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Summary

Background: The International Obesity Task Force (IOTF) and World Health

Organization (WHO) body mass index (BMI) cut-offs are widely used to assess child

overweight, obesity and thinness prevalence, but the two references applied to the

same children lead to different prevalence rates.

Objectives: To develop an algorithm to harmonize prevalence rates based on the

IOTF and WHO cut-offs, to make them comparable.

Methods: The cut-offs are defined as age-sex-specific BMI z-scores, for example,

WHO +1 SD for overweight. To convert an age-sex-specific prevalence rate based

on reference cut-off A to the corresponding prevalence based on reference cut-off B,

first back-transform the z-score cut-offs zA and zB to age-sex-specific BMI cut-offs,

then transform the BMIs to z-scores zB,A and zA,B using the opposite reference. These

z-scores together define the distance between the two cut-offs as the z-score differ-

ence dzA,B ¼ 1
2 zB� zAþ zA,B� zB,Að Þ. Prevalence in the target group based on cut-off A

is then transformed to a z-score, adjusted up or down according to dzA,B and

back-transformed, and this predicts prevalence based on cut-off B. The algorithm's

performance was tested on 74 groups of children from 14 European countries.

Results: The algorithm performed well. The standard deviation (SD) of the difference

between pairs of prevalence rates was 6.6% (n = 604), while the residual SD, the dif-

ference between observed and predicted prevalence, was 2.3%, meaning that the

algorithm explained 88% of the baseline variance.

Conclusions: The algorithm goes some way to addressing the problem of harmoniz-

ing overweight and obesity prevalence rates for children aged 2–18.
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1 | INTRODUCTION

Child obesity has long been a worldwide public health concern.1 Child

body mass index (BMI) has now plateaued in many high-income

countries, but it continues to rise elsewhere.2 The universally accepted

definitions of overweight and obesity in adults are BMI 25+ and

30+ kg/m2, respectively,3 and the changing prevalence of overweight

and obesity across countries and regions over time has been widely
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documented, a recent study summarizing rates in 200 countries.4 BMI is

also used to assess thinness, defined as BMI less than 18.5 kg/m2.

The assessment of overweight, obesity and thinness in children is

more complex than in adults. As a measure, BMI is equally valid, but

because children grow in height and weight, child BMI needs adjusting

for age and sex using a suitable reference.5 There are two widely used

international child BMI references, the International Obesity Task

Force (IOTF) cut-offs,6–8 and the World Health Organization (WHO)

growth standard and reference.9, 10 The US Centers for Disease Con-

trol and Prevention (CDC) reference is also used,11 and all three are

endorsed by the European Child Obesity Group (ECOG).12 The refer-

ences convert BMI to an age–sex-adjusted z-score, and the categories of

overweight, obesity and thinness are defined as the child's z-score lying

above (or for thinness, below) the relevant z-score cut-off (see Table 1).

