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INTRODUCTION: FROM BIOLOGY TO THE 
CLINIC
The placenta is perhaps the most interesting multifunc-
tional animal organ to have ever evolved. The placenta acts 
as a critical exchange organ for the baby in utero, medi-
ating transfer of nutrients and oxygen between mother and 
fetus whilst keeping their two circulations entirely separate. 
Placenta-like organs are found across nearly all branches of 
animals, from primates to sharks, with variable degrees of 
complexity in anatomy and exchange efficiency.1,2 However, 
the wide variability of placental appearance and structure 
between species make the human placenta anatomically 
distinct from many common laboratory and agricultural 
animal models,3 meaning that directly studying the human 
placenta is critical. In vivo imaging of the placenta in human 
pregnancy is thus a valuable tool for understanding normal 
and abnormal placental function.

The human placenta is disc-shaped and weighs around 
500g at term. Indeed, ‘placenta’ is the latin term for ‘flat 
cake’, and the size and shape are not dissimilar. Structur-
ally, what initially appears as a relatively solid disc is in 
fact comprised of extensively and densely branched villous 
trees, which branch from the chorionic plate (the aspect of 

the placenta closest to the fetus).4 These villous trees are 
grouped into discrete amorphous functional units termed 
lobules (or occasionally cotyledons) of which 20–25 are 
ordinarily visible in the human placenta. For most of preg-
nancy, maternal blood flows from the uterine circulation 
and circulates around the outside of these villous trees. 
Exchange then occurs across the outer epithelial layer of 
the placenta, which has a surface area of 12 m2 by the end 
of pregnancy.4,5 Within the placental lobules, a complex-
branched fetal vascular network carries deoxygenated 
blood from the fetus to the exchange surface with the 
mother, and returns oxygenated blood back to the fetus via 
the umbilical vein (Figure 1).

Over the course of pregnancy, the placenta extensively 
remodels the maternal uterine vasculature, to facilitate a 
15-fold increase in blood flow to the placenta.6 This increase 
in nutrient and oxygen supply is crucial for adequate 
fetal growth. To achieve this, specialised placental cells 
(called trophoblasts) migrate out from the placenta and 
invade the endometrium, the inner layer of the maternal 
uterine cavity and beyond, up to the level of the uterine 
muscle or myometrium. Once in this tissue the tropho-
blast cells invade into glands, veins, and lymph vessels of 

Received: 
31 August 2021

Accepted: 
22 February 2022

https://doi.org/10.1259/bjr.20211010

Published online: 
15 March 2022

ABSTRACT

The placenta is both the literal and metaphorical black box of pregnancy. Measurement of the function of the placenta 
has the potential to enhance our understanding of this enigmatic organ and serve to support obstetric decision making. 
Advanced imaging techniques are key to support these measurements. This review summarises emerging imaging 
technology being used to measure the function of the placenta and new developments in the computational analysis of 
these data. We address three important examples where functional imaging is supporting our understanding of these 
conditions: fetal growth restriction, placenta accreta, and twin-twin transfusion syndrome.
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the uterine wall to provide nutritional support of the embryo 
with substances in maternal plasma and uterine gland secretion 
products. The trophoblast cells replace the muscle in the walls 
of the terminal spiral arteries and remodel them eventually into 
wide non-vasoactive tubes that open out to supply blood to the 
placenta.7 Hormones and other paracrine factors secreted by 
the placenta act to remodel the larger upstream vessels, which 
double in size by mid-gestation.8 Together, these changes enable 
a higher volume of blood to be delivered to the placenta, but at 
an appropriate velocity of flow around the placental villous tree 
to optimise exchange efficiency.

The successful growth and development of the placenta, and its 
adaptation of the maternal uterine circulation are critical for 
pregnancy success. However, inadequacies in multiple points 
across this system can occur, resulting in pregnancy disorders 
such as pre-eclampsia (when inflammatory signals from the 
placenta cause dangerously high maternal blood pressure), or 
fetal growth restriction (FGR, when the fetal growth rate decel-
erates or stagnates in utero) due to placental insufficiency.9–11 
Conversely, abnormal placental attachment can occur at the 
site of scars from previous caesarean section or other uterine 
incisions or trauma. This condition termed placenta accreta 
spectrum can lead to life-threatening maternal haemorrhage 
at the time of delivery, as well as the need for hysterectomy to 
completely remove the invasive placenta.12 Identical twins and 
higher multiple pregnancies also create unique scenarios in utero 
due to vascular connections within the shared placenta, poten-
tially resulting in discrepancies in blood distribution between 
the fetuses called twin-to-twin transfusion syndrome (TTTS) 
that can be life-threatening for both if not treated in utero.13 As 
a result, the placenta is a clinically important target for devel-
opments in imaging technology, so that scientists and clinicians 
can examine the structure and function of the organ in utero and 
improve maternal and neonatal outcomes.

