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Abstract

Non-orthogonal multiple access (NOMA) is a promising candidate for the sixth generation wireless

communication networks due to its high spectrum efficiency (SE), energy efficiency (EE), and massive

connectivity. It can be applied in cognitive radio networks (CRNs) to further improve SE and user

connectivity. However, the interference caused by spectrum sharing and the utilization of non-orthogonal

resources should be controlled, which limits the achievable performance. In order to tackle this issue, intel-

ligent reflecting surface (IRS) is exploited in a downlink multiple-input-single-output (MISO) CRNs with

NOMA. Since the tradeoff between SE and EE is of crucial importance, a multi-objective optimization

(MOO) framework is formulated under both the perfect and imperfect channel state information (CSI).

An iterative block coordinate descent (BCD)-based algorithm is exploited to optimize the beamforming

design and IRS reflection coefficients iteratively under the perfect CSI case. A safe approximation and

the S-procedure are used to address the non-convexity infinite inequality constraints of the problem under

the imperfect CSI case. Simulation results demonstrate that the proposed scheme can achieve a better
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balance between SE and EE than baseline schemes. Moreover, it is shown that both the SE and EE of the

proposed algorithm under the imperfect CSI can still be significantly improved due to the exploitation

of IRS.

Index Terms

Intelligent reflecting surface, cognitive radio, non-orthogonal multiple access, spectral efficiency,

energy efficiency, multi-objective optimization, block coordinate descent, robust design.

I. INTRODUCTION

THE fifth generation (5G) wireless communication networks are commercially applied and continu-

ously deployed worldwide. Although they have made great breakthrough advancements in wireless

communication techniques, several limitations are gradually appeared along with the unprecedented

proliferation of user connectivity, the emergence of diverse real-time and ultra-wideband communication

services, and the urgent requirement of green operations [1], [2]. Thus, it is imperative and important

to develop the sixth generation (6G) wireless communication networks. Non-orthogonal multiple access

(NOMA) has been envisioned as a candidate multiple access scheme for the 6G wireless communication

networks since it can improve both spectrum efficiency (SE) and energy efficiency (EE), and increase

user connectivity [3]. The main difference between NOMA and orthogonal multiple access (OMA) is

that NOMA exploits non-orthogonal resources, such as the power, to distinguish the signal of different

users [4]. The successive interference cancellation (SIC) technique is adopted at receivers for decoding

the desired information while mitigating the mutual interference caused by signal superimposing [5].

Due to the advantages of NOMA, the application of NOMA into cognitive radio networks (CRNs)

can further alleviate the spectrum scarcity problem, and enhance user connectivity [6]. In CRNs with

NOMA, the secondary users (SUs) are allowed to share the spectrum bands of the primary users (PUs)

in the power domain, given that the interference caused by SUs does not exceed the tolerance threshold

of the PUs [7]. Recently, many researchers from both academic and industry have focused on CRNs with

NOMA and have made great achievements [8]-[10].

In CRNs with NOMA, since the quality of service of PUs should be guaranteed, the interference

caused by spectrum sharing and the utilization of non-orthogonal resources should be limited. Thus,

the transmit power of the secondary base station (SBS) cannot be high, which limits the performance

of SUs. Recently, intelligent reflecting surface (IRS) is viewed as revolutionary technology pertaining

to 6G due to its potential of simultaneously improving EE and SE [11]. In particular, IRS is a planer
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metasurface comprising a large number of passive reflecting elements. By properly designing the reflecting

coefficients of IRS, the reflected signals can be combined at the receivers constructively to improve

the desired signal power and mitigate the interference at the same time, thereby improving system SE

without further energy consumption [12]-[15]. It is envisioned that IRS can be exploited to simultaneously

improve the performance of SUs and decrease the interference caused to the PUs in CRNs with NOMA.

Thus, it is of great interest to investigate the IRS-assisted CRNs with NOMA. In order to explore the

potential performance improvement obtained by exploiting IRS in CRNs with NOMA in terms of SE and

EE and address the tradeoff between SE and EE, a multiple-objective optimization (MOO) framework

is formulated in downlink multiple-input-single-output (MISO) IRS-assisted CRNs with NOMA. The

related works and the motivations of our work are summarized as follows.

A. Related Work and Motivation

Resource allocation problems have been extensively investigated in the conventional NOMA networks

[16]-[18] and also in CRNs with NOMA [19]-[24]. Moreover, the benefits of IRS for enhancing SE and

EE have been demonstrated in NOMA systems [25]-[33]. These related works are presented as follows.

In the conventional NOMA networks, the energy-efficient resource allocation design was investigated

in [16]. Specifically, a sub-optimal user scheduling and power allocation design was proposed under the

perfect channel state information (CSI). It was showed that NOMA can achieve higher EE than OMA.

Based on the work in [16], the authors extended the maximization of EE into the system with NOMA

under the imperfect CSI. An iterative algorithm was proposed for maximizing the system EE by optimizing

the user scheduling and power allocation. Different from the works in [16] and [17], the authors in [18]

focused on maximizing SE of the systems with NOMA, where a minorization-maximization algorithm

was proposed. It was shown that NOMA is also superior to OMA in terms of SE.

In order to alleviate the spectrum scarcity problem and enhance user connectivity, resource allocation

problems have also been studied in CRNs with NOMA. The authors in [19] studied a full-duplex CRNs

with NOMA, where the simultaneous wireless information and power transmission was considered. An

iterative algorithm was proposed to maximizing the throughput of the secondary networks. The results

showed that the achievable throughput of CRNs with NOMA is superior to that of CRNs with OMA. The

authors of [20] studied the throughput maximization problem by optimizing the power allocation and time-

sharing coefficient in CRNs with NOMA. In contrast to the works in [19] and [20], the authors of [21]

aimed to improve the SE of the primary networks. The power allocation was optimized for maximizing

the sum-rate. The results showed that the SE of PUs achieved in CRNs with NOMA outperforms that

obtained in CRNs with NOMA.
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In contrast to the works in [19]-[21], the works in [22]-[24] optimized the EE of CRNs with NOMA.

An efficient algorithm was proposed in CRNs with NOMA by using the sequential convex approximation

method to enhance EE in [22]. It was shown that the EE achieved in CRNs with NOMA is higher than

that obtained in CRNs with OMA. In [23], the authors investigated the minimization of the transmit

power in MISO CRNs with NOMA relying on simultaneous wireless information and power transfer

(SWIPT) under a practical non-linear EH model. The bounded CSI error model was considered to describe

the channel uncertainty. The author extended the work in [23] by considering both bounded and the

Gaussian CSI error model in [24]. The harvested energy was maximized by jointly designing the robust

beamforming and power splitting control.

Although NOMA can further improve the SE and user connectivity of CRNs, the complexity of

the receiver and interference caused by using non-orthognal resource increase with the number of

NOMA users, which results in unpractical design and even poor performance. In order to tackle the

inherent disadvantages of NOMA, the promising IRS technique has been exploited in NOMA and

resource allocation problems were studied in [25]-[33]. In [25], an IRS-assisted system with NOMA

was considered. A joint optimization of the beamforming and reflection coefficient was investigated. It

was shown that the SE of the system with NOMA can be further improved with the exploitation of

IRS. In [26], the ideal and non-ideal IRS assumptions were considered in the sum rate maximization by

jointly optimizing the active and passive beamforming vectors subject to SIC decoding rate conditions and

IRS reflection coefficients constraints. The work in [27] is the expansion of [26] in robust transmission

for two-users IRS-assisted systems with NOMA, in which the multi-antenna eavesdroppers under the

imperfect CSI were considered.

