (see Eq. (4.1)) based on a random sample S = Z1:n = (Z1, . . . ,Zn). Suppose
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that the kernel used by SVM is bounded by B. For any λ > 0, for any δ ∈ (0,1), with
probability ≥ 1−δ we have

‖W −E[W ]‖ ≤ 2B
λ
√

n

(
1+

√
1
2

log
( 1

δ

))
.

Under these conditions we have hypothesis sensitivity coefficients βn ≤ 2B
λn (we

follow Bousquet and Elisseeff [2002], Example 2 and Lemma 16, adapted to our setting).
Then apply Corollary 4.7.

4.3.4 Proof of Lemma 4.5
Let Mn = f (Z1, . . . ,Zn) be a function of the independent Z-valued random variables
Z1, . . . ,Zn, where the function f : Zn→W maps into a separable Hilbert spaceW . Let
us write Mn−E[Mn] as the telescopic sum6

Mn−E[Mn] = Dn +Dn−1 + · · ·+D1

where

Di = E[Mn|Fi]−E[Mn|Fi−1]

and Fk = σ(Z1, . . . ,Zk) the σ -algebra generated by the first k examples. Thus

‖Mn−E[Mn]‖2 =
n

∑
i=1
‖Di‖2 +2 ∑

i< j
〈Di,D j〉 .

We need E‖Mn−E[Mn]‖2. Taking the expectation above makes the second sum disap-
pear since for i < j we have

E[〈Di,D j〉] = E
[
E[〈Di,D j〉|Fi]

]
= E

[
〈Di,E[D j|Fi]〉

]
and clearly E[D j|Fi] = 0 for j > i. Thus we have

E‖Mn−E[Mn]‖2 = E
n

∑
i=1
‖Di‖2 . (4.2)

Also recall the notation ξk:l = (ξk, . . . ,ξl) for k < l. It will be used extensively in
what follows.

Let us write the conditional expectations in terms of regular conditional probabili-
ties:

E[ f (Z1:n)|Fi] =
∫

f (Z1:i,zi+1:n) dPZi+1:n|Z1:i(zi+1:n|Z1:i) .

6The Doob decomposition: Di are martingale differences and their sum Mn−E[Mn] is a martingale.
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The random variables are labelled with capitals. The lower case letters are for the
variables of integration. We write PX for the distribution (probability law) of X .

Similarly

E[ f (Z1:n)|Fi−1] =
∫

f (Z1:i−1,zi:n) dPZi:n|Z1:i−1(zi:n|Z1:i−1)

=
∫

f (Z1:i−1,zi:n) dPZi|Z1:i−1(zi|Z1:i−1) · dPZi+1:n|Z1:i(zi+1:n|Z1:i−1,zi) .

By independence, PZi+1:n|Z1:i = PZi+1:n and PZi|Z1:i−1 = PZi (this latter is not really needed
in the proof, but shortens the formulae). Hence,

Di = E[ f (Z1:n)|Fi]−E[ f (Z1:n)|Fi−1] =
∫

f (Z1:i,zi+1:n) dPZi+1:n(zi+1:n)

−
∫

f (Z1:i−1,zi:n) dPZi(zi) dPZi+1:n(zi+1:n) .

Then Di is equal to the integral w.r.t. PZi+1:n(zi+1:n) of∫
[ f (Z1:i−1,Zi,zi+1:n)− f (Z1:i−1,zi,zi+1:n)] dPZi(zi) .

Notice that only the ith argument of f differs in the integrand. Therefore, if

‖ f (Z1:i−1,Zi,zi+1:n)− f (Z1:i−1,zi,zi+1:n)‖ ≤ c

then ‖Di‖ ≤ c. This shows that bounded differences for f (Z1:n) implies bounded
martingale differences (in norm).

Finally, using Jensen’s inequality and Eq. (4.2), and the bounded differences
assumption:

E‖Mn−E[Mn]‖ ≤
√

E‖Mn−E[Mn]‖2 ≤

√
n

∑
i=1

c2
i .

4.3.5 The average empirical error for randomised linear
classifiers with Gaussian randomisation

This section is about the calculation of the empirical term L̂01
S (Q) when Q is a Gaussian

distribution with center w0 ∈Rp and covariance matrix σ2I where I is the identity p× p.
The task is binary classification, and the learning model consists of linear classifiers.
The relevant loss function is the zero-one loss 1(hw(x) 6= y) and the linear classifiers are
of the form hw(x) = sign(〈w,φ(x)〉) for w ∈ Rp, where φ : X → Rp is a feature map
(the weight space here isW = Rp).

Writing G(w0,σ2I) to denote the Gaussian distribution on Rp with centre at the
vector w0 ∈ Rp and covariance matrix σ2I ∈ Rp×p with some σ > 0, we shall prove
that the empirical term L̂01

S (G(w0,σ2I)) satisfies

L̂01
S (G(w0,σ2I)) =

∫
X×Y

F̃

(
y w>0 φ(x)
σ‖φ(x)‖

)
dP̂n(x,y) (4.3)
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where P̂n =
1
n ∑

n
i=1 δ(Xi,Yi) is the empirical distribution7 on X ×Y associated to the n-

sample S=((X1,Y1), . . . ,(Xn,Yn)); and F̃ = 1−F where F is the cumulative distribution
function of the standard Gaussian:

F(x) =
∫ x

−∞

1√
2π

e−u2/2 du . (4.4)

In this section we write the derivation of Eq. (4.3). To make things more general
let G(w0,Σ) be a Gaussian with center w0 ∈ Rp and covariance matrix Σ ∈ Rp×p. But to
make notation simpler, in the calculations we identify the feature vectors φ(x) with the
input vectors x (correspondingly, we think that the dimension of x matches the feature
dimension p.). The labels are y ∈ {±1}. The classifier hw(·) = sign(〈w, ·〉) is identified
with the weight vector w. The zero-one loss of w on example (x,y) can be written as

1(hw(x) 6= y) =
1− sign(y〈w,x〉)

2
.

Consider the empirical error of a fixed w, namely L̂01
S (w) =

∫
X×Y 1(hw(x) 6= y) dP̂n(x,y).

Then the average empirical error when choosing a random W according to G(w0,Σ) is:

L̂01
S (G(w0,Σ)) =

∫
Rp

L̂01
S (w) dG(w0,Σ)(w) .

Plugging in the definition of L̂01
S (w) and swapping the order of the integrals and using

the above formula for the zero-one loss of the linear classifier, the right hand side is∫
Rp

∫
X×Y

1(hw(x) 6= y) dP̂n(x,y) dG(w0,Σ)(w)

=
∫
X×Y

∫
Rp

1(hw(x) 6= y) dG(w0,Σ)(w) dP̂n(x,y)

=
∫
X×Y

∫
Rp

1− sign(y〈w,x〉)
2

dG(w0,Σ)(w) dP̂n(x,y)

=
∫
X×Y

1
2
(1−A(x,y)) dP̂n(x,y) (4.5)

where for a fixed pair (x,y) we are writing

A(x,y) =
∫
Rp

sign(y〈w,x〉) dG(w0,Σ)(w) .

Decompose the last integral into two terms:

A(x,y) =
∫

y〈w,x〉>0
dG(w0,Σ)(w)−

∫
y〈w,x〉<0

dG(w0,Σ)(w) .

Notice that, by the symmetry of the Gaussian distribution, we have∫
y〈w,x〉<0

dG(w0,Σ)(w) = 1−
∫

y〈w,x〉>0
dG(w0,Σ)(w) .

7The integral with respect to the empirical distribution P̂n evaluates as a normalised sum (i.e. a sample
average):

∫
X×Y f (x,y) dP̂n(x,y) = 1

n ∑
n
i=1 f (Xi,Yi).
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For the random vector W ∼ G(w0,Σ) the linear functional y〈W,x〉 has first moment
E[y〈W,x〉] = y〈w0,x〉 and the second moment E[(y〈W,x〉)2] = ‖x‖2

Σ
+(〈w0,x〉)2, where

recall that y∈{±1} and so y2 = 1. Therefore, the functional y〈W,x〉 has a 1-dimensional
Gaussian distribution with mean y〈w0,x〉 and variance ‖x‖2

Σ
= 〈Σx,x〉. Then∫

y〈w,x〉>0
dG(w0,Σ)(w) = P[y〈W,x〉> 0]

= P
[

y〈W,x〉− y〈w0,x〉
‖x‖Σ

>
−y〈w0,x〉
‖x‖Σ

]
= P

[
N (0,1)>

−y〈w0,x〉
‖x‖Σ

]
= P

[
N (0,1)<

y〈w0,x〉
‖x‖Σ

]
= F

(
y〈w0,x〉
‖x‖Σ

)
.

Therefore

A(x,y) = 2F
(

y〈w0,x〉
‖x‖Σ

)
−1

and

1−A(x,y) = 2−2F
(

y〈w0,x〉
‖x‖Σ

)
= 2F̃

(
y〈w0,x〉
‖x‖Σ

)
.

Altogether, plugging back into Eq. (4.5) this gives

L̂01
S (G(w0,Σ)) =

∫
X×Y

F̃
(

y〈w0,x〉
‖x‖Σ

)
dP̂n(x,y) .

Notice that using Σ = σ2I and φ(x) instead of x this gives Eq. (4.3).

REMARK: Langford [2005] used a Qµ which is N (µ,1) along the direction of a
vector w, and N (0,1) in all directions perpendicular to w. To evaluate the empirical
error rate of the stochastic classifier, note that such Qµ is a Gaussian centered at
w0 = µw/‖w‖ and covariance the identity p× p matrix, giving the formula

L̂01
S (Qµ) =

∫
X×Y

F̃
(

µ
y w>φ(x)
‖w‖ ‖φ(x)‖

)
dP̂n(x,y) .

4.4 Gaussian distributions over a Hilbert space?
This section aims to provide a rigorous explanation for Gaussian randomisation in
Hilbert spaces, which has been used here and in several previous machine learning
works. For instance in the setting of SVM classifiers with feature map φ : X →H, the
output is a weight vector that lives in the Hilbert space H. With the Gaussian kernel
in mind, we are facing an infinite-dimensional separableH, which upon the choice of
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an orthonormal basis {e1,e2, . . .} can be identified with the space8 `2 ⊂ RN of square
summable sequences of real numbers, via the isometric isomorphismH→ `2 that maps
the vector w = ∑

∞
i=1 wiei ∈ H to the sequence (w1,w2, . . .) ∈ `2. Thus without loss of

generality we may regard the feature map as φ : X → `2 ⊂ RN.
The PAC-Bayes approach applied to SVMs says that instead of committing to the

weight vector Wn = SVM(Sn) we will randomise by choosing a fresh W ∈H according
to some probability distribution on H for each prediction. Suppose the randomised
classifier is to be chosen according to a Gaussian distribution. Although it commonly
appears in the literature, it is worth wondering just what is a Gaussian distribution over
the spaceH= `2.

Two possibilities come to mind for the Gaussian random classifier W : (1) accord-
ing to a Gaussian measure on `2, say W ∼N (µ,Σ) with mean µ ∈ `2 and covariance
operator Σ meeting the requirements (positive, trace-class) for this to be a Gaussian mea-
sure on `2; or (2) according to a Gaussian measure on the bigger RN, e.g. W ∼N (µ, I)
by which we mean the measure constructed as the product of a sequence N (µi,1)
of independent real-valued Gaussians with unit variance. These two possibilities are
mutually exclusive since the first choice gives a measure on RN whose mass is supported
on `2, while the second choice leads to a measure on RN supported outside of `2. A
good reference for this topic is Bogachev [1998].

Let us go with the second choice: N (0, I) =
⊗

∞
i=N (0,1), a ‘standard Gaussian’

on RN. This is a legitimate probability measure on RN (by Kolmogorov’s Extension
theorem). But it is supported outside of `2, so when sampling a W ∈ RN according
to this measure, with probability one such W will be outside of our feature space `2.
Then we have to wonder about the meaning of 〈W, ·〉 when W is not in the Hilbert space
carrying this inner product.

Let us write W = (ξ1,ξ2, . . .) a sequence of i.i.d. standard (real-valued) Gaussian
random variables. Let x = (x1,x2, . . .)∈ `2, and consider the formal expression 〈x,W 〉=
∑

∞
i=1 xiξi. Notice that

∞

∑
i=1

E[|xiξi|2] =
∞

∑
i=1
|xi|2 < ∞ .

Then (see e.g. Bogachev [1998], Theorem 1.1.4) our formal object 〈x,W 〉= ∑
∞
i=1 xiξi

is actually well-defined in the sense that the series is convergent almost surely (i.e. with
probability one), although as we pointed out such W is outside `2.

4.4.1 Predicting with the Gaussian random classifier
Let Wn = SVM(Sn) be the weight vector found by running SVM on the sample Sn. We
write it as Wn = ∑

n
i=1 αiYiφ(Xi). Let κ(·, ·) be the kernel doing the “kernel trick.”

Also as above let W be a Gaussian random vector in RN, and we write it as

8Just to be sure: RN stands for the set of all infinite sequences of real numbers.



64 Chapter 4.

W = ∑
∞
j=1 ξ je j with ξ1,ξ2, . . . i.i.d. standard Gaussians. As usual e j stands for the

canonical unit vectors having a 1 in the jth coordinate and zeros elsewhere.
For an input x ∈ X with corresponding feature vector φ(x) ∈H, we predict with

〈Wn +W,φ(x)〉=
n

∑
i=1

αiYiκ(Xi,x)+
∞

∑
j=1

ξ j〈e j,φ(x)〉 .

This is well-defined since
∞

∑
i=1

E[(ξ j〈e j,φ(x)〉)2] =
∞

∑
i=1

(〈e j,φ(x)〉)2 = ‖φ(x)‖2 ,

so the series ∑
∞
j=1 ξ j〈e j,φ(x)〉 converges almost surely (Bogachev [1998], Theo-

rem 1.1.4).

4.5 Experiments
N.B.: The results of experiments reported by Rivasplata et al. [2018] were based on using
the form of the PAC-Bayes-kl bound as presented by Langford [2005, Theorem 5.1] in
which the log term in the upper bound is log(n+1), whereas in our presentation above
we used the sharp dependence on n (as per Maurer [2004]) in which the corresponding
term is log(2

√
n). Notice that the difference in the bounds is 1

n [log(n+1)− log(2
√

n)],
which is negligible for large n.