The need for a BMI reference complicates the comparison of

child prevalence rates across studies; different references applied to

the same children lead to different prevalence rates.13–16 This means

that meta-analyses of child prevalence studies cannot combine results

based on different references—they need reporting separately. For

example, two very large studies from the NCD Risk Factor Collabora-

tion and the Global Burden of Disease restricted themselves to preva-

lence rates based on just one reference, respectively WHO and

IOTF.2,17 This represents an alarming waste of research effort. To

work around it the journal Pediatric Obesity requests authors to report

prevalence rates ‘using both the IOTF and WHO definitions’.18

This is an issue of data harmonization, the need to make prevalence

rates comparable across studies. The same issue arose when WHO

wanted to compare prevalence rates for nutritional indicators based on

the 1977 national center for health statistics (NCHS) reference19 and

the 2006 WHO growth standard.20 They developed a logistic regres-

sion algorithm to do the conversion.21 Paediatric Obesity has such an

algorithm in mind when it tells authors, ‘sufficient numbers of published

studies which report [IOTF and WHO] prevalence values will be needed to

generate the algorithms to estimate one from the other’.18

In general, such algorithms have two weaknesses. First, they

depend on the data used to estimate the regression equations, so they

cannot reliably be applied to other data—they are not generalizable; and

second, being regression-based they are not reversible: they convert

from reference A to reference B but not from B to A. The WHO algo-

rithm was designed to convert from NCHS to WHO, but prevalence

rates based on IOTF andWHO need to be interchangeable, that is, con-

verting from one to the other and then back again should return the

original value. What is needed is an algorithm to convert between prev-

alence rates that are both generalisable and reversible.

The aim of the study is to explore such a method for harmonizing

prevalence rates for nutritional indicators across growth references,

with a particular focus on overweight, obesity and thinness with IOTF,

WHO and CDC.

2 | METHODS

2.1 | LMS method

The three BMI references, IOTF, WHO and CDC, are all based on the

LMS method. This transforms BMI to a z-score adjusting for skewness

in the BMI distribution using three age-sex-specific parameters—L the

Box-Cox power, M the median and S the coefficient of variation.22,23

2.2 | The algorithm

Consider two references A and B (selected from IOTF, WHO and

CDC), with z-score cut-offs zA and zB, respectively (see Table 1). Each

reference and z-score cut-off together define a corresponding age-

sex-specific BMI cut-off. The BMI cut-off for reference A can also (for

given age and sex) be expressed as a z-score based on reference B;

this z-score is called zA,B, while that for the BMI cut-off based on B

and z-score based on A is zB,A. The z-scores zA and zB,A both represent

the BMI cut-off for reference A, and their average zA is a symmetric

estimate of the z-score cut-off for A. The same holds for zB the aver-

age of zB and zA,B for reference B. So, expressed on a common z-score

scale, the difference dzA,B between the A and B cut-offs is given by:

dzA,B ¼ zB� zA ¼1
2

zBþ zA,Bð Þ�1
2

zAþ zB,Að Þ¼1
2

zB� zAþ zA,B� zB,Að Þ:
ð1Þ

TABLE 1 BMI z-score cut-off definitions of child thinness, overweight and obesity according to the IOTF, WHO and CDC references12

Reference Sex Thinnessa Overweightb Obesity

IOTF 2–18 years Boys �1.01, �1.88, �2.56c (18.5, 17, 16)d +1.31 (25)d +2.29 (30)d

Girls �0.98, �1.79, �2.44c (18.5, 17, 16)d +1.24 (25)d +2.19 (30)d

WHO 0–5 yearse Both �2 +2 +3

WHO 5–19 years Both �2 +1 +2

CDC 2–20 years Both �1.64 (5th centile) +1.04 (85th centile) +1.64 (95th centile)

Abbreviations: BMI, body mass index; CDC, Centers for Disease Control; IOTF, International Obesity Task Force; WHO, World Health Organization.
aSome definitions use the terms ‘wasting’ or ‘underweight’ rather than ‘thinness’.
bSome studies include obesity prevalence in overweight prevalence whereas others exclude it.
cCut-offs for IOTF thinness grades 1, 2 and 3, respectively.
dValue of BMI at age 18 on which the IOTF z-score is based.
eWHO 0–5 years uses weight-for-height z-score rather than BMI z-score; the two are highly correlated21,29 but distinct.30
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Overweight and obesity correspond to BMI in the upper tail of

the distribution, where zA is positive, while for thinness in the lower

tail zA is negative. Based on reference A, the prevalence p of BMI

beyond zA is given by p¼Φ �sign zAð Þ� zð Þ, where Φ is the cumulative

normal distribution; this expression gives the appropriate tail area

whether for thinness or overweight–obesity.

Equally one can convert prevalence to a z-score. Z-score Z

corresponding to prevalence p is given by Z¼�sign zAð ÞΦ�1 pð Þ, where

Φ�1 is the inverse cumulative normal distribution. Capital Z here

emphasizes that the z-score is not a reference cut-off but is calculated

from a prevalence rate.

