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Summary

Background: The International Obesity Task Force (IOTF) and World Health
Organization (WHO) body mass index (BMI) cut-offs are widely used to assess child
overweight, obesity and thinness prevalence, but the two references applied to the
same children lead to different prevalence rates.

Obijectives: To develop an algorithm to harmonize prevalence rates based on the
IOTF and WHO cut-offs, to make them comparable.

Methods: The cut-offs are defined as age-sex-specific BMI z-scores, for example,
WHO +1 SD for overweight. To convert an age-sex-specific prevalence rate based

on reference cut-off A to the corresponding prevalence based on reference cut-off B,

first back-transform the z-score cut-offs za and zg to age-sex-specific BMI cut-offs,
then transform the BMIs to z-scores zg 4 and za g using the opposite reference. These
z-scores together define the distance between the two cut-offs as the z-score differ-
ence dzapg = %(ZB —2zp+2ag —2Zpa)- Prevalence in the target group based on cut-off A
is then transformed to a z-score, adjusted up or down according to dzag and
back-transformed, and this predicts prevalence based on cut-off B. The algorithm's
performance was tested on 74 groups of children from 14 European countries.
Results: The algorithm performed well. The standard deviation (SD) of the difference
between pairs of prevalence rates was 6.6% (nh = 604), while the residual SD, the dif-
ference between observed and predicted prevalence, was 2.3%, meaning that the
algorithm explained 88% of the baseline variance.

Conclusions: The algorithm goes some way to addressing the problem of harmoniz-

ing overweight and obesity prevalence rates for children aged 2-18.
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1 | INTRODUCTION

countries, but it continues to rise elsewhere.? The universally accepted
definitions of overweight and obesity in adults are BMI 25+ and

Child obesity has long been a worldwide public health concern.? Child 30+ kg/m?, respectively,® and the changing prevalence of overweight

body mass index (BMI) has now plateaued in many high-income and obesity across countries and regions over time has been widely
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documented, a recent study summarizing rates in 200 countries.* BMl is
also used to assess thinness, defined as BMI less than 18.5 kg/ m2.

The assessment of overweight, obesity and thinness in children is
more complex than in adults. As a measure, BMI is equally valid, but
because children grow in height and weight, child BMI needs adjusting
for age and sex using a suitable reference.’ There are two widely used
international child BMI references, the International Obesity Task
Force (IOTF) cut-offs,®® and the World Health Organization (WHO)
growth standard and reference.” 1° The US Centers for Disease Con-
trol and Prevention (CDC) reference is also used,* and all three are
endorsed by the European Child Obesity Group (ECOG).}2 The refer-
ences convert BMI to an age-sex-adjusted z-score, and the categories of
overweight, obesity and thinness are defined as the child's z-score lying
above (or for thinness, below) the relevant z-score cut-off (see Table 1).

The need for a BMI reference complicates the comparison of
child prevalence rates across studies; different references applied to
the same children lead to different prevalence rates.*®~*¢ This means
that meta-analyses of child prevalence studies cannot combine results
based on different references—they need reporting separately. For
example, two very large studies from the NCD Risk Factor Collabora-
tion and the Global Burden of Disease restricted themselves to preva-
lence rates based on just one reference, respectively WHO and
IOTF.27 This represents an alarming waste of research effort. To
work around it the journal Pediatric Obesity requests authors to report
prevalence rates ‘using both the IOTF and WHO definitions’.1®

This is an issue of data harmonization, the need to make prevalence
rates comparable across studies. The same issue arose when WHO
wanted to compare prevalence rates for nutritional indicators based on
the 1977 national center for health statistics (NCHS) reference®? and
the 2006 WHO growth standard.2® They developed a logistic regres-
sion algorithm to do the conversion.?! Paediatric Obesity has such an
algorithm in mind when it tells authors, ‘sufficient numbers of published
studies which report [IOTF and WHQO)] prevalence values will be needed to
generate the algorithms to estimate one from the other’.*®

In general, such algorithms have two weaknesses. First, they
depend on the data used to estimate the regression equations, so they
cannot reliably be applied to other data—they are not generalizable; and

second, being regression-based they are not reversible: they convert

from reference A to reference B but not from B to A. The WHO algo-
rithm was designed to convert from NCHS to WHO, but prevalence
rates based on IOTF and WHO need to be interchangeable, that is, con-
verting from one to the other and then back again should return the
original value. What is needed is an algorithm to convert between prev-
alence rates that are both generalisable and reversible.

The aim of the study is to explore such a method for harmonizing
prevalence rates for nutritional indicators across growth references,
with a particular focus on overweight, obesity and thinness with IOTF,
WHO and CDC.