The purpose of the experiments was to explore the strengths and potential weak-
nesses of our new bound in relation to the previous alternatives, as well as to explore the
bound’s ability to help model selection. For this, to facilitate comparisons, taking the
setup of Parrado-Hernández et al. [2012], we experimented with the five UCI datasets
described there. However, we present results for the datasets Pima (PIM) and Ringnorm
(RIN) only, as the results on the other datasets mostly followed the results on these
and these two datasets are the most extreme in terms of datase size with 768 and 7400
examples, respectively. Similarly, they are significantly different in terms of their input
dimensions with feature spaces of dimension 8 and 20, respectively.

Model and data preparation We used an offset-free SVM classifier with a Gaus-
sian RBF kernel κ(x,y) = exp(−‖x− y‖2

2/(2σ2)) with RBF width parameter σ > 0.
The SVM used the so-called standard SVM-C formulation which multiplies the total
(hinge) loss by C > 0; the conversion to our formulation Eq. (4.1) is given by C = 1

λn
where n is the number of training examples and λ > 0 is the penalty factor, as ex-
plained in Section 4.2.5. The datasets were split into a training and a test set using the
train test split method of the scikit-learn package [Pedregosa et al., 2011], keeping
80% of the data for training and 20% for testing.

Model parameters Following the procedure suggested in Chapelle and Zien [2005,
Section 2.3.1], we set up a geometric 7×7 grid over the (C,σ)-parameter space where
C ranges between 2−8C0 and 22C0 and σ ranges between 2−3σ0 and 23σ0, where σ0 is
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Figure 4.1: Tightness of P@O bound on PIM (left) and RIN (right) shown as the difference
between the bound and the test error of the underlying randomised classifier. Smaller
values are preferred.

the median of the Euclidean distance between pairs of data points of the training set,
and given σ0, C0 is obtained as the reciprocal value of the empirical variance of data in
feature space underlying the RBF kernel with width σ0. The grid size was selected for
economy of computation. The grid lower and upper bounds for σ were ad-hoc, though
they were inspired by the literature, while for the same for C, we enlarged the lower
range to focus on the region of the parameter space where the stability-based bounds
have a better chance to be effective: In particular, the stability-based bounds grow with
C in a linear fashion, with a coefficient that was empirically observed to be close to one.

Computations For each of the (C,σ) pairs on the said grid, we trained an SVM
model using a Python implementation of the SMO algorithm of Platt [1999], adjusted
to SVMs with no offset (Steinwart and Christmann [2008] argue that “the offset term
has neither a known theoretical nor an empirical advantage” for the Gaussian RBF
kernel). We then calculated various bounds using the obtained model, as well as the
corresponding test error rates (recall that the randomised classifiers’ test error is different
than the test error of the SVM model that uses no randomisation). The bounds compared
were the two mentioned hinge-loss based bounds: The bound by Liu et al. [2017] and
that of Bousquet and Elisseeff [2002]. In addition we calculated the P@O bound and
(our) P@EW bound. When these latter were calculated we optimised the randomisation
variance parameter σ2

noise by minimising error estimate obtained from the respective
bound (the binary KL divergence kl(L̂S(Q)‖L(Q)) was inverted numerically). Further
details of this can be found in Section 4.5.1.

Results As explained earlier our primary interest is to explore the strengths and
weaknesses of the various bounds. In particular, we are interested in their tightness,
as well as their ability to support model selection. As the qualitative results were
insensitive to the split, results for a single “random” (arbitrary) split are shown only.

Tightness: The hinge loss based bounds gave trivial bounds over almost all pairs
of (C,σ). Upon investigating this we found that this is because the hinge loss takes
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Figure 4.2: Tightness of P@EW bound (the bound derived here) on PIM (left) and RIN (right)
shown as the difference between the bound and the test error of the underlying
randomised classifier. Smaller values are preferred.

much larger values than the training error rate unless C takes large values (cf. Fig. 4.3
in Section 4.5.2). However, for large values of C, both of the bounds are vacuous. In
general, the stability based bounds (Liu et al. [2017], Bousquet and Elisseeff [2002]
and our bound) are sensitive to large values of C. Fig. 4.1 shows the difference between
the P@O bound and the test error of the underlying respective randomised classifiers as
a function of (C,σ) while Fig. 4.2 shows the difference between the P@EW bound and
the test error of the underlying randomised classifier. (Figs. 4.7 and 4.9 in Section 4.5.2
show the test errors for these classifiers, while Figs. 4.6 and 4.8 shows the bound.) The
meticulous reader may worry about that it appears that on the smaller dataset, PIM, the
difference shown for P@O is sometimes negative. As it turns out this is due to the
randomness of the test error: Once we add a confidence correction that accounts for the
randomness of the small test set (ntest = 154) this difference disappears once we correct
the test error for this. From the figures the most obvious difference between the bounds
is that the P@EW bound is sensitive to the value of C and it becomes loose for larger
values of C. This is expected: As noted earlier, stability based bounds, which P@EW is
an instance of, are sensitive to C. The P@O bound shows a weaker dependence on C if
any. In Section 4.5.2 we show the advantage (or disadvantage) of the P@EW bound
over the P@O bound on Fig. 4.10. From this figure we can see that on PIM, P@EW
is to be preferred almost uniformly for small values of C (C ≤ 0.5), while on RIN, the
advantage of P@EW is limited both for smaller values of C and a certain range of the
RBF width. Two comments are in order in connection to this: (i) We find it remarkable
that a stability-based bound can be competitive with the P@O bound, which is known
as one of the best bounds available. (ii) While comparing bounds is interesting for
learning about their qualities, the bounds can be used together (e.g., at the price of an
extra union bound).

Model selection: To evaluate a bound’s capability in helping model selection it is
worth comparing the correlation between the bound and test error of the underlying
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classifiers. By comparing Figs. 4.6 and 4.7 with Figs. 4.8 and 4.9 it appears that perhaps
the behavior of the P@EW bound (at least for small values of C) follows more closely
the behavior of the corresponding test error surface. This is particularly visible on RIN,
where the P@EW bound seems to be able to pick better values both for C and σ , which
lead to a much smaller test error (around 0.12) than what one can obtain by using the
P@O bound.

4.5.1 Details of optimising σ2
noise

This optimisation is “free” for the P@O bound as the bound is uniform over σ2
noise. In

the P@EW bound we adjusted the failure probability δ to accommodate the multiple
evaluations during the optimisation by replacing it with δ/(τ(τ +1)), where τ is the
number of times the P@EW bound is evaluated by the optimisation procedure. A
standard union bound argument shows that the adjustment to δ makes the resulting
bound hold with probability 1− δ regardless the value of τ . The SLSQP method
implemented in SCIPY was used as an optimiser, with an extra outer loop that searched
for a suitable initialisation, as SLSQP is a gradient based method and the P@O
bound can be quite “flat”. The same problem did not appear for the P@EW bound.
The attentive reader may be concerned that if τ gets large values, we, in a way, are
optimising the “wrong bound”. To check whether this is a possibility, we also computed
the “union bound penalty” for decreasing δ by the factor τ(τ + 1) as the difference
between the (invalid) bound where δ is unchanged and the bound where δ is decreased
and found that the penalty was generally orders of magnitudes smaller than the risk
estimate. Nevertheless, this may be a problem when the risk to be estimated is very
small, which we think is not very common in practice.

4.5.2 Additional figures
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Figure 4.3: Hinge loss on PIM (left) and RIN (right). For large values of C, the hinge loss is
reasonable, but this is not the case for small values.
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Figure 4.4: The bound of Liu et al. [2017] on PIM (left) and RIN (right). The bound is almost
always vacuous for reasons described in the text.
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Figure 4.5: The bound of Bousquet and Elisseeff [2002] on PIM (left) and RIN (right). The
bound is almost always vacuous for reasons described in the text.

4.6 Conclusion and Future Work
This chapter is based on my paper Rivasplata et al. [2018]. This work developed a
stability-based PAC-Bayes bound for randomised classifiers. We proceeded by investi-
gating the stability of the weight vector learned by a Hilbert space valued algorithm,
a special case being SVMs. We applied our main theorem (Theorem 4.2) to SVMs,
leading to our P@EW bound, and we compared it to other stability-based bounds and
to a previously known PAC-Bayes bound. The main finding is that perhaps P@EW is
the first nontrivial bound that uses (uniform) weight stability.

As discussed in this chapter (Cf. discussion after Definition 4.1) there are various
related notions of algorithmic stability. The notion of ‘weight stability’ used in this
chapter is close in spirit to the notion of ‘uniform stability’ [Bousquet and Elisseeff,
2002] since it considers the worst-case sensitivity to changing a single input data point.
While we considered changes as seen by the norm in the weight space, other stability
notions consider changes in the learned classifier, as seen by some distance function on
the hypothesis space, or changes in the loss functional applied to the classifiers. Then it
is natural to ask what stability notion is preferable for a given learning setting.
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Figure 4.6: The P@O bound on PIM (left) and RIN (right).
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Figure 4.7: Test error of the randomised classifiers underlying the P@O bound on PIM (left)
and RIN (right).

The stability-based bound presented here depends on several problem-related
quantities, such as the randomisation noise parameter σ , the regularisation factor λ ,
and the number n of training data points. A natural question is of course whether this
dependence is optimal and in what sense. While some comparisons to other bounds
were discussed, such comparisons only can answer how one bound compares to another
bound with respect to each of the involved quantities. A more interesting question
would be to study the optimal dependence on the quantities, and discuss a given bound
in terms of how far it is from being optimal with respect to each quantity.

N.B.: Hanneke and Kontorovich [2019] studied the optimality of risk bounds for SVMs,
but note the publication date which is posterior to Rivasplata et al. [2018].

The choice of the same variance parameter σ2 for both the prior and posterior in
our PAC-Bayes bound has raised some questions. It is clear that this choice is convenient
for computation of the KL term in the bound. An important question to address is about
the impact of this choice on the trade-off with the empirical error term L̂01

S (Q), since the
latter also depends on σ , as shown in Section 4.3.5. Another question which was left
unanswered is about the choice of covariance structure in the Gaussian distributions,
and perhaps even the choice of distributions that could give the best results.
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Figure 4.8: The P@EW bound on PIM (left) and RIN (right).
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Figure 4.9: Test error of the randomised classifiers underlying the P@EW bound on PIM (left)
and RIN (right).

As already mentioned at the end of Section 4.1, one may argue that neural networks
(NNs) also fall in the category of algorithms that output a weight vector, and therefore
the notion of weight stability (Definition 4.1) may be applied in this setting. Then, a
very interesting future research direction, with deep learning in view, is to figure out the
sensitivity coefficients of NN’s trained by Stochastic Gradient Descent. Then our main
theorem could be applied to provide non-vacuous bounds for the performance of NN’s.
Arguably, the stability of neural networks is a non-trivial problem which may require
the combination of theoretical and computational approaches.

This work reported in this chapter can be viewed as contributing a certification
strategy for randomised SVM classifiers, where the risk certificate is computed post-
training on the same data that was used to train the classifier. This work built on the
previous work of Parrado-Hernández et al. [2012] who studied learning and certification
strategies for randomised SVM classifiers. It may be connected also to a line of research
that aims to develop ‘self-bounding algorithms’ (Freund [1998], Langford and Blum
[2003]) in the sense that besides producing a predictor the algorithm also creates a
performance certificate based on the available data. This line of thought inspired further
works of mine with collaborators (Cf. Rivasplata et al. [2019], Pérez-Ortiz et al. [2021b])
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and indeed inspired the learning and certification strategies based on PAC-Bayes bounds
that are described in Chapter 5 which deals with training and certification of neural
network classifiers, and the promising paradigm of self-certified learning.





Chapter 5

Self-certified learning with
randomised neural networks and
PAC-Bayes with backprop

N.B.: The content of this chapter is borrowed from my paper Pérez-Ortiz et al. [2021b].
Minor modifications were made to make the content consistent with other chapters of
this thesis, and some updates were made to improve the clarity.

In a probabilistic neural network, the result of the training process is a distribution
over network weights, rather than simply fixed weights. Several prediction schemes
can be devised based on a probability distribution over weights. For instance, one
may use a randomised predictor, where each prediction is done by randomly sampling
the weights from the data-dependent distribution obtained as the result of the training
process. Another prediction rule consists of predicting always with the mean of the
learned distribution. Yet another prediction rule is the ensemble predictor based on
integrating the predictions of all possible parameter settings, weighted according to the
learned distribution.

In this chapter we experiment with probabilistic neural networks from a PAC-Bayes
approach. We name ‘PAC-Bayes with Backprop’ (PBB) the family of (probabilistic) neu-
ral network training methods derived from PAC-Bayes bounds and optimised through
stochastic gradient descent. The work reported here is the result of our empirical
studies undertaken to investigate three PBB training objectives. For reference, they
are the functions fquad, flambda and fclassic, shown respectively in Eq. (5.2), Eq. (5.3)
and Eq. (5.4) below. These objectives are based on PAC-Bayes bounds with similar
names, which are relaxations of the PAC-Bayes relative entropy bound [Langford and
Seeger, 2001], also known as the PAC-Bayes-kl bound in the literature. The classic
PAC-Bayes bound, from which fclassic is derived, is that of McAllester [1999], but we
use it with the improved dependence on the number of training patterns as clarified by
Maurer [2004]. The PAC-Bayes-lambda bound is that of Thiemann et al. [2017]. The
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PAC-Bayes-quadratic bound, from which fquad is derived, was originally introduced
in the preprint Rivasplata et al. [2019]. Importantly, our work shows tightness of the
numerical certificates on the error of the randomised classifiers generated by these
training methods. In each case, the computed certificate is valid on unseen examples
(from the same data distribution as the training data), and is evaluated using (part of)
the data set that was used to learn the predictor for which the certificate is valid. These
properties make our work a first example of self-certified learning, which proposes to
use the whole data set for learning a predictor and certifying its risk on unseen data,
without the need for data splitting protocols both for testing and model selection.