Consider now a target group of children, of given sex and

mean age, whose BMI distribution is known only in terms of its

prevalence rates pA and pB beyond the BMI cut-offs for references A

and B, respectively. The aim of the algorithm is to predict one of these

rates from the other. (To validate the algorithm both rates need to be

known, but in general use one of them will be unknown.) Each preva-

lence can be converted to a z-score: ZA ¼�sign zAð ÞΦ�1 pAð Þ and

ZB ¼�sign zBð ÞΦ�1 pBð Þ. Their difference dZA,B ¼ZB�ZA is an estimate

of the distance between the A and B cut-offs.

Now comes the key assumption. Assume that all three BMI dis-

tributions (reference distributions A and B and the [unknown] dis-

tribution for the target group of children) are broadly the same in

terms of L, M and S, and that they differ only in terms of a shift on

the z-score scale. On this basis, the two estimates of the z-score

difference can be set equal:

dZA,B ¼ dzA,B: ð2Þ

The aim of the paper is to test this assumption.

To predict pB from pA using (2), first convert pA to ZA, then shift it

by dzA,B and convert it back to pB, as follows:

pB ¼Φ �sign zBð Þ� ZAþdzA,Bð Þð ÞþεB ð3aÞ

where εB is the error of prediction. To predict pA from pB apply the

same formula in reverse, noting that dzB,A ¼�dzA,B:

pA ¼Φ �sign zAð Þ� ZBþdzB,Að Þð ÞþεA ð3bÞ

Equation (2) constrains the algorithm to be reversible, depending

only on the sign of dzA,B. This means that the prediction error εA ¼
pA�E pAð Þ is equal and opposite in sign to εB ¼ pB�E pBð Þ as measured

on the z-score scale (where E :ð Þ indicates the expected value), but

slightly different on the prevalence scale due to the nonlinear z-score-

prevalence conversion. The performance of the algorithm is best

judged by comparing the standard deviation (SD) of εA (and εB) to the

SD of pA�pB; this represents the baseline assumption that E pBð Þ¼ pA

and E pAð Þ¼ pB.

The calculations in (3) can be simplified by providing values of

dzA,B in a look-up table indexed by references A and B, along with the

sex and mean age of the target group.

Overweight needs to be defined including obesity for the

algorithm to work properly—this is because the z-score cut-off

defines the tail area of the distribution. So if overweight is net of

obesity, then obesity prevalence needs adding to overweight

prevalence.

2.3 | Data

To test the algorithm two datasets were used. The Childhood Obesity

Surveillance Initiative (COSI) study by Wijnhoven et al.24 gave paired

prevalence rates of overweight and obesity based on the IOTF and

WHO references, in 225 190 primary school boys and girls aged

6–9 years across 13 European countries during school year 2009/2010.

The study provides paired prevalence rates for overweight (including

obesity) and obesity in 52 distinct country–age–sex groups, with median

1358 individuals per group (mean 4331, IQR 1799, range 466–26 542),

and grouped by age to the last completed year.

The study of Deren et al.16 gave prevalence rates of thinness,

overweight (net of obesity) and obesity based on IOTF (thinness grade

1), WHO and CDC in 18 144 Ukrainian children and adolescents aged

6.5–17.5 years, grouped by sex and age to the nearest year. They

allow the different prevalence rates to be compared in 22 distinct

6-year groups. There were median 930 (range 145–1196) individuals

per group, with up to 100 in the numerator per category per year at

younger ages, but only one or two in the obese category at ages

15–17. For the analysis, obesity prevalence was added to overweight

prevalence.