In contrast to the conventional systems with NOMA, the SIC decoding order of IRS-assisted systems

with NOMA highly depends on the adjustment of the passive elements of IRS. Therefore, a novel SIC

decoding order searching algorithm was proposed in the IRS-assisted system with NOMA via maximizing

the combined channel power gains of each user in [28]. After obtaining the optimal decoding order,

the joint power allocation and phase shift optimization problems were tackled by using the alternative

optimization (AO) algorithm and semidefinite relaxation (SDR) method. Moreover, the authors expanded

the work in [28] into multi-antenna scenarios, and the block coordinate descent (BCD) and SDR were

utilized to solve the maximization of target signal-interference-noise-ratio [29]. The authors in [30]

proposed a joint optimization problem of power allocation, reflection matrix, and decoding order in

multi-cell IRS-assisted systems with NOMA, where the decoding order and IRS reflection matrix were

jointly designed for improving SE.
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The works in [28]-[30] demonstrated the improvement of SE in IRS-assisted systems with NOMA,

while EE was not considered. Thus, the work in [31] focused on the energy-efficient design of IRS-assisted

systems with NOMA, in which the system EE was maximized by alternatively optimizing the transmit

beamforming and the IRS reflection coefficients. It was showed that the proposed resource allocation

scheme of IRS-assisted systems with NOMA has higher EE than that achieved by the IRS-assisted

systems with OMA. However, the work in [31] did not consider the direct links among the base station

and users. Therefore, the authors in [32] considered the direct link in an IRS-assisted system with NOMA.

An AO framework was adopted, while a novel difference-of-convex (DC) programming algorithm was

developed. The authors in [33] studied an IRS-assisted system with NOMA, where the EE maximization

problem was investigated with considering the data requirements of users. It was demonstrated that the

application of IRS in the system with NOMA is capable of achieving higher EE than IRS-assisted systems

with OMA.

It is envisioned that IRS can significantly benefit for CRNs with NOMA. Although resource allocation

problems have been well studied in NOMA systems [16]-[18], CRNs with NOMA [19]-[24] and IRS-

assisted NOMA systems [25]-[33], to the best authors’ knowledge, there are no investigations focused

on resource allocation schemes in the IRS-assisted CRNs with NOMA. Moreover, resource allocation

schemes proposed in the works mentioned above are not suitable for IRS-assisted CRNs with NOMA since

the success of SIC at users not only depends on the direct links but also the reflecting links constructed

by IRS. Furthermore, the resource allocation schemes for IRS-assisted CRNs with OMA proposed in

[34]-[36] are inappropriate to IRS-assisted CRNs with NOMA since the non-orthogonal resources are

utilized. Thus, in order to further improve both SE and EE and provide massive connectivity, it is of

great importance to study the resource allocation problems in IRS-assisted MISO CRNs with NOMA.

B. Contributions

To the authors’ best knowledge, few studies have been conducted for the joint active and passive

beamforming design in IRS-assisted MISO CRNs with NOMA under both the perfect and imperfect CSI.

Moreover, since SE and EE are essential performance metrics, the competition between them requires

intensive study [37]. However, the tradeoff between SE and EE has not been well studied in IRS-assisted

CRNs with NOMA. Unfortunately, how to design an appropriate resource allocation for simultaneously

enhancing both SE and EE under the constraints on the interference and the successful implementation

of SIC presents a fundamental challenge, especially for the imperfect CSI case. Moreover, couples exist

among different variables, such as the beamforming and the phase shifts of IRS, which makes the problems

non-convex and challenging. Thus, in order to optimize the resource allocation design for comprehensively
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investigating the tradeoff between SE and EE, it is vital to study the active beamforming and the IRS

reflection coefficients design in IRS-assisted CRNs with NOMA. The main contributions are summarized

as follows.

• A MOO framework is formulated in IRS-assisted downlink MISO CRNs with NOMA to simultane-

ously optimize SE and EE while addressing the tradeoff between them. The formulated problems are

non-convex and intractable. A low-complexity decoding order design is first proposed to obtain the

SIC decoding orders of SUs. Moreover, the ε-constraint method is adopted to transform the MOO

problems (MOOPs) into single-objective optimization problems (SOOPs). Furthermore, a BCD-based

iterative algorithm is proposed, where the original problem is decomposed into two sub-optimization

problems to design the optimal beamforming vectors and the phase shift iteratively.

• Considering that the perfect CSI cannot be obtained since the cooperation between PUs and SUs

may not exist in practice, the MOOP is studied under the imperfect CSI case. The worst-case

is considered to provide a robust resource allocation algorithm under the bounded channel error

model. Moreover, a safe approximation is applied to transform the intractable non-convex maximum

interference constraint into a convex constraint. Furthermore, the S-procedure method is capitalized

to deal with the channel uncertainty for designing the robust resource allocation to maximize SE

and EE simultaneously. The BCD-based iterative algorithm under the imperfect CSI case is also

used to make the challenging optimization problem more tractable.

• Simulation results demonstrate that the exploitation of IRS in CRNs with NOMA can achieve a

better balance between SE and EE, even under the imperfect CSI case. Moreover, it is shown that

our proposed resource allocation schemes can simultaneously improve EE and SE compared to the

baseline schemes. Furthermore, the convergence and efficiency of our proposed algorithms are also

demonstrated.

C. Organization and Notations

The remainder of this paper is organized as follows. Section II introduces the system model and

formulates the MOOP in order to investigate the tradeoff between SE and EE. Section III presents a

low complexity decoding order optimization problem and its solution. In Section IV, the MOOP under

the perfect CSI is studied. In Section V, the MOOP is investigated under the imperfect CSI. Simulation

results are presented in Section VI. Finally, this paper is concluded in Section VII.

Notations: Vectors and matrices are represented by boldface lower case letters and boldface capital

letters, respectively. The RN×M and CN×M denote the space of N ×M real-valued and complex-valued

matrices, respectively. IN represents the N ×N identity matrix. The set of all N -dimensional complex
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Hermitian matrices is denoted by HN . The trace, rank and the (i, i)-entry of a matrix A are denoted

respectively by Tr(A), Rank(A) and [A]i,i. AT , A∗, and AH denote the transpose, the conjugate, and the

Hermitian (conjugate) transpose of matrix A. A � represents that A is a Hermitian positive semidefinite

matrix. | · | and ‖ · ‖ represent the absolute value of a complex scalar and the Euclidean norm of a

vector, respectively. diag(x) denotes an N ×N diagonal matrix with main diagonal elements x1, . . . , xN .

x ∼ CN (µ,Σ) means that x is a random vector, which follows the distribution of complex Gaussian

with mean µ and variance Σ. ∇xf(x) denotes the gradient vector of function f(x) with respect to x.

The optimal value of optimization variable x is denoted by x‡.

II. SYSTEM MODEL

A. System Model

Frequency
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Fig. 1. The system model.

As illustrated in Fig. 1, an IRS-assisted downlink CRN with NOMA is considered, which consists

of a licensed primary network and an unlicensed secondary network. Specifically, the primary network

comprises one primary base station (PBS) and K PUs, while the secondary network contains one SBS and

N SUs. Let K = {1, 2, . . . ,K} and N = {1, 2, . . . , N} denote the set of PUs and SUs, respectively. The

SBS is equipped with Ns antennas, while the PBS, K PUs and N SUs are equipped with a single antenna.
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Besides, an IRS with M passive reflecting elements, denoted by M = {1, 2, . . . ,M}, is deployed in the

secondary network to enhance the transmission from the SBS to SUs. The diagonal phase shift matrix of

IRS is denoted by Θ = diag{β1e
jθ1 , β2e

jθ2 , . . . , βMe
jθM}, where βm ∈ [0, 1] and θm ∈ [0, 2π] denote

the amplitude and phase shift of the mth passive reflecting elements, respectively.

In order to realize NOMA, the superposition coding is employed at the SBS. The data flow for each

SU is assigned with a dedicated beamforming vector. Then, the SBS broadcasts the superimposed signal

to all SUs. Thus, the transmitted superposition of K data flows from the SBS to the SUs can be given

as

x =

N∑
n=1

wnxn, (1)

where xn∼CN (0, 1) and wn ∈ CNs×1 are the data flow intended to the nth SU and the corresponding

beamforming vector, respectively.