This review highlights some common imaging technologies used 
in pregnancy, with a focus on new developments to quantify 
placental function from imaging.

WHAT IS BEING USED AT THE MOMENT TO 
MEASURE PLACENTA FUNCTION?
Ultrasound
Ultrasound is the most routinely used clinical imaging tool for 
investigation of the placenta in vivo. Obstetric ultrasound typi-
cally assesses fetal growth through serial fetal measurements and 
placental shape, cord insertion and uterine position using gray 
scale. Pregnancies commonly have placental blood flow inputs 
and outputs monitored via assessment of uterine, umbilical, fetal 
middle cerebral arterial and ductus venosus Doppler ultrasound 
flow waveforms (Figure 2). Doppler ultrasound provides a func-
tional interpretation of the blood flow in these vessels, inferring 
information on placental perfusion and fetal wellbeing by the 
shape, direction and magnitude of their flow velocity. In chronic 
hypoxia, the fetal circulation is redistributed towards the brain 
away from other circulatory beds, especially to the fetal kidneys 
and lower limbs leading to increased middle cerebral artery 
perfusion.

Maternal placental perfusion can be estimated in vivo with 
measurement of uterine artery volume blood flow, pulsa-
tility and resistance indices. The uterine arteries vasodilate 
from early in normal pregnancy, providing increased volume 
blood flow to the uterus and developing fetus. Doppler anal-
ysis of the uterine arteries from the first trimester can indi-
cate a poorly developed utero-placental circulation, leading 
to placental insufficiency and fetal growth restriction (FGR). 
Typical sonographic findings include an increased pulsa-
tility index and pre-diastolic notching in the uterine artery 
Doppler waveform indicating high vascular resistance. There 

Figure 1. Illustrations of human placental features and cellular relationships.
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is a well-established association between increased uterine 
artery pulsatility index in the late second trimester, and the 
development of early onset pre-eclampsia and FGR,.14–16 
However, the sensitivity and specificity are poor.17

The fetoplacental circulation can be examined in vivo with 
umbilical artery Doppler measurements and is used clini-
cally to give an indication of fetal wellbeing.18 An increased 
umbilical artery pulsatility index and reduced or reversed 
end-diastolic flow indicates increasing resistance in the feto-
placental vascular bed, as seen in placental insufficiency.19,20 
This relationship has been validated in animal models, where 
progressive embolisation of fetal vessels in sheep resulted in 
progression from normal to absent to reversed end diastolic 
flow in the umbilical artery.21

Redistribution of the fetal cardiac output in response to devel-
oping fetal hypoxia can also be detected antenatally, via a reduc-
tion in the middle cerebral artery (MCA) pulsatility index 
indicating cerebrovascular dilatation22,23

While not yet used clinically at this stage, more detailed 
Doppler analyses using power or colour Doppler are begin-
ning to be used to produce detailed maps of the circulation 
at the utero-placental interface24,25 and in the feto-placental 
circulation.26 These emerging ultrasound techniques inter-
pret the ultrasound scatter due to the presence of red blood 
cells to provide maps representing blood flow velocity 

(colour Doppler) or speed (power Doppler). They may 
provide more detailed functional interpretation than their 
predecessors, but care must be taken to ensure that machine 
settings are comparable when interpreting these data,27 and 
so ensuring consistency and reproducibility in methodol-
ogies, and significant validation is required before routine 
clinical use. As a result, clinical ultrasound relies heavily on 
morphometric rather than functional imaging whilst anal-
ysis of Doppler waveforms can be susceptibility to intrasu-
bject variability and the use of compound measurements 
involving ratios.

