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Abstract 

This paper presents a methodology that combines data assimilation and physical modelling of 

flame spread for fire growth forecast. The concurrent flame spreading over a flat solid sample in the 

absence of buoyant flows is considered as a simple canonical fire spread configuration. To predict 

flame spread rate and flame length evolution, the analytical solution to the two-dimensional boundary 

layer non-premixed combustion problem is combined with a CFD model which delivers the structure 

of the flow away from the fuel surface. In the process, two coefficients which intervene in the gas and 

solid heat transfer equations are assimilated using the pyrolysis length data as a flame spread rate 

surrogate input to absorb the shortcomings of the modelling. The robustness of the overall method is 

evaluated through convergence assessment of these two assimilated variables for different initial 

guesses, and for different values of the input invariants. Validation over large-scale microgravity data 

provides confidence in this approach, and demonstrates its potential to deliver flame spread predictions 

from initial measurements at a reduced computational cost. However, discrepancies between flame 

length measurements and predictions question the degree of correlation between pyrolysis and flame 

lengths. 
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Nomenclature 

B Spalding B number 

C1 The first assimilation variable for ignition delay time 

C2 
The second assimilation variable for heat loss term at fuel 

surface[MJ/(kg·m1/2)] 

 Specific heat of the gas at constant pressure [J/(kgK)] 

 Specific heat of the solid [J/(kg·K)] 

f Similarity stream function 

g gravitational force [m/s²] 

J Mixture fraction 

 Thermal conductivity of the gas [W/(m·K)] 

 Thermal conductivity of the solid [W/(m·K)] 

L Heat of gasification [J/kg] 

 Mass loss rate [kg/(m2·s)] 

Pr Prandtl number 

 Total heat losses flux at the fuel surface [J/(kg·m2·s)] 

 External heat flux [W/m2] 

 Maximum heat flux of the preheat region [W/m2] 

Q Total heat losses [J/kg] 

Re Reynolds number 
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s Stoichiometric ratio 

 Ignition temperature [K] 

 Ambient temperature [K] 

 Ignition time [s] 

 Pyrolysis time [s] 

 Ambient velocity [m/s] 

u Streamwise velocity [m/s] 

 Pyrolysis velocity [m/s] 

v Transverse velocity [m/s] 

x Streamwise coordinate [m] 

 Pyrolysis length [m] 

 Ambient oxidizer fraction 

y Transverse coordinate [m] 

Z Schwab-Zeldovich variable 

 Heat of combustion [J/kg] 

 Convergence criteria 

 Similarity variable 

 Thickness of the analytical described gas phase region [m] 

 Preheat length [m] 

 Density of the solid [kg/m3] 

 Kinetic viscosity [m2/s] 
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 Stream function 

 

1. Introduction 

Safe and timely decisions in firefighting are essential to prevent life losses and minimize material 

damage. Although firefighting protocols are based on experience, there has been a clear recognition in 

the last two decades that predictions of fire growth can be of significant importance to support dynamic 

risk assessments when there is a need to deviate from these protocols [1]. It is therefore necessary to 

develop tools and procedures to deliver such predictions. Unfortunately, present tools are not precise 

enough, robust enough and, particularly, not fast enough to deliver adequate information in a timely 

manner [2]. Furthermore, even if these tools were to sufficiently improve, the large uncertainty 

regarding materials, configurations and geometries results in first principles predictions that will be 

inevitably inaccurate.  

Most previous studies of fire spread are conducted over one- or two-dimensional condensed fuels, 

either liquid [3] or solid [4,5], and are classified as either concurrent or opposed flame spread. In 

concurrent flame spread, convective heat transfer is in the direction of spread and, therefore, it is 

considered as being a greater hazard than opposed flame spread, where convective heat transfer 

opposes the spread of the flame [6]. For this reason, this paper will focus on concurrent flame spread. 

In concurrent flame spread, the spread rate is controlled by heat and mass transport coupled with 

combustion and pyrolysis chemical reactions. The processes involved can be divided into two loosely 

coupled sets of processes occurring in the gas and condensed phases. Such a loose coupling is possible 

because gas phase and condensed phase processes feature very different characteristic times[6]. 

Decoupling the fast reactive-flow from the slower pyrolyzing fuel thus makes it possible to treat the 

y



 

5 
 

two phases separately and allows to only consider interactions in an approximated manner through 

their respective domain boundaries. With a set of assumptions tailored to simplify the gas-phase 

equations, Emmons first provided an analytical solution for the mass loss rate at the fuel surface [7]. 

The flame spread over a thin fuel was then formulated by de Ris with additional models to account for 

the heat transfer to the condensed phase [8]. This model, and others that followed [9], assumed a quasi-

steady approach for the gas phase. Within the flat fuel plate configuration, additional work managed 

to include the effects of chemistry [4,10], thermal thickness [11] and turbulence [12]. These analytical 

models provide means to calculate the flame spread rate as well as gas phase temperatures and flame 

lengths [13]. However, the quasi-steady-state assumption required for the boundary layer flow imposes 

severe limitations to the applicability of any of these models to real scenarios, where the flow evolves 

in a complex manner. Without a time-dependent description of the gas phase, the boundary conditions 

at the surface of the condensed phase, particularly the heat fluxes from the flame, are poorly evaluated. 

Moreover, assumptions associated with the analytical model further limit the precision of the 

predictions. 

To account for a dynamic evolution, Computational Fluid Dynamic (CFD) models solve the 

various differential equations which describe the evolution of the gas phase in space and time. The 

generation, transport and consumption of mass, species, momentum, and energy are then modelled in 

discretised cells. Because equations are solved locally, a more detailed and precise description can be 

achieved. Many CFD studies for concurrent flame spread have appeared in the literatures in the last 

three decades, covering a range of objectives such as coupling of different phases [14], the effects of 

gravity [15] or the prediction of spread rates [16]. Yet, the computational time is governed by the mesh 

size, which in turn is controlled by both the required precision of gradients at the interface between 
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the gas and condensed phases and convergence requirements. In the concurrent flame spread 

configuration, these require exceptional mesh refinements since it is essentially a near-wall reactive 

flow driven by fuel mass transfer. Consequently, the computational resources imposed for predictions 

using numerical models are far beyond the capability of present computers when attempting to 

approach real-time forecasts of real-size fires. This undermines the potential of CFD simulations as an 

approach towards fire growth prediction. It is also important to highlight that numerical models need 

a significant number of parameters to absorb phenomena occurring at a sub-mesh scale: the validation 

of the choice of parameterization and quantification of these parameters then controls the quality of 

the predictions. Furthermore, the results can be especially sensitive to these input parameters because 

of inherent non-linearities in the system. 

Atmospheric scientists faced similar issues more than 50 years ago [17]. To overcome them, it 

was proposed to continuously re-initialize predictions with updated measurements, which is known as 

data assimilation or data-driven prediction [18]. Data assimilation consists in updating the estimations 

of the true state of a real physical system by optimally incorporating observations with fluid dynamics 

models following a calibrated initial value approach [19]. This means that a forward predictive model 

is permanently corrected with the observations through inverse model procedures. Such methodology 

is utilized in the model the wildland fire spread[20,21]. In the field of fire safety, Cowlard et al. 

successfully corrected parameters in an analytical forward concurrent flame spread model using 

experimental observations such as flame length [1]. However, predictions with this configuration are 

limited to the pyrolysis and flame lengths, and the quality of the model still relies heavily on strong 

steady spread assumptions related to the analytical model of the gas phase. This limits the range of 

application of this model. 
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In order to combine the benefits of analytical and CFD modelling, and to improve on the quality 

of the prediction using data assimilation, a data-driven hybrid model has already been successfully 

derived for the droplet combustion system [22]. A steady-state analytical gas phase model adequately 

describes the heat and mass transfer at the fuel surface, providing self-similar fields of velocity, 

temperature, and species in the vicinity of the droplet. A numerical description of the gas-phase flow 

and kinetics then computes at a refined scale the properties of the reactive flow away from the surface, 

with a drastic reduction in the computational cost compared to an all-numerical model where refined 

meshing is needed in the near-wall region. The dynamic heat flux distribution at the fuel surface is 

extracted from the CFD model and is then integrated to an analytical model in the condensed phase. 

