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Abstract

Climate change is becoming a pressing global concern, and the search for new energy and energy recovery technologies
s becoming a worldwide research imperative. The broad adaptability of the Stirling engine to a wide variety of heat sources

akes it a promising technology for industrial waste heat recovery and solar thermal generation. The operation of the Stirling
ngine involves a multi-physical coupled process of heat transfer and mechanics as well as non-linear losses due to mechanical
riction and gas charge leaking. Therefore, accurate prediction of Stirling engine power output through theoretical analysis is
omplex and costly. Emerging machine learning algorithms like Gradient Boosted Regression Trees (GBRT) can offer new
pproaches to solve this problem. The GBRT model consists of multiple decision trees that branch by exhausting thresholds
or all features under study to find the best split structure for data regression, and the principle of GBRT gives it the natural
dvantage of finding a wide range of distinguishing features and combinations, and a powerful generalization capability. A
BRT forecasting model is thus constructed to model the output power of Alpha-type Stirling engines. Test data from the
eneral Motors 4L23 Stirling Engine are applied as the training and test set. Results from the random test set accounting for
5% of the total samples indicate that the GBRT model has a prediction accuracy of 96.23%. Furthermore, a regional microgrid
ontaining Stirling engines, photovoltaic panels and batteries for industrial waste heat recovery is constructed and an evaluation
ystem for energy supply performance is also established. Finally, based on the proposed power output model, multi-objective
ptimization based on improved NSGA-II is implemented, providing guidance for industrial application of Stirling engines.
2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
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1. Introduction

Stirling engines work by cyclic compression and expansion of the working fluid in an enclosure. As long as there
s a temperature difference, the Stirling engine can convert thermal energy into mechanical works, which in turn
an be converted into electricity. A wide variety of heat resources can be used, which makes a Stirling engine quite
ersatile. By the end of the 20th century, the twin problem of global energy shortage and climate change became
ncreasingly acute, and countries worldwide were seeking for new energy resources and technologies. Driven by
he urgent need for clean energy and industrial waste heat recovery, Stirling engines have experienced a tremendous
evelopment phase [1]. Its application range has been broadened to underwater power, waste heat recovery, and
olar thermal power generation [2–4] and so on. Stirling engines’ structures and thermodynamics states during
peration are intricate. Typical research approaches for Stirling engines are ideal loss-free Schmidt analysis [5],
diabatic analysis [6], nodal analysis [7] and computational fluid dynamics modelling [8,9], also known as first-order,
econd-order, third-order and fourth-order design methods, respectively.

Over the last few decades, there has been a great deal of work on the thermodynamic modelling and experimental
easurements of Stirling engines. Paula et al. indicated that the first-order model allows the performance parameters

f the Stirling engine to be described, providing quick results with an accuracy of around 60% when calculating
ower [10]. Dobre et al. [11] established hybrid models using the finite physical dimension thermodynamics
FPDT) method and zero-dimensional modelling by the imperfectly regenerated Schmidt equation to develop
nalytical models for the Stirling engine cycle. Xiao et al. [12] proposed an approach to combine the second-
rder and third-order analysis methods for a 100 W beta-type Stirling engine optimization, taking advantage of
he features of reliable accuracy and comprehensive operational information from the second-order and the third-
rder design methods, respectively. This study reached about 80% simulation accuracy. Hadi et al. [13] developed
new model called polytropic-finite speed thermodynamics (PFST). Its predicted thermal efficiency and power

utput of the GPU-3 Stirling engine had errors ranging from 2% to 34% in various operation conditions. Caetano
t al. [14] proposed a novel fourth-order CFD model for beta-type Stirling engine transient simulation. The presented
ethodology combines first-order mathematical models with CFD simulations, reducing the error to around 2.6%.
he accuracy of the analytical model usually decreases with the complexity of the problem. There are no models in

he scientific literature that satisfactorily simulate the behaviour of real Stirling engines [14]. And computationally
ostly models are limited in terms of what they can be applied to [15].