The received signals at the kth PU and the nth SU are respectively given by,

yPk =
√
pPk sk + (hHk,I + fHk,RΘgSI)x+ nk, (2a)

ySn =
(
gHn,D + gHn,RΘgSI

)
wnxn︸ ︷︷ ︸

desired signal

+

N∑
i∈N ,i 6=n

(
gHn,D + gHn,RΘgSI

)
wixi︸ ︷︷ ︸

multiuser interference

+
(
fPn,D + gHn,RΘfPI

)∑
k∈K

√
pPk sk︸ ︷︷ ︸

interference from the primary network

+nn, (2b)

where hk,I ∈ CNs×1 and fk,R ∈ CM×1 denote the channel vector between the SBS and the kth PU and

the channel vector between the IRS and the kth PU, respectively. The channel between the SBS and the

nth SU is denoted by gn,D ∈ CNs×1. gn,R ∈ CM×1 denotes the reflecting channel between the IRS and

the nth SU. The channel between the PBS and the nth SU is denoted by fPn,D. The baseband equivalent

channel between the SBS and the IRS and the channel between the PBS and the IRS are modeled as

gSI ∈ CM×Ns and fPI ∈ CM×1, respectively. The transmit power from the PBS to the kth PU is denoted

by pPk ∈ R, and the information symbol for the kth PU transmitted by PBS is represented by sk ∈ C.

nk ∼ CN (0, σ2) and nn ∼ CN (0, σ2) are the additive white Gaussian noises (AWGNs) at the kth PU

and the nth SU, respectively.

According to the NOMA principle, SIC is employed at the SUs to remove the co-channel interference.

An optimal SIC decoding order plays a vital role in systems with NOMA, which is determined by the

channel power gains. Specifically, the SU with a higher channel power gain can decode the signal of the
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SU with a weaker channel power gain, and extracts them from the received signal. However, in IRS-

assisted CRNs with NOMA, the combined channel power gains are influenced by changing the phase

shift matrix of IRS, i.e., Θ. Thus, the decoding order of the SUs is required to be designed based on

the combined channel power gain, which will be presented in Section III. Let π(n) denote the decoding

order for the nth SU. Then, π(n) = n represents that the nth SU is the nth signal to be decoded,

while the signal of the ith SU with π(j) > π(n) is treated as interference. The signal of the mth SU

with π(m) < π(n) is previously decoded at the kth SU and is removed from the received signal [26].

Therefore, the achievable signal-to-interference-plus-noise ratio (SINR) at the nth SU to decode its own

signal can be written as

SINRn→n =

∣∣∣(gHn,D + gHn,RΘgSI

)
wn

∣∣∣2
N∑

π(i)>π(n)

∣∣∣(gHn,D + gHn,RΘgSI

)
wi

∣∣∣2 +
K∑
k=1

∣∣∣fPn,D + gHn,RΘfPI

∣∣∣2pPk + nn

. (3)

The corresponding achievable rate at the nth SU to decode its own signal is represented as Rn→n =

log2(1 + SINRn→n).

In this paper, π(j) > π(k) means that the jth SU is able to decode the signal of the kth SU. The

corresponding SINR for the jth SU decoding the signal intended to the kth SU can be expressed as

SINRn→j =

∣∣∣(gHj,D + gHj,RΘgSI
)

wn

∣∣∣2
N∑

π(i)>π(n)

∣∣∣(gHj,D + gHj,RΘgSI
)

wi

∣∣∣2 +
K∑
k=1

∣∣∣fPj,D + gHj,RΘfPI
∣∣∣2pPk + nj

. (4)

Accordingly, the achievable rate of the jth SU to decode the signal of the kth SU is Rn→j = log2(1 +

SINRn→j).

In order to guarantee that the jth user can decode the kth user’s signal successfully under the decoding

order π(j) > π(k), the achievable rate at the jth SU to decode the kth SU’s signal should be greater

than the achievable rate of the kth SU decoding its own signal. That is, the SIC decoding condition

Rn→j ≥ Rn→n needs to be guaranteed.

Moreover, the power allocated to each SU should be inversely proportional to its channel strength

based on the given decoding orders, which can avoid the case that the high decoding order SU uses most

of the wireless resources [28]. Therefore, the following condition should be satisfied∣∣(gHn,D + gHn,RΘgSI
)

wπ(i)

∣∣2 ≤ ∣∣(gHn,D + gHn,RΘgSI
)

wπ(j)

∣∣2 , ∀n ∈ N , i, j ∈ N , π(i) > π(j). (5)

The inequalities in (5) can also ensure the successful SIC implemented at the stronger SU and achieve

fairness among SUs.
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To protect the QoS of the PU, the interference power constraint needs to be considered, given as
N∑
n=1

∣∣(hHk,I + fHk,RΘgSI)wn

∣∣2 ≤ ptol,k, ∀k, (6)

where the maximum interference that the kth PU can tolerate is denoted by ptol,k.

The total system energy consumption consists of the transmit power and the circuit power consumption.

The circuit power consumption denoted by Pc, which is from the circuit power consumed by the SBS, i.e.,

Pc = PSBS , where PSBS denote the power consumption of the SBS. In order to protect the transmitter,

the maximum power constraint needs to be satisfied, which is given as

Ptot =

N∑
n=1

||wn||2 + Pc ≤ Pmax. (7)

B. Problem Formulation

In order to comprehensively investigate the tradeoff between EE and SE in the downlink IRS-assisted

CRN with NOMA, a MOOP framework is adopted to simultaneously optimize those two objectives. EE

is defined as the ratio of the system transmission rate to the total power consumption, while SE is defined

as the ratio of the system throughput to the total transmission bandwidth. Accordingly, the EE and SE

can be respectively expressed as

ηEE =

N∑
n=1

Rn→n

Ptot
, (8a)

ηSE =

N∑
n=1

Rn→n. (8b)

The MOOP is formulated as

P0 : max
w,Θ

ηSE , (9a)

max
w,Θ

ηEE , (9b)

s.t. C1 : Rj→n ≥ Rn→n, π (j) > π (n) , j, n ∈ N (9c)

C2 : Rn→n ≥ Rmin, n ∈ N (9d)

C3 : |[Θ]mm| ≤ 1,∀m, (9e)

C4 : π ∈ Ω, (9f)

(5)− (7), (9g)

where Ω in the constraint C4 represents the set of all N ! possible SIC decoding orders. The constraint C1

guarantees that the SIC can be employed successfully and the constraint C2 indicates the minimum quality
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of service (QoS) requirement of each SU, where Rmin is the minimum rate requirement. The constraint

C3 is the reflection coefficients constraint. The constraint (5) is served as the SIC constraint which

facilitates the successful SIC implementation at SUs. The constraint (6) guarantees that the maximum

interference leakage at the kth PU is tolerable.

III. USER DECODING ORDER DESIGN

The design of an optimal decoding order is important in systems with NOMA that can guarantee the

success of SIC. The users need to be sorted in an ascending or descending order based on the channel

gains of each user. However, in IRS-assisted CRNs with NOMA, the order of the SU depends not only

on the direct link but also on the reflection link, which is changed with the adjustment of IRS elements’

phase shift. Thus, the optimal decoding order can be any one of the N ! possible decode orderings.

However, the exhaustive search is highly complex for all N ! different decoding orders. Thus, a low

complexity decoding order design is studied to obtain the SIC decoding order by maximizing the sum of

the combined channel gains of each SU. The optimization problem of the decoding order is formulated

as

P1 : max
Θ

N∑
n=1

∣∣gHn,D + gHn,RΘgSI
∣∣2, (10a)

s.t. |[Θ]mm| ≤ 1, ∀m. (10b)

Let vn =
[

diag(gHn,R)gSI
gHn,D

]
, e = [β1e

jθ1 , β2e
jθ2 , . . . , βMe

jθM 1]T . Then,
∣∣∣gHn,D + gHn,RΘgSI

∣∣∣2 can be rewrit-

ten as Tr (VnE), where Vn = vnvHn , E = eeH , and Rank(E) = 1. By exploiting the SDR to drop the

rank-one constraint, the problem is relaxed as

P1.1 : max
E

Tr

(
N∑
n=1

VnE

)
, (11a)

s.t. E (m,m) ≥ 1,m ∈M, (11b)

E (M + 1,M + 1) = 1, (11c)

E � 0. (11d)

It is obvious that problem P1.1 is a standard semidefinite programming (SDP) problem, which can be

solved by using the existing convex optimization toolbox [43]. Note that the optimal solution of problem

P1 can be recovered via eigenvalue decomposition only if the optimal solution E‡ is a rank-one positive

semidefinite matrix. However, the solution obtained by SDR is generally not rank-one due to the relaxation
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of the rank-one constraint. Thus, the Gaussian randomization method can be applied to construct a rank-

one solution based on the higher-rank E‡ [30]. Specifically, if Rank
(
E‡
)

is unequal to 1, the eigenvalue

decomposition of E‡ is defined as

E‡ = UΛUH , (12)

where U is the identity matrix of the eigenvectors, and Λ is the diagonal matrix of eigenvalues. Then, a

suboptimal solution to P1.1 can be obtained as

ẽt = UΛ
1

2rt, t = 1, 2, . . . , T, (13)

where T denotes the maximum generation of candidate random variables and rt ∼ CN (0, IM+1) is a

random vector of the tth generation, which can be expressed as

rt = x+ yi, t = 1, 2, . . . , T, (14)

where x ∈ R(M+1)×1 and y ∈ R(M+1)×1 are independent normally distributed random vectors with zero

mean and covariance matrix 1
2IM+1.