This provides the required time-dependant pyrolysis rate feedback into the analytical model of the gas 

phase. Data assimilation is then carried out to adjust the most important physical parameters capturing 

the condensed phase and gas phase interactions, and thus absorb the inherent parametric uncertainties. 

This hybrid configuration benefits from the precision of the CFD and analytical models at a reduced 

computational cost. 

In the present study, the work of Xi et al. [22] is extended to the two-dimensional situation of 

concurrent flame spread over a flat surface. The analytical and numerical models implemented over 

the flat fuel sample are described first, together with the boundary conditions through which 

information is transferred. The precision of the hybrid model is then evaluated against experimental 

observations of flame spread over a large flat sample of thick Polymethyl Methacrylate (PMMA) 

conducted in microgravity conditions. Although a pure forced flow can only occur in microgravity, 

reduced pressure can be used approximately to replicate flame behaviour of normal gravity 

conditions[23]. The model is then used to predict concurrent flame spread at a reduced computational 



 

8 
 

time. 

2. Hybrid data-driven Concurrent Flame Spread Model 

A two-dimensional (2D) hybrid model for simulating concurrent flame spread is proposed to 

combine the benefits of CFD and analytical modelling and to obtain precise predictions at low 

computational cost. As illustrated in Figure 1, analytical models are proposed for the condensed fuel 

phase and in a thin gas region in the vicinity of the fuel surface, while a CFD model is implemented 

away from the fuel surface. The condensed phase is assumed to be a solid of infinite thickness. The 

analytically described gas phase region at the fuel surface should be thin enough to leave the reaction 

zone above the preheated fuel in the CFD region, and thick enough to enable an analytical solution for 

species concentration, flow velocity, and temperature in the viscous boundary layer, consequently 

reducing the computational time. The thickness in the orthogonal coordinate y (perpendicular to the 

fuel surface) is case-specific, and its calculation needs a detailed definition. Nevertheless, simple 

scaling analysis performed in Section 3.2 will indicate that it is of the order of a few millimetres.  

 

Figure 1 Schematic diagram of the different regions solved in the hybrid model for concurrent 
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flame spread. The condensed region is treated analytically, while the gas-phase is a combination of an 

analytical domain at the solid surface and a numerical CFD domain. 

 

2.1 Analytical Model for the Gas Phase Region 

Gas phase region of concurrent laminar flame spread in a boundary layer flow has been described 

analytically following different sets of heat and mass transfer hypotheses[7,24,25]. Assuming: 1) a 

steady laminar flow, 2) infinitely fast chemistry, 3) equal mass, momentum, and heat diffusion 

coefficients, 4)  with 𝜌 the gas-phase density and 𝜇 its dynamic viscosity, and 5) 

neglecting radiative heat transfer, the energy and species conservation equations can be expressed with 

the Schwab-Zeldovich variables . The purely forced convective flow can be described by 

   (1) 

with , where  is the stream function, x is the streamwise coordinate, and Re is the 

Reynolds number. The associated energy-species equation coupled with the momentum equation is 

   (2) 

where Pr is the Prandtl number, and J the mixture fraction defined as , 

where the indexes w, ∞ correspond to locations near and away from the fuel surface, respectively. The 

boundary conditions are 

   (3) 

In these equations,  is the self-similar variable and the mass transfer (or Spalding) number B is  

   (4) 

where  is the heat of combustion, 𝑌!,# is the ambient oxygen content, s is the stoichiometric 
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oxidizer-fuel mass ratio,  is the specific heat capacity of the gas,  is the ignition temperature 

of the fuel,  is the ambient temperature, L is the heat of gasification and  is defined as 

   (5) 

where  represents the net non-convective heat transfer at the fuel surface (generally referred to as 

net losses) and  is the fuel mass flux at the surface.  is then a function of the streamwise 

coordinate x. Ultimately, the Spalding B number represents the relative importance of different heat 

transfer modes during steady-state burning and has been demonstrated to be an effective parameter to 

characterize flammability. Furthermore, Emmons showed that, given the different characteristic time 

scales of solid and gas phase processes, the gas phase attains steady state much faster than the solid 

and therefore this approach can be used as a quasi-steady mean to assess concurrent flame spread. 

The exact solutions to the above equations require numerical iterations. Polynomial 

approximations can be used to obtain the two-dimensional profiles of the mixture fractions and the 

velocity, as specified in [24,26]. Moreover, the inverse Howarth-Dorodnitsyn transformation is 

necessary to account for density variations. For the purpose of this study, a linear density profile is 

assumed, following Baum et al. [27].  

2.2 Analytical Model for the Condensed Region 

The flame spread rate  can be defined as the progression of the pyrolysis region. For the 

pyrolysis front located at  to progress, the non-burning condensed phase must be heated to a 

point where it releases sufficient fuel in the gas to ignite.  

   (6) 

with  the preheat length and  the characteristic time to ignite the virgin fuel. The ignition time 
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 is the sum of the time  for the combustible material to reach the pyrolysis temperature and the 

time  for the fuel volatiles to attain the lean flammability limit. An induction time associated to the 

onset of the reaction chemistry might be necessary, but induction time generally is much smaller that 

the two other characteristic timescales in the presence of a pilot flame, and will thus be neglected here. 

In addition, for the concurrent flame spread under fast chemical kinetic conditions, it can also be 

assumed that  >> , hence  is approximated as  [28]. A final assumption requires the fuel 

supply to be large enough so that when the lean flammability limit is attained and the onset of 

combustion takes place, that the reaction chemistry is very fast. This means that the flame is burning 

far from quenching or blow-off conditions [29].  

For a thermally thick material and sufficiently high external heat supply, the pyrolysis time is 

found by solving the one-dimensional transient heat conduction equations in the solid material. With 

the semi-infinite boundary condition at the back, the ignition time can be established as [30]: 

   (7) 

where  is the thermal inertia of the material,  is the pyrolysis temperature, and  is the 

external heat flux. An external heat flux of 11 kW/m² has been experimentally identified as the critical 

value below which PMMA cannot ignite [31]. As such, this equation will only be considered for fluxes 

above this critical value. In the studied configuration, the heat flux profile is approximately constant 

until reaching the leading edge of the flame and then decreases along the streamwise coordinate [32]. 

The heat flux decay profile can be normalized by a characteristic length scale to follow a self-similar 

decay function. Therefore, if the decay function is known, the heat flux distribution can be quantified 

simply by means of a characteristic heat flux and a characteristic length. The characteristic heat flux 
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and length are chosen as the maximum heat flux and the pyrolysis length, respectively. The preheat 

length is then taken as the distance from the edge of the burning fuel to the location where the heat 

flux descends to a threshold heat flux as 11 kW/m² below which pre-heating is deemed to be negligible. 

