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Background: The quantitative measures used to assess the performance of automated

methods often do not reflect the clinical acceptability of contouring. A quality-based

assessment of automated cardiac magnetic resonance (CMR) segmentation more

relevant to clinical practice is therefore needed.

Objective: We propose a new method for assessing the quality of machine learning

(ML) outputs. We evaluate the clinical utility of the proposed method as it is employed to

systematically analyse the quality of an automated contouring algorithm.

Methods: A dataset of short-axis (SAX) cine CMR images from a clinically

heterogeneous population (n = 217) were manually contoured by a team of experienced

investigators. On the same images we derived automated contours using aML algorithm.

A contour quality scoring application randomly presented manual and automated

contours to four blinded clinicians, who were asked to assign a quality score from a

predefined rubric. Firstly, we analyzed the distribution of quality scores between the

two contouring methods across all clinicians. Secondly, we analyzed the interobserver

reliability between the raters. Finally, we examined whether there was a variation in scores

based on the type of contour, SAX slice level, and underlying disease.

Results: The overall distribution of scores between the two methods was significantly

different, with automated contours scoring better than the manual (OR (95% CI) = 1.17

(1.07–1.28), p = 0.001; n = 9401). There was substantial scoring agreement between

raters for each contouring method independently, albeit it was significantly better for

automated segmentation (automated: AC2 = 0.940, 95% CI, 0.937–0.943 vs manual:

AC2 = 0.934, 95% CI, 0.931–0.937; p = 0.006). Next, the analysis of quality scores

based on different factors was performed. Our approach helped identify trends patterns

of lower segmentation quality as observed for left ventricle epicardial and basal contours
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with both methods. Similarly, significant differences in quality between the two methods

were also found in dilated cardiomyopathy and hypertension.

Conclusions: Our results confirm the ability of our systematic scoring analysis to

determine the clinical acceptability of automated contours. This approach focused on

the contours’ clinical utility could ultimately improve clinicians’ confidence in artificial

intelligence and its acceptability in the clinical workflow.

Keywords: cardiac magnetic resonance (CMR), cardiac segmentation, machine learning, automated contouring,

quality control, assessment

INTRODUCTION

Cardiac magnetic resonance (CMR) is the gold standard non-
invasive imaging modality for accurate quantification of cardiac
chamber volume, myocardial mass and function (1). Image
segmentation is an essential step in deriving such quantitative
measures that provide valuable information for early detection
and monitorning of a wide range of cardiovascular diseases
(CVDs) (2–5). However, manual analysis of CMR images is time-
consuming and prone to subjective errors, as the delineation
quality strongly depends on the operator’s experience (6).

Automated segmentation based on machine learning (ML)
algorithms can reduce the inter- and intra-observer variability
and speed up the contouring process (7). Additionally, these ML-
based methods can expedite the extraction of clinically relevant
information from larger image datasets. Although several studies
have shown promising results in efficiency and consistency (8–
10), important challenges need to be addressed before automatic
contouring methods can be robustly and routinely applied in
clinical practice.

Automatically generated contours often require manual
operator corrections tomake the results clinically acceptable (11).
An adequate quality-based assessment of the performance of
such tools is, therefore, needed. Several quantitative measures
have been proposed to assess the quality of automated
segmentation against “ground truth” reference, represented by
manual contours (12). The most commonly used metrics are
based on position, distance and volume overlap (13). However,
these measures have a low correlation to clinical contour quality
and may not predict clinicians’ trust for the contouring method.
Therefore, evaluating the performance of automated algorithms
in terms of clinical applicability is needed.

In this paper, we describe a new method for assessing
the quality of ML outputs by involving clinicians during the
algorithm validation process. We evaluate the effectiveness of the

Abbreviations: AC2, second-order agreement coefficient; CI, confidence interval;
CMR, cardiovascular magnetic resonance; CNN, convolutional neural network;
CVDs, cardiovascular diseases; DCM, dilated cardiomyopathy; DCS, dice
similarity coefficient; ED, end-diastole; ES, end-systole; GUI, graphical user
interface; HD, hausdorff distance; HTN, hypertension; HCM, hypertrophic
cardiomyopathy; IHD, ischaemic heart disease; LV, left ventricle; LVNC, left
ventricular non-compaction; ML, machine learning; NHCS, national health center
singapore; OR, odds ratios; QC, quality control; RCA, reverse classification
accuracy; RV, right ventricle; SAX, short-axis; SOP, standard operating procedures;
UKB, united Kingdom Biobank.

proposed method as it is employed to systematically analyse the
quality of an automated contouring algorithm.