2 | METHODS

21 | LMS method

The three BMI references, IOTF, WHO and CDC, are all based on the
LMS method. This transforms BMI to a z-score adjusting for skewness
in the BMI distribution using three age-sex-specific parameters—L the

Box-Cox power, M the median and S the coefficient of variation.2%23

2.2 | The algorithm

Consider two references A and B (selected from IOTF, WHO and
CDC), with z-score cut-offs z4 and zg, respectively (see Table 1). Each
reference and z-score cut-off together define a corresponding age-
sex-specific BMI cut-off. The BMI cut-off for reference A can also (for
given age and sex) be expressed as a z-score based on reference B;
this z-score is called zag, while that for the BMI cut-off based on B
and z-score based on A is zg 4. The z-scores za and zg 4 both represent
the BMI cut-off for reference A, and their average z, is a symmetric
estimate of the z-score cut-off for A. The same holds for zg the aver-
age of zg and z g for reference B. So, expressed on a common z-score

scale, the difference dza g between the A and B cut-offs is given by:

_ _ 1 1 1
dZA,B =7Zp—1Zp :E(ZB +ZA,B) —E(ZA +ZB,A) :E(ZB —ZA+2ZaB _ZB,A)-

&)

TABLE 1 BMI z-score cut-off definitions of child thinness, overweight and obesity according to the IOTF, WHO and CDC references®?
Reference Sex Thinness® Overweight® Obesity
IOTF 2-18 years Boys -1.01, —1.88, —2.56 (18.5, 17, 16)° +1.31 (25) +2.29 (30)°
Girls —0.98, —1.79, —2.44°(18.5, 17, 16)° +1.24 (25)° +2.19 (30)°
WHO 0-5 years® Both -2 +2 +3
WHO 5-19 years Both -2 +1 +2
CDC 2-20 years Both —1.64 (5th centile) +1.04 (85th centile) +1.64 (95th centile)

Abbreviations: BMI, body mass index; CDC, Centers for Disease Control; IOTF, International Obesity Task Force; WHO, World Health Organization.
2Some definitions use the terms ‘wasting’ or ‘underweight’ rather than ‘thinness’.
bSome studies include obesity prevalence in overweight prevalence whereas others exclude it.

“Cut-offs for IOTF thinness grades 1, 2 and 3, respectively.
4Value of BMI at age 18 on which the IOTF z-score is based.

®WHO 0-5 years uses weight-for-height z-score rather than BMI z-score; the two are highly correlated?>?? but distinct.>°
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Overweight and obesity correspond to BMI in the upper tail of
the distribution, where z, is positive, while for thinness in the lower
tail z, is negative. Based on reference A, the prevalence p of BMI
beyond z, is given by p = @(—sign(za) x z), where @ is the cumulative
normal distribution; this expression gives the appropriate tail area
whether for thinness or overweight-obesity.

Equally one can convert prevalence to a z-score. Z-score Z
corresponding to prevalence p is given by Z = —sign(za)®*(p), where
@1 is the inverse cumulative normal distribution. Capital Z here
emphasizes that the z-score is not a reference cut-off but is calculated
from a prevalence rate.

Consider now a target group of children, of given sex and
mean age, whose BMI distribution is known only in terms of its
prevalence rates p, and pg beyond the BMI cut-offs for references A
and B, respectively. The aim of the algorithm is to predict one of these
rates from the other. (To validate the algorithm both rates need to be
known, but in general use one of them will be unknown.) Each preva-
lence can be converted to a z-score: Zs = —sign(za)® *(pa) and
Zg= —sign(zB)<1>‘1(pB). Their difference dZyg =Zg —Z4 is an estimate
of the distance between the A and B cut-offs.

Now comes the key assumption. Assume that all three BMI dis-
tributions (reference distributions A and B and the [unknown] dis-
tribution for the target group of children) are broadly the same in
terms of L, M and S, and that they differ only in terms of a shift on
the z-score scale. On this basis, the two estimates of the z-score

difference can be set equal:

dZAyB = dZA,B~ (2)

The aim of the paper is to test this assumption.
To predict pg from p4 using (2), first convert p, to Z,, then shift it

by dza g and convert it back to pg, as follows:
pg = @(—sign(zg) x (Za+dzag)) +es (3a)

where ¢p is the error of prediction. To predict p, from pg apply the
same formula in reverse, noting that dzga = —dzas:

pPa :<I>(—sign(zA) X (ZB+dZBA))+€A (3b)

Equation (2) constrains the algorithm to be reversible, depending
only on the sign of dzag. This means that the prediction error ex =
pa—E(pa) is equal and opposite in sign to eg =pg — E(pg) as measured
on the z-score scale (where E(.) indicates the expected value), but
slightly different on the prevalence scale due to the nonlinear z-score-
prevalence conversion. The performance of the algorithm is best
judged by comparing the standard deviation (SD) of e4 (and &g) to the
SD of ps — pg; this represents the baseline assumption that E(pg) =pa
and E(ps) =pg-

The calculations in (3) can be simplified by providing values of
dzag in a look-up table indexed by references A and B, along with the

sex and mean age of the target group.

