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Verifying Opacity Properties in Security Systems
Chunyan Mu and David Clark

Abstract—We delineate a methodology for the specification and verification of flow security properties expressible in the opacity

framework. We propose a logic, OpacTL , for straightforwardly expressing such properties in systems that can be modelled as partially

observable labelled transition systems. We develop verification techniques for analysing property opacity with respect to observation

notions. Adding a probabilistic operator to the specification language enables quantitative analysis and verification. This analysis is

implemented as an extension to the PRISM model checker and illustrated via a number of examples. Finally, an alternative approach to

quantifying the opacity property based on entropy is sketched.

Index Terms—opacity, logic, security, verification
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1 INTRODUCTION

Security of software can be stated and investigated only
with respect to a specification of what security means in
a given context. The proliferation of software has lead to
a profusion of security properties, many of which exhibit a
great deal of similarity. This has lead to a search for common
abstractions, and general formalisms for expressing security
properties. Opacity, first introduced by Mazaré [1], is a
promising approach for describing and unifying security
properties. The key insight behind opacity is twofold:

• Distinguish between system behaviour, and observa-
tions of the system’s behaviour.

• A security property ϕ is opaque, provided that for
every behaviour π satisfying ϕ there is another be-
haviour π′, not satisfying ϕ, such that π and π′ give
rise to identical observations.

Clearly, when ϕ is opaque in this sense, observers cannot be
sure if ϕ holds of the observed system, or not. Many familiar
security definitions such as non-interference, declassifica-
tion, and knowledge-based security can be obtained by
suitable choices of predicate ϕ [2], and notion of observable
behaviour.

Absolute guarantees of security are often impractical,
and we may tolerate violation of security properties, as long
as it happens with sufficiently low probability. So verifying
and analysing security properties can also usefully take
quantitative aspects into account. For this reason, opacity
has been extended to quantitative opacity [3], [4].

While opacity successfully unifies many concrete notions
of software security, it is a semantic concept, typically de-
scribed informally using the mathematical vernacular. There
are not yet dedicated development of tools for automatic
verification of opacity properties. The present paper asks
several questions:
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• Can we build a sufficiently expressive logic for
opaque predicates?

• Can we build automated verification tools for
opaque predicates?

• Can we extend the logic and automated verification
for opacity to probabilistic opacity?

We answer all questions in the affirmative.

First, we propose a logic OpacTL for expressing opacity
and internalise its definition in the logic: for this purpose we
extend conventional temporal logic with a predicate

⊙[ψ]

which expresses that property ψ is opaque. OpacTL allows
us to specify the more general opacity property in a straight-
forward way, and the property required to be secret can
be defined flexibly regarding users’ requirements. We also
present OpacPTL , a probabilistic generalisation of OpacTL ,
which enables us to express probabilistic opacity, and allows
us to reason about the degree of satisfaction or violation
of the security property of interest. We demonstrate the
expressibility of both OpacTL and OpacPTL through ex-
amples of opacity, respectively probabilistic opacity, from
the literature. We automate both logics by translation to
the PRISM model checker. We also introduce an alternative
approach to measure the level of opacity of the system,
based on the notion of entropy.

Outline. This paper is organised as follows. In Section 2
we recall the definition of labelled transition system, obser-
vations, and opacity. Section 3 introduces a temporal logic
OpacTL for the formal specification of opacity. Section 4
presents the probabilistic extension of the logic OpacPTL ,
and a prototype model checker for the (probabilistic) opacity
fragment of the logic. Section 5 describes the implementa-
tion of our techniques for analysing (quantitative) opacity
flow properties of systems in a prototype tool, and demon-
strates its applicability using several case studies. Section 6
provides an alternative measurement of the opacity formula
based on the notion of entropy. Section 7 briefly reviews
literature in related areas, and Section 8 draws conclusions
and points out some future directions.
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2 LABELLED TRANSITION SYSTEMS AND OBSER-

VATIONS

Let N be the set of natural numbers, assume 0 ∈ N. An
alphabet Σ is a non-empty, finite set, |Σ| is its cardinality. Σ∗

denotes the set of all finite words over Σ including the empty
word ε, Σn denotes the set of all finite words over Σ and the
length of the words is n, Σ+ = Σ∗\{ε},Σω denotes the set of
all infinite words, Σ∞ denotes the set of all finite and infinite
words. The subsets of Σ∗:L ⊆ Σ∗ are called languages, and
L ⊆ Σ∞ are called ω-languages.

Definition 1. A labelled transition system (LTS) is a tuple L =
(S,Σ,→, F ), where:

• Σ is a finite alphabet of labels, or actions, including
a distinguished element ⊥ representing termination
(staying there forever).

• S is a finite set of states.
• →⊆ S × Σ× S is the transition relation.
• F ⊂ S is the set of final states, a (possibly empty)

subset of S.

Definition 2. We sayL is deterministic iff ∀s, t ∈ S, whenever

s
a
−→ t and s

a
−→ t′ then t = t′. We say L is circular, if

each state has an outgoing transition, i.e., for all s ∈ S
there is s

a
−→ t. A path in L is a total map π : N →

(Σ ∪ S), subject to the following constraints:

• Whenever i ∈ N is even, then π(i) is a state. Other-
wise π(i) is a label.

• For all even i we have π(i)
π(i+1)
−→ π(i + 2) and the

triple satisfies the transition relation.

The set of all L’s paths is denoted by path(L). The set of
paths of L starting from state s is denoted by path(L, s).
We write π[i . . . ] to denote π(i)π(i + 1) . . . , and write
erase(π) for the map that erases all the states from π:
erase(π) = π(1)π(3) . . . , in other words, n 7→ π(2n+ 1),
defined for all n ∈ N. A trace in L is a map tr : N → Σ,
such that tr = erase(π) for some path π.

We are often sloppy when talking about paths and traces,
in particular, we often elide the indices, writing e.g. ab⊥⊥...
for a trace {(0, a), (1, b)} ∪ {(n,⊥) | n > 1}.

Definition 3. A trace tr is well-structured iff for all suitable
i < j we have: tr(i) = ⊥ ⇒ tr(j) = ⊥. Such the smallest
i is denoted by last . A path π is well-structured iff erase(π)
is well-structured, π(last ∗ 2) is called a final state. L
is well-structured iff all of its paths are well-structured.
Traces and paths are semantically finite iff they are well-
structured, and at least one of their labels is ⊥.

Note that a well-structured LTS won’t change a state after
a termination. A key idea in modelling security properties
is the observation power of the attacker. We use a set of
observables, distinct from the states and actions of the LTS, for
this purpose. Actions, states and observables are connected
by an observation function.

Definition 4. Let Θ be a finite alphabet for observables.
We write Θ⊥ for Θ ∪ {⊥}, assuming that ⊥ /∈ Θ. A
observation function is a function obs : path(L) → Θ∗

⊥,
subject to the additional constraint that obs(⊥) = ⊥:
i.e., for all paths π of the form π = πL⊥πR we have

obs(π) = obs(πL)⊥obs(πR). Observation functions on
traces are defined similarly.