We used a quality control (QC) scoring system to record
the judgments of blinded clinicians on the quality of randomly
presented manual and automatic contours. We evaluated the
clinical acceptability of automated contouring by analyzing the
degree of agreement between two segmentation methods based
on the quality scores. We also assessed the scoring system’s
reliability between the clinicians and whether factors potentially
making the segmentation more challenging would have affected
the quality judgment.

METHODS

Dataset
The dataset included in this study contained short-axis (SAX)
cine CMR images from 217 subjects who were participants
from the National Heart Center Singapore (NHCS) Biobank.
Patients’ information on sex and age were not available as data
were anonymised before the analysis. The study population
was heterogeneous and comprised both healthy subjects (n =

42) and patients with different CVDs: dilated cardiomyopathy
(DCM) (n = 33), hypertension (HTN) (n = 107), hypertrophic
cardiomyopathy (HCM) (n = 13), ischaemic heart disease
(IHD) (n = 15), left ventricular non-compaction (LVNC) (n
= 6), and myocarditis (n = 1). It should be noted that our
dataset did not include conditions with uncertain diagnosis (e.g.
suspected cardiomyopathy) or with non-pathological changes in
cardiac morphology (e.g. athlete’s heart). Furthermore, only the
images deemed of good quality were included and retained for
further analysis.

Manual Image Analysis
The manual segmentation was performed by a group of
experienced investigators from the National Heart Centre
Singapore (NHCS), consisting of CMR consultants, well-trained
clinical research fellows and engineers, using a standardized
protocol described in detail in a separate publication (14). Two
operators with over five years’ experience (LTT and CWLC) then
checked the contouring quality to select the studies deemed for
further analysis.

Specifically, left ventricle (LV) endocardial and epicardial
borders and the right ventricle (RV) endocardial borders were
manually traced in SAX slices at end-diastole (ED) and end-
systole (ES) time frames using the cvi42 post-processing software
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(version 5.1.1, Circle Cardiovascular Imaging Inc., Calgary,
Alberta, Canada). ED and ES phases were defined, respectively,
as the image with the largest and smallest LV blood volume at
visual inspection. The manual contours and the corresponding
images were saved for later processing.

Automated Image Analysis
A ML algorithm trained at Circle Cardiovascular Imaging Inc.
was then applied to the same set of manually annotated SAX
images to obtain automated contours. A deep convolutional
neural network (CNN) was trained to perform SAX image
segmentation. A similar model architecture as that of the
standard U-Net was adopted for this purpose, along with various
data augmentation techniques to enhance the generalizability
of the trained model (15). The model was trained on the UK
Biobank (UKB) data, a large-scale population-based imaging
study mainly composed of healthy subjects as well as individuals
with some pathological conditions including HCM and HTN
(16, 17). The output of the model was a pixel level classification
of the image, where the classes represented one of the SAX
tissues including the LV endocardium, LV epicardium, and RV
endocardium. The resulting predicted segmentations of the LV
and RV were finally saved to be displayed in the contour quality
scoring application.

QC Scoring System
A contour quality scoring application was developed to input
clinician’s feedback on both manual and automated contours
obtained from the same images. The application was composed of
a graphical user interface (GUI) to display contoured images and
offered user interactivity to rapidly parse through the data and
input user’s feedback on the quality of the presented contours.

The GUI of the contour quality scoring tool is shown in
Figure 1. From the dataset constructed with both manual and
corresponding automated contours, the application selected a
case randomly to present to the user and expected a quality score
from a predefined rubric. The left panel of the GUI showed a
SAX image with the corresponding index of the image out of
the total number of images available in the database. The right
panel, instead, showed the same image with an overlaid contour
to which the user was asked to assign a quality score. Once the
user inputed the score, arrow keys on the keyboard were used to
advance to the next available image in the database.