2.4 | Z-score differences

Table S1 lists values of dzA,B by sex and age in half-years from 2 to

18years for all pairs of the thinness cut-offs IOTF 16, IOTF 17, IOTF

18.5, WHO �2, WHO �1 and CDC 5, plus all pairs of the overweight

and obesity cut-offs IOTF 25, IOTF 30, IOTF 35, WHO +1, WHO +2,

WHO +3, CDC 85 and CDC 95. For look-up purposes, the age to use

is that closest to the mean age of the target group.

2.5 | An example

To illustrate the algorithm, Figure 1 uses as an example overweight

prevalence (including obesity) in boys aged 8 according to WHO and

IOTF. The figure shows (a) the skew reference BMI distributions for

WHO (blue) and IOTF (red) as defined by their LMS parameters,

(b) the WHO +1 and IOTF 25 BMI cut-offs (vertical lines), and (c) the

corresponding overweight prevalences defined as the area under the

distribution curves beyond each cut-off (shaded, with the area com-

mon to both in grey). This shows that because the IOTF cut-off is

higher than the WHO cut-off, overweight is less common with

IOTF.2,8,16
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The points in Figure 1 mark where each vertical cut-off

crosses the two reference curves: its own reference (filled cir-

cles) and the opposite reference (open circles). Each point has a

corresponding z-score; for the filled circles (zA and zB) the z-

scores are as defined in Table 1, that is, +1.00 for WHO and +1.31

for IOTF. For the open circles (zA,B and zB,A) each z-score is calculated

for age and sex from the BMI cut-off using the opposite reference;

the WHO cut-off of 17.4 kg/m2 for boys aged 8 corresponds to IOTF

z-score 0.91, while the IOTF cut-off of 18.4 kg/m2 equates to WHO

z-score 1.47.

The inset to Figure 1 shows these four z-scores plotted against

the relevant BMI cut-off, with a solid line joining the mean z-scores

on each cut-off (zA and zB), where dzA,B ¼ zB� zA ¼1:39�0:96¼0:43.

In addition, the inset shows (as triangles) the overweight prevalence

rates pA ¼29:3% and pB ¼18:0% for a target group of Ukrainian boys

aged 8,16 plotted as z-scores ZA ¼0:54 and ZB ¼0:92, respectively,

and joined by a dotted line. The difference between them,

dZA,B ¼ZB�ZA ¼0:37, is similar to dzA,B ¼0:43, as shown by the simi-

lar slopes of the dotted and solid lines. Applying (3) to pA and pB pre-

dicts prevalences of 31.5% for WHO and 16.4% for IOTF, as against

the observed values of 29.3% and 18.0%, that is, errors of +2.2% and

�1.6%—far less than the difference of 11.3% between the two

prevalences.

2.6 | Regression analysis

The algorithm (2) was fitted to the data as the probit regression

equation:

g pBð Þ¼ZAþb�dzA,Bþε ð4Þ

with link function g :ð Þ¼�sign zBð ÞΦ�1 :ð Þ. The coefficient b for dzA,B

defaults to 1, but tests for generalizability by tailoring the model to fit

a particular dataset. The model omits the intercept to ensure revers-

ibility, that is, exchangeability between A and B. The error term ε has

two components: binomial error, that is, larger for small numbers, and

error due to the size of dzA,B—the larger dzA,B is, the greater the

extrapolation and the larger the error. The model was fitted as an

overdispersed beta binomial using GAMLSS25 with ε proportional to

F IGURE 1 The frequency distribution of BMI in boys aged 8 according to the WHO and IOTF references. The vertical lines mark the
overweight cut-offs WHO +1 and IOTF 25, while the shaded areas indicate the corresponding overweight prevalence (grey where they overlap).
The four points mark where the cut-offs cross the distributions, with filled circles for the reference and open circles for the opposite reference.
The inset shows the four points as BMI z-scores according to the two references, along with open triangles for z-scores corresponding to
observed overweight prevalence in the target group of boys aged 816
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abs dzA,Bð Þ. The interaction of dzA,B with the data source and obesity-

overweight-thinness was also fitted.