To tackle the difficulties of uncertain relationship mapping of the thermodynamics parameters and the high cost
f analytical calculations, emerging machine learning methods offer new ideas for solving these problems [16].
achine learning is a technique for constructing problem-solving models from data. The process of extracting

mplicit and potentially useful information from data to be learned is called the model learning or training
rocess [17]. Commonly used machine learning methods for regression and prediction include: naive Bayesian,
ecision tree, random forest, support vector machines, gradient decision trees, etc [18–20]. Gradient Boosted
egression Trees (GBRT) is one of the most effective machine learning prediction algorithms. It consists of
ultiple decision trees that can branch freely. The idea of GBRT gives it the natural advantage of finding multiple

istinguishing features and combinations of features, and has a powerful generalization capability [21,22]. Unlike
ig data-driven models such as neural networks, GBRT has very high accuracy even with limited training data.
ased on the above characteristics, the GBRT method is selected in this study to build a power output fuzzy model
onsidering temperature, speed and pressure based on the test data of a commercial product of Stirling engines.
he regression tree can be trained to perform reasonable threshold planning and bifurcation regression for several
arameters affecting the performance of Stirling engines parallelly. Results on a random test set representing 25% of
he total data showed an average accuracy of 96.23%. Furthermore, based on the power prediction model proposed,

microgrid containing Stirling engines, domestic photovoltaic panels and energy storage units is constructed, and
n energy supply evaluation system that includes consideration of energy losses and fluctuations is also built. Based
n the multi-objective optimization implemented by NSGA-II, a decision on the configuration of the energy system
s finally proposed.

. Alpha-type Stirling engine

According to the cylinder configuration, Stirling engines can be divided into three classifications, namely, alpha-

ype, beta-type, and gamma-type. The Alpha-type Stirling engine has two pistons providing the power output while
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the Beta-type and Gamma-type Stirling engines both have only one piston to generate power. The engine under study
is the General Motors 4L23 Stirling engine which is a compact multi-cylinder device composed of several Alpha-
type Stirling engines in series to achieve high specific power output [23]. The configuration and main specifications
of the General Motors 4L23 Stirling engine are displayed in Table 1 and Fig. 1.

Table 1. Core parameters of General Motors 4L23 Stirling engine.

Parameters Description or Value

Working Fluid Hydrogen
Inside Heater Tube Wall Temperature 649 ◦C
Inlet Cooling Water Temperature 57 ◦C
Engine speed 2000 rpm
Mean Pressure 1400 psia (9653 kPa)
Mechanical Efficiency 92%
Furnace Efficiency 85%
Cylinder Diameter 72 mm
Piston Stroke 48 mm
Inside Diameter of Pipes in Heater 5.0 mm
Length of Pipes in Heater 260 mm
Inside Diameter of Pipes in Cooler 1.0 mm
Length of Pipes in Cooler 120 mm

Fig. 1. Configuration schematic diagram for General Motors 4L23 Stirling engine.

3. Gradient Boosted Regression Trees (GBRT)

GBRT is a modification of the Boosting algorithm. In the original Boosting algorithm, each sample is assigned
an equal weight value at the beginning of the algorithm, and initially all the base learners have the same importance.
In GBRT, samples that are incorrectly predicted are given a higher weight in the next step, while samples that are
correctly predicted are given a lower weight, helping the model to focus more on difficult samples and improving
the performance of the model more efficiently. After N iterations have been performed, N simple base learners will
be obtained. Finally, the resulting learners are combined and weighted (the larger the error rate the smaller the base
decision tree weight value; vice versa, the smaller the error rate the larger the base decision tree weight value) to
obtain a final model [24,25].

GBRT differs significantly from traditional Boosting in that each computation is designed to reduce the residuals
from the previous one. In each iteration, the new decision tree is fitted to a subset of the original training set
rather than to the residuals of the original training set, which is randomly sampled by no-relaxation of the original
training set, similar to a self-sampling method. Each new decision tree is built so that the previous model residuals
are reduced in the direction of the gradient, in contrast to the traditional Boosting algorithm which weights the
correct and incorrect samples. Fig. 2 illustrates the general principle of the GBRT-Stirling engine output model
proposed.
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Fig. 2. Algorithm schematic for GBRT-based Stirling engine output prediction model.
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s

The measured temperature, pressure and speed data from the Stirling heat engine under study can form a vector

pace, and the output power or efficiency can form a one-dimensional column vector.{ −→xi = (Ti , Pi , Ni )

ỹ = (E1, E2, E3, . . . , Ei )
(1)

For regression prediction problems, the squared error loss function is usually chosen as follows:

L =
(
ỹ, ŷ

)
=

(
ỹ − ŷ

)2 (2)

The input data set is D = {(x1, y1), (x2, y2), . . ., (xN , yN )}. L denotes the loss function. M represents the number
of regression trees. And Y represents the learning rate. J denotes each regression tree’s branch nodes. Input space
is partitioned into J disjoint regions Rm,1, Rm,2, ..., Rm, j , and initial constants K are estimated for each region at the
beginning. Our algorithm is able to freely exhaust the ideal regression model in the temperature–pressure–speed
vector space. The complete construction processes are as follows.