MRI
MRI is safe in pregnancy28,29 and the whole placenta may 
be imaged at any gestational age. Although many new tech-
niques have been attempted, the use of MRI in the assess-
ment of placental function in the clinic is not widespread. 
The reasons for this are complex, but the promise of MRI is 
to provide quantitative measurement of placental function. 
At this stage, many MR techniques have been proposed, but 
very few, if any, have been validated with a causal mechanism 
that supports the correlations observed.30 Like emerging 
ultrasound technologies, this validation is critical for clin-
ical adoption, and this absence of physiologically grounded 
knowledge is restricting placental MRI from further integra-
tion in maternal-fetal medicine.

Figure 2. a: Prediastolic notching of the uterine artery waveform (red arrow) and raised pulsatility index (PI) at 22 weeks indicates 
placental insufficiency and has a high positive predictive value for fetal growth restriction b: Normal umbilical artery Doppler 
Increasing resistance in the umbilical artery leads to the development of raised PI (c), absent (d) and then reversed end diastolic 
flow (e).
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Dynamic contrast-enhanced magnetic resonance imaging (DCE-
MRI) is an imaging technique that enables spatial and quanti-
tative characterisation of the maternal perfusion in normal or 
pathological conditions such as placental insufficiency with an 
injection of contrast agent.31–34 DCE-MRI is performed by using 
fast imaging sequences (e.g., gradient echo) that are repeatedly 
applied over the organ of interest during bolus administration of 
a contrast agent. The temporal uptake of contrast agent measured 
from the image time-series provides quantitative information 
about tissue blood perfusion. One of the first studies in which 
gadolinium contrast was used to assess human placental function 
in second and third trimester was performed by Marcos et al..35 
The diagnostic potential of DCE-MRI has also been assessed in 
placenta accreta spectrum (PAS) disorders (placenta previa and 
abnormal invasive placenta).32 In this study DCE-MRI allowed 
the extraction of tissue enhancement parameters of the uterus 
and materno-placental circulation that differed significantly 
between pregnancies with PAS and normal pregnancies. DCE-
MRI has also been used in animal models.36–39 Previous studies 
in mice have shown differences in placental perfusion between 
normal and disease conditions at a given gestation.40–43 More 
recent studies have showed potential in detecting abnormal 
flow patterns in placentas affected by fetal growth restriction 
whilst ruling out PAS.44 Despite relatively slow trans-placental 
transfer, DCE-MRI clinically is limited by the use of exogenous 
contrast agents based on gadolinium which have an unknown 
safety profile in pregnancy. Contrast agents may cross to the fetus 
and are recirculated in the amniotic fluid and questions remain 
about long term accumulation of gadolinium.28 As a result, it is 
only recommended for clinical use if it significantly enhances 
diagnostic performance and is expected to improve fetal or 
maternal outcome such as in the case of PAS.45 This motivates 

the development of non-contrast agent-based techniques such as 
diffusion imaging to measure placental function.

An alternative to DCE-MRI for measuring the properties of the 
maternal circulation is Arterial Spin Labelled MRI. This tech-
nique makes use of magnetic pre-labelling of blood as it passes 
into the field of view. As a result, this technique is free of exog-
enous contrast agents. Blood flow is measured by subtracting 
labelled and un-labelled images and as a result this technique 
is susceptible to motion artefacts between images which can 
corrupt the result. Additionally, the relatively low SNR requires 
high field strength and multiple averages to be acquired. Despite 
this, the technique has potential in the placenta to reveal the 
properties especially of the materno-placental circulation46–49 
and when combined with sophisticated image analysis tech-
niques, the extracted parameters have the potential to be quite 
robust.50,51

Diffusion-weighted (DW) MRI uses the random motion of water 
molecules within tissue as contrast, providing information on 
diffusion within placental tissue and the exchange properties 
of the maternal and fetal circulations.52 In DW-MRI, perfusion 
can be approximated using intravoxel incoherent motion (IVIM) 
model.53,54 In IVIM-DW imaging, perfusion is evaluated by 
exploiting the fact that blood in each voxel has pseudorandom 
translational motion within the capillaries, providing access to 
perfusion when using small magnetic field gradients during the 
MR pulse sequences. Placental diffusion and perfusion changes 
measured with IVIM-MRI technique have been gaining recog-
nition55–57 (Figure 3). A recent study demonstrated the effect of 
maternal sleep position on utero-placental and feto-placental 
blood flow oxygenation in healthy late gestation pregnancy 