Overweight needs to be defined including obesity for the
algorithm to work properly—this is because the z-score cut-off
defines the tail area of the distribution. So if overweight is net of
obesity, then obesity prevalence needs adding to overweight

prevalence.

23 | Data

To test the algorithm two datasets were used. The Childhood Obesity
Surveillance Initiative (COSI) study by Wijnhoven et al.?* gave paired
prevalence rates of overweight and obesity based on the IOTF and
WHO references, in 225 190 primary school boys and girls aged
6-9 years across 13 European countries during school year 2009/2010.
The study provides paired prevalence rates for overweight (including
obesity) and obesity in 52 distinct country-age-sex groups, with median
1358 individuals per group (mean 4331, IQR 1799, range 466-26 542),
and grouped by age to the last completed year.

The study of Deren et al.!® gave prevalence rates of thinness,
overweight (net of obesity) and obesity based on IOTF (thinness grade
1), WHO and CDC in 18 144 Ukrainian children and adolescents aged
6.5-17.5 years, grouped by sex and age to the nearest year. They
allow the different prevalence rates to be compared in 22 distinct
6-year groups. There were median 930 (range 145-1196) individuals
per group, with up to 100 in the numerator per category per year at
younger ages, but only one or two in the obese category at ages
15-17. For the analysis, obesity prevalence was added to overweight

prevalence.

24 | Z-score differences

Table S1 lists values of dzag by sex and age in half-years from 2 to
18 years for all pairs of the thinness cut-offs IOTF 16, IOTF 17, IOTF
18.5, WHO —2, WHO —1 and CDC 5, plus all pairs of the overweight
and obesity cut-offs IOTF 25, IOTF 30, IOTF 35, WHO +1, WHO +2,
WHO +3, CDC 85 and CDC 95. For look-up purposes, the age to use

is that closest to the mean age of the target group.

2.5 | Anexample

To illustrate the algorithm, Figure 1 uses as an example overweight
prevalence (including obesity) in boys aged 8 according to WHO and
IOTF. The figure shows (a) the skew reference BMI distributions for
WHO (blue) and IOTF (red) as defined by their LMS parameters,
(b) the WHO +1 and IOTF 25 BMI cut-offs (vertical lines), and (c) the
corresponding overweight prevalences defined as the area under the
distribution curves beyond each cut-off (shaded, with the area com-
mon to both in grey). This shows that because the IOTF cut-off is
higher than the WHO cut-off, overweight is less common with
|OTF.2816
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FIGURE 1
overweight cut-offs WHO +1 and IOTF 25, while the shaded areas indicate the corresponding overweight prevalence (grey where they overlap).
The four points mark where the cut-offs cross the distributions, with filled circles for the reference and open circles for the opposite reference.
The inset shows the four points as BMI z-scores according to the two references, along with open triangles for z-scores corresponding to
observed overweight prevalence in the target group of boys aged gle

The points in Figure 1 mark where each vertical cut-off
crosses the two reference curves: its own reference (filled cir-
cles) and the opposite reference (open circles). Each point has a
corresponding z-score; for the filled circles (z4 and zg) the z-
scores are as defined in Table 1, that is, +1.00 for WHO and +1.31
for IOTF. For the open circles (zag and zg ) each z-score is calculated
for age and sex from the BMI cut-off using the opposite reference;
the WHO cut-off of 17.4 kg/m? for boys aged 8 corresponds to IOTF
z-score 0.91, while the IOTF cut-off of 18.4 kg/m? equates to WHO
z-score 1.47.

The inset to Figure 1 shows these four z-scores plotted against
the relevant BMI cut-off, with a solid line joining the mean z-scores
on each cut-off (z4 and zg), where dzag =75 — 74 =1.39 — 0.96 =0.43.
In addition, the inset shows (as triangles) the overweight prevalence
rates py = 29.3% and pg = 18.0% for a target group of Ukrainian boys
aged 8,1 plotted as z-scores Z, =0.54 and Zg =0.92, respectively,
and joined by a dotted line. The difference between them,
dZpp =27 —2Z5=0.37, is similar to dza g = 0.43, as shown by the simi-
lar slopes of the dotted and solid lines. Applying (3) to ps and pg pre-
dicts prevalences of 31.5% for WHO and 16.4% for IOTF, as against

Z-score

® Reference O Opposite reference & Target

The frequency distribution of BMI in boys aged 8 according to the WHO and IOTF references. The vertical lines mark the

the observed values of 29.3% and 18.0%, that is, errors of +2.2% and
—1.6%—far less than the difference of 11.3% between the two

prevalences.