2.3 Numerical model 

The numerical model performs a two-dimensional simulation based on OpenFOAM that uses a 

SIMPLE algorithm to solve the continuity, momentum, energy, and species equations [33]. The 

conservation equations are discretised on a non-uniform Cartesian grid by finite volume procedures 

with a first order implicit Euler scheme for time integration. The divergence terms are approximated 

from the second order Gauss integral scheme with limited linear interpolation; no further turbulence 

model is applied. For simplicity, the energy equations do not consider radiation. The absence of 

radiative modelling prevents direct and accurate numerical prediction of flame spread, but it is assumed 

that assimilation will manage to absorb the associated errors. This will be further verified in Section 

3.2. The species equations are solved for the fuel taken as methyl methacrylate (MMA), oxygen, 

carbon dioxide, and water vapour; and the combustion model uses infinitely fast chemistry with a one-

step Arrhenius reaction. Thermal properties are extracted from the NIST database [34].  

The computational domain covers 0.3 m (x) × 0.03 m (y), and is divided into 80 (x) × 8 (y) 

cells in a non-uniform grid as fine as 1.25 mm × 1.25 mm. The flame leading edge position is fixed 

during the computation. The domain is designed to fully observe the flame trailing edge, so all species 

are gradient free at the inlet and outlet. The finest grid resolution is located close to the fuel surface to 

capture the flame leading edge, since flame stabilization in this region may affect combustion. This 

resolution is consistent with stand-off distances relevant to the present study [35], yet only requires a 

reduced number of cells for fast resolution. Ambient flow velocity, pressure, and oxygen content away 
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from the flame are adjusted in accordance with the conditions studied.  

Following the principles illustrated in Figure 1, the hybrid model can be constructed, and is run 

both as a forward predictive model and a backward assimilation model. To trigger the forward model, 

initial conditions for the three regions are assigned. For the analytically described gas phase region, an 

initial pyrolysis length  of 1 mm is selected, in accordance with the characteristic dimensions of 

a wire ignitor commonly used in related experiments. The initial flame spread rate is 0 in the 

analytically described condensed region, and ambient flow conditions are adopted in the CFD region.  

2.4 Uncertainties from invariants in the models and data-driven implements 

In both the analytical and the numerical models, there are numerous input parameters regarding 

thermal properties and chemical reaction coefficients which can significantly influence the results. As 

an illustration, Table 1 lists the input parameters required in the different regions.  

  

,p ix
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Table 1 Input parameters in the hybrid model 

 Input parameters  

Analytical 
condensed phase 

region 

Condensed Fuel thermal inertia,    

Condensed fuel ignition temperature,   

Analytical 
gas phase 

region 

Ambient temperature,   

 Stoichiometric ratio, s 
 Condensed fuel heat of gasification, 

  

 Condensed fuel heat of combustion, 
  

 Heat conductivity of the gas, 

 

 Heat capacity of the gas,  

 Ambient density of the gas,   

 Ambient oxygen fraction,    

 Thickness of the analytical gas phase region,    

CFD model 

Mesh size  
Chemical reaction coefficients  
Thermal properties of species  

Ambient oxygen fraction,   

Ambient temperature,   

Ambient velocity,    

 

Values for the solid thermal inertia , consisting of thermal conductivity , heat 

capacity  and density  reported in the literature can be quite different. Contrasting values 

provided by several studies [36–38] with direct evaluation of the thermal inertia by different groups 
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[39–41], the thermal inertia of PMMA approximately ranges from 0.4 to 2.55 kJ2/(m4·s·K2). There 

are also some discrepancies on the characteristic ignition temperature for PMMA in the literature, 

which ranges from 260 to 400℃ according to different studies with various sample configurations 

[41–44].  

Another parameter bringing significant uncertainty is the stoichiometric ratio. For complete 

combustion of MMA in air, the stoichiometric ratio is . However, it should be noted that, in 

the present configuration, combustion is not complete since quenching will always occur at the fuel 

surface. As such, the global mass stoichiometric ratio will always be less than 0.52. The definition of 

the Spalding B number provides the lower boundary of s below which combustion cannot happen 

   (8) 

Depending on the value of the ignition temperature, s is then superior to 0.17 for an ignition 

temperature of 400°C, or to 0.11 for an ignition temperature of 260°C. Bering in mind this variability, 

the impact of the chosen values for the solid thermal inertia, the ignition temperature, and the 

stoichiometric ratio on the quality of the prediction is carefully assessed in Section 3.2. 

Apart from these three parameters, additional inputs include a heat of gasification of 1600 J/g 

[35,36], heat of combustion of 25 MJ/kg [14,45], solid heat capacity and conductivity which are 

approximated as 2400 J/(kg·K) and 0.159 W(m·K), respectively [24]. The ambient temperature is 

taken as 20℃, the gas density 1.2 kg/m3, and the ambient oxygen fraction is 0.23 in mass. In the CFD 

model, the infinitely fast chemistry model does not consider the detailed chemical steps and the 

associated kinetic coefficients. However, in a flame spread configuration, the specific chemical paths 

have relatively little impact on the final flame spread which is dominated by thermal effects heavily 

dependent on the thermal inertia, the ignition temperature, and the stoichiometric ratio. 
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In order to curb the uncertainties in the hybrid model, predictions are made through data 

assimilation by updating the inputs to synchronize the simulated results and the observations. Yet, for 

corrective parameters to enable a prediction, they have to be time-independent. If the parameters are 

time-dependent, then the model will never produce a prediction because the parameters will only be a 

local fit in time and therefore uncertainties beyond the data assimilation window can never be reduced. 

It is important to note that this is a key aspect of all data assimilation approaches that needs to be 

carefully assessed here. 

The convergence of the assimilated variables can be used to identify the assimilation time 

required for proper predictions. A criterion is proposed by comparing the updated and previous 

assimilated variables at each of the considered time steps. Based on the relative differences between 

the updated assimilated variable, , and previous assimilated variable, , the 

convergence criteria index  is calculated for N types of assimilated variables as, 

   (9) 

The choices of the number and nature of the assimilate variables are critical. Numerous 

parameters can be assimilated if the forward model incorporates sufficient details of the physical and 

chemical processes. Nevertheless, increasing the number of parameters is not necessary because the 

desired output is not equally sensitive to all the potential parameters. In addition, more parameters 

means more dimensions to solve and more independent types of data that need to be assimilated, hence 

additional computational time and the potential for internal compensation between assimilation 

variables arise.  

For the concurrent flame spread, the condensed and gas phases have different characteristic 
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timescales. The properties of the condensed phase change at a slower pace than those of the gas phase, 

which means that parameters change in the gas phase only slowly affect the condensed phase. 

Following previous work for the droplet combustion [16], two parameters representing the condensed 

phase and the gas phase, respectively, are chosen to be assimilated to the forward model. In the 

condensed phase, the parameter C1 is introduced in Eq. (7) to tune the ignition delay time described in 

Eq.(7), delivering:  

   (10) 

Then, amending the properties of the gas phase through the mass transfer number B is an attractive 

option since this dimensionless number is the ratio between the heat received from the flame and the 

heat transferred at the fuel surface. Introducing an assimilation variable can thus correct the heat losses 

at the fuel surface from the observations, and absorb the uncertainties related to the radiative balance 

with a direct impact on the species mass fraction, temperature, the velocity field, and eventually the 

flame spread rate. Further detailing Eqs. (4) and (5), the mass flux at the fuel surface is defined as 

   (11) 

with  the density of ambient air,  the velocity of the forced convective flow,  the kinetic 

viscosity. In Eq.(5), the heat loss at the solid surface  consists of surface reradiation, flame 

radiation, in-depth conduction and any other radive inputs. For the purpose of this model,  will be 

assumed to be independent of x [29]. Since errors are likely to arise from the ratio of Eq. (5), a second 

assimilation variable C2 is adopted to correct the Spalding B number through : 

   (12) 
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where the  dependency stems from the analytical solution to the local burning rate. As the 

flame starts to propagate, the flame radiation rapidly reach a steady value. In contrast, the solid 

radiative heat losses may not attained a steady-state value as fast because of the thermal inertia. 