The intuition is that Θ contains all possible projections of
paths where a projection of a sequence A is a sequence
B that can be obtained from A by deleting members of
A, e.g. ad is a projection of abcd. Note that projections
(observations) of paths are not themselves paths. In practice
many observation functions will have additional structure,
e.g., obs(π) = obs

′(π(1))obs ′(π(3))obs ′(π(5)) . . . , for some
function obs

′ : Σ→ Θ⊥ on transition labels.
Opacity is a general framework for formulating and

unifying security properties expressed as predicates. Here, a
predicate is simply a subset of path(L). A predicate is opaque
if, given any path of the system, an adversary’s observation
is unable to determine whether the path satisfies the predi-
cate. In comparison with other security policies such as non-
interference, the opacity framework allows a more flexible
specification of both the adversary’s power of observation
and the confidential properties of the system. In the paper,
we use [[ϕ]] to denote a set of paths satisfying ϕ.

Definition 5. [Opacity and observability] A predicate ϕ over
path(L) is a subset of path(L). Given an observation
function obs , a predicate ϕ is opaque w.r.t. obs iff: for
every path π ∈ [[ϕ]], there is a path π′ 6∈ [[ϕ]] such that
obs([[π]]) = obs([[π′]]), i.e., all paths in [[ϕ]] are covered
(observationally equivalent) by paths in ¯[[ϕ]] (where ¯[[ϕ]]
denotes the complement of [[ϕ]]): obs([[ϕ]]) ⊆ obs( ¯[[ϕ]]).
Paths in [[ϕ]] are called observable paths iff there is at least
one path in [[ϕ]] which is not covered by paths in ¯[[ϕ]]:
[[ϕ]] \ obs−1(obs( ¯[[ϕ]])) 6= ∅.

Many special cases of opacity are easily definable in
our approach, such as initial-state opacity, final-state opacity,
initial-final-state opacity [5], total-opacity [6] and language-based
opacity [7], [8]. In Section 4 we will generalise opacity to
probabilistic opacity [4].

3 THE OPAQUE TEMPORAL LOGIC OpacTL

The behaviour of a state transition system is described
as sequences of labels during the possible executions. The
labels indicate the valuations of the input/output variables
of the system. The temporal properties we specify are upon
such behaviours over the same alphabet. We study here
OpacTL , which is a temporal logic [9] with an opacity
operator ⊙ over semantically finite traces for specification of
security properties.

3.1 Formulae

Let Asp be a fixed set, the atomic state propositions, ranged
over by α. We have two classes of formulae given by the
grammar below: state formulae and path formulae ranged over
by φ and ψ respectively.

φ ::= true || false || α || ¬φ || φ ∧ φ || ⊙[ψ]
ψ ::= Xφ || φUφ || φRφ || ⊥ || ¬ψ

Note that an OpacTL formula is defined relative to a state
and always a state formula. Path formulae only appear
inside the ⊙[·] operator.
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3.2 Model

A model is a tuple (L, η, obs) where:

• L = (Σ, S,→, F ) is an LTS, that is circular, determin-
istic and well-structured.

• η : S → P(Asp) is the state labelling function, where
P(Asp) is the powerset of Asp.

• obs : path(L)→ Θ∗
⊥ is an observation function.

3.3 Satisfaction relations

As we have two notions of formulae (state and path formu-
lae), we need two satisfaction relations. LetM = (L, η, obs)
and s ∈ S. We now define the satisfaction relation M |=s φ
for state formulae.

• M |=s true always holds.
• M |=s α iff α ∈ η(s).
• M |=s ¬φ iffM 6|=s φ.
• M |=s φ ∧ φ

′ iffM |=s φ andM |=s φ
′.

• M |=s ⊙[ψ] iff for all paths π ∈ path(L, s) whenever
M |=π ψ then there exists a path π′ ∈ path(L, s) s.t.
M 6|=π′ ψ and obs(π) = obs(π′).

Now let π be a path in L. Then we define:

• M |=π Xφ iffM |=π(2) φ.
• M |=π φUφ

′ iff ∃i ∈ N.M |=π(2i) φ
′ and ∀0 ≤ j <

i.M |=π(2j) φ.
• M |=π φRφ′ iff either ∃i ∈ N.M |=π(2i) φ ∧ ∀0 ≤

j ≤ i.M |=π(2j) φ
′ or ∀j ∈ N.M |=π(2j) φ

′.
• M |=π ⊥ iff π(1) = ⊥.
• M |=π ¬ψ iffM 6|=π ψ.

Note that the opacity operator is general and can be used to
express initial-opacity (only π(0) is sensitive), final-opacity
(only π(last ∗ 2) is sensitive, a focus of this paper), and
language-opacity (π(i) is sensitive for all i).

Theorem 1. Given a modelM = (L, η, obs) and a state s in
L. Let ψ be a path formula. Define:

tr([[ψ]], s) = {erase(π) : π ∈ path(L, s) | M |=π ψ},

then we have:
M |=s ⊙[ψ]

iff
tr([[ψ]], s) is semantically opaque w.r.t. obs .

Here, “semantically opaque” is to be understood as the
definition of opaque in Definition 5.

Proof: According to the satisfaction relations, we have:

M |=s ⊙[ψ]

⇔ ∀π ∈ path(L, s).(M |=π ψ ⇒

∃π′ ∈ path(L, s) s.t. (M 6|=π′ ψ ∧ obs(π) = obs(π′)))

⇔ {obs(π) | M |=π ψ} ⊆ {obs(π
′) | M |=π′ ¬ψ}

⇔ {π ∈ path(L, s) | M |=π ψ}

are covered by paths violating ψ.

⇔ tr([[ψ]], s) is semantically opaque.

The opacity computation problem is the problem of recog-
nising whether there is a path violating ψ but observation-
ally equivalent to each of the ψ satisfying paths.