2.6 | Regression analysis
The algorithm (2) was fitted to the data as the probit regression
equation:

g(pg) =Za+b xdzap+¢ 4)

with link function g(.) = —sign(zg)® *(.). The coefficient b for dzap
defaults to 1, but tests for generalizability by tailoring the model to fit
a particular dataset. The model omits the intercept to ensure revers-
ibility, that is, exchangeability between A and B. The error term ¢ has
two components: binomial error, that is, larger for small numbers, and
error due to the size of dzag—the larger dzap is, the greater the
extrapolation and the larger the error. The model was fitted as an

s25

overdispersed beta binomial using GAMLS with e proportional to
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abs(dzag). The interaction of dzag with the data source and obesity-
overweight-thinness was also fitted.

The models were fitted to the Wijnhoven?* and Deren'® data
with overweight including obesity. Each of the 52 Wijnhoven sex-
age groups provided prevalences for two A-B cut-off pairs, that is,
IOTF-WHO for overweight and obesity. Each of the 22 Deren
sex-age groups provided prevalences for nine A-B cut-off pairs:
three each for thinness, overweight and obesity (i.e., IOTF-WHO,
WHO-CDC and CDC-IOTF). The models were fitted to all combi-
nations of A-B cut-off pairs and age-sex groups simultaneously,
by ‘stacking’ the data into a single data frame with 52 x2+22 x
9 =302 rows. Each point is an A-B pair which can be viewed either

as A predicting B or B predicting A; to avoid double counting the main
analysis focused on pairs with positive dzag. Model fit was assessed
using the Bayesian Information Criterion (BIC) and the residual SD
(RSD) on the z-score scale. The percentage of the variance of
prevalence explained by the algorithm compared to the baseline
model, where prevalence p, is predicted by pg and vice versa, was
calculated as 100(17 [SD(pa—E(Pa))/SD(pa 7p5)]2) based on all
604 points.

The calculations were done in R (version 4.1.2) and GAMLSS (ver-
sion 5.3-4) running in RStudio (version 1.4). A function ob_convertr
was written to do the conversion, which is available in the author's
CRAN sitar package (version 1.2.0).2°

Obesity : boys Overweight : boys Thinness : boys
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F1 \ 11 16
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2.0 104
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\ B - 23
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Source Deren (2020) | + | Wijnhoven (2014)

FIGURE 2 Prevalence rates by Centers for Disease Control, International Obesity Task Force and World Health Organization of obesity,
overweight and thinness in groups of boys and girls from Deren!® (n = 22) and Wijnhoven?* (n = 52), on the z-score scale (left) and the
corresponding prevalence (%) scale (right). For overweight and obesity, the z-score and prevalence scales are inversely related. The points for
each group are connected by lines. The grey triangles correspond to the nominal prevalence rates defined by the three reference cut-offs
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3 | RESULTS

3.1 | Z-score differences
Figure S1 shows dzap the z-score difference between cut-off pairs
WHO-IOTF and CDC-IOTF, and how it varies by sex and age, for over-
weight (dashed lines) and obesity (solid lines). The z-score differences are
larger for obesity than overweight; they are positive for most of childhood,
and they fall with age. This confirms that the IOTF cut-offs are generally
higher than for WHO and CDC, particularly in early life.

Figure S2 shows the corresponding results for thinness, comparing
WHO —2 and CDC 5 with IOTF grades 16, 17 and 18.5. Here dza g has a

wider range, it is more constant across age, and of the three IOTF grades,
grade 2 (BMI 17 at age 18) is closest to the WHO and CDC cut-offs.

3.2 | Data visualization

Figure 2 shows, for the three references, prevalence rates of obesity,
overweight and thinness by sex for the two datasets, on the z-score
scale (left axis) and the corresponding prevalence scale (right axis,
note the nonlinearity). For overweight and obesity, the z-score and
prevalence scales are inversely related. The points for each group are
connected by lines, where the slope of each line corresponds to the

Obesity Overweight
0.6 1
B
O
0.4+ E
R
A
[0}
8 02 A§
7 2 &
o y 2
8 A
? A
N
c 0.0+
o T T T T T T T T T
3 0.0 0.2 0.4 0.6 0.0 0.1 0.2 0.3 0.4
c
[0} .
< Thinness
>
o
aQ
£
®
o
c
Q10-
Q
a Sex O Boys 4 Girls
05 Source Deren (2020) / Wijnhoven (2014)
0.0
0.0 0.5 1.0