Consequently, the assumption that C2 is a constant is likely not appropriate at the beginning of the fire 

growth stage while  is changing.  

Both C1 and C2 are calibrated through inverse process. To that end, a gradient descent algorithm 

is implemented with a cost function corresponding to the root mean square error (RMSE) between the 

predicted and the observed pyrolysis length. The corrected parameters C1 and C2 then minimize the 

cost function, with a cut-off criterion once the RMSE falls below 1mm. The initial guesses of C1 and 

C2 are necessary for the assimilation, and their impact on the final result is quantified by testing several 

combinations of C1 and C2 ranging from 0.01 to 100 in Section 3.1.  

2.5 Overall flowchart 

With all the components of the models and data-driven process, the flow chart in Figure 2 

summarizes the forward and inverse processes.  
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Figure 2 The flowchart shows the elements in the data-driven model. Starting from the inputs 

and an initial guess for C1 and C2, the forward model is first run in association with the inverse 

process to assimilate variables. Once assimilation is over, prediction is provided by the forward 

models. 

 

Firstly, the invariants and the initial guess of the assimilation variable C1 in the analytically 

described gas phase region are taken to calculate the properties at the interface between the analytical 
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gas phase region and the CFD region. Then the CFD model is deployed together with other associated 

initial and boundary conditions. By obtaining the heat flux distribution from the CFD region at the 

interface, the flame front velocity  can be evaluated in the analytically described condensed phase 

region with the initial guess of the assimilation variable C2 and other invariants. Meanwhile, the CFD 

model also provides the numerical time step . The increased pyrolysis length  then becomes 

. The evolution of the pyrolysis length is recorded in a cumulative manner by summation 

of the increments. The processes are repeated at the next time step . At the end of the data 

assimilation window, the predicted and observed pyrolysis length evolutions up to that timestep are 

compared, and C1 and C2 are updated in the inverse process through gradient descent algorithm 

iteratively until the cut-off error criterion is satisfied. With the updated C1 and C2, the forward models 

are then used for prediction until the end of the desired period.  

2.6 Boundary conditions  

Computations for each domain requires inputs from the other domain, as shown in Figure 3. At a 

set time t, and given both the heat flux at the fuel surface  and the preheat length  from the 

CFD model at the previous time step, the analytical description of the condensed region provides the 

pyrolysis length  from Eq.(6). Subsequently, the analytical gas phase region yields species , 

temperature T, and velocity u, at the interface with the CFD region, where they are used as inputs. The 

CFD model then provides closure by delivering the heat flux distribution at the interface with the 

analytically described gas phase. The preheat length is measured from the pre-defined pyrolysis front 

to the location where the computed heat flux reaches the threshold value of 11kW/m2, as discussed 

before. The maximum heat flux over that region, , is then used as the characteristic heat flux for 

the ignition time of the unburnt region. Given the maximum heat flux and the preheat length, the flame 
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spread rate is obtained through the condensed model with Eq.(6) and Eq.(7), which are in turn two 

necessary inputs for the analytically described condensed phase. The increase in the pyrolysis region 

at the next time step is finally the product of the calculated flame spread rate and the time step from 

the CFD model. Overall, the dynamic evolution of the system is then captured through constant 

interactions between the three models. 

It is important to note that any preheating occurring below the arbitrary threshold will result in an 

increase in the ambient temperature included in Equation (11), 𝑇#. It is expected that the constant 𝑪𝟏 

will serve to correct for this error as well as the other uncertainties described above. 

 

Figure 3 Flowchart of the boundary conditions and parameters at the interfaces of different 

regions. The heat flux distribution from the numerical model is plotted on top, to show the cut-off 

criterion on the right hand side of 𝛿% and the maximum heat flux used to compute the flame spread 

rate in the analytically described condensed region. 

 

The hybrid model has limitations caused by the assumptions related to the analytical and 
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numerical sub-models. Ignoring radiative heat transfer underestimates both the heat feedback from the 

flame to the fuel surface and the radiative losses from the fuel surface. Since the balance between the 

two mechanisms is unclear, the uncertainty increases. Discrepancies between the analytical model and 

actual concurrent flame spread in microgravity exist. The radiation losses lead to the low flame 

temperature, which makes the gas reaction rate for the low velocity microgravity flow is slow, 

contradict to the infinitely fast chemistry model utilized in the analytical model. Meanwhile, a lower 

pyrolyzate mass flux due to the low flame temperature and flame moving away from the surface results 

to the changing of the flame spread rate and flame shape[23,46]. The infinitely fast chemistry 

combustion model therefore overestimates the temperature of the flame, resulting in a higher 

convective heat flux, flame spread rate and flame length. Such effect will appear and be discussed in 

Section 3.3. The numerical model is also sensitive to the initial and boundary conditions, meaning that 

the initial steady-state errors can propagate through the time and space. However, the associated error 

varies slowly in time so the definition of the two assimilated variables is such that these effects can be 

assimilated in the hybrid model. 

2.7 Experimental observations 

A large-scale experiment was performed in Saffire-IV [47] where concurrent flame spread over a 

flat PMMA sample in microgravity was investigated. In this experiment, the 0.4-m-wide, 0.18-m-long, 

and 0.01-m-thick PMMA fuel sample is ignited in a 0.2 m/s flow parallel to the sample surface. The 

flow is made of 22% oxygen and 79% nitrogen in volume, at a pressure of 1 atm. Following a 60s 

ignition period using a hot wire, the flame is free to spread and grow for 580s before the flow velocity 

is turned down. Thermocouples, radiometers, gas analysers, and three-colour cameras recoded the 

spread. A flashing illumination allowed visualisation of the fuel surface every 2s, providing access to 
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the pyrolysis length. Since this work aims at providing fire spread predictions in situations where 

detailed diagnostics such as radiometers or thermocouples may not be available, data were primarily 

extracted from the camera images. Through the experiment, the pyrolysis and flame lengths are 

extracted but measurements are restricted to the central 1/3 of the sample width to minimize edge 

effects. The pyrolysis length is considered for both data assimilation and prediction validation, while 

flame length serves as prediction validation only, to assess internal compensation and the transverse 

nature of the prediction.  

Assuming that the degradation corresponds to a darkening of the fuel surface, the pyrolysis length 

is captured manually from illuminated frames along the central axis. The flame length is measured 

through the threshold images from the RGB images. The blue channel is interrogated to capture the 

emission from both soot particles and CH radicals. Summing pixel intensities of a top-view camera in 

the direction perpendicular to the flame spread axis, an average intensity curve is available at each 

timestep. The flame front positions are then captured from the average intensity curve by setting 

threshold values. The threshold values are carefully varied according to the camera gain evolution, to 

always capture the same flame spontaneous emission intensity.  

