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Abstract— Inspired by natural swarm collective behaviors
such as colonies of bees and schools of fish, coordination
strategies in swarm robotics have received significant attention
in recent years. In this paper, a mixed formation control design
based on edge and bearing measurements is proposed for
networked multi-vehicle systems. Although conventional edge-
based controllers have been widely used in many formation
tasks, the tracking accuracy may not be guaranteed in some
extreme environments as it depends on the quality of the
sensors and requires the exact position data of each vehicle. To
overcome this limitation, we combine the edge-based controller
with a bearing-based method where only relative bearings
among the vehicles are required. Depending on the sensing-
ability of the robotic platform, this mixed control method
can provide an efficient solution to maximise the tracking
performance. Both leaderless and leader-follower cases are
considered in the protocol design. The stability of the networked
multi-vehicle systems under the proposed mixed formation
approach is ensured by Lyapunov theory. Finally, we present
simulation results to verify the effectiveness of the theoretical
results.

I. INTRODUCTION

Research on cooperative control in multi-vehicle systems
(MVSs) has attracted increasing attention over the past
decade. Many real-world applications have been explored
by researchers, such as drone formation-flying [1], [2],
autonomous exploration [3], path planning of robotic manip-
ulators [4], target surveillance [5], [6], collision avoidance in
complex environments [7], [8], search and rescue [9], [10],
and object transportation [11]. Some popular multi-vehicle
coordination methods include formation control, coverage,
rendezvous and containment. As one of the most effective
control approaches, distributed formation control aims to
coordinate a group of intelligent unmanned aerial or ground
vehicles to form a desired configuration via local informa-
tion. Fig. 1 depicts an application example of distributed
formation control, where three quadrotors are maintaining a
fixed triangle formation in a package delivery mission.

Among all the formation protocols, the majority are based
on edge measurement, where the control of each unmanned
vehicle relies on the relative position of its neighbors. For
instance, Lin et al. [12] proposed a distributed formation
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Fig. 1. A package delivery task using three networked quadrotors.

law via complex Lapacian matrix. The formation protocol
for double-integrator swarm system was discussed in [13]. In
another study, novel formation-containment control strategies
were proposed in [14] for both single and double integrator
swarm robotic systems. The authors in [15] proposed a robust
formation tracking protocol for networked robots considering
uncertainties and disturbances. Distributed formation law for
unmanned underwater vehicles was studied in [16] and this
protocol is robust to disturbances and parametric uncertain-
ties in the system. However, in aforementioned research
studies, one of the constraints is that the relative position be-
tween every neighbouring robot should be detectable, which
requires high quality sensors in real-world implementation.
Hence, the tracking accuracy of this method may not be
guaranteed in some extreme environments.

In order to deal with such limitations, many researchers
have started to pay attention to the bearing-based controller,
which means each vehicle just needs to measure the relative
bearing of their neighbours. Compared to edge-based con-
troller, bearing-based approaches can minimise the sensing
requirements of each vehicle since the bearing signals can
be detected by wireless sensor arrays [17] or vision sensors
[18] in the hardware implementation. In [19] and [20],
the authors discussed cyclic and triangular formations in
2-D space respectively. The bearing rigidity theory was
established in [21] to characterise the properties of the
target formation. Bae et al. [22] studied the converge of the
bearing-only formation protocols for single-integrator MVSs
with bounded exogenous disturbance. In another study, Li et
al. proposed the adaptive bearing-based formation protocol
for nonholonomic MVSs in [23]. Furthermore, a gradient-
descent finite-time formation tracking strategy was pro-



posed in [24] for heterogeneous mobile robots. Nevertheless,
bearing-based approaches may lead to a slower convergence
rate with the comparison of edge-based formation methods.
In addition, the configuration of the formation cannot be
fixed via bearing-only methods in the leaderless case.