3.4 Verification of OpacTL

The verification problem of OpacTL is a decision algorithm
to check whether M |=s φ, for a given model M, and an
OpacTL formula φ and a starting state s. That is, we need
to set up whether the formula φ is valid in the initial state s
ofM. Let Post(s) denote immediate state successors of s in
a path, and Pre(s) denote the immediate state predecessors
of s in a path. The basic procedure follows the conventional
CTL model checking [10]:

(i) Convert the OpacTL formulae in a positive normal
form, that is, formulae built by the basic modal-
ities ⊙[Xφ], ⊙[φUφ′], and ⊙[φRφ′], and succes-
sively pushing negations inside the formula at hand:
¬true  false, ¬false  true, ¬¬φ  φ,
¬(φ∧φ′) ¬φ∨¬φ′, ¬(φ∨φ′) ¬φ∧¬φ′ , ¬Xφ 
X¬φ, ¬(φUφ′) ¬φR¬φ′, ¬(φRφ′) ¬φU¬φ′ ;

(ii) Recursively compute the satisfaction sets Sat(φ′) =
{s ∈ S | s |= φ′} for all state subformulae φ′ of φ:
the computation carries out a bottom-up traversal of
the parse tree of the state formula φ starting from
the leafs of the parse tree and completing at the root
of the tree which corresponds to φ, where the nodes
of the parse tree represent the subformulae of φ and
the leafs represent an atomic proposition α ∈ Asp

or true or false. All inner nodes are labelled with
an operator. For positive normal form formulae, the
labels of the inner nodes are ¬, ∧, ⊙[X], ⊙[U], ⊙[R].
At each inner node, the results of the computations
of its children are used and combined to build the
states of its associated subformula. In particular, sat-
isfaction sets for conventional state formula are given
as follows:

– Sat(true) = S,
– Sat(α) = {t ∈ S | α ∈ η(t)},
– Sat(¬φ) = S \ Sat(φ),
– Sat(φ ∧ φ′) = Sat(φ) ∩ Sat(φ′),
– Sat(⊙[ψ]) = {s ∈ S | T⊙(M, s, ψ) = true};

(iii) Check whether s ∈ Sat(φ).

Furthermore, for the opacity operator ⊙[ψ], we com-
pute Sat(⊙[ψ]) as: s ∈ Sat(⊙[ψ]) iff T⊙(M, s, ψ) = true,
T⊙(M, s, ψ) is sketched in Algorithm 1. Specifically, we
compute all (regular-expression-like formatted) traces Λ (Λ′)
starting from s and satisfying (violating) ψ, and check if
each such trace in Λ is observationally covered by a such
trace in Λ′. Alogrithm 2 compU(M, s, φ, φ′) computes a
set of such formatted traces satisfying φUφ′. Similarly, an
algorithm compR(M, s, φ, φ′) can be proposed to compute
a set of such formatted traces satisfying φRφ′.

Theorem 2. [Soundness of ⊙[ψ] translation] Given a model M,
a state s, and a path formula ψ:

M |=s ⊙[ψ] iff T⊙(M, s, ψ) = true.

Proof: The proof is obtained by the satisfaction relation
of ⊙[ψ] and the construction of the translation T⊙(M, s, ψ).
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Algorithm 1: Translating ⊙[ψ]: T⊙(M, s, ψ)

Data:M, s, ψ
Result: ⊙[ψ]
switch ψ do

case Xφ: Sat(ψ)← ∪i∈N{tr(s→ si) |
Post(s) = si ∧ si ∈ Sat(φ)},

Sat(¬ψ)← ∪i∈N{tr(s→ si) |
Post(s) = si ∧ si ∈ Sat(¬φ)};

case φUφ′: Sat(ψ)← compU(M, s, φ, φ′),
Sat(¬ψ)← compR(M, s,¬φ,¬φ′);

case φRφ′: Sat(ψ)← compR(M, s, φ, φ′),
Sat(¬ψ)← compU(M, s,¬φ,¬φ′);

end
Λ← {λ | λ ∈ Sat(ψ)}; Λ′ ← {λ | λ ∈ Sat(¬ψ)};
for each λ ∈ Λ do

find← false;
for each λ′ ∈ Λ′ do

if obs(λ) ⊆ obs(λ′) then
find← true; break ;

end
end
if (¬find) then return find;

end
return find.

Let π (and π′) denotes a corresponding path of the regular-
expression-like formatted trace λ (and λ′ respectively).

T⊙(M, s, ψ) = true

⇔ ∀λ ∈ Sat(ψ) : ∃λ′ ∈ Sat(¬ψ).obs(λ) ⊆ obs(λ′)

⇔ ∀π.erase(π) ∈ λ ∈ Sat(ψ) :

∃π′.erase(π′) ∈ λ′ ∈ Sat(¬ψ).obs(π) = obs(π′)

⇔ ∀π ∈ path(L, s).Mπ |= ψ :

∃π′ ∈ path(L, s).Mπ 6|= ψ.(obs(π) = obs(π′))

⇔ M |=s ⊙[ψ].

Due to the recursive nature of the CTL model checking
algorithm, complexity is linear in the size of the non-opacity
state formula φ, while the worst case of finding opaque paths
for reachability objectives ψ and checking satisfaction of the
opacity state formula ⊙[ψ], specified in Algorithm 1, is EX-
PSPACE. Note that the algorithm traverses all traces satisfying
ψ and all traces violating ψ, and conducts observation equiv-
alence comparison. So the worst case complexity here follows
the complexity of the hyper property model checking problem
with two quantifier (∀) alternations, and thus EXPSPACE [11].

The until operator allows to derive the temporal modality F

(“eventually”) as usual: Fφ
def
= trueU φ. To simplify expression

in the examples, by abuse of notation, we use Fs to denote Fφ
(i.e., φ will be eventually true which takes place on state s).

Example 1. Consider the system M accepting finite inputs
presented in Fig. 1 (a). Let s3 be a sensitive state, s0 be a
starting state, {s3, s6} be two final states of interests, and
the observation function be: a → a, b → ǫ, c → ǫ, i.e. b, c
are hidden, but a is visible. Consider the security property
eventually reaching s3, i.e., ψ = Fs3 in our logic, we have:

tr([[ψ]], s0) = {ac(b)∗a(⊥)∗}, tr([[¬ψ]], s0) = {aba(c)∗(⊥)∗}.
Here we use e.g. ac(b)∗a(⊥)∗ to represent the infinite trace
that starts with ac, followed by possibly infinitely many b,
followed by a, and followed by possibly infinitely many ⊥.
Clearly:

obs([[ψ]]) = obs([[¬ψ]]) = {aa(⊥)∗},

Algorithm 2: Computing Sat(φUφ′):
compU(M, s, φ, φ′)

Data:M, s, φ, φ′

Result: Sat(φUφ′): a set of regular-expression-like
formatted traces whose corresponding paths
satisfying φUφ′

Λ← {}; i← 0 ;
for each ti ∈ Sat(φ′) do

Ti ← {ti}; Πi ← {π | π(0) = ti};
while {sj ∈ Sat(φ) \ (Ti ∪ Sat(φ′)) |
Post(sj) ∩ Ti 6= ∅} 6= ∅ do

let sj ∈ {sj ∈ Sat(φ) \ (Ti ∪ Sat(φ′)) |
Post(sj) ∩ Ti 6= ∅};

if sj ∈ Post(sj) ∩ Ti then
/* There is a self-loop: wrap it with a star

and concatenate paths starting from a
state in Post(sj) ∩ Ti found earlier */

for each π′ ∈ Πi s.t. π′(0) ∈ Post(sj) ∩ Ti
do

Πi ← Πi ∪ {(sj
a
−→ sj)