 

3. Results 

3.1  Convergence of the assimilated parameters 

Data assimilation with different assimilation periods is conducted to investigate the time-

dependency. Observations of the pyrolysis length are compared with the model outputs directly 

without averaging or smoothing. Data assimilation is then performed over five different periods of 

observations, namely [0s, 100s], [0s, 200s], [0, 300s], [0s, 400s], and [0s, 500s]. For each assimilation 
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window, the inverse algorithm is implemented to find the corresponding C1 and C2. Though C1 and C2 

should be continuously updated every time a new data point is assimilated, the comparison is only 

performed over these five periods of assimilation for simplicity. Concomitantly, the influence of the 

initial values of C1 and C2 is also investigated to assess the robustness of the process, starting from 

0.01, 10, 30, and 100, respectively. The resulting values of C1 and C2 are plotted in Figure 4. As can 

be seen in the figure, C1 and C2 evolve rapidly through the first 0~100s assimilation period and, as 

more data points are considered, C1 and C2 rapidly converge, regardless of the initial choice. This 

systematic convergence implies that the data assimilation model is robust, and proper predictions can 

be made available with time-independent assimilated variables. The reason for taking 30 as the initial 

value is that the cases with initial values as 0.01 and 10 both for C1 and C2 have ascending convergence 

tendencies. The case with the initial value of 30 together with the initial value as 100 provide examples 

with descending convergence tendencies. 

It should be noted that the converged values from different initial guesses are not exactly the same 

as shown in the top-right insert of Figure 4, and with a higher assimilated value of C1 the corresponding 

assimilated value of C2 is lower. That is because the precision range of the convergence criterion for 

assimilation tolerates a range of solutions due to possible compensation mechanisms. Yet, all resulting 

combinations forecast the same pyrolysis length within the acceptable precision. The evolution of this 

system thus can be predicted properly. 
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Figure 4 Assimilated C1 and C2 with different assimilation time from different initial guesses. The 

solid lines represent the evolution of C1 with the assimilation time and the dashed lines represent the 

evolution of C2 with the assimilation time. The top right insert shows the zoomed-in assimilated values 

for large assimilation periods.  

 

Figure 5 shows how the error index, 𝜀, changes with the assimilation periods. A threshold is set 

on  to identify the necessary assimilation time, and results for a 10% variation ( ) and a 5% 

variation ( ) are presented in Figure 5. With a threshold of 0.1, initial values of 0.01, 30 and 

100 will be assimilated properly with 300s assimilation period, while the initial values of 10 requires 

400s. With a lower threshold of 0.05, the necessary assimilation time remains as 300s for initial values 

of 30, and 100, while it requires all of the 500s of observation for an initial guess of 0.01 and 10. Non-

monotonic trends are visible in Figure 5, due to the nonlinearity of the model and potentially to the 

uncertainties in the observations [48]. The uncertainties are produced by the cutoff criteria of the 

inverse algorithm, the observational errors, and assumptions in the forward model. Overall, the 

e 0.1e =
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convergence criteria declines for all four cases. Therefore, it can be established that convergence is 

systematically attained.  

 

 

Figure 5 Convergence criteria index changing with different assimilation time from different 

initial guesses of 0.01 (black), 10 (red), 30 (blue) and 100 (green). Two thresholds values of 0.1 and 

0.05 are specified in black dotted lines to identify the necessary assimilation time.  

 

3.2 Influence of model parameters 

The final values of C1 and C2 are indeed influenced by the values of the input invariants. The 

influence of the thermal inertia, the ignition temperature, and the stoichiometric ratio on the prediction 

is now quantified, because these parameters have relatively large uncertainties as described in Section 

2.4. From Section 2.4, the thermal inertia ranges from 0.4 kJ2/(m4·s·K2) to 2.66 kJ2/(m4·s·K2), the 

ignition temperature ranges from 260 ℃ to 400 ℃, and the stoichiometric ratio from 0.11 to 0.52 or 

from 0.17 to 0.52 for ignition temperatures of 260 ℃ or 400 ℃, respectively. Critical stoichiometric 
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ratios exist below which the forward model cannot describe the observations (see Figure 6). For the 

ignition temperature of 260 ℃, the critical stoichiometric ratio is found around 0.16 and for the ignition 

temperature of 400 ℃, the critical stoichiometric ratio is about 0.18. Stoichiometric ratios slightly 

above their minimum values are then implemented to show the influences of the stoichiometry on 

convergence, using 0.18 for an ignition temperature of 260 ℃ and 0.2 for an ignition temperature of 

400°C. In both cases, the maximum stoichiometric ratio is 0.52 for the completed combustion. Using 

these extreme values, eight converged cases featuring different thermal inertia, ignition temperature 

and stoichiometric ratio are assimilated, with an initial guess of 100 for C1 and C2 and a convergence 

criterion . Table 2 shows the assimilated C1 and C2 obtained with different input invariants 

through 500s of assimilation time. The standard deviation of the observation fluctuations is 2.09 mm. 

The maximum observation period is used for assimilation to illustrate how data assimilation can make 

the forward model outputs approach the observations independently of the choice of the various static 

input parameters. With the adjusted assimilated variables, the pyrolysis length can be estimated as 

shown in Figure 6.  

 

Table 2 Assimilation variables with different input static parameters 

Case 
Thermal 
inertia 

kJ2/(m4·s·K2) 

Ignition 
temperature ℃ 

Stoichiometric 
ratio 

C1 
C2 

MJ/(kg·m1/2) 
RMSE 

mm 

1 0.4 260℃ 0.18 1.38  5.17  0.21  
2 0.4 260℃ 0.52 31.47  13.25  0.47  
3 0.4 400℃ 0.2 13.10  2.37  0.22  
4 0.4 400℃ 0.52 12.21  16.93  0.17  
5 2.55 260℃ 0.18 0.23  4.72  0.32  
6 2.55 260℃ 0.52 4.78  13.24  0.46  
7 2.55 400℃ 0.2 1.32  1.61  0.21  
8 2.55 400℃ 0.52 1.96  17.06  0.17  
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Figure 6 Assimilated pyrolysis length with different input invariants. Lines show the pyrolysis 

length by adjusting the assimilated variables. Dots represent the experimental pyrolysis length. (a) 

assimilated pyrolysis length with different thermal inertia, ignition temperature and stoichiometric 

ratio; including two cases where the stoichiometric ratio was too low for the model to attain a proper 

prediction (thick red and black dash lines). (b) assimilated pyrolysis length with different thickness of 

the analytically described gas phase region.  

 

From Figure 6(a), it can be seen that most assimilated pyrolysis lengths with different input 

invariants provide pyrolysis length predictions with an accuracy within the experimental uncertainty. 

As a consequence, assimilations can be conducted properly for a wide range of accepted values for the 

different input parameters. The remaining differences between cases account for the cut-off criteria of 

the inverse algorithm. As listed in the Table 2, the RMSE is different and the pyrolysis lengths 

calculated can slightly differ.  

Yet, C1 and C2 are not properly assimilated in cases when the stoichiometric ratio is lower than 
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the critical values. Two additional cases show the evolution of the pyrolysis length with stoichiometric 

ratios of 0.16 and 0.18, for ignition temperatures of 260°C and 400°C, respectively, and a thermal 

inertia of 0.4 kJ2/(m4·s·K2). In both cases, the pyrolysis length initially increases for a short period of 

time, but then reaches a plateau, and assimilation fails to deliver the correct pyrolysis length. At such 

low stoichiometric ratio, little fuel is released from the combustible surface, and the flame generated 

above the surface will also be small. Because the subsequent preheat length is smaller than the mesh 

size, the preheat length becomes effectively zero and the pyrolysis length reaches a plateau. Though 

worth noticing, this situation is limited to the stoichiometric ratio with no physical meaning: as far as 

meaningful values are adopted, the performance of the predictive model is not affected by the exact 

value of s. 