Figure 3. Example parametric maps of placental function from MRI in an example of PAS. a) T2-weighted structural image, b) 
apparent diffusivity of placenta c) Pseudo-diffusivity of placenta[53,68] d) Placental T2[69], e) Placental perfusion and free-fluid 
signal [52]. Circles highlight vascular features close to the placental-myometrial border.
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using DW-MRI.58 Diffusion-tensor (DT) MRI, an extension 
of DW-MRI, computes diffusion anisotropy. Fractional anisot-
ropy could be detected by DT-MRI to differentiate functional 
placental tissue.59

The sensitivity of T2* to oxygenation and the rapidity of acquiring 
a T2*-weighted gradient echo image mean that oxygen flux 
can be monitored dynamically. This technology was originally 
developed in the context of investigating functional changes in 
perfusion and oxygen usage in the human brain in fMRI.60–65 
However, it also has important applications in pregnancy and has 
been shown to be sensitive to changing placental oxygen levels 
during uterine contractions and external changes to the maternal 
oxygen level.66,67

Although MRI technology shows promise detecting placental 
abnormalities, it has not been adopted yet in clinical prac-
tice likely due to several challenges in accessibility. Both 
examination costs and comfort play a role in the relatively 
limited availability of studies on MRI of human placental 
function and, despite the rich range of contrasts available, 
both MR structural and temporal resolution is comparably 
low compared to ultrasound. If these challenges can be over-
come, MRI could be a valuable method to detect abnormal 
placental function in clinical practice.

WHAT CLINICAL QUESTIONS COULD 
MEASUREMENT OF PLACENTAL FUNCTION 
ANSWER?
The shape and structure of the feto-placental vasculature has 
been linked to a number of pregnancy pathologies. Changes are 
seen throughout the vasculature ranging from the largest chori-
onic blood vessels that are considered the framework upon which 
the entire placental vascular tree is built, down to the smallest 
capillary blood vessels.68–71 This disrupted vasculature is evident 
in pre-eclampsia, FGR,72–75 diabetic pregnancies,76 placenta 
accreta77–79, preterm premature rupture of membranes and 
identical twin pregnancies.80–82 Measurements of the vascular 
topology and function will help us to model how the placenta is 
functioning in these critical pathologies.

Application to Fetal Growth Restriction (FGR)
Abnormal placental function leads to FGR and maternal 
hypertensive disease. Preventing FGR or its early identifi-
cation reduces the risk of stillbirth and has the potential to 
improve lifelong health. Ultimately poor placental function 
results in sustained nutrient restriction and fetal hypoxia, 
which can lead to long-term neurocognitive and cardio-
vascular impairment in the child and adult.83,84 But even 
low birthweight (<2.5 kg) is associated with dramatically 
increased risks of cardiovascular and metabolic disease in 
later life.85,86 Antenatal identification of abnormal placental 
function prior to development of fetal and maternal sequelae 
is therefore a health priority, but developing technologies to 
achieve this has proved challenging. International advances 
in placental imaging now provide the realistic prospect of 
detecting abnormal function early enough in gestation to 
allow treatments to be administered to those at risk. Novel 

treatments are currently being developed with the potential 
to treat placental insufficiency, so developing better ways to 
precisely measure changes in placental function is a priority.

Clinical care is currently guided by assessment of maternal 
risk factors, measurement of uterine artery blood flow using 
Doppler, monitoring fetal growth and fetal heart rate variability 
using antenatal cardiotocography (CTG). Maternal circulating 
proteins such as the growth factors PAPP-A and PlGF87,88 are 
insufficiently sensitive and specific to predict placental insuffi-
ciency and FGR alone, and small fetal size is not equivalent to 
fetal growth restriction; fetuses whose estimated fetal weight is 
within the normal range, but that have placental insufficiency 
with reduced growth velocity can easily be missed. These gaps in 
our knowledge mean that care in these pregnancies may not be 
optimal. The ability of MRI to detect differences in the placentas 
of pregnancies with early onset FGR (<32 weeks of gestation) 
associated with placental insufficiency is well established.75,89,90 
As yet unknown is the ability of imaging to measure placental 
insufficiency more broadly in circumstances where anatomical 
differences in feto-placental circulation are more subtle, but 
the effects of resulting chronic hypoxia may still be clinically 
important although less easily detected.