This line of research owes credit to previous works that have trained a probability
distribution over neural network weights by minimising a PAC-Bayes bound, or used a
PAC-Bayes bound to give risk certificates for trained neural networks. Langford and
Caruana [2001] developed a method to train a distribution over neural network weights
by randomising the weights with Gaussian noise (adjusted in a data-dependent way via a
sensitivity analysis), and computed an upper bound on the error using the PAC-Bayes-kl
bound.1 They also suggested that PAC-Bayes bounds might be fruitful for computing
non-vacuous generalisation bounds for neural nets. Dziugaite and Roy [2017] used a
training objective (essentially equivalent to fclassic) which was based on a relaxation
of the PAC-Bayes-kl bound. They optimised this objective using stochastic gradient
descent (SGD), and computed a confidence bound on the error of the randomised
classifier following the same approach that Langford and Caruana [2001] used to
compute their error bound. Dziugaite and Roy [2018a] developed a two-stage method,
which in the first stage trains a prior mean by empirical risk minimisation via stochastic
gradient Langevin dynamics (SGLD) [Welling and Teh, 2011], and in the second stage
re-uses the same data used for the prior in order to train a posterior Gibbs distribution
over weights; they also evaluate a relaxation of the PAC-Bayes-kl bound, based on ideas
from differential privacy [Dwork et al., 2015a,b], which accounts for the data re-use.

In this chapter we report experiments on MINIST and CIFAR-10 with the three
training objectives mentioned above. We used by default the randomised predictor
scheme (also called the ‘stochastic predictor’ in the PAC-Bayes literature), justified
by the fact that PAC-Bayes bounds give high-confidence guarantees on the expected
loss of the randomised predictor. Since training is based on a surrogate loss function,
optimising a PBB objective gives a high-confidence guarantee on the randomised
predictor’s risk under the surrogate loss. Accordingly, to obtain guarantees that are valid

1Numerical inversion of the PAC-Bayes-kl bound (we explain this in Section 5.3) gives a certificate
(upper bound) on the risk of the randomised predictor, in terms of its empirical error and other quantities.
The empirical error term is evaluated indirectly by Monte Carlo sampling, and a bound on the tail of the
Monte Carlo evaluation [Langford and Caruana, 2001, Theorem 2.5] is combined with the PAC-Bayes-kl
bound to give a numerical risk certificate that holds with high probability over the random draw of data
and Monte Carlo samples.
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for the classification error (i.e. the zero-one loss), we separately evaluate a confidence
bound for the error of the randomised predictor, based on part of the data that was used
to learn it (following the procedure that was used by Langford and Caruana [2001]
and Dziugaite and Roy [2017]). For comparison we also report test set error for the
randomised predictor, and for the other two predictor schemes described above, namely,
the posterior mean and the ensemble predictors.

Our work took inspiration from Blundell et al. [2015], whose results showed
that randomised weights achieve competitive test set errors; and from Dziugaite and
Roy [2017, 2018a], whose results gave randomised neural network classifiers with
reasonable test set errors and, more importantly, non-vacuous risk bound values. Our
experiments show that PBB training objectives can (a) achieve competitive test set
errors (e.g. comparable to Blundell et al. [2015] and empirical risk minimisation), while
also (b) deliver risk certificates with reasonably tight values. Our results show as well a
significant improvement over those of Dziugaite and Roy [2017, 2018a]: we further
close the gap between the numerical risk certificate (bound value) and the risk estimate
(test set error rate). As we argue below, this improvement comes from the tightness of
the PAC-Bayes bounds we used, which is established analytically and corroborated by
our experiments on MNIST and CIFAR-10 with deep fully connected networks and
convolutional neural networks.

Regarding the tightness, the training objective of Dziugaite and Roy [2017] (which
in our notation takes essentially the form of fclassic shown in Eq. (5.4) below) has the
disadvantage of being sub-optimal in the regime of small losses. This is because their
objective is a relaxation of the PAC-Bayes-kl bound via an inequality that is loose
in this regime. The looseness was the price paid for having a computable objective.
Note that small losses is precisely the regime of interest in neural network training
(although the true loss being small is data set and architecture dependent). By contrast,
our proposed training objectives ( fquad and flambda in Eq. (5.2) and Eq. (5.3) below) are
based on relaxing the PAC-Bayes-kl bound by an inequality that is tighter in this same
regime of small losses, which is one of the reasons explaining our tighter risk certificates
in MNIST (not for CIFAR-10, which could be explained by the large empirical loss
obtained at the end of the optimisation). Interestingly, our own re-implementation of
fclassic also gave improved results compared to the results of Dziugaite and Roy, which
suggests that besides the training objectives we used, also the training strategies we
used are responsible for the improvements.

A clear advantage of PAC-Bayes with Backprop (PBB) methods is being an
instance of self-certified2 learning: We say that a learning method is self-certified if
it uses all the available data in order to simultaneously output a predictor and a risk
certificate that is reasonably tight and valid at population level, i.e. the certificate is

2The name self-certified learning was originally introduced in my paper Pérez-Ortiz et al. [2021b].
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valid for any unseen data from the same distribution that generated the training data.
As mentioned in Chapter 1, self-certified learning is a re-branding of self-bounding
learning [Freund, 1998], and this chapter makes a case for self-certified learning using
PAC-Bayes bounds. For clarity, we emphasise that “using all the available data to
simultaneously produce a predictor and a risk certificate” should be understood in the
sense that all the data is used by the learning strategy to output a predictor, and therefore
the risk certificate must be computed on the same (or part of the) data used for learning
the predictor. The value of self-certified learning algorithms is in the possibility of using
of all the available data to achieve both goals (learning a predictor and certifying its
risk) simultaneously, thus making efficient use of the available data. This chapter shows
learning and certification strategies based on PAC-Bayes bounds which could lead us to
self-certified learning. Thus, when training probabilistic neural nets by PBB methods
the output is not just a predictor but simultaneously a tight risk certificate that guarantees
the quality of predictions on unseen examples. Note that risk certificates per se will not
impress until their reported values match or closely follow the classification error rates
evaluated on a test set, so that the risk certificate is informative of the out-of-sample
error. This is where our work makes a significant contribution, since our PBB training
methods lead to risk certificates for neural nets with much tighter values than previous
works in the literature. Once again, the solution found by our learning procedure comes
together with a high-confidence guarantee that certifies its risk under the surrogate
training loss, and to obtain a high-confidence guarantee for the classification error
(zero-one loss) we evaluate post training a risk bound. A more ambitious goal would
be to establish calibration3 of the surrogate cross-entropy loss, so then minimising it
would guarantee minimal classification error.

We would like to highlight the elegant simplicity of the methods presented here:
Our results are achieved i) with priors learnt through empirical risk minimisation of the
surrogate loss on a subset of the data set (which does not overlap with the data used for
computing the risk certificate for the randomised predictor, thus in line with classical
PAC-Bayes priors) and ii) via classical SGD optimisation. In contrast, Dziugaite and
Roy [2018a] trained a special type of data-dependent PAC-Bayes prior on the whole
data set using SGLD optimisation. They justified this procedure arguing that the
limit distribution of SGLD satisfies the differential privacy property (but a finite-time
guarantee was missing), and relaxed the PAC-Bayes-kl bound with a correction term
based on the concept of max-information4 to account for using the same data to train
the prior mean and to evaluate the bound. Furthermore, our methods do not involve
tampering with the training objective, as opposed to Blundell et al. [2015], who used
a “KL attenuating trick” by inserting a tunable parameter as a factor of the Kullback-

3This is akin to results on calibration of the surrogate hinge loss, cf. Steinwart and Christmann [2008].
4Dwork et al. [2015a,b] proposed this concept in the context of adaptive data analysis.
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Leibler (KL) divergence in their objective. Our work highlights the point that it is
worthwhile studying simple methods, not just to understand their scope or for the sake
of having a more controlled experimental setup, but also to more accurately assess the
real value added by the ‘extras’ of the more complex methods.

Contributions of this work:

1. We rigorously study and illustrate ‘PAC-Bayes with Backprop’ (PBB), a generic
strategy to derive (probabilistic) neural network training methods from PAC-Bayes
bounds.

2. We propose —and experiment with— two new PBB training objectives: one derived
from the PAC-Bayes-quadratic bound of Rivasplata et al. [2019], and one derived
from the PAC-Bayes-lambda bound of Thiemann et al. [2017].

3. We also re-implement the training objective based on the classic PAC-Bayes bound
that was used by Dziugaite and Roy, for the sake of comparing our training objectives
and training strategy, both with respect to test set accuracy and risk certificates
obtained.

4. We connect PAC-Bayes with Backprop (PBB) methods to the Bayes-by-Backprop
(BBB) method of Blundell et al. [2015] which is inspired by Bayesian learning and
achieved competitive test set accuracy. Unlike BBB, our training methods require
less heuristics and also provide a risk certificate; not just an error estimate based on
a test set.

5. We demonstrate via experimental results that PBB methods might be able to achieve
self-certified learning with nontrivial certificates: obtaining competitive test set
errors and computing non-vacuous bounds with much tighter values than previous
works.

Broader Context. Deep learning is a vibrant research area. The success of deep
neural network models in several tasks has motivated many works that study their opti-
misation and generalisation properties, some of the collective knowledge is condensed
in a few recent sources such as Montavon et al. [2012], Goodfellow et al. [2016], Aggar-
wal [2018]. Some works focus on experimenting with methods to train neural networks,
others aim at generating knowledge and understanding about these fascinating learning
systems. In this chapter we intend to contribute both ways. We focus on supervised
classification problems through probabilistic neural networks, and we experiment with
training objectives that are principled and consist of interpretable quantities. Further-
more, our work puts an emphasis on certifying the quality of predictions beyond a
specific data set.

Note that known neural network training methods range from those that have
been developed based mainly on heuristics to those derived from sound principles.
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Bayesian learning, for instance, offers principled approaches for learning data-dependent
distributions over network weights (see e.g. Buntine and Weigend, 1991, Neal, 1992,
MacKay, 1992, Barber and Bishop, 1997), hence probabilistic neural nets arise naturally
in this approach. Bayesian neural networks continue to be developed, with notable
recent contributions e.g. by Hernández-Lobato and Adams [2015], Martens and Grosse
[2015], Blundell et al. [2015], Gal and Ghahramani [2016], Louizos and Welling
[2016], Ritter et al. [2018], Khan and Lin [2017], Osawa et al. [2019], Maddox et al.
[2019], among others. Our work is complementary of Bayesian learning in the sense
that our methods also offer principled training objectives for learning probabilistic
neural networks. However, there are differences between the PAC-Bayes and Bayesian
learning approaches that are important to keep in mind (see our discussions in Chapter 1
and Section 5.1). It is worth mentioning also that some works have pointed out the
resemblance between PAC-Bayes bounds and the evidence lower bound (ELBO) of
variational Bayesian inference (Alquier et al., 2016, Achille and Soatto, 2018, Thakur
et al., 2019, Pitas, 2020). An insightful connection between Bayesian inference and the
frequentist PAC-Bayes approach was discussed by Germain et al. [2016a].

As we pointed out before, we are not the first to train a probabilistic neural network
by minimising a PAC-Bayes bound, or to use a PAC-Bayes bound to give risk certificates
for randomised neural nets. We already mentioned Langford and Caruana [2001] and
Dziugaite and Roy [2017, 2018a], whose works have directly influenced ours.5 Next, we
comment on some other works that connect PAC-Bayes with neural networks. London
[2017] approached the generalisation of neural networks by a stability-based PAC-
Bayes analysis, and proposed an adaptive sampling algorithm for SGD that optimises its
distribution over training instances using multiplicative weight updates. Neyshabur et al.
[2017, 2018] examined the connection between some specifically defined complexity
measures and generalisation, the part related to our work is that they specialised a
form of the classic PAC-Bayes bound and used Gaussian noise on network weights
to give generalisation bounds for probabilistic neural networks based on the norms of
the weights. Zhou et al. [2019] compressed trained networks by pruning weights to a
given target sparsity, and gave generalisation guarantees on the compressed networks,
which were based on randomising predictors according to their ‘description length’ and
a specialisation of a PAC-Bayes bound of Catoni [2007].

We would like to point out that the present work builds on Rivasplata et al. [2019].
In the meantime, more works have appeared that connect neural networks with PAC-
Bayes bounds in various settings: Letarte et al. [2019], Viallard et al. [2019], Lan et al.
[2020], possibly among others. We do not elaborate on these works as they deal with
significantly different settings than ours. The recent work by Dziugaite et al. [2021] is

5Note that Langford and Caruana [2001] and Dziugaite and Roy [2017] called them stochastic neural
networks, arguably because the distribution over weights moves during training.
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more closely related to ours in that they investigate the use of data to learn a PAC-Bayes
prior.

Chapter Layout. The rest of the chapter is organised as follows. Section 5.1
discusses the connection between our work and that of Blundell et al. [2015]. Section 5.2
presents the training objectives derived from the PAC-Bayes bounds that were discussed
in Chapter 2. The technical Section 5.3 describes the binary KL inversion strategy
and how it is used for risk certification. Section 5.4 presents our experimental results.
Finally, Section 5.5 concludes the chapter and discusses future research directions.

5.1 The Bayes by Backprop (BBB) Objective
The ‘Bayes by backprop’ (BBB) method of Blundell et al. [2015] is inspired by a
variational Bayes argument [Jordan et al., 1998, Fox and Roberts, 2012], where the
idea is to learn a distribution over weights that approximates the Bayesian posterior
distribution. Choosing a p-dimensional Gaussian Qθ = µ +σN (0, I), parametrised by
θ =(µ,σ)∈Rp×Rp, the optimum parameters are those that minimise KL(Qθ‖P(·|S)),
i.e. the KL divergence from Qθ and the Bayesian posterior P(·|S). By a simple
calculation, and using the Bayes rule, one can extract:

KL(Qθ‖P(·|S)) =
∫
W
− log(P(S|w))Qθ (dw)+KL(Qθ‖Q0) ,

where Q0 stands here for the Bayesian prior distribution. Thus, minimising
KL(Qθ‖P(·|S)) is equivalent to minimising the right-hand side, which presents a sum
of a data-dependent term (the expected negative log-likelihood) and a prior-dependent
term (KL(Qθ‖Q0)). This optimisation problem is analogous to that of minimising a
PAC-Bayes bound, since the latter balances a fit-to-data term (the empirical loss) and a
fit-to-prior term (the KL).

There is indeed a close connection between the PAC-Bayes and Bayesian learning
approaches, as has been pointed out by the work of Germain et al. [2016a], when the
loss function is the negative log-likelihood. Beyond this special case, the PAC-Bayes
learning approach offers more flexibility in design choices, such as the choice of loss
functions and the choice of distributions. This is because the PAC-Bayes ‘prior’ is
a reference distribution and the PAC-Bayes ‘posterior’ does not need to be derived
from a prior by a likelihood update factor. This is a crucial difference with Bayesian
learning, and one that makes the PAC-Bayes framework a lot more flexible in the choice
of distributions over parameters, even compared to generalised Bayesian approaches
[Bissiri et al., 2016].