Another artificial parameter that deserves attention is the thickness of the analytical gas phase 

region, which is a portion of the boundary layer. The viscous layer thickness can be calculated from 

wall y+ approach as  [49]. By setting the characteristic velocity as ambient velocity, 

kinetic viscosity  as 1.48×10-5 m/s2, the thickness of the viscous layer is approximated as 2 mm as 

y+ is chosen as 30 [49,50]. Alternatively, the laminar viscous boundary layer can also be approximated 

as [51]. With this approach, a thickness of 3.6 mm is found extracting a characteristic 

length  = 0.4 m from the sample width. With a thermal inertia of 0.4 kJ2/(m4·s·K2), an ignition 

temperature of 260 ℃ and a stoichiometric ratio of 0.52, Figure 6(b) shows the assimilated pyrolysis 

lengths obtained for both thicknesses. In both cases, the assimilated pyrolysis length is in agreement 

with the experimental observations, which indicates that the assimilation model is still valid with 

different thicknesses of the analytical gas phase region, as long as the flame remains within the CFD 

region.  

( )y uy n+ =

n
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3.3 Predictions for concurrent flame spread over PMMA 

Figure 7 shows the experimental and predicted pyrolysis length for an ignition temperature of 

260°C, a thermal inertia of 0.4 kJ2/(m4·s·K2), and a stoichiometric ratio of 0.52. By setting the 

convergence criteria index  as 0.1, 300s assimilation is sufficient for the predictions as discussed 

in Section 3.1. As illustrated in Figure 7, the calibration of C1 and C2 over the 300s provides an 

adequate prediction of the evolution of the pyrolysis length over the remaining sequence, with no 

significant deviation from the experimental data.  

 

Figure 7 Evolution of the pyrolysis length for a concurrent flame spreading over PMMA in 

microgravity. Data assimilation is performed during the first 300s. Black dots represent the 

experimental data, the solid line shows prediction from a two-parameters assimilation up to 300s 

(dotted line).  

 

The results from the methodology are not limited to the geometric measurements. A clear 

e
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improvement from the work of Cowlard et al [17] is that many other variables can be extracted from 

the predictions of this model once the assimilation period is complete. A critical variable for fire safety, 

shown on Figure 8 for different time steps, is the heat flux distribution at the fuel surface. The heat 

flux peaks above the pyrolysis region and then decreases. The approximation that the hybrid model 

excludes the radiative heat flux will bring errors into the model and the assimilation processes can 

correct such effects. The heat flux distributions are similar to each other at different time, justifying 

that the maximum heat flux can characterize the overall distribution. The black dash line shows the 

threshold value as the critical heat flux used. From the threshold value, the preheat length can be 

obtained.  

 

Figure 8 Computed heat flux distributions at the interface between the numerical and analytical 

gas regions, for different times. The dotted line represents the threshold value of 11kW/m2 used for the 

critical heat flux.  

 

In order to expand the predictions to other flame parameters, flame length measurements, which 



 

32 
 

are not assimilated, are also contrasted with predictions. Figure 9 reports the evolution of flame length 

in time. In the numerical model, the flame length is assumed to correspond to the maximum streamwise 

distance where the fuel mass fraction is above 0.05 locally. Because of the infinitely fast chemistry 

model, this definition of the flame length is fairly insensitive to the value of the threshold [52]. The 

discrete evolution of the predicted flame length is then a consequence of the chosen CFD grid, with a 

characteristic step of 2 mm in the present case. It can be seen that flame length is over-predicted in the 

data-assimilation period, and increases at a lower rate than is reported in the experiments, eventually 

leading to an under-prediction of the flame length after 250s. Overall, the flame length increase rate is 

always under-predicted. 

 

Figure 9 Evolution of the flame length for the concurrent flame spread over PMMA in 

microgravity. The black dotted line represents the experimental data averaged over a 2s time window, 

and the shadow represents the variance. Red, green, and blue solid lines show the predicted flame 

length for stoichiometric ratios of 0.2, 0.3, and 0.52, respectively. 
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Since the pyrolysis length is assimilated in the model, the flame spread rate which illustrates its 

variation is consistently delivered. Given the similarity of the heat flux profiles from the flame to the 

fuel surface, it can be assumed that the overall description of the flame in terms of heat transfer is 

correct. As a result, transport and chemical mechanisms are investigated to understand the discrepancy 

in the evolution rate between predicted and experimental flame length. Two components related to the 

fuel in the gas phase, namely the local pyrolysis rate from the condensed phase and fuel consumption 

at the trailing edge may account for the discrepancy in the flame length. In the early stage of the 

propagation, the model overpredicts the flame length. At that moment, the transient heat transfer into 

the condensed phase cannot generate stable mass burning. The quasi-steady-state assumption thus 

becomes invalid and the boundary conditions provided by Eq.(3) cannot work. The temperature profile 

in the condensed phase is smooth, while the solid is still heating up. Eventually, the heat losses from 

the pyrolysis gases to the cold surface are underpredicted in the model, and the position of the flame 

trailing edge is overestimated. As a result, the predicted flame length is over-estimated. In the later 

stage of the propagation, the flame length is underpredicted. Although quasi-steady-state can now be 

achieved, the complete combustion assumption both for the analytical described gas phase region and 

numerical region conflicts with the fact that the flame is quenched at the trailing edge and unburnt fuel 

is released. Since the global stoichiometric ratio can be interpreted as a relevant parameter describing 

the completeness of the combustion, its influence on the flame length is investigated. Figure 9 includes 

three flame spread predictions with stoichiometric ratios of 0.2, 0.3, and 0.52, respectively. In each 

situation, data assimilation is performed over 300s before predictions are made, meaning that three 

sets of constants C1 and C2 are extracted. The assimilation is successfully carried out for each 

stoichiometric ratio, but none of the predictions satisfy the experimental observations. It indicates that 
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the flame length cannot be predicted correctly with a constant stoichiometric ratio, no matter the 

adopted value.  

A critical interpretation from Figure 9 is that the flame spread rate can be predicted properly while 

the flame length cannot be reproduced correctly. It suggests that the flame spread rate and flame length 

are independent variables in this situation, which is in opposition with previous models developed for 

vertical buoyant spread in which these two components are coupled [12,53,54].  

 

Figure 10 Evolution of the predicted and experimental flame standoff distances for the concurrent 

flame spread over PMMA in microgravity. The black solid line represents the experimental flame 

standoff distance in units of pixels. Red, green, and blue solid lines show the predicted flame standoff 

distance in units of millimetres for stoichiometric ratios of 0.2, 0.3, and 0.52, respectively. 

 

The varying stoichiometric ratios associated with another assimilation variable may be capable 

to reproduce the flame lengths as discussed before. The flame standoff distance is directly related to 

the stoichiometric ratio[29]. Observations of the flame standoff distances could thus be used to 
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assimilate the changes in the stoichiometric ratio. Figure 10 reports the standoff distances at the flame 

trailing edge for different stoichiometric ratios of 0.2, 0.3, and 0.53. With a higher stoichiometric ratio, 

the flame standoff distance increases. The experimentally measured standoff distances at the flame 

trailing edge are obtained from a side-view camera. Processing the blue channel, the position of the 

flame is obtained using a threshold value, but conversion from pixel to distance fails because the tilt 

angle of the camera and the distortion induced by the lens have not been evaluated. In addition, this 

measurement is likely distorted by edge effects of the flame. In the present conditions, no better flame 

lengths can be predicted without more precise observations. Future investigations will focus on upward 

flame spread at normal gravity, to investigate if the missing coupling between flame length and spread 

rate is observed. 

This methodology can still be improved in terms of computational time. The CPU time is about 

10 minutes for 600s simulation of the forward models on a 1.9GHz i7-8650 CPU. The times of 

iterations of the inverse process can be further reduced if high performance computers with parallel 

computation configuration is available because several iterations can be conducted at the same time. 