The models were fitted to the Wijnhoven24 and Deren16 data

with overweight including obesity. Each of the 52 Wijnhoven sex–

age groups provided prevalences for two A–B cut-off pairs, that is,

IOTF-WHO for overweight and obesity. Each of the 22 Deren

sex-age groups provided prevalences for nine A–B cut-off pairs:

three each for thinness, overweight and obesity (i.e., IOTF-WHO,

WHO-CDC and CDC-IOTF). The models were fitted to all combi-

nations of A–B cut-off pairs and age–sex groups simultaneously,

by ‘stacking’ the data into a single data frame with 52�2þ22�
9¼302 rows. Each point is an A–B pair which can be viewed either

as A predicting B or B predicting A; to avoid double counting the main

analysis focused on pairs with positive dzA,B. Model fit was assessed

using the Bayesian Information Criterion (BIC) and the residual SD

(RSD) on the z-score scale. The percentage of the variance of

prevalence explained by the algorithm compared to the baseline

model, where prevalence pA is predicted by pB and vice versa, was

calculated as 100 1� SD pA�E pAð Þð Þ=SD pA�pBð Þ½ �2
� �

based on all

604 points.

The calculations were done in R (version 4.1.2) and GAMLSS (ver-

sion 5.3-4) running in RStudio (version 1.4). A function ob_convertr

was written to do the conversion, which is available in the author's

CRAN sitar package (version 1.2.0).26

Obesity : girls Overweight : girls thinness �girls

Obesity : boys Overweight : boys thinness �boys
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F IGURE 2 Prevalence rates by Centers for Disease Control, International Obesity Task Force and World Health Organization of obesity,
overweight and thinness in groups of boys and girls from Deren16 (n = 22) and Wijnhoven24 (n = 52), on the z-score scale (left) and the
corresponding prevalence (%) scale (right). For overweight and obesity, the z-score and prevalence scales are inversely related. The points for
each group are connected by lines. The grey triangles correspond to the nominal prevalence rates defined by the three reference cut-offs
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3 | RESULTS

3.1 | Z-score differences

Figure S1 shows dzA,B the z-score difference between cut-off pairs

WHO-IOTF and CDC-IOTF, and how it varies by sex and age, for over-

weight (dashed lines) and obesity (solid lines). The z-score differences are

larger for obesity than overweight; they are positive for most of childhood,

and they fall with age. This confirms that the IOTF cut-offs are generally

higher than for WHO and CDC, particularly in early life.

Figure S2 shows the corresponding results for thinness, comparing

WHO �2 and CDC 5 with IOTF grades 16, 17 and 18.5. Here dzA,B has a

wider range, it is more constant across age, and of the three IOTF grades,

grade 2 (BMI 17 at age 18) is closest to the WHO and CDC cut-offs.

3.2 | Data visualization

Figure 2 shows, for the three references, prevalence rates of obesity,

overweight and thinness by sex for the two datasets, on the z-score

scale (left axis) and the corresponding prevalence scale (right axis,

note the nonlinearity). For overweight and obesity, the z-score and

prevalence scales are inversely related. The points for each group are

connected by lines, where the slope of each line corresponds to the
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Obesity Overweight
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F IGURE 3 Differences in the prevalence of obesity, overweight and thinness, as measured on the z-score scale, according to pairs of
reference cut-offs, plotted against the corresponding z-score difference between the cut-offs, in 74 groups of boys and girls aged 6.0–17.516,24

(n = 302). Each point corresponds to a line in Figure 2. The line of equality is shown (dashed), and points are coded by sex and data source, while
regression lines per facet are coded by data source. The lines for obesity and overweight with Deren16 are close to the line of equality, while
those for thinness and for Wijnhoven24 are not
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difference in prevalence dZA,B on the z-score scale between the two

references, ranging from �0 for the horizontal lines to >1 for IOTF

18.5 versus WHO �2 in girls. The background grey triangles corre-

spond to the nominal prevalence rates defined by the three reference

cut-offs, for example, 16% for WHO +1 and 15% for CDC 85. The

Figure shows a higher prevalence of overweight and obesity in

Wijnhoven24 than Deren,16 and a lower prevalence for IOTF than

WHO or CDC.