As we mentioned before, the training objective proposed by Blundell et al. [2015]
is inspired by the variational Bayesian argument outlined above, in particular, in our



80 Chapter 5.

notation the training objective they proposed and experimented with is as follows:

fbbb(Q) = L̂S(Q)+η
KL(Q‖Q0)

n
. (5.1)

The scaling factor, η > 0, is introduced in a heuristic manner to make the method
more flexible, while the variational Bayes argument gives (5.1) with η = 1. When η is
treated as a tuning parameter, the method can be interpreted as searching in “KL balls”
centered at Q0 of various radii. Thus, the KL term then plays the role of penalising the
complexity of the model space searched. Blundell et al. [2015] proposed to optimise
this objective (for a fixed η) using stochastic gradient descent (SGD), which randomises
over both mini-batches and the weights, and used the pathwise gradient estimate [Price,
1958]. The resulting gradient-calculation procedure can be seen to be only at most
twice as expensive as standard backpropagation —hence the name of their method.
The hyperparameter η > 0 is chosen using a validation set, which is also often used to
select the best performing model among those that were produced during the course of
running SGD (as opposed to using the model obtained when the optimisation procedure
finishes).

5.2 Towards Practical PAC-Bayes with Backprop
(PBB) Methods

The essential idea of ‘PAC-Bayes with Backprop’ (PBB) is to train a probabilistic neural
network by minimising a PAC-Bayes bound via stochastic gradient descent (SGD)
optimisation. Here we present two training objectives, derived from Eq. (2.10) and
Eq. (2.11) respectively, in the context of classification problems when the loss is the
zero-one loss or a surrogate loss. These objectives are used here for the first time to
train probabilistic neural networks. We also discuss the training objective derived from
Eq. (2.9) for comparison purposes. Besides the training objectives themselves, in this
section we also discuss the various details of the optimisation strategy.

To optimise the weights of neural networks the standard idea is to use a form of
stochastic gradient descent, which requires the ability to efficiently calculate gradients
of the objective to be optimised. When the loss is the zero-one loss, the training loss
viewed as a function of the weights, w 7→ L̂01

S (w), is piecewise constant, which makes
simple gradient-based methods fail (since the gradient, whenever it exists, is zero). As
such, it is customary to replace the zero-one loss with a smoother “surrogate loss” that
plays well with gradient-based optimisation. In particular, the standard loss used on
multiclass classification problems is the cross-entropy loss, `x-e : Rk× [k]→ R defined
by `x-e(u,y) = − log(σ(u)y) where u ∈ Rk, y ∈ [k] = {1, . . . ,k} and σ : Rk → [0,1]k

is the soft-max function defined by σ(u)i = exp(ui)/∑ j exp(u j). This choice can be
justified on the grounds that `x-e(u,y) gives an upper bound on the probability of mistake
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when the label is chosen at random from the distribution produced by applying soft-max
on u (e.g., u = the output of the last linear layer of a neural network). Indeed, owning to
the inequality log(x)≤ x−1, which is valid for any x > 0, given any u ∈Rk and y ∈ [k],
if Y ∼ σ(u) then E[I{Y 6= y}] = P(Y 6= y) = 1−σ(u)y ≤ `x-e(u,y).

We thus also propose to replace the zero-one loss with the cross-entropy loss in
either Eq. (2.10) or Eq. (2.11), leading to the objectives

fquad(Q) =


√

L̂x-e
S (Q)+

KL(Q‖Q0)+ log(2
√

n
δ

)

2n
+

√
KL(Q‖Q0)+ log(2

√
n

δ
)

2n

2

(5.2)

and

flambda(Q,λ ) =
L̂x-e

S (Q)

1−λ/2
+

KL(Q‖Q0)+ log(2
√

n/δ )

nλ (1−λ/2)
. (5.3)

For comparison, the training objective derived from Eq. (2.9) takes the following form:

fclassic(Q) = L̂x-e
S (Q)+

√
KL(Q‖Q0)+ log(2

√
n

δ
)

2n
. (5.4)

Here, L̂x-e
S (w) = 1

n ∑
n
i=1

˜̀x-e
1 (hw(Xi),Yi) is the empirical error rate under the ‘bounded’

version of cross-entropy loss, namely the loss ˜̀x-e
1 described next, and hw : X → Rk

denotes the function implemented by the neural network that uses weights w.
The next issue to address is that the cross-entropy loss is unbounded, while the

PAC-Bayes bounds that inspired these objectives require a bounded loss with range
[0,1]. This is fixed by enforcing an upper bound on the cross-entropy loss by lower-
bounding the network probabilities by a value pmin > 0 [Dziugaite and Roy, 2018a].
This is achieved by replacing σ in the definition of `x-e by σ̃(u)y = max(σ(u)y, pmin).
This adjustment gives a ‘bounded cross-entropy’ loss function ˜̀x-e(u,y) =− log(σ̃(u)y)

with range between 0 and log(1/pmin). Finally, re-scaling by 1/ log(1/pmin) gives
a loss function ˜̀x-e

1 with range [0,1] ready to be used in the PAC-Bayes bounds and
training objectives discussed here. The latter ( ˜̀x-e

1 ) is used as the surrogate loss for
training in all our experiments with fquad, flambda, and fclassic.

5.2.1 Optimisation Problem
Optimisation of fquad and fclassic (Eq. (5.2) and Eq. (5.4)) entails minimising over Q
only, while optimisation of flambda (Eq. (5.3)) is done by alternating minimisation with
respect to Q and λ , similar to the procedure that was used by Thiemann et al. [2017] in
their experiments with SVMs. By choosing Q appropriately, in either case we use the
pathwise gradient estimator [Price, 1958, Jankowiak and Obermeyer, 2018, Mohamed
et al., 2020] as done by Blundell et al. [2015].
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In particular, assuming that the parametrisation Q = Qθ with θ ∈ Rq is such that
hW (·) with W ∼ Qθ (W ∈ Rp) has the same distribution as h fθ (V )(·) where V ∈ Rp′

is drawn at random from a fixed distribution PV and fθ : Rp′ → Rp is a smooth map,
an unbiased estimate of the gradient of the loss-map θ 7→ Qθ [`(h•(x),y)] at some θ

can be obtained by drawing V ∼ PV and calculating ∂

∂θ
`(h fθ (V )(x),y), thereby reducing

the efficient computation of the gradient to the application of the backpropagation
algorithm on the map θ 7→ `(h fθ (v)(x),y) at v = V . Indeed, assuming that the partial
derivatives are integrable, which needs to be verified on a case-by-case basis, we have
∂

∂θ

∫
Qθ (dw)`(hw(x),y) = ∂

∂θ

∫
PV (dv)`(h fθ (v)(x),y) =

∫
PV (dv) ∂

∂θ
`(h fθ (v)(x),y). The

details of this reparametrisation strategy are given e.g. by Ruiz et al. [2016].

In our experiments the PAC-Bayes posterior is parametrised as a diagonal Gaussian
distribution over weight spaceW =Rp. Then a sample of the posterior can be obtained
by sampling a standard Gaussian, scaling each coordinate by a corresponding standard
deviation from the vector σ = (σi)i∈[p] ∈ Rp, and shifting by a mean vector µ ∈ Rp.
We parametrise σ coordinatewise as σ = log(1+ exp(ρ)) so σ is always non-negative.
Following Blundell et al. [2015], the reparametrisation we use is W = µ +σ�V , where
the symbol � denotes coordinatewise product (i.e. (σ �V )i = σiVi for each i), with
appropriate distribution (Gauss or Laplace) for each coordinate of V , although other
reparametrisations are possible [Osawa et al., 2019, Khan and Lin, 2017]. Gradient
updates are with respect to vectors µ and ρ , as can be seen in Algorithm 1. Note
that after sampling the weights, the gradients for the mean and standard deviation are
shared and are exactly the gradients found by the usual backpropagation algorithm on a
neural network. More specifically, to learn both the mean and the standard deviation we
simply calculate the usual gradients found by backpropagation, and then scale and shift
them as done by Blundell et al. [2015]. Note that Algorithm 1 shows the procedure for
optimising fquad with Gaussian noise. The procedure with Laplace noise is similar. The
procedure for fclassic is similar. The procedure for flambda would be very similar except
that flambda has the additional parameter λ .

As discussed in Chapter 2, the PAC-Bayes bounds from which these training
objectives were derived are relaxations of the PAC-Bayes-kl bound (Eq. (2.8)). We refer
the reader to Eq. (2.5) for the definition of the binary KL divergence, denoted kl(·‖·). It
was explained that fclassic is a relaxation of PAC-Bayes-kl bound obtained by Pinsker’s
inequality:

kl(p̂‖p)≥ 2(p− p̂)2 for p̂, p ∈ (0,1) . (5.5)

On the other hand, fquad and flambda are relaxations of the PAC-Bayes-kl bound obtained
using the refined version Pinsker’s inequality:

kl(p̂‖p)≥ (p− p̂)2

2p
for p̂, p ∈ (0,1), p̂ < p . (5.6)
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Algorithm 1 PAC-Bayes with Backprop (PBB)
Require:

µ0 . Prior center parameters
ρ0 . Prior scale hyper-parameter
Z1:n . Training examples (inputs + labels)
δ ∈ (0,1) . Confidence parameter
α ∈ (0,1), T . Learning rate; Number of iterations

Ensure: Optimal µ ∈ Rp, ρ ∈ Rp . Posterior centers and scales
1: procedure PB QUAD GAUSS

2: µ ← µ0 . Set initial posterior center to prior center
3: ρ ← ρ0 . Set initial posterior scale to prior scale
4: for t← 1 : T do . Run SGD for T iterations.
5: Sample V ∼N (0, I)
6: W = µ + log(1+ exp(ρ))�V
7: f = fquad(Z1:n,W,µ,ρ,µ0,ρ0,δ )

8: SGD gradient step using

[
∇µ f
∇ρ f

]
, ∇µ f = ∂ f

∂W + ∂ f
∂ µ

, ∇ρ f = ∂ f
∂W ·

V
1+exp(−ρ) +

∂ f
∂ρ

9: end for
10: return µ,ρ

11: end procedure

One can compare these two inequalities, to find regime of p, p̂ in which one is better than
the other. The result of the comparison is that Eq. (5.5) is tighter whenever p > 1/4, and
Eq. (5.6) is tighter whenever p < 1/4. They match if p = 1/4. This comparison might
be relevant for understanding the differences—in terms of tightness of risk certificates
but also test performance—between the solutions found by these training objectives.

5.2.2 The Choice of the PAC-Bayes Prior Distribution

We experiment both with priors centered at randomly initialised weights and priors
learnt by empirical risk minimisation using the surrogate loss on a subset of the data
set which is independent of the subset used to compute the risk certificate. Note that
all n training data are used by the learning algorithm (n0 examples used to build the
prior, n to learn the posterior and n−n0 to evaluate the risk certificate). This is to avoid
needing differentially private arguments to justify learning the prior [Dziugaite and Roy,
2018a]. Since the posterior is initialised to the prior, the learnt prior translates to the
posterior being initialised to a large region centered at the empirical risk minimiser.
Similar approaches for building data-dependent priors have been considered before in
the PAC-Bayesian literature [Ambroladze et al., 2007, Parrado-Hernández et al., 2012].

For our PAC-Bayes prior over weights we experiment with Gaussian and with
Laplace distributions. In each case, the PAC-Bayes posterior learnt by PBB is of the
same kind (Gaussian or Laplace) as the prior. Next we give formulas for computing the
KL term in our training objectives for each of these distributions.
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5.2.2.1 Formulas for the KL: Laplace and Gaussian
The Laplace density with mean parameter µ ∈ R and with variance b > 0 is the follow-
ing:

p(x) = (2b)−1 exp
(
−|x−µ|

b

)
.

The KL divergence for two Laplace distributions is

KL(Lap(µ1,b1)‖Lap(µ0,b0)) = log(
b0

b1
)+
|µ1−µ0|

b0
+

b1

b0
e−|µ1−µ0|/b1−1 . (5.7)

For comparison, recall that the Gaussian density with mean parameter µ ∈ R and
variance b > 0 has the following form:

p(x) = (2πb)−1/2 exp
(
−(x−µ)2

2b

)
.

The KL divergence for two Gaussian distributions is

KL(Gauss(µ1,b1)‖Gauss(µ0,b0)) =
1
2

(
log(

b0

b1
)+

(µ1−µ0)
2

b0
+

b1

b0
−1
)
. (5.8)

The formulas (5.7) and (5.8) above are for the KL divergence between one-
dimensional Laplace or Gaussian distributions. It is straightforward to extend them to
multi-dimensional product distributions, corresponding to random vectors with inde-
pendent components, as in this case the KL is equal to the sum of the KL divergences
of the components. Note that formula (5.7) could seem to pose a challenge during
gradient-based optimisation due to the presence of the absolute value. However, auto-
differentiation packages solve this by calculating left or right derivatives which are
defined in every case.

5.3 Computing Risk Certificates
After optimising the distribution over network weights through the previously presented
training objectives, we compute a risk certificate on the error of the stochastic predictor,
following the procedure of Langford and Caruana [2001]. This uses the PAC-Bayes-kl
bound (Eq. (2.8)). First we describe how to invert the binary KL (defined in Eq. (2.5))
with respect to its second argument. For x ∈ [0,1] and b ∈ [0,∞), we define:

f ?(x,b) = sup{y ∈ [x,1] : kl(x‖y)≤ b} .

This is easily seen to be well-defined. Furthermore, the crucial property that we rely on
is that kl(x‖y)≤ b holds precisely when y≤ f ?(x,b).

Note that the function f ? provides a way for computing an upper bound on L(Q)

based on the PAC-Bayes-kl bound (given in Eq. (2.8)): For any confidence δ ∈ (0,1),
with probability at least 1−δ over size-n random samples S we have:

L(Q)≤ f ?
(

L̂S(Q),
KL(Q‖Q0)+ log(2

√
n

δ
)

n

)
.
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At this point, as noted by Langford and Caruana [2001], the difficulty is evaluating
L̂S(Q). This quantity is not computable. Since f ? is a monotonically increasing function
of its first argument (when fixing the second argument), it suffices to upper-bound L̂S(Q).