There are no known risks to the fetus from MRI, including 
within the first trimester,28,29 and the whole placenta may be 
imaged at any gestational age, something that is not possible to 
achieve using ultrasound in the second half of pregnancy. Whilst 
also falling with gestational age,91,92 T2 and T2* relaxation time, 
which relate to the structure and oxygen level of the tissue, 
decrease substantially in placental insufficiency compared to 
normal placentas.66,93 The impedance of diffusion of water mole-
cules, and thus oxygen, is increased in placental insufficiency 
compared to normal placentas94,95 and the vascular perfusion 
fraction and oxygenation, measured using diffusion imaging 
with placenta-specific modelling, is reduced in placental insuffi-
ciency compared to normal placentas.75,96–98

Late stillbirth is fortunately uncommon (3.9 per 1,000 UK births) 
but is more frequently found in the situation of undetected late 
onset FGR where the fetus may be only slightly growth restricted. 
It is now well recognized that maternal supine sleep position in 
late pregnancy is independently associated with an increased risk 
of stillbirth,99 and all females are recommended to go to sleep 
on their side-in the third trimester of pregnancy. The patholog-
ical mechanism leading to stillbirth is thought to be the gravid 
uterus compressing the inferior vena cava (IVC) when a female 
lies in the supine position during late pregnancy.100 Using MRI, 
it has recently been shown that compared to the left lateral 
position, maternal supine position in healthy late pregnancy is 
associated with reduced utero-placental blood flow and oxygen 
transfer across the placenta. There was an average 6.2% reduc-
tion in oxygen delivery to the fetus and an average 11% reduc-
tion in fetal umbilical venous blood flow.58 Thus even in healthy 
late gestation pregnancy, maternal position significantly affects 
oxygen transfer across the placenta and may partly explain late 
stillbirth in vulnerable fetuses.
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After these findings, the next steps are 1) to validate physiolog-
ical markers from MRI by making use of pre-clinical studies and 
2) to broaden clinical studies to broader phenotypes of placental 
insufficiency such as late onset FGR (>32 weeks of gestation), 
and females with reduced fetal movements. This will allow the 
assessment of less severe, but more complex phenotypes where 
current clinical tools to assess fetal wellbeing such as doppler 
ultrasound and CTG are limited and further allow a link to 
be established between MR parameters and early changes in 
placental function in human pregnancy and generate evidence-
based hypotheses about the defined pathological changes in 
the placenta observed in humans. Future work in this area will 
improve our understanding of placental pathophysiology and 
advance the usefulness of imaging in caring for females and their 
babies in pregnancy.

Application to placenta accreta
Placenta Accreta Spectrum (PAS) Disorders involve abnormal 
placental adherence and vascular disruption to the myome-
trium, leading to life-threatening maternal haemorrhage.101,102 
The condition has a prevalence of 0.04–0.42% pregnancies.103 
However, the incidence of PAS rises with successive caesarean 
section deliveries, with a rate of 4.1% in females with one prior 
caesarean delivery and 13.3% in females with two or more previous 
caesareans.104 As the rate of caesarean section has reached>50% 
in some countries, the optimal diagnosis and management of 
PAS pregnancy is becoming critical in obstetrics.105

The placenta is separated from the myometrium by the decidua.106 
Injury to the endometrium, through uterine surgery such as 
caesarean section, can result in a decidual deficit in subsequent 
pregnancies causing abnormal placentation whereby chorionic 
villi directly abut the myometrium and extra villous trophoblast 
invasion is increased.107,108 A histopathological specimen of 
a placenta accreta case is shown in Figure  4. Failure to recog-
nise and manage PAS disorders at delivery can lead to massive 
post-partum haemorrhage with a mortality rate of 2.6–7% as the 
placenta fails to detach from the uterine wall and surrounding 
tissues.109 It is important to correctly diagnose this disorder, 