∗ + π′[1...]};
end

end
for each: q1 ∈ Post(sj) ∩ Ti, q2 ∈
Post(q1) ∩ Ti, . . . , qn ∈ Post(qn−1) ∩ Ti s.t.
Post(qn) ∩ Ti = ∅ do

if Pre(sj) 6∈ {q1, q2, . . . qn} then
for each π′ ∈ Πi s.t.
π′(0) ∈ Post(sj) ∩ Ti do

Πi ← Πi ∪ {sj
a
−→ q1 + π′[1...]};

end
end
else if Pre(sj) = qn ∧ sj ∈ Post(qn) then

/* There is a cycle, wrap it with a star
and concatenate paths starting from a
state in Post(sj) ∩ Ti found earlier */

for each π′ ∈ Πi s.t.
π′(0) ∈ Post(sj) ∩ Ti do

Πi ← Πi ∪ {(sj
a1−→ q1

a2−→ . . .
an−→

Pre(sj)
an+1

−→ sj)
∗ + π′[1...]};

end
end

end
Ti ← Ti ∪ {sj};

end
Λi = {λ← erase(π) | ∀π ∈ Πi}; Λ← Λ ∪ Λi;
i← i+ 1;

end
return Λ.

so: M |=s0 ⊙[ψ], i.e., the system is ψ-opaque.

Example 2. Consider the system accepting infinite inputs pre-
sented in Fig. 1 (b). Let s2 be a sensitive state, s0 be a
starting state, {s2, s6} be two final states of interests, and
the observation function be: a → ǫ, b → b, c → ǫ, i.e. a
and c are hidden, but b isn’t. Consider the security property
eventually reaching s2, i.e., ψ = Fs2:

tr([[ψ]], s0) = {ab(ab)∗}, tr([[¬ψ]], s0) = {acbc(bc)∗}
clearly, obs([[ψ]]) = obs([[¬ψ]]) = {bb∗}, so the system is ψ-
opaque, i.e., M |=s0 ⊙[ψ].
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Fig. 1. OpacTL over finite and infinite languages. Grey node denotes a
sensitive state.

3.5 Link to non-interference

Information flow policies are designed to ensure that secret data
does not influence publicly observable data. Non-interference
(NI) [12] essentially says that low security users should not be
aware of the activity of high security users. This can be inter-
preted in many different ways including as a hyperproperty
of paths of a system. Appropriate to an LTS is to consider a
system with labels classified into two security levels: low (L)
and high (H). The system satisfies non-interference if and only
if any sequence of low-level labels that can be produced by
the LTS is consistent with all possible sequences of high-level
labels. We formalise this notion of NI.

Let trace(L) be the set of all traces produced by paths of L.
We consider projections of these traces. Let L be an LTS over an
alphabet Σ which is partitioned into two disjoint sets of labels
H and L. A high projection of a trace is the sequence of labels
in H that remains after all labels in L have been deleted from
the original trace, denoted by λH. Similarly a low projection of a
trace is the sequence of labels in L that remains after all labels
in H have been deleted from the original, denoted by λL.

Definition 6 (Trace Consistency). Let t1, t2 ∈ Σ∗ be consistent
with each other, written t1 ≈ t2 iff ∃t ∈ trace(L) such that
t1 and t2 are both projections (can be high or low) of t.

Intuitively, non-interference requires that any observable
low trace projection produced by the LTS must be consistent
with every high trace projection that can be produced by the
LTS.

Definition 7 (Non-interference). Let L be an LTS, Σ = (H, L). Let
traceL(L) = {l ∈ L∗ | ∃t ∈ trace(L) ∧ tL = l} and similarly
define traceH(L) We say L satisfies non-interference iff

∀l ∈ traceL(L),∀h ∈ traceH(L) : l ≈ h.

This is a quite restrictive property but intuitive to derive
from the original definition of non-interference. However, re-
lating it to opacity of a trace property has some obstacles.
Non-interference is a 2-hyperproperty, i.e., can be expressed
as a set of pairs of traces. Opacity is also a 2-hyperproperty
but the parameter property, ψ, is not. This means that it is
difficult to understand what ψ should be defined. In addition,
our definition of non-interference implies for that every high
projection and every low projection of a trace, every other
possible high projection is a projection from some trace whose
low projection is the same. Opacity states something weaker,

that there exists a trace with the same low projection but a
different high projection. This asymmetry means that even if the
property of having a certain high trace is opaque, the property
of not having that trace is not necessarily opaque.

Consider two LTSs whose trace sets are A and B re-
spectively. Let A = {h1l1, h2l1, h3l2, h4l2} and let B =
{h1l1, h2l1, h3l1, h4l1, h1l2, h2l2, h3l2, h4l2}. Here, “high projec-
tions of the trace ” cannot be expressed as a trace property so
we resort to using a family of ψs, one for each high trace. Both
A and B satisfy opacity for the family, but only B satisfies non-
interference. In particular h1 6≈ l2 in A.

Schoepe and Sabelfeld [2] prove equivalence between the
two notions for input-output (i.e., length two) traces when the
set of opaque properties is strong enough to characterise every
possible information leak, i.e., form a family as in our example,
and are also symmetric, i.e., both existence and non-existence of
the property is opaque. These two requirements coalesce when
the family of ψ properties covers all possible high instances.
Their proofs specify this family but do not exhibit it.

4 PROBABILISTIC OPAQUE TEMPORAL LOGIC

OpacPTL

This section extends OpacTL with probabilistic operators that
allow the construction of probabilistic models for quantitative
opacity analysis and verification. For the purpose of security
analysis, the notion of probabilistic opacity [4] defines the likeli-
hood of a path in predicate ϕ which is not covered by a path in
¯[[ϕ]] from the observer’s view: the smaller the notion the more

secure the system.

Definition 8 (Degree of opacity). The degree of ψ-opaque
property is defined as:

D(⊙[ψ]) = Prob([[ψ]] \ obs−1(obs( ¯[[ψ]]))),

i.e., the probability that a ψ-trace is not opaque, where
Prob(x) denotes the probability of x, [[ψ]] and ¯[[ψ]] represent
the set of traces satisfying and violating property ψ respec-
tively.

We propose to add a probabilistic operator in our logic to
capture this definition (the degree of opacity).

4.1 Probabilistic model

We generalise Definition 1 to cater for probabilities. Below
Dist(X) denotes the set of discrete probability distribution over
a set X .

Definition 9. A probabilistic labelled transition system (pLTS) is
a tuple L = (S,Σ,P, F ). Here S and Σ are states, and
labels, respectively. P : S → Dist(Σ× S) is the probabilistic
transition relation.

Definition 10. Given a pLTS L = (S,Σ,P, F ), we construct an
LTS (S,Σ,→, F ) by setting → = {(s, l, s′) | P(s)(l, s′) > 0}.
By “abus de notation” we will also use L to refer to the
induced LTS (S,Σ,→, F ). We say a pLTS is deterministic if
the induced LTS is deterministic in the sense of Section 2.