Motivated by the advantages and limitations of both edge-
based and bearing-based controllers, we propose a novel
mixed formation protocol that contains both edge-based
and bearing-based measurements, which helps maximise the
utilisation of the sensing-ability of each unmanned vehicle.
Based on the different scenarios of the formation missions,
both leaderless and leader-follower cases are considered
when designing the protocol and in both cases convergence
of the controlled output can be guaranteed via Lyapunov
theory. The main contribution of this article is as follows
• A novel mixed formation control approach with edge

and bearing measurements is proposed, which can be
used to maximise the tracking performance based on
the sensing-ability of each unmanned vehicle in a multi-
vehicle team.

• Both leaderless and leader-follower cases are consid-
ered in this paper. By using Lyapunov theory, all
the unmanned vehicles can be proved to achieve the
target formation asymptotically for leaderless case and
exponentially for leader-follower case.

The remainder of paper is organised as follow. Section
2 introduces the relevant preliminaries and presents the
main objective of the paper. In Section 3, we propose
the mixed formation protocols based on edge and bearing
measurements for both leaderless and leader-follower cases
and analyse the stability of the MVS. Section 4 provides
simulation results to validate the theoretical results and
Section 5 concludes the article.

II. PRELIMINARIES AND PROBLEM DESCRIPTIONS

A. Graph Theory and Notions

Let xi(t) ∈ Rp (i ∈ {1, 2, · · · , n}) denote the state of
the ith vehicle at time t, and x(t) = [x1(t)>, · · · , xn(t)>]>.
The interaction topology among the vehicles is denoted as
G = (V, E), where V = {v1, . . . , vn} and E ⊆ V ×V denote
the vertex and the edge set of the vehicles. We say (i, j) ∈ E
if the communication can be transmitted from the ith vehicle
to the jth vehicle. The adjacency matrix of G can be written
as A = [aij ] ∈ Rn×n, where aij > 0 if (i, j) ∈ E and
aij = 0, otherwise. Hence, the Laplacian matrix of G can be
defined as L = D − A, where D = diag{d11, · · · , dnn} ∈
Rn×n and dii =

∑
j 6=i aij . It is obvious that L is positive

semi-definite for undirected topology and L1n = 0, where
1n = [1, · · · , 1]> [25].

The related position and direction of the ith and jth
vehicles can be expressed by

eij = xj − xi , gij =
eij
‖eij‖

,

where ‖ · ‖ denotes the Euclidean norm of a vector or the
spectral norm of a matrix. We also call eij and gij as
edge and bearing vectors respectively. Suppose there are

m undirected edges in G and edge (i, j) is the kth edge
(k ∈ {1, 2, · · · ,m}. The edge and bearing vectors for edge
(i, j) can be redefined as ek = eij and gk = gij .

The oriented graph of G is defined as the assignment of
an orientation for all edges in G. Define H = [H]ij ∈ Rm×n
as the incidence matrix of the oriented graph of G. For the
kth edge (i, j), we have [H]ki = 1 if i is the head of (i, j),
[H]kj = −1 if j is the tail of (i, j), and [H]kl = 0 if l 6=
i, j. Let e = [e1(t)>, · · · , em(t)>]>, we can easily find that
e = Ĥx, where Ĥ = H⊗Ip, Ip ∈ Rp×p denotes the identity
matrix, and ⊗ represents the Kronecker product.

Define B = [B]ij ∈ Rpn×pn as the bearing Laplacian
matrix for G, where [B]ij = gijg

>
ij − Ip if i 6= j and (i, j) ∈

E , [B]ij = 0p×p if i 6= j and (i, j) /∈ E , and the diagonal
entries [B]ii =

∑
j 6=i[B]ij . The bearing Laplacian matrix B

plays a significant role in bearing-based formation control
because it contains the properties of the formation.

B. Problem Descriptions

Suppose that the dynamics of the ith vehicle can be
described by

ẋi(t) = ui(t), i ∈ {1, 2, · · · , n} , (1)

where ui(t) ∈ Rp denotes the control input of ith vehicle.
The main problem to be solved is described as follows.
Problem: Design the formation protocols for each vehicle
based on both edge vectors {eij}j∈Ni and bearing vectors
{gij}j∈Ni

such that all the vehicles will converge to the
target formation x∗.