with accurate assessment of the extent of abnormal attachment 
for better surgical planning. This is currently being performed 
by subjective interpretation of typical sonographic markers using 
2D grey-scale and Doppler imaging, with MRI only used as an 
adjunct.101,110 A standardised protocol for ultrasound reporting 
of findings (e.g., abnormal placental lacunae, or myometrial thin-
ning) has been published by the European Working Group on 
Abnormally Invasive Placenta (EW-AIP).111,112 These findings 
have a varying degree of sensitivity and specificity.110 Similarly, 
some structural MRI signs include dark T2 intraplacental bands, 
placental heterogenous signal intensity, uterine bulging, focal 
interruption of the myometrium and tenting of the bladder.108,110 
An example of these radiological signs is illustrated in Figure 5. 
These morphologic markers are highly subjective, even when 
functional MRI methods such as DCE, DWI, and IVIM are 
employed32 and have varying sensitivity and specificity. Recently 
standard imaging protocols, reporting terminology and struc-
tured reports have been proposed. This should lead to improved 
reporting and comparison between different studies and 
techniques.Figure 6113–115

The limitation of these methods includes low spatial resolution 
and difficulty assessing vascular invasion.32,116,117 Combined T2 
relaxometry (T2R) and intravoxel incoherent motion (IVIM) 
signal models can be used to separate signals from fetal and 
maternal blood pools over a region of interest of previous scar 
tissue and suspected abnormal placentation.52,90,118 By studying 
how parameters from this multicompartmental model vary 
in PAS disorders it may be possible to identify differences in 
vascularity and perfusion for an objective quantification of 
abnormal placentation and to measure the effects of abnormal 
trophoblast invasion. Similarly, advances in image reconstruc-
tion technology119,120 applied to areas of abnormal attachment, 
may better distinguish between degrees of abnormality and thus 
support clinical decisions for delivery.

Application to Twin-twin transfusion syndrome
Around one-third of twin pregnancies in the UK share a placenta. 
The mortality rate associated with these twins is 11%, with 44% 

Figure 4. Macro (left) and Micro (right) specimens for a PAS disorder patient. Arrows show: Chorionic villi directly related to the 
myometrium with no intervening decidua. Appearances are in keeping with placenta accreta.
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of this mortality caused by a condition known as Twin-to-Twin 
transfusion syndrome (TTTS), which results from an interfetal 
transfusion imbalance because of placental chorionic vascular 
anastomoses.121 TTTS manifests as fluid overload in the recipient 
twin and fluid depletion in the donor.122 Untreated TTTS is asso-
ciated with the death of one or more fetuses in more than 80% of 
pregnancies123,124 and is accompanied by high rates of morbidity 
in surviving fetuses.125 Current treatment via fetoscopic laser 
ablation (FLA) of selected chorionic vessels is supported by level 
one randomised control trial data.126 A modification to the tech-
nique known as the Solomon technique, involves coagulation of 
the vascular equator of the chorionic surface after selective FLA. 
This has now been widely accepted as being more effective, but 
damages a larger proportion of the shared placenta.127 A further 

condition called Twin Anaemia Polycythaemia Sequence (TAPS) 
can also develop due to a discordance in haemoglobin levels. 
This may also be treatable using FLA.128

Ultrasound plays a vital role in the management of multiple 
pregnancies with a shared placenta starting with a correct deter-
mination of the chorionicity in the first trimester to ensure 
more intensive surveillance of high risk pregnancies.129 In the 
following weeks ultrasound remains crucial in the detection of 
complicated fetal outcomes from 16 weeks onwards in view of 
potential fetal therapy.130–132 Although ultrasound helps in the 
detection of TTTS,133 it remains impossible to measure placental 
blood sharing accurately in these pregnancies and therefore the 
progression of the severity of TTTS is currently unpredictable. 

Figure 5. Examples of morphological ultrasound (left) and MRI (right) markers in a patient with PAS disorder confirmed on histo-
pathology of the caesarean hysterectomy specimen. The imaging signs are labelled within the figure.