Thus, the candidate reflection matrix can be obtained as

Θt = diag
{
e
j∠ ẽt[1]

ẽt[M+1] , e
j∠ ẽt[2]

ẽt[M+1] , . . . , e
j∠ ẽt[M]

ẽt[M+1]

}
. (15)

After obtaining the candidate set of reflection coefficient matrix {Θt}, the optimal reflection coefficient

matrix can be found among them, which maximizes the combined channel gains of all SUs. The decoding

order optimization algorithm is summarized in Algorithm 1.

IV. MULTIPLE-OBJECTIVE OPTIMIZATION DESIGN UNDER PERFECT CSI

In this section, the downlink IRS-assisted CRNs with NOMA is studied under the perfect CSI. A

MOO framework is introduced to investigate the trade-off between SE and EE with the given decoding

order. Then, the ε-constraint method is adopted to transform the MOOP into a tractable SOOP. Finally,

an effective BCD-based iterative algorithm is proposed to alternatively optimize the beamforming vectors

and the phase shift matrix.
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TABLE I

THE ALTERNATING OPTIMIZATION ALGORITHM

Algorithm 1: The alternating optimization algorithm

1: Solving the relaxed SDP problem P1.1;

2: if rank
(
E‡
)

= 1 then

3: Using the obtained E‡ to calculate its eigenvalue λeigen and

corresponding eigenvector u via eigen-decomposition;

4: Updating Θ‡ = diag{u
√
λeigen};

5: else

6: Obtaining the eigenvalue decomposition according to (12);

7: for t = 1, 2, . . . , T do

8: Generating the Gaussian random vector rt according to (14);

8: Calculating Θt using (15);

9: Calculating the objective value of problem P1;

10: end for

11: end if

12: Let Θ‡ = Θt‡ , where t‡=arg max
t

N∑
n=1

∣∣gHn,D + gHn,RΘgSI
∣∣2;

13: Using the optimal Θ‡ to calculate all combined channel gains

{
∣∣gHn,D + gHn,RΘgSI

∣∣2 , n ∈ N} and rank them in the ascending

order;

14: Output: decoding order π(n), n ∈ N .

A. Optimization Problem Formulation

For the decoding order obtained in Section III, the equality in the constraint C1 obviously always

holds. Thus, the MOOP P0 can be rewritten as

P2 : max
w,Θ

ηSE , (16a)

max
w,Θ

ηEE , (16b)

s.t. C2, C3, (6), (7), (16c)∣∣(gHn,D + gHn,RΘgSI
)

wi

∣∣2 ≤ ∣∣(gHn,D + gHn,RΘgSI
)

wj

∣∣2 ,∀n ∈ N , i > j, i, j ∈ N , (16d)

where i, j and n denote the decoding index of the ith SU, the jth SU and the nth SU, respectively. Note

that constraint (16d) can ensure the effectiveness of SIC. The achievable rate of the nth SU decoding its
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own signal is given as

Rn→n = log2

1 +

∣∣∣(gHn,D + gHn,RΘgSI
)

wn

∣∣∣2
N∑

i=n+1

∣∣∣(gHn,D + gHn,RΘgSI
)

wi

∣∣∣2 +
K∑
k=1

∣∣∣fPn,D + gHn,RΘfPI
∣∣∣2pPk + nj

 . (17)

It is evident that problem P2 is a challenging non-convex MOOP. Although the decoding order is

determined, the objective function (16b) is a fractional function, and the beamforming vector and IRS

phase shift matrix are highly coupled. In order to tackle the highly-coupled non-convex MOOP, we

transform problem P2 into a SOOP and then decompose the original problem into two subproblems of

beamforming optimization and reflection coefficients optimization. An alternative algorithm is proposed

to tackle this challenging problem.

B. Problem Reformulation

To tackle the MOOP, the ε-constraint method is employed [40]. In particular, the EE maximization

is kept as the objective function and the objective function of SE maximization is transformed into a

constraint. Thus, the corresponding SOOP can be given as

P3 : max
w,Θ

ηEE , (18a)

s.t. ηSE ≥ ε, (18b)

(16c), (16d), (18c)

where constraint (18b) guarantees the sum throughput of the secondary network is larger than ε.

Remark 1: The feasibility of P4 is significantly dependent on the value of ε. Note that the value of ε

should be not larger than the maximum ηSE [41]. Thus, the ε can be specified as a value in (0, ηSE,max]

after solely maximizing ηSE .

Due to the highly coupled variables and the fractional form of the objective function, the problem P4

is still non-convex and intractable. In order to solve this problem, a BCD-based iterative algorithm is

proposed. The beamforming vectors are first optimized with the given phase shift matrix, then the phase

shift matrix design is optimized with the obtained feasible beamforming vectors.
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C. Beamforming Design for Given IRS Phase Shift

Let Wn = wnwH
n , Wn ∈ HNs . For given Θ, the quadratic terms

∣∣∣(gHn,D + gHn,RΘgSI
)

wn

∣∣∣2 and∣∣∣fPn,D + gHn,RΘfPI
∣∣∣2 in (17), and the term

∣∣∣(hHk,I + fHk,RΘgSI)wn

∣∣∣2 in (6) are rewritten as, respectively,∣∣(gHn,D + gHn,RΘgSI
)

wn

∣∣2 =
∣∣eHvnwn

∣∣2 = Tr(WnvHn eeHvn), (19a)∣∣fPn,D + gHn,RΘfPI
∣∣2 =

∣∣fPn,D + eH fn
∣∣2 = |ϑn|2 , (19b)∣∣(hHk,I + fHk,RΘgSI)wn

∣∣2 =
∣∣eHHkwn

∣∣2 = Tr
(
WnHH

k eeHHk

)
, (19c)

where e = [β1e
jθ1 , β2e

jθ2 , . . . , βMe
jθM 1]T , vn =

[
diag(gHn,R)gSI

gHn,D

]
, fn = diag(gHn,R)fSI , ϑn = fPn,D + eH fn

and Hk =
[

diag(fHk,R)gSI
hHk,I

]
, respectively. Then, the achievable SINR at the nth SU to decode its own signal

can be rewritten as

SINRn→n =
Tr(WnvHn eeHvn)

N∑
i=n+1

Tr(WivHn eeHvn) + |ϑn|2pPk + σ2

. (20)

Then, the active beamforming optimization can be formulated as

P3.1 : max
Wn

N∑
n=1

Rn→n

N∑
n=1

Tr (Wn) + pc

, (21a)

s.t. C2, (18b), (21b)

N∑
n=1

Tr (Wn) + pc ≤ Pmax, (21c)

N∑
n=1

Tr
(
WnHH

k eeHHk

)
≤ ptol,k,∀k, (21d)

Tr(WivHn eeHvn) ≤ Tr(WjvHn eeHvn), i > j,∀n, i, j ∈ N , (21e)

Wn � 0,∀n, (21f)

Rank (Wn) = 1,∀n. (21g)

Note that constraints (21g) and (21h) are imposed to guarantee that Wn = wnwH
n holds after optimization.