The source of the contour was not shown to the user to
avoid causing any unwanted bias in the rating of the contours.
In addition, multiple annotations for each image were displayed
separately to receive quality rating for each contour type
individually. The process continued until the user rated all cases
available in the dataset, resulting in ratings received for both
source of contours for each image in the dataset.

The UKB SOP for analysis of LV and RV chambers was used
as a reference for assessing the quality of the contoured images
(18). The quality score was assigned based on how the contour
would have affected clinical outcomes or whether it was judged
to be clinically plausible or not.

The scoring rubric included scores ranging from one to
four. A score of one was assigned to significantly inaccurate

segmentation and thus considered clinically unacceptable. A
score of two was given to bad quality contours, which
required significant manual changes to make them clinically
acceptable. A score of three was assigned to fair or clinically
acceptable contours with minor or negligible inaccuracies in the
segmentation considered not clinically relevant. Finally, a score
of four was assigned to contours considered of good quality with
no changes needed.

Furthermore, as images were presented independent of
spatiotemporal context, contour quality assessment was mainly
based on how well the area of the delineated structure
was approximated. Consequently, small contours and small
deviations were rarely assigned a quality score of ≤2, as that was
considered not clinically relevant. Special attention was given to
the RV endocardial contour, especially at SAX basal slices, for
which two separate regions may be contoured. In such cases, a
score of three was given if the two disjoint contours sufficiently
encompassed the underlying anatomy; otherwise, they were
scored as two or one. An illustration of some contours to which
raters assigned different quality scores is shown in Figure 2.

Four clinicians (SEP, MK, KF and ER), from a
United Kingdom institution (Barts Heart Center) and varying
degrees of experience in analyzing CMR were then asked to
independently visualize the contours and assign quality scores
using our proposed application. The results were recorded in a
database for later analysis.

Firstly, we evaluated the distribution of quality scores between
the two segmentation methods across all clinicians. Secondly, we
analyzed the quality scores assigned by each rater to evaluate the
interobserver variability among the four clincians. Finally, we
examined whether there was a variation in quality according to
the type of contour, SAX slice level and underlying disease.

Statistics
Wilcoxon signed-rank test was used to evaluate the differences
in the distribution of quality scores between automated and
manual for each physician. Combined results over all physicians,
and comparison of contour type, slice level and underlying
disease were tested usingmulti level mixed effects ordered logistic
regression fitted using the meologit command in Stata. This
model takes account of the clustering of ratings from different
clinicians for each image. The image was fitted as a random
effect with rater and segmentation method fitted as fixed effects.
Odds ratios (OR) were obtained from the above model to assess
whether the odds of obtaining a higher quality score differed by
the method. Interaction terms were fitted to test whether fixed
effects differed between manual and automated scores. A p-value
lower than 0.05 was considered statistically significant.

Interobserver reliability was assessed using Gwet’s second-
order agreement coefficient with ordinal weighting applied
(AC2) (19). Details of the calculation are given in the
supplementary methods and the ordinal weights used are shown
in Supplementary Table 1. We chose this statistics method over
Cohen’s Kappa because it has the advantage to assess reliability
between multiple observers, and it can be adjusted for both
chance agreement and misclassification errors (19, 20). It has
been shown to provide a more stable reliability coefficient than
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FIGURE 1 | The graphical user interface (GUI) of the contour quality scoring tool. The left panel shows the current SAX image. The right panel shows the same image

with overlaid contour to which the rater is asked to assign a quality score. The title above the right panel shows a blank quality score, which will be updated when a

value is entered by the user.

Kappa when prevalences differ between the categories as is
the case in our data where images were much more likely to
be assigned a quality score of four than a score of one. The
reliability coefficient value and 95% confidence interval (CI)
was calculated for both manual and automated contour quality
scores. The interpretation of the AC2 coefficient was according
to the probabilistic method for benchmarking suggested by Gwet
(21). Substantial reliability corresponding to 0.61–0.80 interval
was defined acceptable in this study and the benchmark category
was selected as the first category with cumulative membership
probability exceeding 95%.

Statistical analysis was performed using Python Version 3.6.4
(Python Software Foundation, Delaware USA) and Stata version
17 (StataCorp, Texas).