To deal with the problem, we have the following assump-
tions.
Assumption 1 : There exists at least one spanning tree in the
interaction topology G.
This assumption is universally used in networked formation
problem since the configuration of the target formation can
be guaranteed by edge vectors [25].
Assumption 2 : There is no collision during the formation
task.
This assumption guarantees that the bearing vector between
any pair of neighbours is always well defined during the
formation construction, which has been commonly used in
the bearing-based control problems such as [19], [26].

III. EDGE-BASED AND BEARING-BASED FORMATION
CONTROLLER DESIGN FOR MULTI-VEHICLE SYSTEMS

A. Formation Protocols for Leaderless Case

In this section, we design the formation protocol for each
vehicle in the leaderless case. The control input of the ith
vehicle can be written as

ui(t) = uei (t) + ubi (t), i ∈ {1, 2, · · · , n} , (2)

where uei (t) and ubi (t) denote the controller measured by
edge vectors {eij}j∈Ni

and bearing vectors {gij}j∈Ni
,

which can be designed as

uei (t) =
∑
i∈Ni

ceij(eij − e∗ij) , (3)



ubi (t) =
∑
i∈Ni

cbij(gij − g∗ij) , (4)

where ceij and cbij are positive control gains. The compact
form of (2) can be written as

ẋ = −Ĥ>C̄e(e− e∗)− Ĥ>C̄b(g − g∗) , (5)

where C̄e = Ce ⊗ Ip and Ce = diag{ceij}; C̄b = Cb ⊗ Ip
and Cb = diag{cbij}. In order to analyse the convergence of
the system (5), we have the following results

Lemma 1: For any positive-definite diagonal matrix Q =
diag{q1, · · · , qm} ∈ Rm×m, the following inequalities hold
if Assumption 1 is satisfied

x>Ĥ>Q̄(g − g∗) ≥ 0 , (6)

−(x∗)>Ĥ>Q̄(g − g∗) ≥ 0 , (7)

where Q̄ = Q⊗Ip. The equalities hold if and only if g−g∗ =
0.

Proof: According to the discussion in [26, Lemma 2]
and qk > 0, ∀k ∈ {1, 2, · · · ,m}, we have

x>Ĥ>Q̄(g − g∗) =

m∑
k=1

qk‖ek‖(1− g>k g∗k)

=
1

2

m∑
k=1

qk‖ek‖‖gk − g∗k‖ ≥ 0.

(8)

Similarly, we can get

−(x>)∗Ĥ>Q̄(g − g∗) =

m∑
k=1

qk‖e∗k‖(1− g>k g∗k)

=
1

2

m∑
k=1

qk‖e∗k‖‖gk − g∗k‖ ≥ 0.

(9)

This completes the proof.
Lemma 2: The equilibrium of system (5) satisfies e = e∗,

that is to say ẋ = 0⇔ e = e∗.
Proof: Since e = e∗ contains g = g∗, the sufficient

part is finished. Now, we only focus on the necessity part.
By ẋ = 0, we have

(x− x∗)>ẋ = −(x− x∗)Ĥ>C̄b(g − g∗)
− (e− e∗)>C̄e(e− e∗) .

(10)

Consider that −(e − e∗)>C̄e(e − e∗) ≤ 0 and the equality
holds if and only if e = e∗. Combining with lemma 1, we
have (x−x∗)>ẋ ≤ 0 and the equality holds if e = e∗. Thus
we complete the proof.

Define the centriod of the formation as

x̄ =
1

n

n∑
i=1

xi =
(1n ⊗ Ip)x

n
,

where 1n = [1, 1 · · · , 1]> ∈ Rn. The following Lemma
holds.

Lemma 3: For system (2), the centriod x̄ is fixed under
the protocols (3) and (4) during the formation task.

Proof: By the definition of H , we have

H̄(1n ⊗ Ip) = H1n ⊗ Ip = 0.