Problem P3.1 is a non-convex problem due to the fractional form of the objective function and the non-

convexity of the constraints (21b) and (21d). To tackle the problem P3.1, we introduce auxiliary variables
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α and γ = {γ1, . . . , γN}. The equivalent problem can be given as

P3.2 : max
Wn,α,γ

α, (22a)

s.t. (21b)− (21g), (22b)

N∑
n=1

log2 (1 + γn)

N∑
n=1

Tr (Wn) + pc

≥ α, (22c)

SINRn→n ≥ γn,∀n. (22d)

Although the objective function (22a) is linear, the problem P3.2 is still non-convex. The non-convexity

originates from the constrains (22c), (22d) and the rank-one constraint (21g). To deal with the non-convex

constraint (22c), we first rewrite it as
∑N

n=1 log2 (1 + γn) ≥ α
∑N

n=1 Tr (Wn) + αpc. The first right hand

term α
∑N

n=1 Tr (Wn) is the joint convex function with respect to α and Wn. By performing the first-

order Taylor approximation, the lower bound of f(α,Wn)
∆
= α

∑N
n=1 Tr (Wn) for a given feasible point

(αl,Wl
n) in the lth iteration of the SCA is expressed as

f (α,Wn) ≥ f(αl,Wl
n) +

∑
n∈N

Tr
(
5Wn

f(αl,Wl
n)H(Wn −Wl

n)
)

+5αf(αl,Wl
n)(α− αl)

∆
= f̂(α,Wn). (23)

Then, concerning the constraint (22d), we further introduce a set of auxiliary variables In,∀n ∈ N as

the interference-plus-noise power of the data transmission of the nth SU. Hence, constraint (22d) can be

transformed as

Tr(WnvHn eeHvn) ≥ γnIn, (24a)

N∑
i=n+1

Tr(WivHn eeHvn) + |ϑn|2pPk + σ2 ≤ In. (24b)

Similarly, in the lth iteration of the SCA, a lower bound of γnIn in constraint (24a) at a given point

(γln, I
l
n) can be constructed as

γnIn ≥ γlnInl + γln(In − Inl) + In
l(γn − γln)

∆
= f̂(γnIn). (25)
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Then, the original problem P3.1 is approximated as

P3.3 : max
Wn,α,γ,I

α, (26a)

s.t. (21b)− (21g), (26b)

N∑
n=1

log2 (1 + γn) ≥ f̂(α,Wn) + αpc, (26c)

Tr(WnvHn eeHvn) ≥ f̂(γnIn), ∀n, (26d)

N∑
i=n+1

Tr(WivHn eeHvn) + |ϑn|2pPk + σ2 ≤ In,∀n. (26e)

Note that the remaining non-convexity of problem P3.3 is caused by the rank-one constraint (21g). Hence,

the SDR method is adopted to relax the rank-one constraint [42]. Finally, the relaxed problem of problem

P3.3 is a convex semidefinite program (SDP), which can be optimally solved via standard convex solvers

such as CVX [43]. To verify the tightness of SDR, Theorem 1 is given.

Theorem 1: The optimal solution of problem P3.3 without the rank-one constraint can always satisfy

rank(Wn) ≤ 1,∀n ∈ N .

Proof: Please refer to Appendix A.

Note that the obtained objective function of problem P3.3 is served as a lower bound of that in the problem

P3.1 owing to the replacement of the constraints (26b) and (26c). Let W‡n,∀n denote the optimal solution

of problem P3.3. Since W‡n = w‡nw‡Hn , the optimal beamforming vector w‡n can be obtained by utilizing

eigenvalue decomposition.

D. Phase Shift Optimization with Given Beamforming Vector

For given wn, the IRS phase shift optimization problem can be written as

P3.4 : max
Θ

ηSE , (27a)

s.t. C2, C3, (6), (16d), (18b). (27b)

Note that the objective function and constraints are non-convex with respect to Θ. Therefore, the following

transformation is performed to make the optimization problem more tractable.

Recall Wn = wnwH
n , e = [β1e

jθ1 , β2e
jθ2 , . . . , βMe

jθM 1]T , vn =
[

diag(gHn,R)gSI
gHn,D

]
, fn = diag(gHn,R)fSI ,

and Hk =
[

diag(fHk,R)gSI
hHk,I

]
. To tackle the non-convexity in P3.4, the quadratic term

∣∣∣(gHn,D + gHn,RΘgSI
)

wn

∣∣∣2
in (17) is rewritten as∣∣(gHn,D + gHn,RΘgSI

)
wn

∣∣2 = Tr
(
eHvnWnvHn e

)
= Tr

(
EvnWnvHn

)
, (28)
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where E ∆
= eeH ,E ∈ C(M+1)×(M+1). Similarly, the term

∣∣∣fPn,D + gHn,RΘfPI
∣∣∣2 in (17) and the term∣∣∣(hHk,I + fHk,RΘgSI)wn

∣∣∣2 in (6) are rewritten as, respectively∣∣fPn,D + gHn,RΘfPI
∣∣2 = Tr (EFn) , (29a)∣∣(hHk,I + fHk,RΘgSI)wn

∣∣2 = Tr
(
EHkWnHH

k

)
, (29b)

where Fn is defined as

Fn =

 fnf
H
n f∗Pn,Dfn

fHn f
P
n,D

∣∣∣fPn,D∣∣∣2
 . (30)

Then, the IRS phase shift optimization problem can be rewritten as

P3.5 : max
E

1

Ptot

N∑
n=1

log2

1 +
Tr
(
EvnWnvHn

)
N∑

i=n+1

Tr (EvnWivHn ) +
K∑
k=1

Tr (EFn) pPk + nj

, (31a)

s.t. C2, (18b), (31b)

N∑
n=1

Tr
(
EHkWnHH

k

)
≤ ptol,k,∀k, (31c)

Tr
(
EvnWivHn

)
≤ Tr

(
EvnWjvHn

)
, i > j,∀n, i, j ∈ N , (31d)

E � 0, (31e)

Rank (E) = 1,∀n, (31f)

where constraints (31e) and (31f) ensure that E = eeH holds after optimization. The problem P3.5 is

non-convex owing to the non-convex objective function and constraint (31b) and (31f). Similar to the

method adopted for solving problem P3.1, by applying SDR and introducing auxiliary variables Γn and

zn, the problem P3.5 can be transformed into

P3.6 : max
E,Γ,z

1

Ptot

N∑
n=1

log2 (1 + Γn), (32a)

s.t. (31b)− (31e), (32b)

Tr
(
EvnWnvHn

)
≥ Γnzn, ∀n, (32c)

N∑
i=n+1

Tr
(
EvnWivHn

)
+

K∑
k=1

Tr (EFn) pPk + nj ≤ zn,∀n. (32d)

Since variables in the right hand term of constraint (32c) is coupled, the SCA is applied to tackle the non-

convexity of constraint (32c). Thus, in the lth iteration of the SCA, the lower bound with the first-order
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Taylor approximation at the given feasible point (Γln, z
l
n) can be given as

Γnzn ≥ Γlnzn
l + Γln(zn − znl) + zn

l(Γ− Γln)
∆
= f̂(Γnzn). (33)

Then, a lower bound of the problem P3.6 can be obtained by solving the following problem, given as

P3.7 : max
E,Γ,z

1

Ptot

N∑
n=1

log2 (1 + Γn), (34a)

s.t. (31b)− (31e), (32d), (34b)

Tr
(
EvnWnvHn

)
≥ f̂(Γnzn), ∀n. (34c)

The problem P3.7 is a standard SDP problem and the optimal E‡ can be obtained by using the standard

convex optimization toolboxes such as CVX [43]. Finally, since E‡ = e‡e‡H , e‡ can be obtained by

eigenvalue decomposition if the rank of E‡ is one. Otherwise, the Gaussian randomization can be adopted

to alternatively obtain the approximate e [42]. Therefore, the BCD-based iterative algorithm for solving

the problem P3 can be summarized in Algorithm 2.

V. MULTIPLE-OBJECTIVE OPTIMIZATION DESIGN UNDER IMPERFECT CSI

In this section, the SE-EE tradeoff design is extended into a more practical IRS-assisted MISO CRN

with NOMA, where the CSI between the SBS and primary network are imperfect. The SE-EE tradeoff

is investigated by jointly optimizing beamforming vector and the phase shift matrix. Under the bounded

error model, a robust resource allocation strategy is proposed.