4. Power output prediction

The initial value of the number of regression trees is set to 100 and the overall learning rate is set to 0.1. The
Stirling engine under study is tested 240 times in the temperature ranging from 1000 to 1500 K, pressure ranging
from 500 to 2500 psia and speed ranging from 500 to 3000 rpm. 25% experimental data are selected as the test
set and the remaining points are used as the training set. Results of the GBRT-Stirling Engine output prediction are
shown in Fig. 3. On the random test set, which never appeared in the training set, there is a high match between
the GBRT model and the actual data. Fig. 4 visualizes the performance of the algorithm in terms of accuracy.
Residual diagram in Fig. 4 shows that the majority of test points have residual values below 5%. To be precise, the
model proposed has an average prediction accuracy of 96.23%. Furthermore, the output model containing multiple
operation parameters is presented by the way of spatial power surfaces. Spatial curved surfaces in Figs. 5 and 6
are the pressure-engine speed-output and temperature-engine speed-output obtained by GBRT, separately. Power
surfaces are usually smooth and show a certain regularity. In addition to power, cycle efficiency is also critical
to engine operation. Since the general GBRT model only allows a single output, power and efficiency cannot be
export simultaneously. Therefore, replacing the training target from power output to efficiency, Fig. 7 illustrates
the efficiency performance of the studied Stirling engine constructed by GBRT under a wide range of operating
conditions. Fig. 7 indicates that the efficiency is more sensitive to changes in operating conditions, but also shows a
roughly regular pattern containing areas of stable efficiency and areas of sudden increase. The mapping relationship
between multiple operation parameters and output performance is finally established.

Fig. 3. Performance of GBRT on the test set.
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Fig. 4. Residual values and distribution.

Fig. 5. Pressure-speed-output spatial surface.

Fig. 6. Surface plot for Temperature–speed versus output.
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Fig. 7. Curved surface of output efficiency constructed by GBRT prediction results.

. Case study

.1. Stirling– PV microgrid

After obtaining the output model, a Stirling engine–Photovoltaic microgrid located in the suburban area of
ondon is constructed in Fig. 8. This system mainly consists of Stirling engines array, generators, rooftop PV panels,
torage units and the control centre. Stirling engines and PV panels are power resources. A comprehensive list of
nd-users containing industry parks, shopping malls and resident communities is selected as the energy consumers
Fig. 9). Based on the collected annual load curves, it is clear that the different energy consumers show different
easonal characteristics and fluctuations. The integrated energy consumers used for the case study are representative
nd have a considerable research value. Figs. 10 and 11 illustrates the annual solar incident data in London and the
emperature of fuel gas from a thermal plant which is used for Stirling engine waste heat recovery, respectively.
ower generated by the Stirling engine can be obtained as follows:

PSE (t) = G B RT (Twaste, p, N )t × ηsyn (3)

here Twaste denotes the temperature of waste heat resources, ηsyn denotes the synchronous motor efficiency which
s equal to 96% in this case. The electric power generated by the rooftop PV panel (PPV) is mainly determined

by the solar spectrum wavelength, absorptivity, and aperture areas. The rating power is 0.325 kW with the PV
efficiency of 16.94% [26,27].

TPV = Tamb + (Tnor − Tamb) ×
G (t)

Isolarradiation
(4)

PPV (t) = G (t) × PPV −ST C × rPV × [1 − β (TPV − TPV −ST C)] (5)

here TPV indicates the PV operation temperature while Tnor and Tamb represent the normal operation temperature
nd ambient temperature, respectively. I denotes the irradiance on cell surface, which is equal to 800 W/m2. G(t)
enotes the incident solar irradiation; PPV−STV and rPV are the power under the standard test condition and the
ower reduction coefficient, respectively. β is the PV temperature coefficient.

.2. System evaluation

For the constructed Stirling–PV microgrid, evaluation indicators are required as the objective function for
onducting multi-objective optimization. This study focuses on considering the performance of the energy system
nd therefore starts with both energy losses and energy fluctuations. In order to reduce the excessive power losses
aused by overload generation and to improve the energy efficiency of the system, the coefficient of energy loss
CEL) is introduced

P t = P t + P (t) + P t − P t (6)
( ) SE ( ) PV bat ( ) load ( )
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Fig. 8. Stirling engine–PV integrated microgrid.

Fig. 9. Selected comprehensive power consumption community.

Fig. 10. Annual sky insolation incident.