Then, we can imply that

˙̄x =
(1n ⊗ Ip)ẋ

n

= − (H̄(1n ⊗ Ip))>(C̄e(e− e∗)− C̄b(g − g∗))
n

= 0.

(11)

Now, we finish the proof.
Next, we will analyse the stability of our formation protocols
and present the following result.

Theorem 1: If we set x̄∗ = x̄(0), under Assumptions 1
and 2, all the autonomous vehicles will converge to target
formation x∗ asymptotically by control protocols (3) and (4).

Proof: From lemma 3, we have the centriod of the
formation is fixed during the formation. Hence we can set
the centriod of the target formation x̄∗ as x̄(0), which is
invariant. By combining with Assumption 1, we can imply
that x∗ can be uniquely determined by e∗. That is to say
e = e∗ ⇔ x = x∗. Let δx = x− x∗, consider the following
Lyapunov function

V =
1

2
δ>x δx .

From lemma 2, the derivative of V can be expressed as

V̇ = δ>x δ̇x = δ>x ẋ

= −δ>x Ĥ>C̄b(g − g∗)− δ>x Ĥ>C̄e(e− e∗)
= −(x− x∗)>Ĥ>(g − g∗)− (e− e∗)>Ce(e− e∗)
≤ 0

(12)
and V̇ = 0 ⇔ e = e∗. Then, we can imply that the
equilibrium of system (5) is stable. Hence, all the robots will
converge to target formation x∗ asymptotically by control
protocols (3) and (4).

B. Formation Protocols for Leader-follower Case

This section studies the formation protocol for leader-
follower system. Suppose there are nl stationary leaders
(ẋi = 0, ∀i ∈ {1, 2, · · · , nl}) and nf followers (nl + nf =
n). The dynamics of the follower vehicles can be described
as

ẋi(t) = ui(t), i ∈ {nl + 1, nl + 2, · · · , n} , (13)

where the controller ui(t) = uei (t) + ubi (t) is still measured
by edge vectors {eij}j∈Ni

and bearing vectors {gij}j∈Ni
.

The partition of B and L according to the leaders and
followers can be expressed as

B =

[
Bll Blf
B>lf Bff

]
,L =

[
Lll Llf
L>lf Lff

]
, (14)

where Bll ∈ Rpnl×pnl and Bff ∈ Rpnf×pnf , Lll ∈ Rnl×nl

and Lff ∈ Rnf×nf . The following assumption is presented
to ensure that the uniqueness of the target formation x∗.

Assumption 3 : The target formation x∗ can be uniquely
determined by the edge vectors {eij}j∈Ni and the bearing
vectors {gij}j∈Ni

.



From the Lemma 1 in [26], we can easily find that Assump-
tion 3 holds if and only if Bff > 0. It also can be obtained
that Lff > 0 by Assumption 1 ( [27]). To analyse the
stability of our formation protocols (3) and (4), we provide
the following Lemma.

Lemma 4: For any positive-definite diagonal matrix Q =
diag{q1, · · · , qm} ∈ Rm×m, the following inequality holds
if Assumption 1 is satisfied

x>Ĥ>Q̄(g − g∗) ≥ q̃x>Bx
2 maxk ‖ek‖

, (15)

where Q̄ = Q⊗ Ip and q̃ = min{q1, · · · , qm}.
Proof: From [26, Lemma 3], we can get

x>Bx =

m∑
k=1

‖ek‖2(1 + g>k g
∗
k)(1− g>k g∗k). (16)

Since q̃ ≤ qk, ∀k ∈ {1, · · · ,m} and 1+g>k g
∗
k ≤ 2, we have

q̃x>Bx ≤ 2 max
k
‖ek‖

m∑
k=1

q̃‖ek‖(1− g>k g∗k)

≤ 2 max
k
‖ek‖

m∑
k=1

qk‖ek‖(1− g>k g∗k)

= 2 max
k
‖ek‖x>Ĥ>Q̄(g − g∗).