A. Imperfect Channel Model

In practice, due to the limit cooperation between the secondary network and the primary network, the

channel information of the SBS-PUs link and the IRS-PUs link cannot be accurately obtained. Specifically,

the PUs may not directly interact with the SBS in practice. The imperfect CSI can also be caused by

channel estimation and quantization errors. Thus, the worst-case channel uncertainty model is considered

to capture the impact of the imperfect CSI. The bounded CSI error models for the channel vector hk,I

and fk,R are given as

hk,I = h̄k,I + ∆hk,I , (35a)

Hk,I
∆
=
{

∆hk,I ∈ CNs×1 : ∆hHk,I∆hk,I ≤ ξ2
k,I

}
, (35b)

fk,R = f̄k,R + ∆fk,R, (35c)

Fk,R
∆
=
{

∆fk,R ∈ CM×1 : ∆fHk,R∆fk,R ≤ ξ2
k,R

}
, (35d)
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TABLE II

THE BCD-BASED ITERATIVE ALGORITHM

Algorithm 2: The BCD-based iterative algorithm

1: Set initial points W1
n and E1, iteration index q = 1, and convergence

tolerance 0 ≤ εBCD � 1;

2: repeat

3: Set iteration index l = 1 and error tolerance 0 ≤ εSCA � 1;

4: repeat

5: Solving the problem P3.2 for given Eq,Wl
n, αl, γl and Iln;

6: Storing the intermediate solution Wn;

7: Updating l = l + 1, Wl+1
n = Wn, αl+1, γl+1 and Il+1

n ;

8: until |α
l−αl−1|
|αl| ≤ εSCA

9: Obtaining Wq
n = Wl

n;

10: repeat

11: Set iteration index l = 1;

12: Obtained the E by solving the problem P3.7 for the given Wq
n,Γ

l
n and zln;

13: Updating l = l + 1, El+1 = E, Γl+1
n and zl+1

n ;

14: until

∣∣∣∣∣ 1
Ptot

∑
n∈N

log2(1+Γln)− 1
Ptot

∑
n∈N

log2(1+Γl−1
n )

∣∣∣∣∣∣∣∣∣∣ 1
Ptot

N∑
n=1

log2(1+Γln)

∣∣∣∣∣
≤ εSCA;

15: Obtaining Eq = El and recovering Θq;

16: Set q = q + 1;

17: until
∣∣∣∣ η

q
EE

η
q−1
EE
−1

∣∣∣∣ ≤ εBCD;

18: Obtaining W‡n = Wq
n and Θ‡ = Θq .

where h̄k,I and f̄k,R are the estimates of hk,I and fk,R, respectively. The uncertainty regions of the channel

vectors hk,I and fk,R are denoted by Hk,I and Fk,R, respectively. ∆hk,I and ∆hk,I represent the channel

estimation errors of hk,I and fk,R. ξk,I and ξk,R are the radius of the uncertainty regions Hk,I and Fk,R,

respectively, which are known by the SBS.

By considering the imperfect CSI, we aim to simultaneously maximize the worst-case SE and EE of

the secondary network in IRS-assisted CRNs with NOMA by jointly optimizing beamforming vectors and

IRS phase shifts. With the given decoding order, the corresponding optimization problem is formulated
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as

P4 : max
w,Θ

ηSE , (36a)

max
w,Θ

ηEE , (36b)

s.t. C2, C3, (6), (7), (16d), (36c)

max
hHk,I∈Hk,I
fk,R∈Fk,R

∑
n∈N

∣∣hHk,Iwn + fHk,RΘgSIwn

∣∣2 ≤ ptol,k, ∀k. (36d)

Note that the main challenge for solving the problem P4 is the semi-infinite constraint (36d) imposed

by the uncertain regions Hk,I and Fk,R. Besides, the coupling variables and non-convexity of both the

objective functions and constraints are challenging to efficiently obtain the optimal solution. Thus, an

approximation is firstly employed to transform constraint (36d) into the convex constraints. Then, using

the method for solving P3, the challenging non-convex problem P4 can be also solved by the BCD-based

iterative algorithm.

B. Transformation of the Semi-Infinite Constraint

In order to tackle the CSI uncertainties, it is generally expected to transform the semi-infinite constraints

into equivalent linear matrix inequalities (LMIs) [39]. However, constraint (36d) contains the coupling

variables and the cascaded channel of direct and reflecting links. Thus, a safe approximation is adopted

to transform the constraint (36d) into a set of constraints that are convex over wn and Θ [36]. First, by

applying the inequality |a + b + c|2 ≤ 3|a|2 + 3|b|2 + 3|c|2 for obtaining an upper bound of constraint

(36d), one has

(36d)⇒ max
hHk,I∈Hk,I
fk,R∈Fk,R

∑
n∈N

(∣∣∣h̄Hk,Iwn + f̄Hk,RΘgSIwn

∣∣∣2 +
∣∣∆hHk,Iwn

∣∣2 +
∣∣∆fHk,RΘgSIwn

∣∣2) ≤ ptol,k
3

,∀k,

(37)

Then, by introducing slack variables ς and κ, the inequations (37) can be further equivalent to the

following constraints

max
hHk,I∈Hk,I

∑
n∈N

∣∣∆hHk,Iwn

∣∣2 + ςk ≤
ptol,k

3
, (38a)

max
fk,R∈Fk,R

∑
n∈N

∣∣∆fHk,RΘgSIwn

∣∣2 + κk ≤ ςk, (38b)

∑
n∈N

∣∣∣h̄Hk,Iwn + f̄Hk,RΘgSIwn

∣∣∣2 ≤κk. (38c)
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It can be observed that (38c) is convex with respect to wn and Θ, while (38a) and (38b) are semi-

infinite constraints. Thus, the S-Procedure is applied to make the problem tractable, which is expressed

as follows.

Lemma 1: (S-Procedure) [44]: Let a function fm(z) = zHAmz + 2<{bHmz}+ cm, m ∈ {1, 2}, where

z ∈ CN×1, Am ∈ HN , bm ∈ CN×1, and cm ∈ R. Then, the implication f1(z) ≥ 0⇒ f2(z) ≥ 0 holds if

and only if there exists a δ ≥ 0 such that

δ

 A1 b1

bH1 c1

−
 A2 b2

bH2 c2

 � 0, (39)

provided that there exists a vector ẑ such that fm (ẑ) < 0.

Let Wn = wnwH
n . By applying Lemma 1, constraint (38a) can be rewritten as δkINs −

∑
n

Wn 0

0 −δkξ2
k,I − ςk + ptol,k

3

 � 0. (40)

Similarly, constraint (38b) can be rewritten as ιkIM −Θ
∑
n∈N

gSIWngHSIΘ
H 0

0 −ιkξ2
k,R − κk + ςk

 � 0, ∀k. (41)

Note that both (40) and (41) are convex with respect to Wn, while (41) is still non-convex with respect

to Θ due to the quadratic term Θ
∑
n∈N

gSIWngHSIΘ
H .