Figure 6. Example parametric maps of placental function from MRI in an example of TTTS. a) T2 weighted structural image and 
whole placenta segmentation (red), b) Structural image with no diffusion weighting, c) Placental perfusion52,d) apparent diffusiv-
ity of placenta and e) Tissue T2 value93
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Careful follow-up is therefore required because of the higher 
chance of sudden and significant intertwin transfusion imbal-
ances after 26 weeks in a twin pregnancy with growth discor-
dance.134 Furthermore, although TTTS occurs mainly before 
26 weeks, it can occur at any time during a continuing twin 
pregnancy.135

Improving outcomes relies on more detailed pre-surgical plan-
ning, predicting the effect of different formations of connecting 
vessels and modelling changes in deep placental function as these 
changes are made. Advanced MRI methods have the potential to 
extract combined information relevant to blood redistribution 
in TTTS.46,52,69,136 In the future, MRI models could provide a 
mapping of vessel anastomoses and vascular density to establish 
correspondence between in vivo appearance and function and 
to make computational predictions based on pre-surgical MRI. 
Such a computational model would allow to predict the intra-
operative effects of laser vessel ablation on the flow dynamics of 
twin placentae during intervention.

Several core imaging technologies have been developed recently 
that have potential for enhancing surgery in TTTS. For instance, 
advanced feto-placental super-resolution reconstruction and 
segmentation120,137–139 may be adapted to allow visualization and 
measurement of the placental chorionic vascular tree.70,140,141 
This is essential information prior to laser ablation of the vascular 
anastmomoses. Furthermore, advances allow measurement of 
placental structure and function using MRI52,142,143 ; and recent 
techniques for blood flow simulation allow placental chorionic 
vessel blood flow modelling.141,144 Combined these techniques 
could provide prediction of the haemodynamic response during 
surgery.

Post-delivery, the morphology of the placenta can be assessed and 
compared with outcome using several protocols.70,140,145 High-
resolution microCT data enable a high-resolution reconstruc-
tion of the placental vascular structure for computational flow 
modelling without affecting subsequent placental histology.145 
This modelling may allow the prediction of how conditions such 
as TTTS and TAPS can develop from certain configurations of 
placental anastomoses.

LOOKING FORWARD: MIXED MODELS AND 
COMPUTATIONAL MODELLING
Combining data from MRI
The power of recent MRI models arises from the ability to 
combine information from different sources of contrast. Several 
attempts have been made to use combinations of MRI sequences 
to disentangle information about placental perfusion and 
oxygenation.146–148

Imaging from MRI typically is used to represent a single 
parameter of interest such as T2 or diffusivity.91,93,149 By 
acquiring acquisitions across multiple contrasts, it becomes 
possible to isolate the contribution to the T2 or diffusivity 
from separate placental sources,147,148,150 for instance to 
measure properties of the maternal and fetal circulations 
separately. This approach has been used in FGR92 and to 

analyses the effect of maternal position on placental func-
tion.151 Attempts have also been made to carry out this 
separation using ultrasound.152 Current interest in uterine 
contractions and the effect on placental function suggests 
that the combination of information from dynamic BOLD 
MRI could be combined with markers of volume or shape 
change in the placenta.63,153 This approach could enhance 
our knowledge of the impact of uterine contractions before 
and during labour, allow the derivation of information on 
placental capacity and uterine power, and help to provide 
useful information prior to delivery.

Despite promise, these approaches often require offline processing 
and significant computational power to produce novel parameter 
maps presenting quantitative information back to the clinician but 
have the potential to bring new markers to the clinic.

Computational modelling
While MRI (and other imaging modalities) can assess structural 
and functional changes between individuals and populations with 
different pregnancy complications, the multifactorial contributors 
to fetal health during pregnancy mean that additional insights into 
the connection between placental structure and function could be 
invaluable to interpreting imaging going forward.

One strategy to achieve this is via mathematical and computational 
modelling of placental structure and function. Interpretation of MRI 
has long been guided by mathematical models, for example, compart-
mental models of tissue/blood in diffusion weighted imaging. 
However, personalised modelling approaches are emerging that 
allow for anatomical data in an individual to be used to predict their 
placental function. These models could potentially be used to improve 
analysis of acquired MRI images, and to test hypotheses around what 
drives function in an individual pregnancy or group of pregnancies, 
better enabling identification of target “features” in imaging. There 
are a number of studies that have assessed the morphology of the 
post-delivery placenta in 3D, with micro-CT imaging emerging as a 
useful tool to do this.70,71,154