Besides, with more sophisticated inverse algorithms, the iterations time for assimilation process can 

be further reduced.  

4. Conclusion 

The complex heat and mass coupling between the gas and condensed phase impedes the precise, 

valid and timely forecasts in fire. A novel framework for data driven forecasts of concurrent flame 

spread in microgravity, consisting of coupled analytical and numerical models, is presented. Two 

assimilated variables related to the gas and condensed phases, respectively, are proposed to steer the 

assimilation.  
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Capitalizing on recent large-scale experiments in microgravity, a series of simulations are 

performed. The robustness of the method is successfully validated through variation of initial guesses 

of the two assimilated variables for different assimilation windows, and fluctuations in the input 

invariants. Eventually, the flame spread rate can be successfully assimilated for a range of values of 

the different input parameters consistent with the present state of literature. The method shows that the 

flame spread rate can be correctly assimilated from the adjustment of the heat transfer from the gas 

phase to the condensed phase without providing a correct estimation of the flame length in the process. 

It implies that the predictions of uncorrelated gas and condensed phases could be separated at a certain 

level within this new methodology. While providing this extra level of complexity consistent with 

boundary layer flame theory, this framework can massively reduce the computational time of an all-

CFD prediction, without compromising on the description of the heat transfer mechanisms, 

envisioning real-time forecasts. 

5. References 

[1] A. Cowlard, W. Jahn, C. Abecassis-Empis, G. Rein, J.L. Torero, Sensor Assisted Fire 
Fighting, Fire Technol. 46 (2010) 719–741. https://doi.org/10.1007/s10694-008-0069-1. 

[2] J.L. Torero, Scaling-Up fire, Proc. Combust. Inst. 34 (2013) 99–124. 
https://doi.org/10.1016/j.proci.2012.09.007. 

[3] I. Glassman, F.L. Dryer, Flame spreading across liquid fuels, Fire Saf. J. 3 (1981) 
123–138. https://doi.org/10.1016/0379-7112(81)90038-2. 

[4] A. Fernandez-Pello, F.A. Williams, Laminar flame spread over PMMA surfaces, 
Symp. Int. Combust. 15 (1975) 217–231. https://doi.org/10.1016/S0082-0784(75)80299-2. 

[5] D.L. Urban, P. Ferkul, S. Olson, G.A. Ruff, J. Easton, J.S. T’ien, Y.-T.T. Liao, C. Li, 
C. Fernandez-Pello, J.L. Torero, G. Legros, C. Eigenbrod, N. Smirnov, O. Fujita, S. Rouvreau, B. 
Toth, G. Jomaas, Flame spread: Effects of microgravity and scale, Combust. Flame. 199 (2019) 
168–182. https://doi.org/10.1016/j.combustflame.2018.10.012. 

[6] A.C. Fernandez-Pello, Flame Spread Modeling, Combust. Sci. Technol. 39 (1984) 
119–134. https://doi.org/10.1080/00102208408923786. 

[7] H.W. Emmons, The Film Combustion of Liquid Fuel, ZAMM - J. Appl. Math. Mech. 
Z. Für Angew. Math. Mech. 36 (1956) 60–71. https://doi.org/10.1002/zamm.19560360105. 

[8] J.N. De Ris, Spread of a laminar diffusion flame, Symp. Int. Combust. 12 (1969) 
241–252. https://doi.org/10.1016/S0082-0784(69)80407-8. 



 

37 
 

[9] A.C. Fernandez-Pello, T. Hirano, Controlling Mechanisms of Flame Spread, 
Combust. Sci. Technol. 32 (1983) 1–31. https://doi.org/10.1080/00102208308923650. 

[10] A. Fernández-pello, F.A. Williams, A theory of laminar flame spread over flat 
surfaces of solid combustibles, Combust. Flame. 28 (1977) 251–277. 
https://doi.org/10.1016/0010-2180(77)90032-3. 

[11] L. Orloff, A.T. Modak, R.L. Alpert, Burning of large-scale vertical surfaces, Symp. 
Int. Combust. 16 (1977) 1345–1354. https://doi.org/10.1016/S0082-0784(77)80420-7. 

[12] K. Saito, J. Quintiere, F. Williams, Upward Turbulent Flame Spread, Fire Saf. Sci. 1 
(1986) 75–86. https://doi.org/10.3801/IAFSS.FSS.1-75. 

[13] P.J. Pagni, T.M. Shih, Excess pyrolyzate, Symp. Int. Combust. 16 (1977) 1329–1343. 
https://doi.org/10.1016/S0082-0784(77)80419-0. 

[14] K. Fukumoto, C. Wang, J. Wen, Large eddy simulation of upward flame spread on 
PMMA walls with a fully coupled fluid–solid approach, Combust. Flame. 190 (2018) 365–387. 
https://doi.org/10.1016/j.combustflame.2017.11.012. 

[15] A. Carney, Y. Li, Y.-T. Liao, S. Olson, P. Ferkul, Concurrent-flow flame spread over 
thin discrete fuels in microgravity, Combust. Flame. 226 (2021) 211–221. 
https://doi.org/10.1016/j.combustflame.2020.12.005. 

[16] Y. Li, Y.-T. Liao, P. Ferkul, Numerical Study of the Effects of Confinement On 
Concurrent-Flow Flame Spread in Microgravity, J. Heat Transf. 142 (2020). 
https://doi.org/10.1115/1.4047645. 

[17] E.N. Lorenz, The predictability of a flow which possesses many scales of motion, 
Tellus. 21 (1969) 289–307. https://doi.org/10.1111/j.2153-3490.1969.tb00444.x. 

[18] E. Kalnay, Data assimilation, in: Atmospheric Model. Data Assim. Predict., 
Cambridge University Press, Cambridge, 2002: pp. 136–204. 
https://doi.org/10.1017/CBO9780511802270.006. 

[19] M. Asch, M. Bocquet, M. Nodet, Data assimilation: methods, algorithms, and 
applications, SIAM, Society for Industrial and Applied Mathematics, Philadelphia, 2016. 

[20] C. Lautenberger, Wildland fire modeling with an Eulerian level set method and 
automated calibration, Fire Saf. J. 62 (2013) 289–298. 
https://doi.org/10.1016/j.firesaf.2013.08.014. 

[21] C. Zhang, M. Rochoux, W. Tang, M. Gollner, J.-B. Filippi, A. Trouvé, Evaluation of 
a data-driven wildland fire spread forecast model with spatially-distributed parameter estimation 
in simulations of the FireFlux I field-scale experiment, Fire Saf. J. 91 (2017) 758–767. 
https://doi.org/10.1016/j.firesaf.2017.03.057. 

[22] X. Xi, J.L. Torero, W. Jahn, Data driven forecast of droplet combustion, Proc. 
Combust. Inst. (2020). https://doi.org/10.1016/j.proci.2020.05.012. 

[23] M. Thomsen, C. Fernandez-Pello, G.A. Ruff, D.L. Urban, Buoyancy effects on 
concurrent flame spread over thick PMMA, Combust. Flame. 199 (2019) 279–291. 
https://doi.org/10.1016/j.combustflame.2018.10.016. 

[24] K. Annamalai, M. Sibulkin, Flame Spread Over Combustible Surfaces for Laminar 
Flow Systems Part I: Excess Fuel and Heat Flux, Combust. Sci. Technol. 19 (1979) 167–183. 
https://doi.org/10.1080/00102207908946878. 

[25] A.C. Fernandez-Pello, Flame spread in a forward forced flow, Combust. Flame. 36 
(1979) 63–78. https://doi.org/10.1016/0010-2180(79)90046-4. 