Definition 11. A probabilistic model is a tuple M = (L, η, obs)
where: L is a deterministic pLTS, η is a state labelling func-
tion, and obs is an observation function. Each probabilistic
model M induces a model in the sense of §3.2, by replacing
M’s pLTS with the induced LTS. Abusing notation once
more, we will also use M to denote this induced model.
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4.2 OpacPTL

To allow quantitative verification, we add the probabilistic
operators to the state formulae:

φ ::= ... | P⊲⊳p[ψ] | P⊲⊳p[⊙[ψ]] ψ ::= ...

Here ⊲⊳ ∈ {≤, <,≥, >}, p ∈ [0, 1]. The semantics of the prob-
abilistic operator M |=s P⊲⊳p[ψ] means that “the probability,
from state s, that ψ is true for an outgoing path satisfies ⊲⊳ p”:
M |=s P⊲⊳p[ψ] iff Prob([[ψ]]) ⊲⊳ p. It is standard to extend P⊲⊳p

to path formulae ψ as PCTL, i.e., P⊲⊳p[ψ], the procedure can
be found in e.g., [10]. A state satisfies a probabilistic operator
P⊲⊳p[⊙[ψ]] if the quantity of ⊙[ψ] is ⊲⊳p. The semantics of the
probabilistic opacity operator is given as:

M |=s P⊲⊳p[⊙[ψ]] iff D(⊙[ψ]) ⊲⊳ p

Note that the satisfaction relations |=π and |=s work on the
induced model in the sense of §3.2, not the probabilistic model
itself. This is standard in probabilistic model checking, see
e.g. [10].

Theorem 3. Given a probabilistic model M = (L, η, obs) and
a state s in L. Let ψ be a path formula, and: Π = {π ∈
path(L, s) | M |=π ψ ∧ π is semantically observable}, then
we have:

M |=s P⊲⊳p[⊙[ψ]] iff Prob(Π) ⊲⊳ p

Here semantically observable is to be understood in the
sense of Definition 5.

Proof: By the definition of the semantics of the proba-
bilistic operator, we have:

M |=s P⊲⊳p[⊙[ψ]]

⇔ D(⊙[ψ]) ⊲⊳ p ⇔ Prob([[ψ]] \ obs−1(obs( ¯[[ψ]]))) ⊲⊳ p

⇔ Prob({π ∈ path(L, s) | M |=π ψ} \
{obs−1(obs(π′)) ∈ path(L, s) | M |=π′ ¬ψ}) ⊲⊳ p

⇔ Prob({π ∈ path(L, s) | M |=π ψ ∧
6 ∃π′.(M |=π′ ¬ψ ∧ obs(π) = obs(π′))}) ⊲⊳ p

⇔ Prob({π ∈ path(L, s) | M |=π ψ ∧
π is not covered by a path violating ψ}) ⊲⊳ p

⇔ Prob(Π) ⊲⊳ p

Example 3. Consider the model presented in Fig. 2. Let s3
be a sensitive state, s0 be a starting state, {s3, s6} be
final states of interests, and the observation function be:
a → a, b → b, c → ǫ. Consider the security property be
eventually reaching s3, i.e., ψ = Fs3, so:

tr([[ψ]]) = {ac(b)∗a(⊥)∗}, tr([[¬ψ]]) = {aba(c)∗(⊥)∗}.

Let 0.1 be the threshold quantity, obs(ψ) = {a(b)∗a(⊥)∗},
obs(¬ψ) = {aba(⊥)∗}, so:

P≤0.1(⊙[ψ])

⇔ P≤0.1{[[ψ]] \ obs−1(obs([[¬ψ]]))}
⇔ P≤0.1({aca⊥∗, acbba⊥∗, . . . })
⇔ 1

3
∗ 1

2
+

1

3
∗ (1

2
)2 ∗ 1

2
+ · · ·+ 1

3
∗ (1

2
)n

1

2
≤ 0.1

⇔ 1

4
≤ 0.1 = false
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Fig. 2. Example: OpacPTL

4.3 Verification of OpacPTL

Intuitively, verification of probabilistic opacity answers the
question “is the system opaque?” quantitatively, relative to a
secret property ψ and the observability of the adversary given
a threshold probability p. Given a probabilistic model M, a
starting state s, and a property ψ required to be secure, the
probabilistic verification problem of opacity property ⊙[ψ] is to
decide whether M |=s P⊲⊳p(⊙[ψ]) holds or not. Algorithm 3
presents the procedure of finding all probabilistic non-opaque
(observable) traces pΛ(s, ⊙̄ψ) starting at s. Note that the prob-
ability of each formatted traces satisfying ψ is also calculated
and associated with the trace for quantitative purpose. Then
we can calculate:

D(⊙[ψ]) =
∑

pλ∈pΛ(s,⊙̄ψ)

Prob(pλ).

Algorithm 3: PT ⊙(M, s, ψ): finding probabilistic
non-opaque traces

Data:M, s, ψ
Result: probabilistic non-opaque traces pΛ(s, ⊙̄ψ)
switch ψ do

case Xφ: Sat(ψ)← ∪i∈N{tr(s→ si) |
Post(s) = si ∧ si ∈ Sat(φ)},

Sat(¬ψ)← ∪i∈N{tr(s→ si) |
Post(s) = si ∧ si ∈ Sat(¬φ)};

case φUφ′: Sat(ψ)← compU(M, s, φ, φ′),
Sat(¬ψ)← compR(M, s,¬φ,¬φ′);

case φRφ′: Sat(ψ)← compR(M, s, φ, φ′),
Sat(¬ψ)← compU(M, s,¬φ,¬φ′);

end
pΛ← {pλ | pλ.tr ← λ ∧ pλ.pr ← Prob(λ) for λ ∈
Sat(ψ)};
pΛ′ ← {pλ | pλ.tr ← λ ∧ pλ.pr ← Prob(λ) for λ ∈
Sat(¬ψ)};
pΛ′′ = {};
for each pλ ∈ pΛ do

for each pλ′ ∈ pΛ′ do
if obs(pλ.tr) ⊆ obs(pλ′.tr) then

pΛ′′ ← pΛ′′ ∪ {pλ}; break ;
end

end
end
pΛ⊙̄ ← pΛ \ pΛ′′; /* non-opaque probabilistic

traces */;
return pΛ⊙̄.
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Theorem 4 (Soundness of PM(⊙[ψ]) translation). Given a
model M, starting state s, a probability threshold p, and
a security property ψ:

M |=s P⊲⊳p(⊙[ψ]) iff Prob(PT ⊙(M, s, ψ)) ⊲⊳ p.

Proof: The proof is obtained by the satisfaction relation
of P⊲⊳p(⊙[ψ]) and the construction translation of PT ⊙(M, s, ψ)
described in Algorithm 3. The algorithm will terminate since
Sat(ψ) are computed as a set of regular-expression-like for-
matted traces satisfying ψ as Algorithm 1. Probability of such
a trace is calculated by multiplication of the probability of
each transition label for non-cycle part, and multiplication of
p/(1− p) for a cycle with probability p.