Whole organ models of the placenta have emerged that 
aim to describe how blood is distributed throughout the 
placenta, given the anatomical structure of the blood vessels 
(size and 3D distribution) that reside within it.144,154,155 
These models treat individual blood vessels as elements 
that are resistive to flow, and this allows an electric circuit 
analogy to be applied to predict the distribution of flow 
and blood pressure within the system. As has recently been 
demonstrated in rodent models, this analogy can be taken 
further to predict functional Doppler resulting from the 
anatomical structure of blood vessels within an organ.156 
This type of modelling provides an opportunity to provide 
new knowledge on how clinical ultrasound, MRI and func-
tional anatomy relate. Byrne et al154 demonstrated how vari-
ation in anatomy, even at the larger chorionic artery level, 
leads to significant heterogeneity in blood flow distribution 
in the feto-placental unit. This heterogeneity was proposed 
to relate to the capacity of the placenta, i.e. a placenta may 
function normally, but the heterogeneity in its function may 
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place the placenta at higher risk of a loss of function if part 
of the placenta experiences a pathological impact. Hetero-
geneity in structure and function has been observed across 
MRI studies, particularly in fetal growth restriction, and 
computational modelling provides an avenue to interpret 
this heterogeneity in function in terms of risk to fetal blood 
or oxygen157–163

To illustrate how computational modelling could be used to guide 
surgical planning in TTTS, the model of Byrne et al69 is applied to 
assess the chorionic vasculature of a mono-chorionic twin pregnancy 
in Figure 7. In this case chorionic arteries and veins were derived from 
photographs of the placenta obtained after delivery, however, these 
maps could potentially be derived in treatment planning from ultra-
sound or MRI [.122,136,137 In this type of model, segmented vascular 
maps are converted to a graph-like network of nodes and elements, 

within which blood flow is simulated using Poiseuille’s Law along 
with conservation of mass at bifurcations.144 The distribution of blood 
flow between the two placentas can then be simulated in the absence 
of any anastomoses, and then in a systematic manner by adding and 
removing anastomoses to the model. There are three types of anasto-
moses to consider: true arterio-arterial (AA) anastomoses and veno-
venous (VV) anastomoses allow immediate and bi-directional flow 
and pulse propagation between the circulatory systems of each twin; 
arterio-venous (AV) anastomoses are implicitly uni-directional, the 
arterial supply from one twin drains into the venous output of the 
second, implying that the placental tissue in these instances is shared 
between twins.121,164 In this example, the imaged placenta contained 
arteries and veins from each twin that came in close proximity, but 
with no anastomosis visible on the choronic surface, hence the AV 
anastomosis applied was artificial. Model predictions are consistent 
with the hypotheses that the emergence of TTTS or TAPS is linked 

Figure 7. A computational model of a twin placenta derived from a map of arteries and veins on the placental chorionic surface. 
Left panel: (a) Arteries and veins are segmented and (b) their centerlines are converted to a series of connected nodes and ele-
ments (in a graph-like structure)[71]. (c) this graph like structure is mapped to a 3D model of the placenta derived from an ellip-
soidal fit to the placental boundary[143] (Clark et al. 2015). (d) Blood flow can then be simulated in the major chorionic vessels 
(colourmap red = 150 ml/min, blue = 1 ml/min) as well as in the gas exchange tissue of the placenta (colourmap black = 0.05 ml/
min, white = 0 ml/min). Right panel: Visible arterio-arterial (AA), veno-venous (VV) and arterio-venous (AV) anastomoses can be 
visualised and be included/removed from the model systematically to assess their individual impact on twin-twin transfusion. In 
this example, the AA and VV anastomoses have a small contribution, but the AV anastomosis is predicted to transfuse up to 7% 
of blood flow from twin 2 (T2) to twin 1 (T1). Note that this placenta is from a pregnancy with normal outcome and does not have 
a clearly identified AV anastomosis, so the addition of this connection is artificial.
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to a relative imbalance in the number and size of these anastomoses; 
net transfusion from AV anastomoses is not compensated by true AA 
or VV anastomoses165–167 The strength of the use of computational 
models in this area is in their ability to assess this net transfusion from 
anatomical data that may be available in surgical planning on a case-
by-case basis.

CONCLUSION
This review has presented a summary of current functional imaging 
techniques for the placenta and some of the computational imaging 
technology being used to extract individualised placental models. 
These are likely to play a growing role in imaging developments, 
although we are still some way from the validation required to 
bring them to the clinical setting. The potential for improving our 

understanding of the most interesting of organs and the ability to 
advance clinical management make this an exciting time for placental 
research.
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