Difference between BMI z—score cut—offs

FIGURE 3 Differences in the prevalence of obesity, overweight and thinness, as measured on the z-score scale, according to pairs of
reference cut-offs, plotted against the corresponding z-score difference between the cut-offs, in 74 groups of boys and girls aged 6.0-17.5124
(n = 302). Each point corresponds to a line in Figure 2. The line of equality is shown (dashed), and points are coded by sex and data source, while
regression lines per facet are coded by data source. The lines for obesity and overweight with Deren® are close to the line of equality, while

those for thinness and for Wijnhoven?* are not
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TABLE 2 Summary of beta binomial

RS 1L L

Model Term in (4) Regression coefficient b (95% Cl) BIC Residual SD
;Egrgssm” m‘(’jd\i'/?_ °|: pre"a('jert‘ce f'tte3d0t2° 1 Line of equality 1 (fixed) 2487 0110
e Deren and Wijnhoven data (n = 302). f Overall 0.78 (0.75-0.80) 2303 0095
Estimates of the regression coefficient b 16 -
. 3 Deren™® obesity 1.02 (0.92-1.12) 2223 0.083
for dzag in (4)
Deren®® overweight 0.96 (0.90-1.02)
Deren® thinness 0.82 (0.78-0.86)
Wijnhoven?* obesity 0.74 (0.70-0.78)
Wijnhoven?* overweight  0.68 (0.65-0.70)
Abbreviations: BIC, Bayesian Information Criterion; Cl, confidence interval.
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FIGURE 4 Bland-Altman plots comparing observed and predicted prevalence (%) of obesity, overweight and thinness, colour-coded by data
source (n = 604), with predicted prevalence calculated in two ways: (A) from observed prevalence and dza g (3); and (B) as for (A) except that dzag is
multiplied by b; = 0.84. Also shown (in grey) are Bland-Altman plots comparing the original prevalence data for the pairs of references. The
scatter about the origin of the original data is greatly reduced by applying the algorithm, and more so for (B) than for (A)

difference in prevalence dZsg on the z-score scale between the two cut-offs, for example, 16% for WHO +1 and 15% for CDC 85. The

references, ranging from ~0 for the horizontal lines to >1 for IOTF Figure shows a higher prevalence of overweight and obesity in
Wijnhoven?* than Deren,*® and a lower prevalence for IOTF than

WHO or CDC.

18.5 versus WHO -2 in girls. The background grey triangles corre-
spond to the nominal prevalence rates defined by the three reference
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TABLE 3 Theresidual SD (%) of prevalence for obesity, overweight and thinness, that is the SD of observed minus predicted prevalence,
under three models: (i) baseline, where p, predicts pg and vice versa; (i) algorithm (3); and (jii) bias-adjusted algorithm (4)

Model Obesity (n = 236)
(i) Baseline RSD (%) 45
(i) Algorithm RSD (%) 1.8
Variance explained (%) 84.3
(iii) Adjusted algorithm RSD (%) 1.1
Variance explained (%) 94.3

Overweight (n = 236) Thinness (h = 132) All (n = 604)
6.6 9.2 6.6
2.6 2.5 2.3

85.0 92.8 88.2
1.6 22 1.6

94.3 94.1 94.2

Notes: The percentage of the baseline variance explained by the algorithm is also shown. The algorithm explains 88% of the baseline variance, increasing to

94% when adjusted for bias.

3.3 | Fitof the algorithm

Figure 3 tests the algorithm (2) by plotting dZs g the z-score difference
in prevalence versus dzap the z-score difference between cut-offs.
Obesity, overweight and thinness are shown separately, coded by sex
and source. Each point corresponds to one of the 302 lines in
Figure 2, with the slope dzag selected to be positive. Overall dZag is
highly correlated with dza g across the three facets (r=0.88). But the
more important question is whether dZ, g and dza g are on average the
same, that is, that the points are scattered symmetrically along the line
of equality. This line is shown dashed, and the overweight and obesity
data for Deren® (in red) lie along it. However, the data for Wijnhoven?*
(in blue) do not; they lie along a line appreciably shallower than the line
of equality. The fitted regression lines through the origin for the two
datasets have highly significantly different slopes.

Table 2 summarizes three models fitted to the data. Model #1
corresponds to the algorithm and assumes that the data lie on the line
of equality, that is, that b= 1 in (4), while model #2 estimates b=0.78
in (4), which materially reduces the BIC and RSD. Model #3 corre-
sponds to the five regression lines in Figure 2, with the BIC and RSD
further reduced, where the slope confidence intervals for Deren'®
and Wijnhoven?* are non-overlapping. Because the Wijnhoven sam-
ple is much larger, the combined slope in model #2 is closer to the
Wijnhoven slope than the Deren slope in model #3. To weight the
two data sources equally, the five coefficients in model 3 are averaged
to give b=0.84.