We have implemented our translation as an extension of
the PRISM model checker [13]. Example 4 presents the result
generated by the prototype tool.

Example 4. Consider the following example used in [4] pre-
sented in Fig. 3. Let s0 be a starting state, {t0, t1, t2, t3, t4, t5}
be final states, observation function be: a→ a, b→ ǫ, c→ c,
and x → ǫ. Assume the property of interest is the system
terminating at sensitive states {t2, t3, t5}. PRISM also allows to
directly specify properties which evaluate to a value using
P =?[ψ]. The property specification is given as:

P =?[⊙ F (((s = 2) ∨ (s = 3) ∨ (s = 5)) ∧ (t = 1))],

where s = i denotes ti is a sensitive state, t = 1 denotes the
status of terminating. We can automatically calculate the
probabilistic opacity of the system as:

Result: 0.026.{0.01046:bcax:ca,0.0156:ca(b)*x:ca}

(value in the initial state)

where 0.026 denotes the probability of opacity of the system,
i.e., the probability of traces satisfying ψ but not covered by
those observationally equivalent traces violating ψ, which
include: bcax with probability 0.0104 and ca(b)∗x with
probability 0.0156, both observed as ca.
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⊥
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Fig. 3. Example: probabilistic opacity, grey node denotes a sensitive
state.

5 IMPLEMENTATION AND EXAMPLES

We have built a prototype tool for verification of opacity as
an extension of the PRISM model checker [14]. Models are
described in an extension of the PRISM modelling language
with observations and transition labels. The new model type is
denoted as “ldtmc”. Properties are described in an extension of
the PRISM’s property specification language with the opacity
operator. The tool and details of all examples and case studies
are available from [13].

5.1 Modelling probabilistic opacity in PRISM

Models in PRISM are described in a state-based language based
on guarded commands. A model is constructed as a number
of modules which can interact. Each module contains a set of
finite-valued variables which define the state of the module.
The behaviour of each module is described by a set of guarded
commands in the form of:

[<action>] <guard> -> <prob> : <update> + ...

+ <prob> : <update>;

The guard is a predicate over the variables of all the modules
in the model. Each update describes a probabilistic transition
which specifies how the variables of the module are updated if
the guard is true. The prob attached with each update specifies
the probability that the corresponding state transition takes
place. The action label is optional which allows modules to
synchronise over commands.

We have extended the existing modelling language for
model type “ldtmc” to allow: (i) the definition of observation
functions:
observations

<label> -> <observable>, ... <label> -> <observable>;

endobservations

which defines each label and its observation through the key-
word observations; (ii) and the specification of transition
labels over updates is in the form:

[]<guard> -> <prob>:<LABEL>:<update> + ...

+ <prob>:<LABEL>:<update>;

5.2 Modelling dining cryptographers

Anonymity is an important concept in security. To illustrate the
versatility of our work, we use our logic to express anonymity
of the dining cryptographers protocol [15]. Consider that three
cryptographers 1, 2 and 3 are sharing a meal at a restaurant.
At the end of the meal, at most one cryptographer will pay
the bill, and they would like to check whether the bill has
been paid or not, but the cryptographers respect each other’s
right to make an anonymous payment. A two-stage protocol is
performed to solve the problem: (i) every two cryptographers
establish a shared one-bit secret: each of them flips a coin, the
outcome is only visible to himself and the cryptographer on his
right; (ii) each cryptographer publicly announces whether the
two outcomes agree or disagree, if the cryptographer is not the
payer, he says the truth, otherwise, he states the opposite of
what he sees. When all cryptographers have announced, they
count the number of disagrees. If that number is odd, then one
of them has paid, but no other cryptographer is able to deduce
who is the payer.

Without loss of generality, let us assume cryptographer 3 is
the observer who tries to know which of the other two paid the
bill if the bill has been paid. The observer does not know the
initial state of the cryptographer i = 1, 2 being the payer (pi),
he knows the outcome of the flipping coins of himself and of
the cryptographer-1: head (hi) or tail (ti) where i = 1, 3 but does
not know that of the cryptographer-2, he knows the procedure
of the protocol and he can hear what cryptographer i says:
agree (ai) or disagree (di), and therefore he knows the outcome
of the disagreement counting is even (e) or odd (o). In other
words, labels pi, h2, t2 are invisible to him, while labels h1, t1,
h3, t3, di, ai, e and o are visible to him. Therefore the set of
observables includes: Θ = {di, ai, e, o | 1 ≤ i ≤ 3} ∪ {hi, ti | i =
1, 3}, and the observation function on the transition labels of
the model is specified as: p1, p2, t2, h2 → ǫ; ai → ai, di → di;
h1 → h1; t1 → t1, h3 → h3; t3 → t3; e → e; o → o. Our tool
can automatically check the property “cryptographer 1 is the
payer” (ψ = X(payer = c1)) is opaque if the bill has been paid.
The property specification is given as: P =?[⊙ X (payer = c1)].
Our tool answers the question “c1 is the payer is ψ-opaque” as
follows:
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Result: 0.0.{} (value in the initial state)

The result shows that there are no observable traces found.

5.3 Modelling a location privacy example

Consider a simple example of location privacy releasing by
credit card records presented in Fig. 4 which describes the
card holder’s activities. Assume the adversary can observe the
credit card records to track partial location information and
the observations are given as: station → s,work → ǫ, travel →
ǫ, office → ǫ, coffeshop → c, bankA → b, bankB → b, airport →
a, home → ǫ, L1 → ǫ, L2 → ǫ, L3 → ǫ. Suppose that the states
leading to the final location L1, L2 and L3 are sensitive. Then
we have the property specification as: P =?[⊙ F dest], where
dest denotes states q9, q10 and q11, led by locations L1, L2 and
L3 respectively. The result generated by the tool is as follows:

Result: 0.3333.

{0.1667:stationtravelbankBairportL1:sba,

0.1667:stationtravelbankBairportL2:sba}

(value in the initial state)

The result meets our intuition, that the traces leading to L1
and L2 with observation sba and sba are not covered by traces
leading to insensitive final location states.
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Fig. 4. Modelling a location privacy example

6 ENTROPY OF THE OPACITY FORMULA

Probabilistic specification P(⊙[ψ]) calculates the probability of
non-ψ-opaque behaviours of a model M. In this section, we
provide some discussions on an alternative measurement of the
opacity formula based on the notion of entropy:

H(⊙[ψ]).

We adapt the definition of the entropy of a language (of finite
words) [16] to calculate this.

Definition 12 (H[⊙[ψ]]). Given a model M = (L, η, obs). Let ψ
be a path formula, the entropy of the opacity formula ⊙[ψ]
is defined as:

H(⊙[ψ]) = lim sup
n→+∞

log2(1 + | [[[ψ]] \ obs−1(obs( ¯[[ψ]]))]n |)
n

,

where:

| [[[ψ]] \ obs−1(obs( ¯[[ψ]]))]n | = | {π ∈ path(L, s) | M |=π ψ
∧ | erase(π) | = n

∧ π is transparent} |.