Moreover, let H̄k =

[
diag(̄fHk,R)gSI

h̄Hk,I

]
and e = [β1e

jθ1 , β2e
jθ2 , . . . , βMe

jθM 1]T , constraint (39c) can be

expressed as ∑
n∈N

Tr(WnH̄H
k eeHH̄k) ≤ κk. (42)

C. Beamforming Design for Given IRS Phase Shift

Recall Wn = wnwH
n , e = [β1e

jθ1 , β2e
jθ2 , . . . , βMe

jθM 1]T , vn =
[

diag(gHn,R)gSI
gHn,D

]
, fn = diag(gHn,R)fSI ,

ϑn = fPn,D + eH fn and Hk =
[

diag(fHk,R)gSI
hHk,I

]
. Based on the transformation of constraint (36d), the
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beamforming vector optimization with the given phase shifts can be expressed as

P4.1 : max
Wn,ς,κ

N∑
n=1

Rn→n

N∑
n=1

Tr (Wn) + pc

, (43a)

s.t. C2, (18b), (40)− (42), (43b)

N∑
n=1

Tr (Wn) + pc ≤ Pmax, (43c)

Tr(WivHn eeHvn) ≤ Tr(WjvHn eeHvn), i > j,∀n, i, j ∈ N , (43d)

Wn � 0,∀n, (43e)

Rank (Wn) = 1,∀n. (43f)

The problem P4.1 is a non-convex problem due to both objective function and constraints. Similar to the

previous section, by introducing the auxiliary variables ζ, χ, and ρ and utilizing SCA, the problem P4.1

can be approximated as

P4.2 : max
Wn,ζ,χ,ρ,ς,κ

ζ, (44a)

s.t.
N∑
n=1

log2 (1 + χn) ≥ f̂(ζ,Wn) + ζpc, (44b)

Tr(WnvHn eeHvn) ≥ f̂(χnρn),∀n, (44c)

N∑
i=n+1

Tr(WivHn eeHvn) + |ϑn|2pPk + σ2 ≤ In,∀n (44d)

(43b)− (43f), (44e)

where f̂(ζ,Wn) and f̂(χnρn) are respectively presented as

f̂(ζ,Wn)
∆
= f(ζ l,Wl

n) +
∑
n∈N

Tr
(
5Wn

f(ζ l,Wl
n)H(Wn −Wl

n)
)

+5ζf(ζ l,Wl
n)(ζ − ζ l), (45a)

f̂(χnρn)
∆
= χlnρn

l + χln(ρn − ρnl) + ρn
l(χn − χln). (45b)

The problem P4.2 is still non-convex due to the rank-one constraints (43f). Thus, the SDR method is

applied. Then, the relaxed problem becomes a convex problem that can be solved by using a standard

convex optimization tool, such as CVX [43]. After obtaining W‡n, w‡n can be recovered from W‡n =

w‡nw‡Hn by applying the eigenvalue decomposition when Rank(W‡n) = 1. Otherwise, the suboptimal

beamforming vectors can be obtained by using the Gaussian randomization.



24

D. Phase Shift Optimization

Given any feasible beamforming vectors obtained in the previous subsection, the phase shift optimiza-

tion problem can be formulated as

P4.3 : max
Θ,ς,κ

ηEE , (46a)

s.t. s.t. C2, C3, (6), (16d), (18b), (40)− (42), (46b)

max
hHk,I∈Hk,I
fk,R∈Fk,R

∑
n∈N

∣∣hHk,Iwn + fHk,RΘgSIwn

∣∣2 ≤ ptol,k, ∀k. (46c)

Note that both the objective function and constraints are non-convex functions which makes the phase shift

design challenging. In order to solve the optimization problem effectively, we first rewrite the quadratic

terms in P4.3 by the method adopted in the subsection D of the Section IV. Moreover, the auxiliary

variables τn, Zn, n ∈ N are introduced. Furthermore, the SCA is applied to approximate the optimization

problem. Then, the phase shift design problem can be rewritten as

P4.4 : max
E,Z,τ ,ς,κ

1

Ptot

N∑
n=1

log2 (1 + τn), (47a)

s.t. C2, (18b), (31d), (40), (41), (47b)

Tr
(
EvnWnvHn

)
≥ f̂(τnZn), ∀n, (47c)

N∑
i=n+1

Tr
(
EvnWivHn

)
+

K∑
k=1

Tr (EFn) pPk + nj ≤ Zn,∀n, (47d)

N∑
n=1

Tr
(

EH̄kWnH̄H
k

)
≤ κk, (47e)

E � 0,∀n, (47f)

Rank (E) = 1,∀n, (47g)

where f̂(τnZn) = τ lnZn
l + τ ln(Zn − Zn

l) + Zn
l(τ − τ ln). The problem P4.4 is still non-convex due

to the constraint (41) and rank-one constraints. In particular, the constraint (41) contains the quadratic

term Θ
∑
n∈N

gSIWngHSIΘ
H which complicates the problem. Thus, by defining Q =

∑
n∈N

gSIWngHSI , the

transformation of constraint (41) can be expressed as ιkIM 0

0 −ιkξ2
k,R − κk + ςk

− CHΘQΘHC � 0,∀k, (48)
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where C = [IM 0]. Then, the eigenvalue decomposition of Q is
∑
m

umsmuHm, where sn is the eigenvalue

of Q and the corresponding vectors are denoted by un. Thus, constraint (48) can be rewritten as ιkIM 0

0 −ιkξ2
k,R − κk + ςk

−∑
m

smDmEGm � 0,∀k, (49)

where Dm = [CHdiag(um) 0] and Gm =
[

diag(uHm)C
0

]
. Consequently, constraint (49) is a convex function

with respect to E. Moreover, by using the SDR method to remove the rank-one constraint, the phase

shift design can be expressed as

P4.5 : max
E,Z,τ ,ς,κ

1

Ptot

N∑
n=1

log2 (1 + τn), (50a)

s.t. C2, (18b), (40), (47c)− (47g), (49). (50b)

Problem P4.5 is a standard SDP problem, which can be solved by using the convex optimization tool

[43]. After obtaining E‡, e‡ can be given by eigenvalue decomposition if Rank(E‡) = 1, otherwise, the

approximate e can be constructed by applying the Gaussian randomization method.

TABLE III

SIMULATION PARAMETERS

Parameters Notation Typical Values

Numbers of SUs N 3

The maximum available transmit power of SBS Pmax 25 dBm

The minimum rate threshold of SUs Rmin 0.5 Bits/Hz/s

The noise power σ2 −110 dBm

The interference tolerance of the kth PU ptol,k −90 dB

The tolerance error of SCA εSCA 10−2

The tolerance error of BCD εBCD 10−2

The transmit power of the kth PU pPk 35 dBm

The radiuses of the uncertainty regions ξk,I , ξk,R 10−4

VI. SIMULATION RESULTS

In this section, simulation results are provided to validate the effectiveness of the proposed algorithms.

The simulation settings are based on the works in [15]. The locations of the PBS and SBS are respectively

set as (5, 0, 20) and (5, 100, 20). Moreover, the locations of SUs are set as (5, 165, 0), (5, 145, 0) and

(5, 125, 0), respectively. The IRS is employed in the secondary network, whose location is set to be
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(0, 125, 2). The channels are generated by the model hβ =
√
G0(d)−cβgβ , where G0 = −30 dB denotes

the path loss at the reference point. d denotes the link distance. cβ and gβ denote the path loss exponent

and fading component, respectively, where β ∈ {D,SI,R}. The pass loss exponents for the direct link,

SBS-IRS link and IRS-user link are set to be cD = 3.5, cSI = 2.2 and cR = 2.2, respectively. The

bandwidth is normalized as 1 Hz. The number of channel realizations is 103. The detailed simulation

settings are given in Table III.
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Fig. 2. Convergence of the proposed BCD-based algorithm.

The proposed algorithm under the perfect CSI case is marked as ‘BCD-based algorithm’, while the

imperfect CSI case is marked as ‘Robust’. For comparison, four baseline schemes are considered. The

first baseline scheme aims to maximize EE, which is marked as ‘EE maximization’. The second baseline

scheme is the method that with the assistance of IRS, the phase shifts of the IRS are generated randomly,

denoted by ‘Random phase shifts’. For the third baseline scheme, the IRS reflecting coefficients do not

have phase adjustment, which is marked by ‘No phase shifts’. The fourth baseline scheme is based on

the conventional CRN with NOMA without the assistance of IRS, which is marked as ‘No IRS’.

Fig. 2 shows the convergence of the proposed BCD-based algorithm for different numbers of antennas

Ns and IRS reflecting elements M . Particularly, three cases are considered: Case 1 with Ns = 4 and

M = 5; Case 2 with Ns = 6 and M = 5; Case 3 with Ns = 6 and M = 10. Besides, the convergence

of SCA in terms of the beamforming design and IRS phase shift design under Case 1 and Case 3 for

the first iteration of the BCD-based algorithm are presented. It is seen that the proposed BCD-based

algorithm under all three cases can converge to a stationary point within 5 iterations. For Case 1, both
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the beamforming and phase shift design can achieve the saturate value within 10 SCA iterations, while

Case 3 needs more iterations for convergence. This is because the solution space is enlarged by the

increase of Ns and M . Note that the number of iterations of the proposed BCD-based algorithm is little

affected by the number of Ns and M , while the iterations required for SCA are sensitive to the number

of antennas and reflecting elements.
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Fig. 3. (a) SE versus the maximum available transmit power; (b) EE versus the maximum available transmit power.