Figure 4 shows Bland-Altman plots comparing observed and
predicted prevalence (%) of obesity, overweight and thinness. For
each pair of prevalences, the difference between them, that is, the
residual, is plotted against their mean. The data are colour-coded by
data source including both positive and negative dzag (n = 604), with
predicted prevalence calculated in two ways: Figure 4A from
observed prevalence and dzag (3); and Figure 4B as 4a except that
dzp g is multiplied by b =0.84, the mean slope in model #3. Ideally the
points should lie along the horizontal dashed line, which broadly they
do, with Deren (in red) fitting better than Wijnhoven (in blue). In addi-
tion, the Wijnhoven points fit better in Figure 4B than 4a, while for
Deren they are slightly worse.

Figure 4 also shows the underlying prevalence rates p, and pg as

grey points, plotted as their difference +(p, —pg) versus their mean

(pa+pg)/2. This corresponds to the baseline model where prevalence
pa predicts pg and vice versa. The points are symmetric about the
x-axis, and they fan out from the origin. The figure shows how
the algorithm ‘shrinks’ the residuals by shifting the grey points
towards the coloured points. Table 3 compares the SDs of the resid-
uals under the baseline and fitted models. Overall the algorithm
explains more than 88% of the baseline variance (Figure 4A), and

more than 94% when adjusted for bias (Figure 4B).

4 | DISCUSSION

The study has explored the feasibility of a reversible and generalizable
algorithm to convert prevalence rates for thinness, overweight and
obesity from one BMI reference to another. The algorithm assumes
that the difference in prevalence attributable to the two references
can be explained as a shift on the underlying BMI z-score scale, where
the magnitude of the shift depends on the two references, and the
age and sex of the group of children being assessed.

The algorithm is made easier to implement by providing the rele-
vant z-score shift in a table indexed by the two references, age and
sex. However, the algorithm's performance depends critically on the
assumption that the difference in prevalence on the z-score scale truly
is equal to the z-score difference between the cut-offs.

Figure 3 tests this assumption by plotting prevalence differ-
ence against cut-off difference, and if true the data ought to be
distributed symmetrically along the line of equality, indicating a
lack of bias. The data of Deren®® (in red) follow this pattern, the
regression lines for obesity and overweight being close to the line
of equality, with regression slope confidence intervals including
one (Table 2 model #3). However for Wijnhoven16 the data are
biased, departing materially from the line of equality, with regres-
sion slopes of around 0.7 with tight confidence intervals. This
demonstrates that the algorithm can be unbiased or biased,
depending on the dataset; with Deren it is reversible while with
Wijnhoven it is not.

So given this, how well does the algorithm perform? It provides a
coherent way to convert prevalences from one reference to another,
but the key issue is whether the associated prediction error is small

enough for the algorithm to be useful. Figure 4A shows that the
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algorithm explains 88% of the variance in prevalence between the
pairs of references, which is substantial. Thus one can use the algo-
rithm as it stands, that is, viewing it as generalisable, and obtain useful
estimates of prevalence. However, the prediction error of 12% is
inflated due to heterogeneity between datasets.

Alternatively one can use the bias-adjusted algorithm, with
dzap x 0.84 rather than dzag in (3). This explains a substantial 94% of
the variance and halves the prediction error to 6% (Figure 4B). How-
ever, the coefficient of 0.84 is based on just the two datasets and can-
not be assumed universally representative—it requires validation.

So in summary there is a trade-off between wider generality
(using the algorithm unadjusted) and better fit (adjusting the algorithm
for bias), and the key question is, ‘Which is more useful?’. There is a
paper in preparation which describes a materially improved version of
the algorithm.

Why should the regression slope in Figure 3 be less than one? It
means that shifting from one cut-off to a higher cut-off (positive dzag,
e.g., from WHO to IOTF) the algorithm underestimates the true prev-
alence of overweight and obesity (and exaggerates it for negative
dzapg), which means that the target BMI distribution has a heavier
upper tail than the reference distribution, as measured on the z-score
scale—it indicates a secular trend to increasing skewness, as has been
documented for US data.?” The heavier tail may be due to the LMS
method's S (coefficient of variation) being larger, and/or L (Box-Cox
power) being smaller.2?

The reversibility of the algorithm is useful for systematic reviews
of child obesity prevalence. The researcher can choose which
reference—IOTF, WHO or CDC—to use as their baseline, and then
apply the algorithm to convert prevalences based on the other refer-
ences to the baseline prevalence. Researchers in the future may want
to cite these prevalences, but first rebasing them to a different refer-
ence, and this can be done with no loss of information.

Deren et al.X® chose to use IOTF grade 1 (BMI 18.5 at age 18) to
define thinness. However, Table 1 and Figure S1 show that IOTF
grade 2 (BMI 17 at age 18) is closer to the WHO and CDC cut-offs,
and hence would need less extrapolation in the conversion. Grade 2 is
also the grade recommended for use in the original IOTF paper.” This
indicates that thinness conversion should work better with IOTF
grade 2 than grade 1, the cut-offs being closer together.