Intuitively, the entropy of ⊙[ψ] can be understood as the
amount of information (in bits per symbol) in typical words
of (the language of) ψ-transparent.

It is easy to slightly change Algorithm 1 to calculate the
size of transparent traces. We can then take the prefix of those
traces with length of n and compute the entropy of ψ-opaque
property using Definition 12.
Example 5. Consider again the models presented in Example 1.

It is easy to see that for any n ∈ N, | [⊙[Fsi]]n | = 0, so:

H[⊙[Fsi]] = lim sup
n→+∞

log2(1 + 0)

n
= 0,

where i = 3 for model (a) and i = 2 for model (b). The
result shows the degree of transparency of traces satisfying
ψ = Fsi is 0 in the notion of entropy, and implies the model
is [Fsi]-opaque.

Example 6. Consider again the models presented in Fig. 2. It is
easy to see that for any n ∈ N, | [⊙[Fs3]]n| = n, so:

H[⊙[Fs3]] = lim sup
n→+∞

log2(1 + n)

n
= 0.

The result shows the degree of transparency of traces satis-
fying ψ = Fs3 is 0 in the notion of entropy, and implies
the model is [Fs3]-opaque. Note that, the entropy-based
measurement is not as precise as the probabilistic-based
measurement. But it somehow meets our intuition: when
n → ∞, most of the traces satisfying [Fs3] are covered by
traces violating [Fs3] (only acba⊥∗ is not covered) from the
observer’s view.

[17] formulated the basic entropy-based properties in
model checking context. We adapt their discussions here to
our scenario for opacity properties, to illustrate some intuition
of entropy-based measurement. Consider a model M, and
an opacity formula ⊙[ψ]. Let Π and Π(⊙[ψ]) denote all the
behaviours of the model and all the (in)finite paths satisfying
⊙[ψ], intuitively:

• H(Π) measures the quantity of all the behaviours of the
system,

• H(Π ∩Π(⊙[ψ])) measures the quantity of the ψ-opaque
behaviours of the system,

• H(Π)−H(Π∩Π(⊙[ψ])) quantifies how difficult to steer
the system to be ψ-opaque,

• and H(Π\Π(⊙[ψ])) = H(⊙[ψ]) measures the quantity of
non-ψ-opaque (transparent) behaviours of the system.

In general, for any language accepted by a given finite well-
structured model M, its entropy can be effectively computed
using linear algebra [16]. Let A(M) denote the extended adja-
cency matrix of M:

A(M) = |{a ∈ Σ | s a−→ t ∈→}|.

Theorem 5. [16] For any finite deterministic trimmed model M,
the entropy of the paths accepted by M can be calculated
as:

H(path(M)) = log2 ρ(A(M)),

where ρ(A) is the spectral radius the matrix A, i.e., maximal
modulus of its eigenvalues.

If we can find a finite deterministic model accepting the
specified paths satisfying the property (this is out range of this
paper), we can then calculate the entropy of the property as the
logarithm of a spectral radius using Theorem 5.
Example 7. Consider a model presented in Fig. 5 (a) named Ma.

Let s3 be a sensitive state, and s0 be the starting state, and
the observation function be: a → ǫ, b → b, c → c. Consider
the security property eventually reaching s3, i.e., ψ = Fs3 in
our logic. It is easy to see that the model presented in Fig. 5
(b), say Mb, accepts all Fs3-transparent paths. We can then
calculate H(⊙[Fs3]) by Theorem 5 as:

H(⊙[Fs3]) = log2 ρ(A(Mb) = log2
1 +

√
5

2
.
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Fig. 5. Example: Entropy of ⊙[F s3] for model (a). Grey node denotes a
sensitive state. (b) is the model accepting all F s3-transparent paths.

7 RELATED WORK

We present related literature from the perspective of specifica-
tion and verification of information security policies. This work
relates to the specification of information security policies and
(quantitative) verification of opacity properties.

Security policies. There are a number of information security
policies for confidentiality: non-deducibility [18] is designed to
keep attacker observable events consistent with possible varia-
tions of secret inputs, but this policy is not able to protect secret
outputs and to address covert channels; non-interference [12]
is one of the most popular flow policies but it is too strong
for practical applications; quantified non-interference [19] is
then introduced to relax the absolute non-interference policy
by computing the amount of the interference; declassification
policies [20] control the release of information; (quantified)
opacity [3], [4], [6], [21] is considered as a more general prop-
erty where the sensitive information can be contained in the
input, output, and each transition step, which can lead to the
definition of initial, final, and language-based opacity. Opacity
is a promising approach for describing and unifying security
properties. Recently, quantified opacity [3], [4], [21] has been
studied in terms of probability and information entropy.

This work focuses on general policies using opacity. Opacity
has reasonable potential being a good choice for specifying
flow security properties for modern communication systems
due to the feature of partial observability and uncertainty of
the environment.

Verification of opacity. Opacity was first introduced in the
context of cryptographic protocols in [22], [23]. Later on, Bryans
et al investigated opacity properties in systems modelled as
Petri nets [24] and labelled transition systems [6], where the
secret was specified as predicates over system runs. Generally
speaking, the opacity properties can be classified into two
families: language-based opacity [25], [26], [27] where the secret
predicate is regarding to a subset of system runs; and state-
based opacity [5], [6], [28], [29], [30] where the secret predi-
cate is referring to a subset of states. Intuitively, the system
is language-based opaque if for any word w in the secret
language LS , there is at least one other word w′ in the non-
secret language LNS equivalent to w based on the adversary’s
observations; the system is considered as state-based opaque if
the adversary is not able to induce whether the initial state
(initial-state opacity), current state (current-state opacity [6],
[28]), the state a few steps ago (K-step opacity [28]), or the
initial-final state pair (Initial-and-Finial state opacity [5]) is a
secret state or not. Dubreil [26] studied opacity verification of

infinite-state systems using approximate models. Kobayashi and
Hiraishi [31] investigated the approach of verification of opacity
for infinite-state discrete event systems modelled by pushdown
automaton. They showed that opacity of pushdown systems is
undecidable. The relationship among variant notions of opacity
has been studied [5], [29], [32] and transformation mappings
between them described – enabling efficient use of existing
verification approaches.

This paper focuses on an easy-expressing logic OpacTL and
OpacPTL for specifying opacity, and applies probabilistic model
checking techniques for automatically verifying opacity proper-
ties with guarantees. Automated verification approach is built
on solid foundations and provides the rigorous guarantees
needed to give confidence and identify subtle flaws in a security
system. Quantitative aspects enable designers to effectively
weigh and arbitrate between concerns such as security and
performance. Quantitative verification therefore turns to be a
good fit for the analysis of security property. We build the pro-
totype tool as an extension of PRISM [14] for the quantitative
verification perspective, and will consider to integrate opacity
enforcement mechanism into our framework as a future work.