RESULTS

Four clinicians with different level of expertise generated a total
of 38,991 quality scores. The overall mean quality scores assigned
for manual and automated contours were 3.78 ± 0.45 (n =

18,516) and 3.78 ± 0.50 (n = 20,475), respectively. However
the distribution of quality scores differed between the two
segmentation methods and was statistically significant (OR (95%
CI) = 1.17 (1.07–1.28), p = 0.001; n = 9401), with automated
scoring better than manual on 1,068 occasions compared to 881
occasions where the manual scoring was higher.

We subsequently investigated the distribution of the scores
for each rater (Figure 3). We observed that the difference

between the mean quality scores assigned to each segmentation
method was not statistically significant for most evaluators,
except for rater B (Table 1). The distribution of quality scores
after excluding rater B, showed no significant difference between
the two methods (OR (95% CI)= 1.05 (0.94–1.17); p= 0.40).

The inter-observer agreement for manual and automated
contours was also investigated using Gwet’s AC2 agreement
coefficient with ordinal weighting.

Overall, there was substantial inter-observer reliability for
quality scoring of both manual and automated contours (AC2 =
0.937, 95% CI, (0.935–0.939)). In particular, the score agreement
between all raters for automated contours was significantly better
than for the manual segmentation (AC2= 0.940, 95% CI, (0.937–
0.943) and AC2 = 0.934, 95% CI, (0.931–0.937), respectively, p
= 0.006).

All AC2 values were qualified as very good using the
probabilistic benchmark procedure, with 100% membership
probability for the interval 0.8–1.0. The inter-observer agreement
for each method of contouring is shown in Figure 4.

Quality Score Analysis According to the
Contour Type, Slice Level and Underlying
Disease
Delineating cardiac contours might be a challenging task in
some circumstances, and this might negatively impact the clinical
acceptability of segmentation. For instance, manual corrections
might be needed when contouring areas with increased LV
trabeculation, for apical slices or RV walls. Thus, to gain more

Frontiers in Cardiovascular Medicine | www.frontiersin.org 4 February 2022 | Volume 8 | Article 816985

https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/cardiovascular-medicine#articles


Rauseo et al. Quality Scoring Analysis of Automated Segmentation

FIGURE 2 | Illustration of some contours (LV epicardial, LV endocardial and RV endocardial) showing the range of quality scores (from 1 to 4). LV, left ventricle; RV,

right ventricle.

insight into the variation in quality for both sources of contours,
the scores were dichotomized using multiple factors.

Firstly, we analyzed the distribution of quality scores between
the two segmentation methods based on the contour type
(Figure 5).

For manual segmentation, the mean quality scores by contour
type were 3.92 ± 0.30 (n = 6,243), 3.61 ± 0.53 (n = 6,339),
and 3.82 ± 0.44 (n = 5,934) for LV endocardial, LV epicardial,
and RV endocardial contours, respectively. Compared to LV
epicardial, both LV endocardial (OR (95% CI) = 22.89 (17.26–
30.35) and RV endocardial (OR (95% CI) = 6.00 (4.74–7.58)
had significantly higher quality (p < 0.0001). For automated
segmentation, instead, the mean quality scores were 3.89 ± 0.38
(n= 7,158), 3.73± 0.52 (n= 6,879), and 3.73± 0.57 (n= 6,438)
for LV endocardial, LV epicardial, and RV endocardial contours,

respectively. Compared to LV epicardial, both LV endocardial
(OR (95% CI) = 9.84 (7.09–13.66) and RV endocardial (OR
(95% CI) = 1.68 (1.27–2.22) had significantly higher quality
(p < 0.0001). A significant interaction was found suggesting
that the differences in quality between contour types was more
pronounced for the manual scores.

The segmentation complexity depends also on the slice level
of the image. For instance, basal and apical images might be
more challenging to contour than themid ventricular images. For
that reason, the contours quality scores were also analyzed based
on the SAX slice level (Figure 6). For manual segmentation, the
mean quality scores were 3.65 ± 0.56 (n = 1,667), 3.57 ± 0.62
(n = 1,797), and 3.82 ± 0.40 (n = 15,052), for apical, basal, and
mid-ventricular levels, respectively. Compared to mid level, both
basal (OR (95% CI) = 0.18 (0.13–0.25) and apical (OR (95% CI)
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FIGURE 3 | The distribution of quality scores for each rater for both sources of

contours: manual (blue) and automated (orange) segmentation.