The study has some limitations. The two example datasets provide
only a glimpse of how the algorithm might work in practice, and other
studies are needed to apply it to other data. Also, Deren'® and
Wijnhoven24 used different definitions of the IOTF cut-offs, respectively,
reference 6 and reference 8, though the two are very similar in practice.

The study also has strengths. The algorithm is theoretically based
and is reversible, although arguably not generalizable. It has been
applied to BMI and the IOTF, WHO and CDC reference cut-offs. But
it is sufficiently general that it can be applied to any anthropometric
reference, with any measurement, where the cut-offs are defined as
z-scores and can be back-transformed to measurement units. This
provides an opportunity to exploit for example the historical literature
of overweight and obesity prevalence data based on locally developed

BMI references.?® The algorithm is likely to fit better with older

datasets, as the duration of any secular trend to greater obesity will
have been shorter.

In conclusion, the paper describes an algorithm for converting
between prevalence rates of overweight, obesity and thinness based
on the IOTF, WHO and CDC BMI reference cut-offs. Applied to two
example datasets the algorithm performs well, and its reversibility
makes it a useful tool for harmonizing prevalence rates across
references.

A follow-up paper in preparation describes an improved version

of the algorithm, which is both reversible and generalisable.

ACKNOWLEDGEMENTS
We are grateful to Marie Francoise Rolland-Cachera, Emily Mates and
Natasha Lelijveld for their helpful comments on earlier drafts of the

paper.

CONFLICT OF INTEREST

Tim J. Cole declares the following conflicts of interest: he developed
the LMS method with Peter Green?? and was first author on papers
describing the IOTF cut-offs.®® Tim Lobstein was also an author on

the latter paper.®

AUTHOR CONTRIBUTIONS

Tim J. Cole designed the study, did the data analysis, generated the
figures and wrote the first draft of the paper. Tim J. Cole and Tim
Lobstein edited the paper and had final approval of the submitted and

published versions.

ORCID
Tim J. Cole "2 https://orcid.org/0000-0001-5711-8200
REFERENCES

1. WHO. Obesity: preventing and managing the global epidemic. Report
of a WHO Consultation Geneva, 3-5 June 1997. WHO/NUT/98.1.
WHO; 1998.

2. Ezzati M, Bentham J, Di Cesare M, et al. Worldwide trends in body-
mass index, underweight, overweight, and obesity from 1975 to
2016: a pooled analysis of 2416 population-based measurement stud-
ies in 128.9 million children, adolescents, and adults. Lancet. 2017;
390:2627-2642.

3. Garrow JS, Webster J. Quetelet's index (W/H?) as a measure of fat-
ness. Int J Obes (Lond). 1985;9:147-153.

4. Di Cesare M, Bentham J, Stevens GA, et al. Trends in adult body-mass
index in 200 countries from 1975 to 2014: a pooled analysis of 1698
population-based measurement studies with 19.2 million participants.
Lancet. 2016;387:1377-1396.

5. Cole TJ. Method for assessing age-standardized weight-for-height in
children seen cross-sectionally. Ann Hum Biol. 1979;6:249-268.

6. Cole TJ, Bellizzi MC, Flegal KM, Dietz WH. Establishing a standard
definition for child overweight and obesity worldwide: international
survey. BMJ. 2000;320:1240-1243.

7. Cole TJ, Flegal KM, Nicholls D, Jackson AA. Body mass index cut offs
to define thinness in children and adolescents: international survey.
BMJ. 2007;335:194-197.

8. Cole TJ, Lobstein T. Extended international (IOTF) body mass index
cut-offs for thinness, overweight and obesity. Pediatr Obes. 2012;7:
284-294.


https://orcid.org/0000-0001-5711-8200
https://orcid.org/0000-0001-5711-8200

10 of 10 Wl LEY—%EM

9.

10.
11.
12.
13.
14.
15.

16.

17.
18.
19.
20.

21.

COLE anDp LOBSTEIN

de Onis M, Garza C, Onyango AW, Martorell R. WHO child growth
standards. Acta Paediatr. 2006;95(suppl 450):3-101.

de Onis M, Onyango AW, Borghi E, Siyam A, Nishida C, Siekmann J.
Development of a WHO growth reference for school-aged children
and adolescents. Bull World Health Organ. 2007;85:660-667.

Must A, Dallal GE, Dietz WH. Reference data for obesity: 85th and
95th percentiles of body mass index (wt/ht?) and triceps skinfold
thickness. Am J Clin Nutr. 1991;53:839-846.