5.3.1 Estimating the Empirical Loss via Monte Carlo Sampling
In fact, f ? is also used to estimate the empirical term L̂S(Q) by random weight sampling:
If W1, . . . ,Wm∼Q are i.i.d. and Q̂m =∑

m
j=1 δW j is the empirical distribution, then for any

δ ′ ∈ (0,1), with probability at least 1−δ ′ we have kl(L̂S(Q̂m)‖L̂S(Q))≤m−1 log(2/δ ′)

(see Langford and Caruana, 2001, Theorem 2.5), hence by the inversion formula:

L̂S(Q)≤ f ?
(

L̂S(Q̂m),
1
m

log(
2
δ ′
)
)
.

This expression can be applied to upper-bound L̂01
S (Q) or L̂x-e

S (Q) by setting the underly-
ing loss function to be the 01 (classification) loss or the cross-entropy loss, respectively.
This estimation is valid with high probability (of at least 1−δ ′) over random weight
samples.

The latter expression also can be combined with any of the PAC-Bayes bounds
presented in Chapter 2 to upper-bound the loss L(QS) by a computable expression. Just
to illustrate, combining with the classical PAC-Bayes bound we would get the following
risk bound:

L(QS)≤ f ?
(

L̂S(Q̂m),
1
m

log(
2
δ ′
)
)
+

√
KL(QS‖Q0)+ log(2

√
n

δ
)

2n
,

which holds with probability at least 1− δ − δ ′ over random size-n data samples S
and size-m weight samples W1, . . . ,Wm ∼ QS. The parameter δ ∈ (0,1) quantifies the
confidence over random data samples, and δ ′ ∈ (0,1) the confidence over random
weight samples.

As we said before, our evaluation of risk certificates was based on the PAC-Bayes-
kl bound. The next subsection fills the details.

5.3.2 Final Expression for Evaluating the Risk Certificate
In our experiments we evaluate the risk certificates (risk upper bounds) corresponding
to the cross-entropy loss (`x-e) and the 0-1 loss (`01), respectively, computed using the
PAC-Bayes-kl bound and Monte Carlo weight sampling. For any δ ,δ ′ ∈ (0,1), with
probability at least 1− δ − δ ′ over random size-n data samples S and size-m weight
samples W1, . . . ,Wm ∼ QS we have:

L(Q)≤ f ?
(

f ?
(

L̂S(Q̂m),
1
m

log(
2
δ ′
)
)
,
KL(Q‖Q0)+ log(2

√
n

δ
)

n

)
.

In our experiments we used a numerical implementation of the kl inversion f ? and
the upper bound just shown to evaluate risk certificates for the stochastic predictors
corresponding to the distributions over weights obtained by our training methods.
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5.4 Experimental Results
We performed a series of experiments on MNIST and CIFAR-10 to thoroughly in-
vestigate the training objectives presented before with regards to their ability to give
self-certified predictors. Specifically, we empirically evaluate the two proposed training
objectives fquad and flambda of Eq. (5.2) and Eq. (5.3), and compare these to fclassic

of Eq. (5.4) and fbbb of Eq. (5.1). When possible, we also compare to empirical risk
minimisation ( ferm) with dropout. In all experiments, training objectives are compared
under the same conditions, i.e. network architecture, weight initialisation, the prior
distribution over weights, and optimisation algorithm (vanilla SGD with momentum).
The code for our experiments is publicly available6 in PyTorch.

5.4.1 Choice of Distribution over Weights

We studied Gaussian and Laplace distributions over the model weights. The PAC-Bayes
posterior distribution Q is learned by optimising a PBB training objective, and is of the
same kind as the PAC-Bayes prior (Gaussian or Laplace) in each case.

We also tested in our experiments both data-free random priors (with randomness
in the initialisation of the weights) and data-dependent priors. In both cases, the center
parameters µ0 of the prior were initialised randomly from a truncated centered Gaussian
distribution with standard deviation set to 1/

√
nin, where nin is the dimension of the

inputs to a particular layer, truncating at ±2 standard deviations. The main difference
between our data-free and data-dependent priors is that, after initialisation, the center
parameters of data-dependent priors are optimised through ERM on a subset of the
training data (50% if not indicated otherwise), while we simply use the initial random
weights in the case of data-free priors. The prior scale parameters ρ0 are set to the
constant scale hyper-parameter. The posterior Q is always initialised at the prior (both
center and scale parameters). This means that the posterior center µ is initialised at the
empirical risk minimiser in the case of data-dependent priors, and to the initial random
weights in the case of data-free priors. We find in our experiments that the prior can be
over-fitted easily. To avoid this, we use dropout during the learning process (exclusive
to learning the prior, not the posterior).

5.4.2 Experimental Setup

All risk certificates were computed using the PAC-Bayes-kl inequality, as explained
in Section 5.3, with δ = 0.025 and δ ′ = 0.01 and m = 150.000 Monte Carlo model
samples, as done by Dziugaite and Roy [2017]. The same confidence δ was used in all
the PBB training objectives ( fquad, flambda, fclassic). Input data was standardised.

6Code available at https://github.com/mperezortiz/PBB

https://github.com/mperezortiz/PBB
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5.4.2.1 Hyperparameter selection
For all experiments we performed a grid search over all hyper-parameters and selected
the run with the best risk certificate on 0-1 error7 (evaluated as explained in Section 5.3).
We elaborate more on the use of PAC-Bayes bounds for model selection in the next
subsection. The hyperparameters are the following: learning rate and momentum for
learning the prior, learning date and momentum for the posterior, the prior distribution
scale, and the dropout rate for learning the prior.

We did a grid sweep over the prior distribution scale hyper-parameter (i.e. standard
deviation σ0) with values in [0.1,0.05,0.04,0.03,0.02,0.01,0.005]. We observed that
higher variance values lead to instability during training and lower variance does not
explore the weight space. For the SGD with momentum optimiser for learning the
posterior we performed a grid sweep over learning rate in [1e−3,5e−3,1e−2] and
momentum in [0.95,0.99]. We found that learning rates higher than 1e− 2 caused
divergence in training and learning rates lower than 5e− 3 converged slowly. We
also found that the best optimiser hyper-parameters for building the data-dependent
prior differ from those selected for optimising the posterior. Because of this, we also
performed a grid sweep over the learning rate and momentum used for learning the data-
dependent prior (testing the same values as before). The dropout rate used for learning
the prior was selected from [0.0,0.05,0.1,0.2,0.3]. All training objectives derived from
PAC-Bayes bounds used the ‘bounded cross-entropy’ function as surrogate loss during
training, for which we enforced boundedness by restricting the minimum probability
(see Section 5.2). We observed that the value pmin = 1e−5 performed well. Values
higher than 1e−2 distorts the input to loss function and leads to higher training loss.
The lambda value in flambda was initialised to 1.0 (as done by Thiemann et al., 2017)
and optimised using alternate minimisation using SGD with momentum, using the same
choice of learning rate and momentum as for the posterior optimisation. Notice that
fbbb requires an additional sweep over a KL trade-off coefficient, which was done with
values in [1e−5,1e−4, . . . ,1e−1], see Blundell et al. [2015].

For ERM, we used the same range for optimising the learning rate, momentum
and dropout rate. However, given that in this case we do not have a risk certificate we
need to set aside some data for validation and hyper-parameter tuning. We set 4% of
the data as validation in MNIST (2400 examples) and 5% in the case of CIFAR-10
(2500 examples). At this time we have not done model selection with a risk bound for
this ERM point estimator model, since to the best of our knowledge those bounds are
notoriously vacuous and we are not aware of any empirical evidence that they could be

7Note that if we use a total of C hyperparameter combinations, the union bound correction would
add no more than log(C)/30000 to the PAC-Bayes-kl upper bound. Even with say C = 42M (forty two
million), the value of our risk certificates, computed via kl inversion, will not be impacted significantly.
The reader can be assured that we used much less than 42M hyperparameter combinations.
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used for model selection.

5.4.2.2 Predictors and metrics reported
For all methods, we compare three different prediction strategies using the final model
weights: i) stochastic predictor, randomly sampling fresh model weights for each test
example; ii) deterministic predictor, using exclusively the posterior mean; iii) ensemble
predictor, as done by Blundell et al. [2015], in which majority voting is used with the
predictions of a number of model weight samples, in our case 100. We report the test
cross-entropy loss (x-e) and 0-1 error of these predictors. We also report a series of
metrics at the end of training (train empirical risk using cross-entropy L̂x-e

S (Q) and 0-1
error L̂01

S (Q) and KL divergence between posterior and prior) and the risk certificate
(obtained via PAC-Bayes-kl inversion) for the stochastic predictor (`x-e for cross-entropy
loss and `01 for 0-1 loss).

5.4.2.3 Architectures
For MNIST, we tested both a fully connected neural network (FCN) with 3 layers
(excluding the ‘input layer’) and 600 units per hidden layer, as well as a convolutional
neural network (CNN) with 4 layers (two convolutional followed by two fully con-
nected). For the latter, we learn a distribution over the convolutional kernels and the
weight matrix. We trained our models using the standard MNIST data set split of
60000 training and 10000 test examples. For CIFAR-10, we tested three convolutional
architectures: one with a total of 9 layers with learnable parameters and the other two
with 13 and 15 layers; and we used the standard data set split of 50000 training and
10000 test examples. ReLU activations were used in each hidden layer for both data
sets. Both for learning the posterior and the prior, we ran the training for 100 epochs
(however we observed that methods converged around 70). We used a training batch
size of 250 for all the experiments.

5.4.3 Hyper-parameter and Architecture Search through
PAC-Bayes Bounds

We show now that PAC-Bayes bounds can be used not only as training objectives to
guide the optimisation algorithm but also for model selection. Specifically, Figure 5.1
compares the PAC-Bayes-kl bound for cross-entropy and 0-1 losses (x-axis) to the test
0-1 error for the stochastic predictor (y-axis, top row) and deterministic predictor (y-axis,
bottom row) for more than 600 runs from the hyper-parameter grid search performed
for fquad with a CNN architecture and a data-dependent Gaussian prior on MNIST. We
do a grid search over 6 hyper-parameters: prior scale, dropout rate, and the learning rate
and momentum both for learning the prior and the posterior. To depict a larger range of
performance values (thus avoiding only showing the risk and performance for relatively
accurate classifiers) we use here a reduced training set for these experiments (i.e. 10%
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Figure 5.1: Model selection results from more than 600 runs with different hyper-parameters.
We use a reduced subset of MNIST for these experiments (10% of training data).
The architecture used is a CNN, with Gaussian distributions over weights and
data-dependent PAC-Bayes priors. The horizontal axes in the plots show the values
of the risk certificate for the stochastic predictor, computed by inversion of the
PAC-Bayes-kl bound, under `x-e (left) and `01 (right). The vertical axes show the
test set error rates for the stochastic (top) and deterministic (bottom) predictors.

of training data from MNIST). The test set is maintained. The results show a clear
positive correlation between the risk certificate and test set 0-1 error of the stochastic
predictor, especially for the risk certificate of the 0-1 error, as expected. The results
are obviously not as positive for the test 0-1 error of the deterministic predictor (since
the bound is on the stochastic predictor), but there still exist a linear trend. While the
plots also show heteroskedasticity (there is a noticeable increase of variability towards
the right side of the x-axis) the crucial observation is that for small error values the
corresponding values of the risk certificate are reasonable stable. It is worth keeping in
mind, however, that bounds generally get weaker with higher error values.

Figure 5.2 shows a different experiment regarding model selection using MNIST
and a fully connected architecture. In this case, we fix the hyperparameters and run
several versions of the network with different number of layers and neurons per layer.
All the networks are trained in the exact same way using fquad. The linear trend between
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the risk certificate under `01 and the test 0-1 error further validates the usefulness of the
risk certificate under `01 for model selection.

Figure 5.2: Risk certificate under `01 vs test 0-1 error on MNIST for a set of fully connected
architectures (varying the number of layers and number of neurons per layer).

Motivated by the results shown in Figure 5.1 and Figure 5.2, where it is shown
that the bound could potentially be used for model selection, we use the risk certificate
with `01 (evaluated as explained in Section 5.3) for hyper-parameter tuning in all our
subsequent experiments. Note that the advantage in this case is that our approach
obviates the need of a held-out set of examples for hyper-parameter tuning.

5.4.4 Comparison of Different Training Objectives and Priors
We first present a comparison of the four considered training objectives on MNIST
using Gaussian distributions over weights. Table 5.1 shows the results for the two
architectures previously described for MNIST (FCN and CNN) and both data-free and
data-dependent priors (referred to as Rand.Init. and Learnt, respectively). We also
include the results obtained by standard ERM using the cross-entropy loss, for which
part of the table can not be completed (e.g. risk certificates). The last column of the table
shows the test set 0-1 error of the prior mean deterministic predictor (column named
Prior). We also report the test set performance for the stochastic predictor (Stch. pred.),
the posterior mean deterministic predictor (Det. pred.) and the ensemble predictor (Ens
pred.). For all the reported results and tables, we highlight the best risk certificate and
stochastic test set error in bold face and the second best is highlighted in italics.

An important note is that we used the risk certificates for model selection for all
training objectives, including fbbb (with the sole exception of ferm, for which we used
a validation set due to the reasons discussed in Section 5.4.2.1). The KL trade-off
coefficient included in fbbb [Blundell et al., 2015] relaxes the importance given to the
prior in the optimisation, but obviously not in the computation of the risk certificate,
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Setup Risk cert. & Train metrics Stch. pred. Det. pred. Ens. pred. Prior
Arch. Prior Obj. `x-e `01 KL/n L̂x-e

S (Q) L̂01
S (Q) x-e 01 err. x-e 01 err. x-e 01 err. 01 err.