C E L =

∑n
t=1 [P (t) − Pbat (t − 1)]∑n

t=1 [PSE (t) + PPV (t)]
(7)
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Fig. 11. Temperature profile of heat resources for waste heat recovery.

where P(t) represents the mismatch between the power generation from the Stirling engine, PV panels and the user’s
energy demands. n is equal to 8760, this is because the planning time window is one year, which is treated as 8760 h.

well-organized energy system also needs to enable the output power to be well matched to the consumer load and
void excessive fluctuations throughout the system. The optimization of the system with regard to energy supply
uctuations is essential. In view of this, the coefficient of historical volatility (CHV) is established to evaluate the
ystem’s stability.

ut = ln
P(t)

P(t − 1)
C H V =

√ 1
n − 1

n∑
i=1

(ui − u) (8)

.3. Improved Non-dominated Sorting Genetic Algorithm-II (NSGA-II)

NSGA-II, proposed by Kalyanmoy Deb in 2002 [27], is one of the most commonly used optimization approaches
n multi-objective problem (MOP). This algorithm with operator improvements is selected to conduct configuration
ptimization on the proposed Stirling–PV microgrid. Before further improvements can be made, the characteristics
f NSGA-II need to be elaborated. At the initial stage of population evolution, where the similarity of population
ndividuals is low, increasing the crossover probability will accelerate the population evolution, while reducing
he variation probability of the population will reduce the tedious computational process. In the middle stage of
volution, increasing the variation probability will prevent the iteration of the algorithm from falling into local
ptimum. In the final stage of evolution, individuals are very similar. And the crossover probability and variation
robability should be reduced in order to achieve the gradual convergence of the algorithm [28]. The operators
or crossover and variation will be improved by adaptation so that they are similar to the above trends. The
mprovements of the operators are formulated as equations for Pc and PM , respectively.

Pc =
1
2

cos
(

π ti
2S

)
(9)

PM =
1

τπ

[
1 +

(
ti −kS

τ

)2
] (10)

here S denotes the maximum number of generations, ti is the current generation number (0<i<S), τ is the scale
arameter which specifies the half-width at half-maximum, k is the coefficient that divides the total number of
enerations is equal to 0.5 in this case. The flow chart for NSGA-II is displayed in Fig. 12. Detailed description
or the framework and principle of NSGA-II can be found in the literature [27]. The variable in the optimization is
843
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T
t
h

Fig. 12. Flow chart for NSGA-II.

the configuration of the energy system, specifically the installed capacity of the Stirling engines and photovoltaic
panels for the current user. After about 200 generations, the energy system under study has reached a common
compromise on the two proposed evaluation indicators (see Table 2).

Table 2. Optimal energy system configuration.

Energy Supply Installation Number CEL CHV

Stirling Engine (250 kW) 10
0.2384 0.3931

PV Panel (0.325 kW) 1727

Through multi-objective optimization, the performance of the energy system studied is significantly improved.
he figure for CEL is reduced to 0.231, which means that there is a higher degree of matching between the load and

he power supply. In addition, the figure for CHV is reduced to 0.392, implying that the system history fluctuations
ave been eliminated considerably and the energy stability has been significantly enhanced (see Fig. 13).

Fig. 13. Performance on the energy loss and fluctuation during optimization.
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6. Conclusion

In this work, a practical and accurate approach through GBRT to enable Stirling engines performance prediction
s proposed. Taking the experimental data of a commercial product as the example, the mapping relationship between
peration parameters (temperature, pressure and engine speed) and output performance is constructed accurately.
urthermore, a Stirling engine–PV microgrid is designed to power a specific energy consumption community. An

mproved NSGA-II multi-objective optimization algorithm is developed to further improve the proposed system’s
nergy supply performance. The main research findings can be summarized as follows:

(1) The critical operation parameters of Stirling engines are used to form a vector space and acted as the input.
The GBRT model is implemented to establish the mapping modelling between input vector space and the
output vector. The input space is freely divided into disjoint regions and the branch points, and thresholds
that can minimize the residuals are explored by 100 regression trees, resulting in the optimal Stirling engine
operation model. Results on the random test set indicate that the average prediction accuracy can reach
96.23%.

(2) A Stirling-solar microgrid is further developed and a comprehensive evaluation model, considering both
historical volatility and energy loss coefficients, is also proposed. Aiming to power a specific energy
consumption community, an application of Stirling engine heat recovery on practical power supply is
attempted.

(3) Through the multi-optimization by the improved NSGA-II method, the objective functions related to energy
losses and stability achieve their optimum. Deep energy complementarity between generation and demand is
finally obtained, providing guidance for industrial promotion and commercialization of Stirling engines.
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