Logics for security properties. Linear temporal logic formu-
las cannot express properties of sets of execution paths, i.e.
hyperproperties are required for specifying information flow
policies, such as non-interference properties. Computational
tree logic formulas cannot express observational determinism
even if path quantifiers are defined, hence the need to develop
specialised logics that characterise information flow proper-
ties for security policies. Dimitrova [33] proposed SecLTL, an
extension of LTL with a hide operator, for specifying path-
based integration of information flow policies in reactive sys-
tems. The hide operator specifies requirements such that the
observable behaviour of a system needs to be independent of
the choice of a secret. Clarkson et. al [34] proposed HyperLTL
and HyperCTL∗ as an extension of propositional linear-time
temporal logic (LTL) and branching-time temporal logic (CTL∗)
respectively for the purpose of specifying hyperproperties.
HyperLTL and HyperCTL∗ specified information flow poli-
cies by explicit quantification over multiple traces. Epistemic
logic [35] is a different approach to reason about information
flow properties from perspective of knowledge, rather than se-
crets as other logics for information flow properties. Specifically,
knowledge operators are introduced to temporal logics to express
knowledge-based information flow properties for imperative
programs [36].

Comparing with the above works, we focus on elementarily
expressing and verifying observability properties for security
systems. Logic for Hyperproperties can be more expressive
than our logic, but we aim to propose easy-expressing speci-
fication of opacity and observability property for information
security concerns in particular. The logic OpacTL proposed in
this paper can be used to specifying the opacity property
in a very straightforward way for security systems, and the
property required to be secret can be defined flexibly regarding
users’ requirements. For instance, the user can require that a
particular state such as initial, next or final of the system should
be kept secret. In addition, our logic OpacPTL can specify
opacity security properties in a quantitative way, allowing us
to reason about the degree of satisfaction or violation of the
security property of interest. Such a degree is measured based
on both probability and entropy of observable behaviours of the
model, which is novel and promising.

Quantitative security properties Opacity and related concepts
were first studied and related to information flow properties in
a qualitative context in [6]. In the probabilistic context, opacity
has been studied in [3], [4], [37]. [37] studied the notion of
opacity in the probabilistic computational world. There opacity
was based on the probabilities of observer’s pre-beliefs on the
truth of the predicate. The work in [3] presents a quantitative
information leakage analysis in terms of probabilistic opacity.
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A number of quantitative opacity notions are introduced in [4]
which can be applied in information flow security analysis.

In this paper, the measurement of opacity has been studied
in two perspectives. We measure the probability of observable
behaviours to which extent the model satisfies a sensitive
property, and apply probabilistic model checking technique to
automate the approach. In many situations probabilistic verifi-
cation is highly relevant, but there is an important limitation:
for many interesting properties, the probability is either 0 or
1 (too precise) and thus no quantitative sense analysis [17].
We therefore also study the entropy of observable behaviours
regarding to a sensitive property of interest. This allows us to
measure the amount of information in bits per symbol in typical
behaviours.

8 CONCLUSIONS

We have proposed a novel, probabilistic logic for simply ex-
pressing the opacity of labelled transition system properties
and demonstrated how opacity in this context can be checked
using an extension of the PRISM model checker. We also
provide a discussion towards an entropy-based measurement
of the opacity formulae. Given the flexibility of opacity as a
security property there are many possible directions for future
research. Promising directions include applying our technique
to location privacy protocols and generalising the opacity
framework to games and robotic systems modelled as partially
observable transition systems in order to provide better deci-
sion procedures. We also propose to develop approaches to-
wards an entropy-based measurement of the opacity formulae.
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generalised to transition systems,” Int. J. Inf. Sec., vol. 7, no. 6,
pp. 421–435, 2008.

[7] A. Saboori and C. N. Hadjicostis, “Verification of initial-state
opacity in security applications of discrete event systems,” Inf. Sci.,
vol. 246, pp. 115–132, 2013.

[8] ——, “Current-state opacity formulations in probabilistic finite
automata,” IEEE Trans. Automat. Contr., vol. 59, no. 1, pp. 120–133,
2014.

[9] E. M. Clarke and E. A. Emerson, “Design and synthesis of syn-
chronization skeletons using branching-time temporal logic,” in
Logics of Programs, 1981, pp. 52–71.

[10] C. Baier and J.-P. Katoen, Principles of Model Checking. The MIT
Press, 2008.

[11] B. Bonakdarpour and B. Finkbeiner, “The complexity of monitor-
ing hyperproperties,” CoRR, vol. abs/2101.07847, 2021.

[12] J. A. Goguen and J. Meseguer, “Security policies and security
models,” in S & P, 1982, pp. 11–20.

[13] “Prototype tool and case studies,”
https://bitbucket.org/cmu777/prism-opac.git, 2020.

[14] M. Kwiatkowska, G. Norman, and D. Parker, “PRISM 4.0: Verifica-
tion of probabilistic real-time systems,” in Proc. 23rd International
Conference on Computer Aided Verification (CAV’11), ser. LNCS,
G. Gopalakrishnan and S. Qadeer, Eds., vol. 6806. Springer, 2011,
pp. 585–591.

[15] D. Chaum, “The dining cryptographers problem: Unconditional
sender and recipient untraceability,” Journal of Cryptology, vol. 1,
pp. 65–75, 1988.

[16] N. Chomsky and G. A. Miller, “Finite state languages,” Information
and Control, vol. 1, no. 2, pp. 91–112, 1958.

[17] E. Asarin, M. Blockelet, A. Degorre, C. Dima, and C. Mu, “Entropy
model checking,” in QAPL, 2014.

[18] D. Sutherland, “A model of information,” in CCS, 1986, pp. 1113–
1119.

[19] D. Clark, S. Hunt, and P. Malacaria, “Quantitative analysis of
the leakage of confidential data,” Electr. Notes Theor. Comput. Sci.,
vol. 59, no. 3, pp. 238–251, 2001.

[20] A. Sabelfeld and D. Sands, “Dimensions and principles of declas-
sification,” in CSFW, 2005, pp. 255–269.

[21] B. Bérard, K. Chatterjee, and N. Sznajder, “Probabilistic opacity for
Markov decision processes,” Inf. Process. Lett., vol. 115, no. 1, pp.
52–59, 2015.

[22] A. Boisseau, “Abstractions pour la vérification de propriétés
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“Model checking information flow in reactive systems,” in VM-
CAI, 2012, pp. 169–185.

[34] M. R. Clarkson, B. Finkbeiner, M. Koleini, K. K. Micinski, M. N.
Rabe, and C. Sánchez, “Temporal logics for hyperproperties,” in
POST, 2014, pp. 265–284.

[35] J. W. G. III and P. F. Syverson, “A logical approach to multilevel
security of probabilistic systems,” pp. 164–176, 1992.

[36] M. Balliu, M. Dam, and G. L. Guernic, “Epistemic temporal logic
for information flow security,” in PLAS, 2011, p. 6.
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