FCN

Rand.Init.
(Gaussian)

fquad .2033 .3155 .1383 .0277 .0951 .0268 .0921 .0137 .0558 .0007 .0572 .8792
flambda .2326 .3275 .1856 .0218 .0742 .0211 .0732 .0077 .0429 .0004 .0448 .8792
fclassic .1749 .3304 .0810 .0433 .1531 .0407 .1411 .0204 .0851 .0009 .0868 .8792
fbbb .5163 .5516 .6857 .0066 .0235 .0088 .0293 .0038 .0172 .0003 .0178 .8792

Learnt
(Gaussian)

fquad .0146 .0279 .0010 .0092 .0204 .0084 .0202 .0032 .0186 .0002 .0189 .0202
flambda .0201 .0354 .0054 .0073 .0178 .0082 .0196 .0071 .0185 .0001 .0185 .0202
fclassic .0141 .0284 .0001 .0115 .0247 .0101 .0230 .0089 .0189 .0002 .0191 .0202
fbbb .0788 .0968 .0704 .0025 .0090 .0063 .0179 .0066 .0153 .0001 .0153 .0202

- ferm - - - .0004 .0007 - - .0101 .0152 - - -

CNN

Rand.Init.
(Gaussian)

fquad .1453 .2165 .1039 .0157 .0535 .0143 .0513 .0062 .0257 .0003 .0261 .9478
flambda .1583 .2202 .1256 .0126 .0430 .0109 .0397 .0056 .0207 .0003 .0211 .9478
fclassic .1260 .2277 .0622 .0273 .0932 .0253 .0869 .0111 .0425 .0006 .0421 .9478
fbbb .3400 .3645 .3948 .0034 .0120 .0039 .0154 .0016 .0088 .0001 .0092 .9478

Learnt
(Gaussian)

fquad .0078 .0155 .0001 .0058 .0127 .0045 .0104 .0003 .0105 .0001 .0104 .0104
flambda .0095 .0186 .0010 .0051 .0123 .0044 .0106 .0047 .0098 .0000 .0100 .0104
fclassic .0083 .0166 .0000 .0064 .0139 .0049 .0123 .0048 .0103 .0001 .0103 .0104
fbbb .0447 .0538 .0398 .0012 .0042 .0040 .0104 .0043 .0082 .0002 .0082 .0104

- ferm - - - .0003 .0004 - - .0081 .0092 - - -

Table 5.1: Training and test set metrics on MNIST using Gaussian distributions over weights.
The table includes two architectures (FCN and CNN), two kinds of PAC-Bayes priors
(a data-free prior centered at the randomly initialised weights, and a data-dependent
prior learnt on a subset of the data set) and four training objectives. For the stochastic
predictor, the best risk certificate and test set error are highlighted in bold face, and
second best are highlighted in italics.

which in practice means that larger KL attenuating coefficients will lead to worse risk
certificates. Because of this, in all cases, the model selection strategy chose the lowest
value (namely, 0.1) for the KL attenuating coefficient for fbbb, meaning there are cases
in which fbbb obtained better test set performance than the ones we report in this table,
but much looser risk certificates. We present more experiments on this in the next
subsection where we experiment with the KL attenuating trick.

The findings from our experiments on MNIST, reported in Table 5.1 and Figure
5.3, are as follows: i) fquad achieves consistently the best risk certificates for 0-1 error
(see `01) in all experiments, providing as well better test performance than fclassic, as
observed when comparing the 0-1 loss of the stochastic predictors. ii) Based on the
results of the stochastic predictor, flambda is the best PAC-Bayes inspired objective
in terms of test performance, although the risk certificates are generally less tight.
iii) In most cases, the stochastic predictor does not worsen the performance of the
prior mean predictor, improving it very significantly for random data-free priors (i.e.
Rand.Init). iv) The mean of the weight distribution is also improved, as shown by
comparing the results of the deterministic predictor (Det. pred.), corresponding to the
posterior mean, with the prior mean predictor. The ensemble predictor also generally
improves on the prior. v) The improvements brought by data-dependent priors (labelled
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Figure 5.3: Tightness of the risk certificates for MNIST across different architectures, priors
and training objectives. The bottom shaded areas correspond to the test set 0-1 error
of the stochastic classifier. The coloured areas on top indicate the tightness of the
risk certificate (smaller is better). The horizontal dashed line corresponds to the
test set 0-1 error of ferm, i.e. the deterministic classifier learnt by empirical risk
minimisation of the surrogate loss on the whole training set (shown for comparison
purposes).

as “Learnt” in the table) are consistent across the two architectures, showing better test
performance and risk certificates (although the use of data-free priors still produced non-
vacuous risk certificates). vi) The application of PBB is successful not only for learning
fully connected layers but also for learning convolutional ones. The improvements in
performance and risk certificates that the use of a CNN brings are also noteworthy. vii)
The proposed PAC-Bayes inspired learning strategies show competitive performance
(specially when using data-dependent priors) when compared to the Bayesian inspired
fbbb and the widely-used ferm. Besides this comparable test set performance, our
training methods also provide risk certificates with tight values.

We now compare our results to those reported by Dziugaite and Roy [2018a] for
MNIST. Note that in this case there are differences regarding optimiser, prior chosen
and weight initialisation (however, the neural network architecture used is the same,
FCN as described in this chapter). Dziugaite and Roy [2018a] evaluated the bound of
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their Theorem 4.2 and the bound of Lever et al. [2013] for comparison. We compare
the results reported by them with the results of training with our two training objectives
fquad and flambda, and with fclassic (optimised as per our fquad and flambda). These results
are presented in Table 5.2.

Training method Stch. Pred. 01 Err Risk cert. `01 Bound used

D&R 2018
SGLD

0.1200
0.2100 D&R18 Thm. 4.2

(τ = 3e+3) 0.2600 Lever et al. 2013

D&R 2018
SGLD

0.0600
0.6500 D&R18 Thm. 4.2

(τ = 1e+5) 1.0000 Lever et al. 2013

This work

SGD + fquad 0.0202 0.0279 PAC-Bayes-kl

SGD + flambda 0.0196 0.0354 PAC-Bayes-kl

SGD + fclassic 0.0230 0.0284 PAC-Bayes-kl

Table 5.2: Comparison of test set error rate (0-1 loss) for the stochastic predictor and its risk
certificate for the standard MNIST data set. We compare here our results for the FCN
with data-dependent priors to the previous work of Dziugaite and Roy [2018a]. All
methods reported in this table use data-dependent priors (albeit different ones) and
exactly the same architecture of dimensions 784×600×600×10 (with 2 hidden
layers of 600 units per layer).

The hyperparameter τ in both Dziugaite and Roy [2018a] and Lever et al. [2013]
controls the temperature of a Gibbs distribution with unnormalised density e−τL̂S(w)

with respect to some fixed measure on weight space. In the table we display only the
two values of their τ parameter which achieve best test set error and risk certificate.
We note that the best values reported by Dziugaite and Roy [2018a] correspond to test
accuracy of 94% or 93% while in those cases their risk certificates (0.650 or 0.350,
respectively), although non-vacuous, were far from being tight. On the other hand, the
tightest value of their risk bound (0.21) only gives an 88% accuracy. In contrast, our
PBB methods achieve close to 98% test accuracy (or 0.0202 test error). At the same
time, as noted above, our risk certificate (0.0279) is much tighter than theirs (0.210),
meaning that our training scheme (not only training objectives but also prior) are a
significant improvement with respect to theirs (an order of magnitude tighter). Even
more accurate predictors and tighter bounds are achieved by the CNN architecture, as
shown in Table 5.1.

5.4.5 KL Attenuating Trick
As many works have pointed out before (and we have observed in our experiments),
the problem with all the four presented training objectives is that the KL term tends to
dominate and most of the work in training is targeted at reducing it, which effectively
means often the posterior cannot move far from the prior. To address this issue,
distribution-dependent [Lever et al., 2013] or data-dependent [Dziugaite and Roy,
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Setup Risk cert. & Train metrics Stch. pred. Det. pred. Ens. pred. Prior

Arch. & Prior Obj. `x-e `01 KL/n L̂x-e
S (Q) L̂01

S (Q) x-e 01 err. x-e 01 err. x-e 01 err. 01 err.

CNN
Rand.Init

(KL
attenuating)

fquad .2292 .2824 .2174 .0097 .0330 .0084 .0305 .0042 .0193 .0002 .0201 .9478

flambda .2840 .3241 .3004 .0066 .0225 .0058 .0222 .0039 .0144 .0002 .0148 .9478

fclassic .2297 .2846 .2167 .0101 .0344 .0096 .0343 .0047 .0208 .0002 .0216 .9478

fbbb .4815 .4974 .6402 .0024 .0082 .0035 .0107 .0024 .0082 .0000 .0079 .9478

CNN
Learnt
(KL

attenuating)

fquad .0191 .0296 .0104 .0030 .0087 .0033 .0101 .0000 .0095 .0000 .0096 .0104

flambda .0245 .0354 .0162 .0025 .0076 .0031 .0092 .0040 .0092 .0000 .0095 .0104

fclassic .0187 .0296 .0100 .0031 .0089 .0037 .0106 .0043 .0095 .0001 .0095 .0104

fbbb .0470 .0557 .0421 .0012 .0041 .0034 .0096 .0025 .0085 .0001 .0083 .0104

Table 5.3: Training and test set results on MNIST using Gaussian distributions over weights
and a penalty of η = 0.001 on the KL term for all the training objectives shown.
Only a CNN architecture is considered.

2018a] priors have been used in the literature. Another approach to address this is
to add a coefficient that controls the influence of the KL in the training objective
[Blundell et al., 2015]. This means that in the case of fbbb we could see marginal
decrease in the KL divergence during the course of training (specially given small
KL attenuating coefficients) and the solution it returns is expected to be similar to
that returned simply using ERM with cross-entropy. However, this also has its effects
on the risk certificate. To show these effects, we run all four training objectives
with a KL penalty of 0.0001 during training and report the results in Table 5.3. For
simplicity, only a CNN architecture is considered in this experiment. What we can
see comparing these results to the ones reported in Table 5.1 is that while the 0-1
error for the stochastic classifier decreases, the KL term increases and so does the
final risk certificate. Practitioners may want to consider this trade-off between test set
performance and tightness of the risk certificates.

5.4.6 Laplace Weight Distributions
We experimented with both Laplace and Gaussian distributions over weights. The
results are presented in Table 5.4. Comparing these to the results with Gaussian weight
distributions from Table 5.1, we did not observe significant and consistent differences
in terms of risk certificates and test set error between the two kinds of prior/posterior
distributions. The distribution to use could be problem-dependent, but we found that
both Gaussian and Laplace distributions achieve good risk certificates and test set
performance.

Figure 5.4 shows a summary of all the results obtained for MNIST (i.e. results
reported in Table 5.1 and Table 5.4). This shows clearly the differences between the
three training objectives: flambda tends to lead generally to the lowest test set error, but
worse risk certificates than fquad, and fclassic leads to the worse test set performance and
looser bounds. Thus, fquad gives a reasonable trade-off between test set performance
and tight risk certificates. The general trend of the relationship shows a slight curvature,
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Setup Risk cert. & Train metrics Stch. pred. Det. pred. Ens. pred. Prior
Arch. prior Obj. `x-e `01 KL/n L̂x-e

S (Q) L̂01
S (Q) x-e 01 err. x-e 01 err. x-e 01 err. 01 err.

CNN

Rand.Init.
(Laplace)

fquad .1548 .2425 .1024 .0207 .0709 .0190 .0677 .0113 .0429 .0004 .0436 .9478
flambda .1844 .2540 .1489 .0147 .0496 .0131 .0461 .0096 .0310 .0003 .0312 .9478
fclassic .1334 .2489 .0610 .0322 .1101 .0296 .1014 .0208 .0719 .0007 .0695 .9478
fbbb .4280 .4487 .5385 .0031 .0107 .0038 .0139 .0006 .0096 .0001 .0090 .9478

Learnt
(Laplace)

fquad .0085 .0167 .0004 .0056 .0126 .0043 .0098 .0011 .0103 .0001 .0103 .0104
flambda .0119 .0216 .0025 .0049 .0118 .0041 .0106 .0052 .0103 .0003 .0100 .0104
fclassic .0076 .0155 .0000 .0060 .0131 .0046 .0107 .0015 .0105 .0001 .0106 .0104
fbbb .0737 .0866 .0673 .0019 .0062 .0031 .0092 .0013 .0093 .0001 .0091 .0104

Table 5.4: Training and test set results on MNIST using Laplace distributions over weights. For
simplicity, only a CNN architecture is considered here.

Figure 5.4: Scatter plot of the results obtained for MNIST using different training objectives.
The x-axis shows values of the risk certificate (under `01 loss), and the y-axis shows
the test set error rates, achieved by the stochastic classifier.

as also seen in Figure 5.1.

5.4.7 CIFAR-10 with Larger Architectures
We evaluate now our training objectives on CIFAR-10 using deep CNN architectures.
Note that this is a much larger scale experiment than the ones presented before (15 layers
with learnable parameters vs 4). As far as we know, we are the first to evaluate PAC-
Bayes inspired training objectives in such deep architectures. The results are presented
in Table 5.5 and Figure 5.5 for three architectures (with 9, 13 and 15 layers, with
around 6M, 10M and 13M parameters, respectively). Note, however, that the number of
parameters is doubled for our probabilistic neural networks. We also experiment with
using different amount of data for learning the prior: 50% and 70%, leaving respectively
25.000 and 15.000 examples to evaluate the bound. The conclusions are as follows:
i) In this case, the improvements brought by learning the posterior through PBB with
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Setup Risk cert. & Train metrics Stch. pred. Det. pred. Ens. pred. Prior
Arch. Prior Obj. `x-e `01 KL/n L̂x-e

S (Q) L̂01
S (Q) x-e 01 err. x-e 01 err. x-e 01 err. 01 err.