Fig. 3(a) and Fig. 3(b) show the SE and EE versus the SBS maximum available transmit power achieved

by different designs, respectively. It is seen from Fig. 3(a) that the proposed BCD-based algorithm

under the perfect CSI can achieve the best SE among all schemes. Meanwhile, as shown in Fig. 3(b),

the proposed scheme also can achieve a better EE than all baseline schemes. This indicates that the

exploitation of IRS in CRNs with NOMA is beneficial for improving both SE and EE. Specifically, in

Fig. 3(a), the system SE increases monotonically with the maximum transmit power Pmax. Moreover,

the SE achieved by ‘No IRS’ baseline scheme is lower than other schemes, which demonstrates that SE

can be further improved by the assistance of IRS. As shown in Fig. 3(a), the ‘Random phase shifts’ and

‘No phase shifts’ schemes also can achieve better SE performance than those of other baseline scheme

without IRS. This indicates that IRS is able to increase the system performance to a certain extent, even

without the adjustment of phase shifts. Furthermore, the SE of the proposed method under the imperfect

CSI case is similar to that achieved by the ‘EE maximization’ baseline scheme at the beginning and

larger than it with the transmit power increases. The reason is that the MOO framework adopted in this

paper can achieve a better balance between SE and EE. Although the SE obtained under the imperfect

CSI is lower than that achieved under the perfect CSI owing to the CSI uncertainty, the performance gain

in SE still outperforms that of the ‘No IRS’ baseline scheme. This further manifests that the effectiveness
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of the application of IRS in CRNs with NOMA. Besides, the capability of against channel uncertainty

of the proposed algorithm is demonstrated. As shown in Fig. 3(b), the achieved EE of all five schemes

first increases with the maximum transmit power and then decreases with it. The reason is that, the SBS

can utilize more power to serve the SUs when the available transmit power increases. When the transmit

power increases a certain value, such as 18 dBm, the increase of SE is slower than the increase speed

of power consumption, which results in the decrease of EE. It reveals the tradeoff between EE and SE.
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Fig. 4. EE-SE tradeoff for different schemes.

In order to further illustrate the relationship between SE and EE, Fig. 4 shows the tradeoffs between

SE and EE of all five schemes in the range of the maximum transmit power constraint from 10dBm

to 25dBm. It is seen that the system EE is a quasi-concave function of SE. When SE increases, EE

firstly grows and then decreases with it. It indicates that the achievement of higher SE demands more

energy consumption. Meanwhile, EE is the ratio of system throughput to energy consumption. When the

energy consumption becomes faster than the growth of SE, EE starts to decrease with the increase of SE.

Moreover, the tradeoff achieved by the baseline schemes is presented. It is also seen that the proposed

BCD-based algorithm can achieve a better SE-EE tradeoff under both the perfect and imperfect CSI cases

compared to the other baselines schemes enabled by the joint optimization of SE and EE. It demonstrates

that the proposed algorithm has great potential for achieving a superior balance between SE and EE.

Fig. 5 shows the EE of the proposed algorithm versus the number of antennas Ns and IRS elements

M . It can be seen that the case with M = 10, Ns = 6 can obtain a larger EE than the case with

M = 10, Ns = 4. It can be explained by the fact that a higher beamforming resolution can be facilitated
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Fig. 5. EE versus the maximum transmit power for different system settings.

by the additional antennas, which leads to a higher SINR. However, the performance achieved by the

case with M = 25, Ns = 4 is superior to that obtained by the other two cases. The reason is that

the transmitted signals of IRS-assisted schemes can obtain a higher power gain at SUs with more IRS

elements while the energy consumption remains at a low level due to the passive characteristic of IRS.

It is inferred that the deployment of IRS in CRNs with NOMA can achieve the same performance gain

as employing additional antennas while the hardware cost is low.
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Fig. 6. SE versus the number of elements on IRS.
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Fig. 6 shows the impact of the number of IRS elements on the achievable EE of the proposed algorithm

and four baseline schemes. It is observed that the EE for all the IRS-assisted schemes increases with M .

The EE of the ‘No IRS’ baseline scheme remains constant with a low value. This is because the transmitted

signals of IRS-assisted schemes can obtain a higher power gain at SUs with more IRS elements to assist

transmission. Moreover, as shown in Fig. 6, the performance gap between the proposed algorithm and

other baseline schemes becomes larger with the increase of the number of IRS elements. This is because

as the number of IRS elements increases, a higher power gain can be achieved at SUs. Thus, a smaller

energy is consumed to satisfy the achievable rate requirements, which results in the increase of EE.

However, the performance gain of the ‘Random phase shifts’ and ‘No phase shifts’ baseline schemes is

limited since the phase shifts are not optimized.

VII. CONCLUSION

In this paper, the tradeoff between SE and EE was studied in an IRS-assisted downlink MISO

NOMA CRN under both the perfect and imperfect CSI cases. The MOOP framework was formulated by

simultaneously maximizing SE and EE via jointly optimizing the beamforming design and the reflection

coefficients of IRS. The ε-constraint method was adopted to transform the MOOPs into SOOPs. Due to the

variables are highly coupled, a BCD-based algorithm was exploited to optimize the beamforming design

and IRS reflection coefficients iteratively. In the perfect CSI case, a safe approximation was adopted

to transform the intractable maximum interference constraint into a convex constraint. The S-procedure

method was capitalized to deal with the channel uncertainty. The proposed BCD-based algorithm was

employed for the roust resource allocation design. Simulation results demonstrated that the proposed

schemes can achieve a better balance between SE and EE than baseline schemes. Moreover, it is shown

that both the SE and EE of the proposed algorithm under the imperfect CSI can still be significantly

improved due to the exploitation of IRS.

APPENDIX A

PROOF OF THEOREM 1

The relaxation of problem P4.3 is jointly convex over all optimization variables. Therefore, the optimal

solution is characterized by the KKT conditions. In particular, the Lagrangian function of the relaxation
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of problem P4.3 in terms of the beamforming matrix Wn can be given as

L = a1

(
N∑
n=1

log2 (1 + γn)− f̂(α,Wn)

)
+ a2

(
Tr(WnvHn eeHvn)− f̂(γnIn)

)

+ a3

[
In −

N∑
i=n+1

Tr(WivHn eeHvn) + |ϑn|2pPk + σ2

]
+ a4

[
Pmax −

(
N∑
n=1

Tr (Wn) + pc

)]

+ a5

[
ptol,k −

N∑
n=1

Tr
(
WnHH

k eeHHk

)]
+ a6

[
Tr
(
WjvHn eeHvn

)
− Tr

(
WivHn eeHvn

)]
+ Tr (WnYn) + Υ, (51)

where Υ are the terms independent of Wn, a and Yn are Lagrange multipliers associated with the

corresponding constraints. By checking the KKT conditions with respect to Wn, for the optimal W‡n,

one has

a‡ ≥ 0, Yn � 0,

Y‡nW‡n = 0, 5W‡nL = 0, (52)

where a‡ and Y‡n are the optimal Lagrange multipliers while the 5W‡nL represents the gradient vector

of L with respect to W‡n. The 5W‡nL is explicitly expressed as

Y‡n = a4INs + ∆‡n, (53)

where ∆‡n is given by a1 5Wn
f̂(W‡

n)− (a2 + a6) vHn eeHvn + a5HH
k eeHHk.

Then, we will prove the optimal beamforming matrix W‡n is rank-one by unveiling the structure of

matrix Y‡n. The maximum eigenvalue of matrix ∆‡n is denoted by νmax ∈ R. Note that due to the

randomness of the channels, the probability of the case where multiple eigenvalues have the same value

νmax ∈ R is zero. According to (54), if νmax > a4, Y‡n cannot be positive semidefinite which contradicts

Yn � 0. On the other hand, if νmax ≤ a4, Y‡n is positive semidefinite with Rank(Y‡n) ≥ Ns−1. According

to Y∗nW‡n = 0, Rank(W‡n) = 1. The proof is completed.
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