(17)

Hence, we can imply that (15) holds.
The following Theorem is presented to reveal the conver-

gence of the protocols (3) and (4) in leader-follower case.
Theorem 2: Under Assumption 1, 2 and 3, all the vehicles

will converge to target formation x∗ exponentially if we
apply the control protocols (3) and (4) for each follower
vehicle.

Proof: Let xl = [x>1 , · · · , x>nl
]> and xf =

[x>nl+1, · · · , x>n ]> denote the state of the leaders and fol-
lowers, and x = [x>l , x

>
f ]>. Substituting (3) and (4) into

(13), the compact form of (13) can be rewritten as

ẋ = −ΓC̄eĤ
>(e− e∗)− ΓC̄bĤ

>(g − g∗) , (18)

where Γ =

[
0 0
0 Ipnf

]
.

Let δx = x(t)−x∗ = [0, δ>xf
]>, we can imply that δxΓ =

δx because the leaders are fixed. Consider the following
Lyapunov function candidate,

V =
1

2
δ>x δx .

According to (6) and (12), the derivative of V is shown as

V̇ = δ>x δ̇x = δ>x ẋ

= −δ>x ΓĤ>C̄b(g − g∗)− δ>x ΓĤ>C̄e(e− e∗)
= −δ>x Ĥ>C̄b(g − g∗)− δ>x Ĥ>C̄e(e− e∗)
≤ −x>Ĥ>C̄b(g − g∗)− δ>x Ĥ>C̄eĤδx
= −x>Ĥ>C̄b(g − g∗)− δ>x L̂δx
≤ 0

(19)

where L̂ = L⊗ Ip. We can conclude that Bx∗ = 0 from the
definition of B. Let L̂ff = Lff ⊗ Ip, then, by Lemma 4, it
follows that

V̇ ≤ − q̃x>Bx
2 maxk ‖ek‖

− δ>xf
L̂ffδxf

≤ − q̃δ>x Bδx
2 maxk ‖ek‖

− δ>xf
L̂ffδxf

= −
q̃δ>xf
Bffδxf

2 maxk ‖ek‖
− δ>xf

L̂ffδxf

≤ −(
q̃λmin(Bff )

2‖e‖
+ λmin(L̂ff ))‖δx‖2.

(20)

From (12), we can indicate that δx(t) ≤ δx(0). Hence we
can get

‖e‖ ≤ ‖Ĥ‖‖x‖ = ‖Ĥ‖‖x∗ + δx‖
≤ ‖Ĥ‖(‖x∗‖+ ‖δx‖)
≤ ‖Ĥ‖(‖x∗‖+ ‖δx(0)‖).

(21)

This together with (20), we have

V̇ ≤ −(
q̃λmin(Bff )

‖Ĥ‖(‖x∗‖+ ‖δx(0)‖)
+ 2λmin(L̂ff ))V

= −αV.
(22)

That is to say that all the vehicles will converge to target
formation x∗ exponentially with the exponential convergence
rate α =

q̃λmin(Bff )

‖Ĥ‖(‖x∗‖+‖δx(0)‖)
+ 2λmin(L̂ff ).

Remark 1: The control gains cei and cbi represent the
weights of the edge-based and bearing-based control effort.
To deal with the sensors with low quality, the edge-based
gain cei could be selected smaller and the bearing-based
gain cbi could be selected larger to reduce the affect of low
accuracy measured by positions.

IV. SIMULATION RESULTS

In this section, the performance of the formation protocols
(3) and (4) is verified by MATLAB for both leaderless and
leader-follower cases.

A. Simulation Case Study without Leaders

In this simulation, six mobile robots are deployed for the
leaderless case. We set the shape of the target formation
as a regular hexagon (linked by red solid lines in Fig 2).
The control gains ceij and cbij are selected randomly from
(0, 1) and satisfy ceij + cbij = 1. In Fig 2, the initial
positions of six robots (denoted by six different colours) are
linked by blue dashed lines. Hence, we can calculate the
centroid x̄(0), which will be set as the centroid of the target
formation (denoted by the yellow star). The trajectories of six
robots are shown by dashed lines with six different colours
corresponding to each robot. Fig 3(a) and 3(b) show the
control inputs of the six robots along the x-axis (ux) and y-
axis (uy) during the task. In Fig 4, we can see that the bearing
error (‖g − g∗‖), edge error (‖e − e∗‖) and the statement
error (‖x− x∗‖) converge to zero within 15 seconds. It can
be observed from these results that the control protocols (3)
and (4) are effective at accomplishing the formation task.