TABLE 1 | Comparison of the mean quality score for manual and automated

contours, and their corresponding Wilcoxon test p-value for statistical

significance, for each rater.

Rater Mean quality score P value (Wilcoxon test)

Manual Automated

A 3.94 3.93 0.29 (n = 3,283)

B 3.67 3.71 <0.001 (n = 2,266)

C 3.81 3.81 0.87 (n = 3,281)

D 3.68 3.69 0.56 (n = 571)

= 0.44 (0.31–0.63) had significantly lower quality scores (p <

0.0001). Whereas the quality scores for the automated contours
were 3.63 ± 0.66 (n = 2,084), 3.42 ± 0.80 (n = 1,954), and 3.85
± 0.40 (n= 16,437), for apical, basal, and mid-ventricular levels,
respectively. Compared to mid level, both basal (OR (95% CI)
= 0.06 (0.04–0.09) and apical (OR (95% CI) = 0.29 (0.19–0.44)
had significantly lower quality scores (p < 0.0001). A significant
interaction was found (p < 0.0001) suggesting that reductions in
quality for basal levels were more pronounced for the automated
scores. Instead, the interaction was not significant for the apical
levels (p= 0.17).

Finally, specific changes in cardiac structures associated with
some conditionsmight also affect the contours quality. Therefore,
we analyzed whether there was a variation in manual and
automated quality scores based on the underlying pathology
(Figure 7). In particular, we analyzed the quality score assigned
for both manual and automated contours in the following
subsets: DCM (manual: 3.83 ± 0.04 vs automated: 3.77 ± 0.54;
OR (95% CI) = 0.59 (0.45–0.77); p < 0.0001), HCM (3.67 ±

0.52 vs 3.61 ± 0.63; OR(95% CI) = 0.83 (0.60–1.15); p = 0.27),
HTN (3.76 ± 0.46 vs 3.82 ± 0.45; OR (95% CI) = 2.73 (2.22–
3.37); p < 0.0001), healthy controls (3.78 ± 0.47 vs 3.80 ± 0.48;
OR(95% CI) = 0.61 (0.36–1.00); p=0.051), IHD with normal
(3.78 ± 0.44 vs 3.79 ± 0.47; OR(95% CI) = 1.44 (0.95–2.20);

p=0.09) and reduced ejection fraction (EF) (3.77 ± 0.46 vs 3.72
± 0.63; OR(95% CI_=0.72 (0.40–1.28); p = 0.26), LVNC (3.84
± 0.38 vs 3.73 ± 0.57; OR(95% CI) = 0.67 (0.40–1.12); p =

0.13), myocarditis (3.91 ± 0.29 vs 3.80 ± 0.53; OR(95% CI)=
6.77 (0.70–65.43); p= 0.10). Only in DCM and HTN subgroups,
there were significant differences in quality between the two
contouring methods. In particular, manual contours received
higher quality scores than the automated ones in DCM, while an
opposite trend was observed for HTN.

DISCUSSION

Overall, our results showed significant clinical acceptability of
automated contours based on quality scores assigned by four
clinicians. Furthermore, there was substantial agreement between
the evaluators in assessing the quality of both segmentation
methods. In particular, the scoring agreement was significantly
better for automated segmentation. These findings confirm the
accuracy of this automated segmentation method based on its
clinical acceptability.

Importantly, our QC approach allowed identification of
scenarios where segmentation quality differed. Analysis of the
quality scores by contour type and SAX slice level revealed
a significantly lower quality of the LV epicardial contours,
particularly with manual segmentation. Similar results were
observed for the basal and apical contours. Furthermore, the
reduction in quality for basal contours was more pronounced
with the automated method. The scoring analysis by pathology,
instead, did not show significant differences in contour quality
between the two methods, except for DCM and HTN. Such
patterns of lower segmentation quality would thus be subjected
to further manual changes.

Therefore, our results on a small but varied image dataset
confirm the ability of this method to rapidly assess the clinical
acceptance of automated contours without using quantitative
comparative metrics, which rely on the availability of hight
quality, thoroughly validated “ground truth” data.

Furthermore, our scoring system has proven to be reliable
among clinicians with different level of experience. Finally,
we have shown that a systematic scoring analysis allows the
identification of the poorly segmented images that may need
further manual correction.