CNN
(9 layers)

Learnt
(50%
data)

fquad .1296 .3034 .0089 .0868 .2428 .0903 .2452 .0726 .2439 .0024 .2413 .2518
flambda .1742 .3730 .0611 .0571 .2108 .0689 .2307 .0609 .2225 .0018 .2133 .2518
fclassic .1173 .2901 .0035 .0903 .2511 .0931 .2537 .0952 .2437 .0025 .2332 .2518
fbbb .8096 .8633 1.5107 .0239 .0926 .0715 .2198 .0735 .2160 .0017 .2130 .2518

Learnt
(70%
data)

fquad .1017 .2502 .0026 .0796 .2179 .0816 .2137 .0928 .2137 .0023 .2100 .2169
flambda .1414 .3128 .0307 .0630 .2022 .0708 .2081 .0767 .2061 .0021 .2049 .2169
fclassic .0957 .2377 .0004 .0851 .2223 .0862 .2161 .0827 .2167 .0021 .2135 .2169
fbbb .6142 .6965 .8397 .0212 .0822 .0708 .1979 .0562 .1992 .0019 .1944 .2169

- ferm - - - .0355 .0552 - - .1400 .1946 - - -

CNN
(13

layers)

Learnt
(50%
data)

fquad .0821 .2256 .0042 .0577 .1874 .0585 .1809 .0519 .1788 .0011 .1783 .1914
flambda .1163 .2737 .0272 .0491 .1741 .0516 .1740 .0466 .1726 .0015 .1690 .1914
fclassic .0757 .2127 .0009 .0635 .1936 .0622 .1880 .0592 .1810 .0017 .1816 .1914
fbbb .6787 .7566 .9999 .0250 .0924 .0505 .1676 .0422 .1646 .0011 .1614 .1914

Learnt
(70%
data)

fquad .0659 .1832 .0015 .0519 .1608 .0517 .1568 .0421 .1553 .0010 .1546 .1587
flambda .0896 .2177 .0145 .0449 .1499 .0479 .1541 .0604 .1522 .0011 .1507 .1587
fclassic .0619 .1758 .0002 .0548 .1644 .0541 .1588 .0605 .1578 .0013 .1557 .1587
fbbb .4961 .5858 .5826 .0213 .0772 .0487 .1508 .0532 .1495 .0016 .1461 .1587

- ferm - - - .0576 .0810 - - .0930 .1566 - - -

CNN
(15

layers)

Learnt
(50%
data)

fquad .0867 .2174 .0053 .0587 .1753 .0584 .1668 .0538 .1662 .0014 .1653 .1688
flambda .1217 .2707 .0304 .0494 .1661 .0506 .1618 .0417 .1639 .0015 .1622 .1688
fclassic .0782 .1954 .0007 .0667 .1783 .0652 .1686 .0594 .1692 .0013 .1674 .1688
fbbb .6069 .7066 .7908 .0287 .1073 .0468 .1553 .0412 .1530 .0012 .1517 .1688

Learnt
(70%
data)

fquad .0756 .1806 .0028 .0559 .1513 .0559 .1463 .0391 .1469 .0016 .1449 .1490
flambda .0922 .2121 .0133 .0486 .1477 .0500 .1437 .0507 .1449 .0012 .1438 .1490
fclassic .0703 .1667 .0003 .0622 .1548 .0615 .1475 .0551 .1480 .0010 .1476 .1490
fbbb .4481 .5572 .4795 .0259 .0947 .0455 .1413 .0395 .1405 .0008 .1409 .1490

- ferm - - - .0208 .0339 - - .0957 .1413 - - -

Table 5.5: Training and test set results on CIFAR-10 using Gaussian distributions over weights.
The table includes results for three deep CNN architectures (with 9, 13, and 15
layers, respectively) and data-dependent PAC-Bayes priors which are obtained via
empirical risk minimisation for learning the prior mean using two percentages of the
data (50% and 70%, corresponding to 25.000 and 35.000 examples respectively).
For the stochastic predictor, the best risk certificate and test set error are highlighted
in bold face, and second best are highlighted in italics.

respect to the prior are much better and generally consistent across all experiments
(e.g. 2 points in test 0-1 error for flambda when using 50% of the data for learning
the prior). ii) Risk certificates are also non-vacuous and tight (although less than for
MNIST). iii) We validate again that flambda shows better test performance but less tight
risk certificates. iv) In this case, however, fclassic and fquad seem much closer in terms
of performance and tightness. In some cases, fclassic provides slightly tighter bounds,
but also often worse test performance. The tighter bounds can be explained by our
findings with the Pinsker inequality, which makes fclassic tighter when true loss is more
than 0.25. This observation can be seen clearly in Figure 5.6. v) Obtained results
with 15 layers are competitive, achieving similar performance than those reported for
VGG-16 [Simonyan and Zisserman, 2015] (deep network proposed for CIFAR-10 with
comparable architecture to the one tested with only fully connected and convolutional
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Figure 5.5: Tightness of the risk certificates on CIFAR-10 for 3 different network architectures
and two data-dependent priors (learnt using 50% and 70% of the data).

layers). vi) The results indicate that 50% of the training data is not enough in this
data set to build a competitive prior and this influences the test performance and the
risk certificates. The results with 70% of the data are, however, very close to those
achieved by ERM across all three architectures. vii) Similarly than with the rest of
the experiments, a major difference can be seen when comparing the risk certificate
achieved by fbbb with the risk certificate achieved by PAC-Bayes inspired training
objectives. viii) Finally, it is noteworthy how the KL gets generally smaller as we
move to deeper architectures (specially from 9 to 13 layers), which is an interesting
observation, as there are many more parameters used in the computation of the KL. This
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Figure 5.6: Scatter plot of the results obtained for CIFAR-10 using three different training
objectives. The x-axis shows values of the risk certificate (under `01 loss), and the
y-axis shows the test set error rates, achieved by the stochastic classifier.

indicates that the posterior in deeper architectures stays much closer to the prior. We
believe this may be because in a higher-dimensional weight space, the weight updates
have a smaller euclidean norms, hence the smaller KL.

Note that more competitive and deeper neural baselines exist for CIFAR-10 nowa-
days. However, those deeper architectures often require of more advanced training
strategies such as batch norm, data augmentation, cyclical learning rates, weight decay,
etc. In our experiments, we decided to keep the training strategy as simple as possible,
in order to focus on the ability of our training objectives alone to give good predictors
and, more importantly, risk certificates with tight values. It is noteworthy that our
training objectives are able to achieve this with a simple training strategy, and we leave
the exploration of all the available training choices as future work.

5.4.8 Additional Miscellaneous Experiments
In this section we discuss four interesting observations from our experiments, which we
believe mark promising future research directions.

First, we present a plot of the performance obtained when using different training
epochs to learn the prior and posterior. Figure 5.7 and 5.8 show a contour plot of the loss
and risk certificate when training the prior and the posterior for different epochs (e.g. to
check the effect of training the posterior with an under-fitted prior). These plots have
been generated using the FCN architecture on MNIST with Gaussian distributions over
weights. Similar results are obtained for the CNN architecture. Note that for the sake of
visualisation in Figure 5.7 we are plotting much less epochs that those used to generate
the final results (in this case up to 20, whereas the rest of reported results were with 100
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Figure 5.7: Contour plots of the test set error and risk certificate (under `01) after different
training epochs learning the prior and posterior and initial scale hyper-parameters
value σ0 = 0.1 for the prior.

epochs) so the reported test set errors and risk certificates in this plot differ from those
previously reported. Figure 5.7 shows that both training the prior and the posterior are
crucial to improve the final loss and risk certificates, as the best loss and risk certificate
values are found in the top right corner of the plot. The plot also shows that if the
prior is under-fitted (e.g. if trained for only one or two epochs), then the final predictor
can still be much improved with more training epochs for the posterior. However, a
more adequate prior means that less epochs are needed to reach a reasonable posterior.
Nonetheless, this is less apparent if the prior is not learnt (represented here as a training
of 0 epochs, i.e. a random prior), in which case learning the posterior for longer does
not seem to reach such competitive posteriors, which demonstrates the usefulness of
data-dependent priors for obtaining tight risk certificates. In this experiment depicted in
Figure 5.7 and 5.8, we also noted that only a few epochs of training the prior are enough
to reach competitive posteriors and that learning the posterior for much longer (e.g.
1000 epochs) does not lead to overfitting, which reinforces the finding of Blundell et al.
[2015] that the KL term act as a regulariser. Specifically, this can be seen in Figure 5.8,
which shows that training the posterior for a large number of epochs does not worsen
the test set error and the risk certificate. There are still small scale differences (of up to
1%) in risk certificate and test set error for the dark blue colour region, but these can
not be visually seen because of the scale of the colour legend. However, the important
observation is that the differences are small across the dark blue region (if there were
significant differences within this region, then that would be an evidence of overfitting).
This is, however, opposed to what we observe when training the prior through empirical
risk minimisation, since the prior overfits easily in that case, which is why we had to
learn the priors using dropout in all our experiments.

Next, we compare the test set performance of the different predictors considered
in this work (stochastic, deterministic and ensemble). The results for MNIST and



100 Chapter 5.

Figure 5.8: Contour plots of the test set error and risk certificate (under `01) after different
training epochs learning the prior and posterior. Dropout is used when learning the
prior. Note that training the posterior for a large number of epochs does not worsen
the test set error or the risk certificate.

CIFAR-10 are depicted in Figure 5.9. One can appreciate a very clear linear relationship
between predictors. In the case of CIFAR-10 the results are similar across all predictors,
whereas for MNIST the stochastic predictor obtains significantly worse results (see
differences in scales of x and y axes). In the case of CIFAR-10 this may hint that our
training strategy finds a solution within a large region of comparably good solutions,
so that weight randomisation does not affect significantly the test performance of the
classifier. We plan to explore this interesting phenomenon in future work.

Thirdly, in Figure 5.10 we show a histogram of the final scale parameters σ̂ (i.e.
standard deviation) for the Gaussian posterior distribution (both weights and biases).
The plot shows that the optimisation changes the scale of different weights and biases,
reducing specially those associated to the input and output layer. We think it is worth
to experiment with different scale initialisations per layer in future work, as well as
different covariance structures for the weight and bias distributions.
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Figure 5.9: Representation of the results achieved by the different predictors that were studied
(stochastic, deterministic, and ensemble).

Finally, we aim to validate the use of the learnt posterior for uncertainty quan-
tification. To do so, we use the ensemble predictor (100 members) using the CNN
architecture in MNIST. Each member of the ensemble is a sample from the posterior.
We define uncertainty as the number of members of the ensemble that disagree in the
prediction.8 Figure 5.11 shows the test set digits for which the ensemble is most certain
(top row) and uncertain (bottom row). It can be seen that the most uncertain digits
indeed look unusual and could even confuse a human, whereas the most certain digits
are easily identifiable as 4, 6 and 9. We believe that this simple visual experiment may
indicate that there is promise in probabilistic neural networks trained by PBB objectives
being of use for uncertainty quantification. However, more experiments in this direction
are needed.

5.4.9 Further Discussion
We now discuss further the probabilistic neural network models studied in this chapter,
with a focus on their practical usefulness. We have demonstrated that the randomised
predictors learnt by PBB come with a tight performance guarantee that is valid at

8Similar measures of disagreement have been used in the literature on majority vote classifiers, see
e.g. Lacasse et al. [2006], Germain et al. [2015], Masegosa et al. [2020]; and in some related literature on
domain adaptation, e.g. Germain et al. [2013, 2016b, 2020].
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Figure 5.10: Histograms of the scale parameters for the Gaussian distribution at the end of the
optimisation for the different layers of the CNN architecture on MNIST. All scale
parameters were initialised to 0.05, i.e. σ0 = 0.05 for all coordinates, and σ̂ is the
scale parameter value of the final output of training.

Figure 5.11: Representation of the test set digits for three classes (4, 6 and 9) in which the
ensemble predictor is most certain/uncertain. The top row shows the digits with
minimum uncertainty (all 100 members of the ensemble agree in the prediction).
The bottom row shows the digits with highest uncertainty.

population level, and is evaluated on a subset of the data used to train the PAC-Bayes
posterior, i.e. evaluation of our certificates does not require a held out test set. We
have observed that our methods show promise for self-certified learning, which is a
data-efficient principle, and also shown that the same bound used for post-training
evaluation of the risk certificate is useful for model selection. Practitioners may want to
consider all these favourable properties.

However, probabilistic neural networks have additional advantages over their
standard point estimator counterparts. The results of Blundell et al. [2015] have shown
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that probabilistic neural networks enable an intuitive and principled implementation of
uncertainty quantification and classification reject options (e.g. allow the model to say
“I don’t know” when the classification uncertainty for a new example is higher than a
certain threshold). Similarly, we have also shown the use of our models for uncertainty
quantification in a very simple experiment with the ensemble predictor. This is just one
example of the advantages of probabilistic neural network models (distributions over
weights) compared to using point estimator models (fixed weights), but these models
have shown promise towards many other goals, such as model pruning/distillation.
Blundell et al. [2015] also showed that learning a weight distribution by minimising the
empirical loss while constraining its KL divergence to a prior gives similar results to
implicit regularisation schemes (such as dropout). Similarly, in the experiments with
our training objectives we have seen that overfitting was only an issue while learning
the prior through ERM, but not during the posterior learning phase (as demonstrated by
Figure 5.8).

Even though we have not experimented exhaustively with all of the cases described
above, we hypothesise that all these advantages extend to probabilistic neural networks
learnt by PAC-Bayes inspired objectives. This may make the use of stochastic classifiers
with PAC-Bayes bounds more desirable than point estimator models with a PAC bound.
This is also notwithstanding the tightness of the former, in contrast with the latter, which
are known to be notoriously vacuous for the kinds of models studied in our experiments.
All of these hypotheses should be validated thoroughly in future work.

5.5 Conclusion and Future Work
This chapter is based on my paper Pérez-Ortiz et al. [2021b]. In this work we explored
‘PAC-Bayes with Backprop’ (PBB) methods to train probabilistic neural networks with
different weight distributions, priors and network architectures. The take-home message
is that the training methods presented in this chapter are derived from sound theoretical
principles and provide a simple strategy that comes with a performance guarantee that
is valid at population level, i.e. valid for any unseen data from the same distribution
as the training data. This is an improvement over methods derived heuristically rather
than from theoretically justified arguments, and over methods that do not include a risk
certificate valid on unseen examples. Additionally, we empirically demonstrate the
usefulness of data-dependent priors for achieving competitive test set performance and,
importantly, for computing risk certificates with tight values.

The results of our experiments on MNIST and CIFAR-10 have showed that these
PBB objectives give predictors with competitive test set performance and with non-
vacuous risk certificates that significantly improve previous results and can be used
not only for guiding the learning algorithm and certifying the risk but also for model
selection. This shows that PBB methods are promising examples of self-certified
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learning, since the values of the risk certificates output by these training methods are
tight, i.e. close to the values of the test set error estimates. In particular, our results in
MNIST with a small convolutional neural network (2 hidden layers) achieve 1% test
set error and a risk certificate of 1.5%. We also evaluated our training objectives on
large convolutional neural networks (up to 15 layers and around 13M parameters) with
CIFAR-10. These results also showed risk certificates with tight values (18% of risk
certificate for a stochastic predictor that achieves 14.6% of test set error). Note that
to claim that self-certified learning is achieved would require testing a given training
method across a wide range or data sets and architectures (so as to experimentally
validate the claim), or theoretically characterising the problems on which a given
learning method is guaranteed to produce tight risk certificates.

In future work we plan to test different covariance structures for the weight distri-
bution and validate a more extensive list of choices for the weight distributions across
a larger list of data sets. We also plan to experiment how to approach the well-known
dominance of the KL term in the optimisation of these objectives. Data-dependent priors
seem like a promising avenue to do so. We also plan to explore deeper architectures.
Finally, we plan to study risk certificates for the ensemble predictor.