Rolland-Cachera MF. Childhood obesity: current definitions and
recommendations for their use. Int J Pediatr Obes. 2011;6:325-331.
Keke LM, Samouda H, Jacobs J, et al. Body mass index and childhood
obesity classification systems: A comparison of the French, Interna-
tional Obesity Task Force (IOTF) and World Health Organization
(WHO) references. Rev Epidemiol Sante Publique. 2015;63:173-182.
Shields M, Tremblay MS. Canadian childhood obesity estimates based
on WHO, IOTF and CDC cut-points. Int J Pediatr Obes. 2010;5:
265-273.

Spinelli A, Buoncristiano M, Kovacs VA, et al. Prevalence of severe
obesity among primary school children in 21 European countries.
Obes Facts. 2019;12:244-258.

Deren K, Wyszynska J, Nyankovskyy S, et al. Assessment of body
mass index in a pediatric population aged 7-17 from Ukraine
according to various international criteria - a cross-sectional study.
PLoS One. 2020;15:e0244300.

Murray CJL, Aravkin AY, Zheng P, et al. Global burden of 87 risk factors
in 204 countries and territories, 1990-2019: a systematic analysis for the
Global Burden of Disease Study 2019. Lancet. 2020;396:1223-1249.
Anonymous. Author Guidelines. 2021. Accessed July 5, 2021.
https://onlinelibrary.wiley.com/page/journal/20476310/homepage/
forauthors.html

Hamill PVV, Drizd TA, Johnson CL, Reed RB, Roche AF. NCHS Growth
Curves for Children Birth - 18 Years. National Center for Health Statis-
tics; 1977.

de Onis M, Bléssner M, Borghi E. Global prevalence and trends of
overweight and obesity among preschool children. Am J Clin Nutr.
2010;92:1257-1264.

Yang H, de Onis M. Algorithms for converting estimates of child
malnutrition based on the NCHS reference into estimates based on
the WHO Child Growth Standards. BMC Pediatr. 2008;8:19.

22.

23.

24,

25.

26.

27.

28.

29.

30.

Cole TJ, Green PJ. Smoothing reference centile curves: the LMS
method and penalized likelihood. Stat Med. 1992;11:1305-1319.
Flegal KM, Cole TJ. Construction of LMS Parameters for the Centers for
Disease Control and Prevention 2000 Growth Charts. National Center
for Health Statistics; 2013.

Wijnhoven TMA, van Raaij JMA, Spinelli A, et al. WHO European
Childhood Obesity Surveillance Initiative: body mass index and level of
overweight among 6-9-year-old children from school year 2007/2008
to school year 2009/2010. BMC Public Health. 2014;14:1-16.
Stasinopoulos DM, Rigby RA. Generalized additive models for
location scale and shape (GAMLSS) in R. J Stat Softw. 2007;23:1-46.
Cole T. Super Imposition by Translation and Rotation Growth Curve
Analysis R Package Sitar. Comprehensive R Archive Network; 2021.
Flegal KM, Troiano RP. Changes in the distribution of body mass
index of adults and children in the US population. Int J Obes (Lond).
2000;24:807-818.

Bellizzi MC, Dietz WH. Workshop on childhood obesity: summary of
the discussion. Am J Clin Nutr. 1999;70:173S-175S.

Cole TJ. A critique of the NCHS weight for height standard. Hum Biol.
1985;57:183-196.

Rajeev LN, Saini M, Kumar A, Sinha S, Osmond C, Sachdev HS.
Weight-for-height is associated with an overestimation of thinness
burden in comparison to BMI-for-age in under-5 populations with
high stunting prevalence. Int J Epidemiol. 2021;1-10.

SUPPORTING INFORMATION
Additional supporting information may be found in the online version

of the article at the publisher's website.

How to cite this article: Cole TJ, Lobstein T. Exploring an
algorithm to harmonize International Obesity Task Force and
World Health Organization child overweight and obesity
prevalence rates. Pediatric Obesity. 2022;e12905.
doi:10.1111/ijpo.12905


https://onlinelibrary.wiley.com/page/journal/20476310/homepage/forauthors.html
https://onlinelibrary.wiley.com/page/journal/20476310/homepage/forauthors.html
info:doi/10.1111/ijpo.12905

	Exploring an algorithm to harmonize International Obesity Task Force and World Health Organization child overweight and obe...
	1  INTRODUCTION
	2  METHODS
	2.1  LMS method
	2.2  The algorithm
	2.3  Data
	2.4  Z-score differences
	2.5  An example
	2.6  Regression analysis

	3  RESULTS
	3.1  Z-score differences
	3.2  Data visualization
	3.3  Fit of the algorithm

	4  DISCUSSION
	ACKNOWLEDGEMENTS
	  CONFLICT OF INTEREST
	  AUTHOR CONTRIBUTIONS
	REFERENCES