Fig. 2. Trajectories of the six robots with a fixed centroid (yellow star).

 

Fig. 3. Control inputs of the six robots. (a) Along the X-axis (ux). (b) Along
the Y-axis (uy).

Fig. 4. Time variation of the bearing error (‖g−g∗‖), edge error (‖e−e∗‖),
and state error (‖x− x∗‖).

B. Simulation Case Study with Leaders

In this simulation, nine mobile robots (six followers and
three stationary leaders) are deployed for the leader-follower
case. The shape of the target formation is selected as four
small squares, together with a large square (linked by red
solid lines in Fig 5). We choose the control gains ceij and
cbij randomly from (0, 1) and satisfy ceij + cbij = 1. In Fig
5, the initial positions of three leaders (denoted by three
yellow stars) are [−2, 0], [0, 0], and [2, 0]. The yellow, pink,
blue, brown, green, and orange dashed lines denote the
trajectories of six follower robots from their initial states to
target formation. The control inputs of six follower vehicles
along the x-axis (ux) and y-axis (uy) are shown in Fig 6(a)
and Fig 6(b), respectively. In Fig 7, we can see that the

Fig. 5. Trajectories of six follower robots with fixed leaders (yellow stars).

 

Fig. 6. Control inputs of six follower robots. (a) Along the X-axis (ux). (b)
Along the Y-axis (uy).

Fig. 7. Time variation of the bearing error (‖g−g∗‖), edge error (‖e−e∗‖),
and state error (‖x− x∗‖).

bearing error (‖g − g∗‖), edge error (‖e − e∗‖) and the
statement error (‖x − x∗‖) converges to zero. Hence, the
control objective can be fulfilled under the proposed mixed
formation protocol.

C. Comparison with Bearing-Only Protocol

To demonstrate the superior performance of the proposed
mixed strategy, we make a comparison of the proposed con-
troller with the bearing-only protocol proposed in [26]. For
this comparison, nine mobile robots including six followers
and three stationary leaders were deployed. We adopted the
same target formation and the initial positions of three lead-
ers in Section IV.B and ran 50 simulations for each controller
with the initial positions of each follower chosen randomly
from [−4, 4] × [−4, 4]. The performances of the mixed and



 

Fig. 8. Controller performance of (a) mixed protocol, (b) bearing-only
protocol.

bearing-only protocols are displayed in Fig. 8(a) and 8(b),
respectively. We utilize ‖x−x∗‖ to define the formation error.
The blue and red zones illustrate the results of 50 simulations
and the dark blue and red solid lines represent the average
result of the mixed protocol and bearing-only protocol. It
can be concluded from the comparison that the convergence
time of the mixed protocol (T = 20s) is shorter then the
bearing-only protocol (T = 80s). Hence, the proposed mixed
protocol can be used to increase the convergence rate of the
formation and maximise the tracking performance based on
the sensing-ability of each robot.

V. CONCLUSION

A novel mixed formation controller for multi-vehicle
systems (MVSs) was proposed in this paper via both edge-
based and bearing-based measurements. Both leaderless and
leader-follower cases were considered in the protocol design.
The stability of the MVSs can be guaranteed by choosing
an appropriate Lyapunov function. Finally, the simulation
results were demonstrated to validate the effectiveness of the
proposed formation protocols.

In the future, hardware experiments using unmanned aerial
vehicles (as followers) and unmanned ground vehicles (as
the leaders) will be conducted to verify the feasibility of the
theoretical results in real-world scenarios. Furthermore, the
nonlinear dynamics of the vehicles and time-delays of the
communication networks will be considered in the protocol
design.
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