This study confirms the importance of a quality-based
assessment of automated segmentation that directly relates to
the clinical practice and might supplement other comparative
metrics, as described below.

In most comparative studies, the automated segmentation
performance is typically assessed on labeled validation datasets,
distinct from the datasets used to train the ML algorithm.
The most common evaluation approach is based on comparing
the predicted segmentation against a “ground truth” reference,
usually represented by manual expert annotations.

Several quantitative parameters can be used to measure the
agreement between manual and automated segmentation, each
one presenting different properties and suitability for specific
tasks (12). The most used metrics are those based on position,
surfaces distance, and volumetric overlap. In particular, the Dice
similarity coefficient (DSC) and the Hausdorff distance (HD) are
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FIGURE 4 | Score agreement between all raters for manual, automated contours and both segmentation methods. The interobserver reliability is expressed using

Gwet’s second-order agreement coefficient with ordinal weighting applied (AC2) (y axis).

considered the best measures for the geometric quantification of
boundary similarities. The DSC is a common measure of region
overlap and it is mostly used in validating volume segmentations
and measuring repeatability (13, 22). The HD, instead, is a
distance-based measure that take into consideration the spatial
position of voxels or distance between contours (12). These
properties make the HD more suitable to validate algorithm
where the boundary of segmented region is important (23).

Although these quantitative measures capture the differences
between manual and automated contours, they might not
necessarily predict whether they are clinically plausible or not.

A qualitative analysis focused on the clinical utility of
contours is therefore essential to ensure the reliability of the
automatically computed results and thus their acceptability in the
clinical workflow.

The most common way to assess the quality of segmentation
is based on expert manual inspection. However, besides being
strongly subjective, visual QC is a time-consuming task, and it
might be unfeasible to perform on large datasets.

Automated QC techniques can address these issues, and
promising results have been already described in the literature
(24, 25).

Despite some advantages over visual QC process, most of these
methods still require large and fully annotated training datasets
to evaluate theMLmodels. However, this might be challenging in
real life, as we canmostly rely on relatively small sets of accurately
segmented reference images.

Several ML and deep learning methods that do not require
fully annotated datasets have been used to evaluate automated
segmentation and estimate quantitative metrics (26, 27).

For instance, Robinson and colleagues used reverse
classification accuracy (RCA) to predict the per-case quality of
automated segmentations using only a small set of reference
images and contouring (28). The RCA method of predicting
quality of ML outputs is based on the assumption that a
test case that happens to match the distribution of reference
training images will result in high quality prediction while
out of distribution (OOD) test cases will result in low quality
predictions. With this assumption, a classifier is trained on both
in-distribution and OOD data to predict the performance of the
segmentation algorithm. However, such classifier when used as
a discriminator alongside a segmentation network (generator)
can improve segmentation quality on OOD cases, which is a
basis of generative adversarial networks (GANs). By coupling
a generator with a descriminator, the segmentation head of
the GAN could then outperform the RCA classifier. In short,
if a classification network is trained to accurately predict the
performance of a segmentation network – as was done with the
RCA approach – it implies that the segmentation algorithm may
not have been sufficiently trained or was trained on a limited
dataset (compared to the classification network). This approach
also does not guarantee the generalizability of the classification
network to other OOD test cases that the RCA was not trained
on, thus limiting its utility to yet another subset of data.

Unlike Robinson’s method, our approach aims to assess
the clinical acceptability of automatic contours rather than
predicting the segmentation accuracy. Furthermore, our
systematic scoring analysis enables identifying cases where the
segmentation has failed based on clinicians’ judgment. Only these
selected images would thus require further manual operator
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FIGURE 5 | Overall mean quality scores for LV endocardial, LV epicardial and RV endocardial contours obtained from manual (blue) and automated (orange)

segmentation. LV, left ventricle; RV, right ventricle; SD, standard deviation.

corrections. This will save time in the review process. Besides,
clinical assessment of automated contours can potentially be
obtained more efficiently across multiple institutions using our
contours quality scoring system.

Furthermore, unlike other QC methods described so far,
our approach captures the clinical acceptance of automated
segmentation in a blinded manner. The observer clinicians
do not know whether the evaluated contours are manual
or automated by the algorithm when scoring them. Indeed,
knowing the source of segmentation could influence their clinical
decision and potentially introduce bias. Having blinded observers
can thus minimize the risk of such unintended bias in the
qualitative assessment.