Chapter 6

Epilogue

This thesis concerned learning and certification strategies for randomised classifica-
tion algorithms which are defined by a probability distribution over the weight space
corresponding to a parametric hypothesis class. Both strategies (for learning and for
certification) were based on PAC-Bayes bounds. In particular, the certification strategy
was based on upper-bounding the risk via the PAC-Bayes-kl bound, which is very tight,
and the learning strategies consisted of converting various PAC-Bayes bounds into
optimisation objectives which are then optmised in a data-driven way. This justifies the
name PAC-Bayesian Computation (PBC) which is the title of this thesis.

The opening Chapter 1 outlined (verbally) various kinds of generalisation bounds;
the content of this chapter re-used discussions that appeared in the introduction sections
of my papers Rivasplata et al. [2020] and Pérez-Ortiz et al. [2021b]. The background
Chapter 2 gave a concise account of statistical learning and PAC-Bayes bounds while
also setting the terminology and notation for the thesis; the content of this chapter was
based on knowledge that I have accumulated over the years (references were given)
and largely re-used material that has appeared in corresponding sections of my papers
Rivasplata et al. [2020] and Pérez-Ortiz et al. [2021b]. Then the remaining chapters
of the thesis were Chapter 3, Chapter 4, and Chapter 5, each of which is based on a
paper of mine (Rivasplata et al. [2020], Rivasplata et al. [2018], and Pérez-Ortiz et al.
[2021b], respectively) published at a top-tier machine learning venue.

The presentation of PAC-Bayes bounds given in Chapter 2 was centered around
a general PAC-Bayes theorem, namely Theorem 2.1, and how this theorem is used
to derive specific PAC-Bayes bounds. As discussed there, essentially two steps are
involved in deriving a PAC-Bayes bound from Theorem 2.1: (i) choose a convex
function F (and a prior Q0) to use in Eq. (2.7), and (ii) obtain an upper bound on the
exponential moment ξ defined in Eq. (2.6). For illustration, it was discussed how these
steps were done for deriving the well-known PAC-Bayes bounds that have appeared
in the literature (namely the classic one of McAllester, the PAC-Bayes-kl bound of
Langford & Seeger, and the bound of Catoni), as well as other more recent ones (the
PAC-Bayes-λ bound of Thiemann et al., and the PAC-Bayes-quadratic bound). The
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prominent role of the exponential moment term ξ defined in Eq. (2.6) was discussed,
highlighting in particular that the usual assumptions of data-free PAC-Bayes priors,
bounded loss functions and i.i.d. data, which are emphasised in the previous literature
on PAC-Bayes bounds, only came into play when specific techniques were used for
upper-bounding ξ , while the general Theorem 2.1 is valid without these assumptions.
I would like to highlight that Theorem 2.1 is a slight modification of the general
PAC-Bayes theorem given by Germain et al. [2009], and indeed the whole content of
Chapter 2 concerns previous knowledge that existed before my work (references were
given throughout the chapter). An important feature of the PAC-Bayes bounds derived
from Theorem 2.1 is that they give a high-probability inequality that holds uniformly
for all distributions over weights, which makes these bounds useful for optimisation:
one can re-use the bound successively during optimisation without changing the form
of the bound! Naturally, these bounds can be used for risk certification by applying the
bound to the particular ‘posterior’ distribution found by some learning method. The
presentation was kept at a high level of generality in this chapter, in particular without
going over instantiations of the bounds for specific learning problems. However, a
discussion of the related literature was provided, to the extent that it was known to me.
Some of the more recent literature is mentioned below.

The main topic of Chapter 3 was an extension of the PAC-Bayes analysis to
stochastic kernels, which are a convenient way to formalise data-dependent distributions
over a weight space. The content of this chapter is from my paper Rivasplata et al. [2020].
The main results of this chapter were a theorem giving two high-probability inequalities
for stochastic kernels (Theorem 3.1), and general PAC-Bayes theorem for stochastic
kernels (Theorem 3.2), from which one may derive PAC-Bayes style bounds of similar
forms to the usual PAC-Bayes bounds in the literature (namely the one of McAllester,
that of Langford & Seeger, and that of Catoni) and novel bounds, with derivation
arguments that follow the same two essential steps (i) and (ii) as discussed in the
previous paragraph. The novelty of the new results is that they enable PAC-Bayes priors
that are data-dependent by default, whereas the usual bounds in the literature required
such priors to be data-free. As discussed in Chapter 3, the trade-off in this extension is
that the new results give high-probability inequalities that hold for a given ‘posterior’
distribution, whereas the usual bounds in the previous literature hold uniformly for all
distributions over the weight space. This chapter, as my paper Rivasplata et al. [2020],
also discussed the restrictions of (a) data-free priors, (b) bounded losses, and (c) i.i.d.
data; which have been emphasised throughout the previous literature on PAC-Bayes
bounds. The take-home message regarding these restrictions is that they only play a
role in step (ii) concerning the exponential moment, while the general theorem holds
without these restrictions, which is an insight that may lead to discovering novel bounds
for unbounded losses and for non-i.i.d. data.
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The main topic of Chapter 4 was risk certification strategies for randomised SVM
classifiers. The content of this chapter is from my paper Rivasplata et al. [2018]. This
work combined algorithmic stability with the PAC-Bayes-kl bound in order to develop
a risk bound for the randomised SVM classifier defined by a Gaussian distribution over
the weight space, centered at the weight vector output by the SVM optimisation process
and with a suitably defined covariance. The stability notion used here was applied to
the weight vector found by the SVM optimisation, and it was defined in terms of the
sensitivity of the weight vector to a small change in the composition of the data set. Then,
the stability analysis led to a concentration of the weight around its expectation, and in
turn the latter led to a PAC-Bayes bound for the risk of the randomised SVM classifier,
which was obtained by using a Gaussian distribution centered at the expected weight
vector as ‘prior’ distribution in the PAC-Bayes-kl bound. In the numerical experiments
this novel stability-based PAC-Bayes bound was compared to other generalisation
bounds, in particular to a previous stability-based (but not PAC-Bayes) bound and a
previous PAC-Bayes (but not stability-based) bound, with respect to tightness of the
numerical values of the risk certificates, as well as the test set error rates of the classifiers.
The take-home message of this work is that the proposed novel bound was the first
stability-based PAC-Bayes bound, and its performance on the numerical experiments
showed its ability to produce tight bound values on various benchmark problems.

The topic of Chapter 5 was learning and certification strategies for neural network
classifiers. The content of this chapter is from my paper Pérez-Ortiz et al. [2021b].
An early version of this work was presented at a workshop [Pérez-Ortiz et al., 2020].
This work explored various learning and certification strategies for randomised neural
network classifiers, where the randomisation was defined by a suitably chosen Gaussian
distribution over the connection weights of a given neural network architecture. The
learning strategy consisted of learning the Gaussian mean and variance parameters,
which was done by optimising a PAC-Bayes bound via SGD. Several objectives inspired
by corresponding PAC-Bayes bounds were investigated. The ‘prior’ distributions used
for the learning strategy were Gaussians centered at the randomly initialised weights,
and Gaussians centered at the weights learned by SGD optimisation using a subset
of the training set. The certification strategy used the PAC-Bayes-kl bound which
was evaluated on the part of the training set that was not used for training the prior.
Importantly, however, the Gaussian posterior parameters were optimised using the
whole training set, i.e. including the data that was used to learn the prior. This work
investigated several training objectives, including two that were used here for the first
time for learning a distribution over neural network weights, as well as a previously
used training objective inspired by the classical PAC-Bayes bound, and the variational
Bayesian learning objective. The experiments compared all these objectives, and also
compared to the output of plain ERM which is the most widely used neural network
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training method. The comparisons addressed the values of the risk certificates for the
randomised (aka stochastic) classifiers (for all methods except ERM), and also the
values of the test error rates evaluated on held out data (all methods, including ERM) for
various choices of neural network architectures and prior distributions. The results of
the experiments showed that the randomised classifiers defined by distributions learned
by optimising PAC-Bayes bounds (more precisely, the training objectives derived from
them) not only achieve competitive test set error rates as evaluated on the held out test
set, but also they give remarkably tight risk certificates, in many cases with values of the
same order of magnitude as the corresponding test set error rates (e.g. a risk certificate
of ∼ 1.5% for a classifier with a test set error rate of ∼ 1% on MNIST). This work
therefore made a significant contribution to certification for deep learning methods.

More works on PAC-Bayes bounds and their uses have appeared since the time
of writing (during the summer of 2021) and submission (14 September 2021) of this
thesis, and indeed since the publication dates of the papers on which this thesis is based.
Subsequent works of mine [Pérez-Ortiz et al., 2021a] and others [Boll et al., 2022] have
continued to explore the idea of self-certifiable learning methods. The recent study of
Foong et al. [2021] explored the question of tightness of PAC-Bayes bounds in the small
data regime. The recent work of Farid and Majumdar [2021] combined algorithmic
stability at the “base level” and PAC-Bayes bounds at the “meta level” in order to derive
learning guarantees for meta-learning. The recent work of Wu et al. [2021] presented a
novel PAC-Bayes bound which the authors called the PAC-Bayes-Bennett inequality,
and they used it to bound the expected risk of the weighted majority vote. The recent
work of Zantedeschi et al. [2021] studied stochastic majority vote rules learned by
minimising a PAC-Bayes bound. The recent work of Viallard et al. [2021] combined
PAC-Bayes analysis and perturbations for majority votes to study adversarial robustness.
The recent work of Clerico et al. [2021a,b] proposed strategies to train a Gaussian
distribution over neural network weights by optimising the PAC-Bayes-kl bound. The
recent work of Chérief-Abdellatif et al. [2022] proposed to leverage PAC-Bayes bounds
to obtain reconstruction guarantees for variational autoencoders (VAEs). Another recent
work I would like to highlight is Alquier [2021]’s tutorial which gives a very informative
account of PAC-Bayes bounds and comprehensive coverage the related literature. There
is a line of work connecting PAC-Bayes bounds with information-theoretic quantities,
although I cannot in all honesty say that I am familiar with the latter, but see e.g.
Grunwald et al. [2021], Steinke and Zakynthinou [2020], Hellström and Durisi [2020],
Negrea et al. [2019]. There is a line of work on algorithmic learning theory that talks
about “hedged predictions” in the sense that they “incorporate a valid indication of their
own accuracy and reliability” [Vovk et al., 2005]; this line of work is not recent but
rather I have recently become acquainted with it, and its ideas are then similar in some
way to the ideas of self-certified learning.
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Regarding future research directions I would like to mention the following. The
work of Rivasplata et al. [2020] reported in Chapter 3 made available a general result
for deriving PAC-Bayes style bounds with data-dependent priors; while a particular
example was given, this work begs the question of what kinds of new PAC-Bayes
style bounds with data-dependent priors may be derived in future work. The work
of Rivasplata et al. [2018] reported in Chapter 4 considered exclusively SVM models
without a bias (offset) term; while this choice seemed sensible at the time and was
supported by some arguments in the literature (as discussed in Chapter 4), future work
may ask how to reconcile this choice with the results of Hanneke and Kontorovich
[2019]. The work of Pérez-Ortiz et al. [2021b] reported in Chapter 5 started a line of
thought around the idea of ‘self-certifiable learning’ which continues to be explored
further in subsequent works of mine with collaborators (and also by others); natural
questions for future research include how to sensibly choose architectures for a given
learning task, sensible choices of distributions for a given architecture, in particular
whether there is a covariance structure that is the ‘most suitable’ in some sense, ways
to reason about the uncertainty in the predictions of our randomised neural network
classifiers (one of which was explored here in terms the the agreement/disagreement
between members of an ensemble of predictors, but there are other ways to explore),
whether and how it is possible to modify our strategies to construct conformal predictors
(promising result were shown by Stutz et al. [2022]), among others.

London, March 14, 2022
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Luc Bégin, Pascal Germain, François Laviolette, and Jean-Francis Roy. PAC-Bayesian
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Olivier Bousquet and André Elisseeff. Stability and generalisation. Journal of Machine
Learning Research, 2:499–526, 2002.

Olivier Bousquet, Yegor Klochkov, and Nikita Zhivotovskiy. Sharper bounds for
uniformly stable algorithms. In Conference on Learning Theory [COLT], pages
610–626. PMLR, 2020.

Wray L. Buntine and Andreas S. Weigend. Bayesian back-propagation. Complex
Systems, 5(6):603–643, 1991.

Olivier Catoni. Statistical Learning Theory and Stochastic Optimization: Ecole d’Eté
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Badr-Eddine Chérief-Abdellatif, Yuyang Shi, Arnaud Doucet, and Benjamin Guedj. On
PAC-Bayesian reconstruction guarantees for VAEs. arXiv:2202.11455, 2022.

Eugenio Clerico, George Deligiannidis, and Arnaud Doucet. Conditional Gaussian
PAC-Bayes. arXiv:2110.11886, 2021a.

Eugenio Clerico, George Deligiannidis, and Arnaud Doucet. Wide stochastic networks:
Gaussian limit and PAC-Bayesian training. arXiv:2106.09798, 2021b.

Imre Csiszár. I-divergence geometry of probability distributions and minimization
problems. The Annals of Probability, 3(1):146–158, 1975.

Arnak Dalalyan and Alexandre B. Tsybakov. Aggregation by exponential weighting
and sharp oracle inequalities. In Conference on Learning Theory [COLT], pages
97–111. Springer, 2007.

Arnak Dalalyan and Alexandre B. Tsybakov. Aggregation by exponential weighting,
sharp PAC-Bayesian bounds and sparsity. Machine Learning, 72(1-2):39–61, 2008.
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risk certificates for neural networks. Journal of Machine Learning Research, 22(227):
1–40, 2021b.

Konstantinos Pitas. Dissecting non-vacuous generalization bounds based on the mean-
field approximation. In International Conference on Machine Learning [ICML],
pages 7739–7749. PMLR, 2020.

John C. Platt. Fast training of support vector machines using sequential minimal
optimization. In B. Schölkopf, C. J. C. Burges, and A. J. Smola, editors, Advances in
Kernel Methods – Support Vector Learning, pages 185–208. MIT Press, Cambridge
MA, 1999.

Robert Price. A useful theorem for nonlinear devices having Gaussian inputs. IRE
Transactions on Information Theory, 4(2):69–72, 1958.

Maxim Raginsky, Alexander Rakhlin, and Matus Telgarsky. Non-convex Learning via
Stochastic Gradient Langevin Dynamics: A Nonasymptotic Analysis. In Conference
on Learning Theory [COLT], 2017.
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