 

38 
 

[26] J.S. Kim, J. de Ris, F. William Kroesser, Laminar free-convective burning of fuel 
surfaces, Symp. Int. Combust. 13 (1971) 949–961. https://doi.org/10.1016/S0082-
0784(71)80095-4. 

[27] H.R. Baum, A. Atreya, Elliptic Solution to the Emmons Problem, in: Fire Res., 
University of California at San Diego, 2007: p. 17. 

[28] J.L. Torero, A. Simeoni, Heat and Mass Transfer in Fires: Scaling Laws, Ignition of 
Solid Fuels and Application to Forest Fires, Open Thermodyn. J. 4 (2010) 145–155. 
https://doi.org/10.2174/1874396X01004010145. 

[29] J.L. Torero, T. Vietoris, G. Legros, P. Joulain, Estimation of a total mass transfer 
number from the standoff distance of a spreading flame, Combust. Sci. Technol. 174 (2002) 187–
203. https://doi.org/10.1080/713712953. 

[30] J. Quintiere, A simplified theory for generalizing results from a radiant panel rate of 
flame spread apparatus, Fire Mater. 5 (1981) 52–60. https://doi.org/10.1002/fam.810050204. 

[31] R.T. Long, J.L. Torero, J.G. Quintiere, A.C. Fernandez-Pello, Scale And Transport 
Considerations On Piloted Ignition Of Pmma, Fire Saf. Sci. 6 (2000) 567–578. 

[32] J.L. Consalvi, Y. Pizzo, B. Porterie, J.L. Torero, On the flame height definition for 
upward flame spread, Fire Saf. J. 42 (2007) 384–392. 
https://doi.org/10.1016/j.firesaf.2006.12.008. 

[33] H.G. Weller, G. Tabor, H. Jasak, C. Fureby, A tensorial approach to computational 
continuum mechanics using object-oriented techniques, Comput. Phys. 12 (1998) 620–631. 
https://doi.org/10.1063/1.168744. 

[34] T. Allison, JANAF Thermochemical Tables, NIST Standard Reference Database 13, 
(1996). https://doi.org/10.18434/T42S31. 

[35] A.S. Rangwala, S.G. Buckley, J.L. Torero, Analysis of the constant B-number 
assumption while modeling flame spread, Combust. Flame. 152 (2008) 401–414. 
https://doi.org/10.1016/j.combustflame.2007.09.010. 

[36] J. Li, S.I. Stoliarov, Measurement of kinetics and thermodynamics of the thermal 
degradation for non-charring polymers, Combust. Flame. 160 (2013) 1287–1297. 
https://doi.org/10.1016/j.combustflame.2013.02.012. 

[37] M.J. Assael, S. Botsios, K. Gialou, I.N. Metaxa, Thermal Conductivity of Polymethyl 
Methacrylate (PMMA) and Borosilicate Crown Glass BK7, Int. J. Thermophys. 26 (2005) 1595–
1605. https://doi.org/10.1007/s10765-005-8106-5. 

[38] A. Soldera, N. Metatla, A. Beaudoin, S. Said, Y. Grohens, Heat capacities of both 
PMMA stereomers: Comparison between atomistic simulation and experimental data, Polymer. 
51 (2010) 2106–2111. https://doi.org/10.1016/j.polymer.2010.03.003. 

[39] D. Hopkins, J.G. Quintiere, Material fire properties and predictions for 
thermoplastics, Fire Saf. J. 26 (1996) 241–268. https://doi.org/10.1016/S0379-7112(96)00033-1. 

[40] Ignition of Solids, in: Fundam. Fire Phenom., John Wiley & Sons, Ltd, 2006: pp. 
159–190. https://doi.org/10.1002/0470091150.ch7. 

[41] H.E. Thomson, D.D. Drysdale, Flammability of plastics I: Ignition temperatures, Fire 
Mater. 11 (1987) 163–172. https://doi.org/10.1002/fam.810110402. 

[42] T. Kashiwagi, Effects of sample orientation on radiative ignition, Combust. Flame. 
44 (1982) 223–245. https://doi.org/10.1016/0010-2180(82)90075-X. 

[43] J.G. Quintiere, M.F. Harkleroad, New Concepts for Measuring Flame Spread 



 

39 
 

Properties., (1984). https://www.nist.gov/publications/new-concepts-measuring-flame-spread-
properties (accessed March 3, 2021). 

[44] B.T. Rhodes, J.G. Quintiere, Burning rate and flame heat flux for PMMA in a cone 
calorimeter, Fire Saf. J. 26 (1996) 221–240. https://doi.org/10.1016/S0379-7112(96)00025-2. 

[45] C.W.M. Van Der Geld, P.A.O.G. Korting, T. Wijchers, Combustion of PMMA, PE, 
and PS in a ramjet, Combust. Flame. 79 (1990) 299–306. https://doi.org/10.1016/0010-
2180(90)90141-D. 

[46] M. Thomsen, C. Fernandez-Pello, D.L. Urban, G.A. Ruff, On simulating the effect 
of gravity on concurrent flame spread over thin paper through variations in ambient pressure, 
Combust. Flame. 232 (2021) 111538. https://doi.org/10.1016/j.combustflame.2021.111538. 

[47] D. Urban, G. Ruff, P. Ferkul, J. Easton, J. Owens, S. Olson, M. Meyer, C. Fortenberry, 
J. Brooker, J. Graf, M. Casteel, G. Jomaas, B. Toth, C. Eigenbrod, J. T’Ien, Y.-T. Liao, C. 
Fernandez-Pello, F. Meyer, G. Legros, A. Guibaud, N. Smirnov, O. Fujita, Fire Safety 
Implications of Preliminary Results from Saffire IV and V Experiments on Large Scale 
Spacecraft Fires, (2021). https://ttu-ir.tdl.org/handle/2346/87224 (accessed August 29, 2021). 

[48] S. Arridge, P. Maass, O. Öktem, C.-B. Schönlieb, Solving inverse problems using 
data-driven models, Acta Numer. 28 (2019) 1–174. https://doi.org/10.1017/S0962492919000059. 

[49] S.J. Kline, W.C. Reynolds, F.A. Schraub, P.W. Runstadler, The structure of turbulent 
boundary layers, J. Fluid Mech. 30 (1967) 741–773. 
https://doi.org/10.1017/S0022112067001740. 

[50] J. Poggie, Compressible Turbulent Boundary Layer Simulations: Resolution Effects 
and Turbulence Modeling, in: 53rd AIAA Aerosp. Sci. Meet., American Institute of Aeronautics 
and Astronautics, Kissimmee, Florida, 2015. https://doi.org/10.2514/6.2015-1983. 

[51] Laminar Boundary Layer Flow, in: Convect. Heat Transf., John Wiley & Sons, Inc., 
Hoboken, NJ, USA, 2013: pp. 30–95. https://doi.org/10.1002/9781118671627.ch2. 

[52] T.G. Ma, J.G. Quintiere, Numerical simulation of axi-symmetric fire plumes: 
accuracy and limitations, Fire Saf. J. 38 (2003) 467–492. https://doi.org/10.1016/S0379-
7112(02)00082-6. 

[53] X. Huang, G. M.j, Correlations for Evaluation of Flame Spread over an Inclined Fuel 
Surface, Fire Saf. Sci. 11 (2014) 222–233. 

[54] L.K. Honda, P.D. Ronney, Mechanisms of concurrent-flow flame spread over solid 
fuel beds, Proc. Combust. Inst. 28 (2000) 2793–2801. https://doi.org/10.1016/S0082-
0784(00)80701-8. 

 