A blind manner approach to evaluate the quality of automated
contouring was also used by Gooding et al. who proposed a
framework based on the Turing Test method, also referred
to as the “Imitation Game” (29). This approach assumes that
the inability of an interrogator to distinguish the machine
behavior from the human behavior may indicate a good

machine performance (30). Based on these assumptions, the
authors presented contours from different thoracic organs to
eight blinded clinical observers, who were asked to determine
whether they were automated or manually generated. The
inability of observers to correctly identify the source of contours
was considered an indicator that the predicted contours were
acceptable or at least of the same quality as the human standard,
indicating a reduced need for manual editing. Furthermore, they
found that the misclassification rate better predicted the time
saved for editing auto-contours than other standard quantitative
metrics, such as the DSC value.

Although the Turing indistinguishability might be considered
a surrogate measure of automated contouring performance
(31), it does not necessarily predict their clinical acceptability.
Our approach, instead, is based on the assumption that if
automated contours are judged of good quality by blinded
observer clinicians, then they might be considered clinically
acceptable. Therefore, our QC framework allows an evaluation
of automated method more relevant to clinical applications and
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FIGURE 6 | Distribution of the overall mean quality scores for different SAX slice levels (apical, basal and mid) with manual (blue) and automated (orange)

segmentation. SD, standard deviation.

independent from how much the ML algorithm can imitate
human performance.

Finally, since our method of assessing automated
segmentation is not based on extensive manual expert
annotations but on contour quality scores easily obtainable
from clinicians, it might be used for quality controlling
large-scale imaging datasets such as the UKB Imaging Study.

Limitations
The dataset used for the scoring analysis was composed
exclusively of good quality images. Therefore, although our
method can be applied to real-life datasets with a similar level of
image quality, care must be taken when generalizing such results
to low-quality image datasets.

The manual segmentation and the quality assessment of all
contours were performed by two different teams of clinicians,
whose judgment was based on two different SOPs for post-
processing analysis. Although this would account for some
differences in the image interpretation, the scoring analysis

by underlying pathology showed good agreement between the
quality of automatic and manual contours in most cases. This
suggests that the quality assessment was based on the clinical
acceptability rather than the accuracy of the contour drawing and
is more in line with a real-world clincal scenario. This indicates
that our approach is suitable for QC analysis involving multiple
centers with different institutional guidelines and clinicians with
varying contour styles.

Although we did not assess the inter-observer variability
between the NHCS operators for this specific study, an excellent
inter-operator reproducibility of cardiac measurements was
reported in a previous publication (14).

We did not evaluate the automated segmentation accuracy
using quantitative metrics. Therefore, we could not study
whether there was a correlation between quantitative metrics and
clinical contour quality. However, that was beyond the scope of
this paper. Our purpose was to present a method allowing a more
clinically relevant evaluation of automated contouring, thus not
based on the quantitative assessment of the ML algorithm.
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FIGURE 7 | Distribution of the overall contour quality scores by different pathologies for manual (blue) and automated (orange) segmentation. DCM, dilated

cardiomyopathy; HCM, hypertrophic cardiomyopathy; HTN, hypertension; IHD, ischaemic heart disease; EF, ejection fraction; LVNC, left ventricle non-compaction.

We could not assess the intra-rater agreement across multiple
instances in this study. However, the validated UKB standardized
protocol used as a reference to grade contouring has produced
good to excellent intra and inter-observer variability, as shown in
a previous publication (18).

Finally, we did not assess whether factors like sex, age and
patients’ ethnicity could influence the contouring quality as data
were fully anonymised. Future studies, perhaps on larger datasets
integrating clinical and demographic information, might address
this question.

CONCLUSION

There is a growing need for a quality-based evaluation of
automated segmentation more relevant to clinical practice and
supplementing other quantitative measures of ML performance.

Our systematic scoring analysis allows assessing automated
contouring based on their clinical acceptability by involving
clinicians directly during the algorithm validation process. This
approach focused on the contours clinical utility could ultimately
improve clinicians’ confidence in AI and its acceptability in the
clinical workflow.
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