TABLE 2 Summary of beta binomial
regression models of prevalence fitted to
the Deren and Wijnhoven data (n = 302).
Estimates of the regression coefficient b
for dzA,B in (4)

Model Term in (4) Regression coefficient b (95% CI) BIC Residual SD

1 Line of equality 1 (fixed) 2487 0.110

2 Overall 0.78 (0.75–0.80) 2303 0.095

3 Deren16 obesity 1.02 (0.92–1.12) 2223 0.083

Deren16 overweight 0.96 (0.90–1.02)

Deren16 thinness 0.82 (0.78–0.86)

Wijnhoven24 obesity 0.74 (0.70–0.78)

Wijnhoven24 overweight 0.68 (0.65–0.70)

Abbreviations: BIC, Bayesian Information Criterion; CI, confidence interval.
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F IGURE 4 Bland–Altman plots comparing observed and predicted prevalence (%) of obesity, overweight and thinness, colour-coded by data
source (n = 604), with predicted prevalence calculated in two ways: (A) from observed prevalence and dzA,B (3); and (B) as for (A) except that dzA,B is
multiplied by b1 ¼0:84. Also shown (in grey) are Bland–Altman plots comparing the original prevalence data for the pairs of references. The
scatter about the origin of the original data is greatly reduced by applying the algorithm, and more so for (B) than for (A)
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3.3 | Fit of the algorithm

Figure 3 tests the algorithm (2) by plotting dZA,B the z-score difference

in prevalence versus dzA,B the z-score difference between cut-offs.

Obesity, overweight and thinness are shown separately, coded by sex

and source. Each point corresponds to one of the 302 lines in

Figure 2, with the slope dzA,B selected to be positive. Overall dZA,B is

highly correlated with dzA,B across the three facets (r¼0:88). But the

more important question is whether dZA,B and dzA,B are on average the

same, that is, that the points are scattered symmetrically along the line

of equality. This line is shown dashed, and the overweight and obesity

data for Deren16 (in red) lie along it. However, the data for Wijnhoven24

(in blue) do not; they lie along a line appreciably shallower than the line

of equality. The fitted regression lines through the origin for the two

datasets have highly significantly different slopes.

Table 2 summarizes three models fitted to the data. Model #1

corresponds to the algorithm and assumes that the data lie on the line

of equality, that is, that b¼1 in (4), while model #2 estimates b¼0:78

in (4), which materially reduces the BIC and RSD. Model #3 corre-

sponds to the five regression lines in Figure 2, with the BIC and RSD

further reduced, where the slope confidence intervals for Deren16

and Wijnhoven24 are non-overlapping. Because the Wijnhoven sam-

ple is much larger, the combined slope in model #2 is closer to the

Wijnhoven slope than the Deren slope in model #3. To weight the

two data sources equally, the five coefficients in model 3 are averaged

to give b¼0:84.

Figure 4 shows Bland–Altman plots comparing observed and

predicted prevalence (%) of obesity, overweight and thinness. For

each pair of prevalences, the difference between them, that is, the

residual, is plotted against their mean. The data are colour-coded by

data source including both positive and negative dzA,B (n = 604), with

predicted prevalence calculated in two ways: Figure 4A from

observed prevalence and dzA,B (3); and Figure 4B as 4a except that

dzA,B is multiplied by b¼0:84, the mean slope in model #3. Ideally the

points should lie along the horizontal dashed line, which broadly they

do, with Deren (in red) fitting better than Wijnhoven (in blue). In addi-

tion, the Wijnhoven points fit better in Figure 4B than 4a, while for

Deren they are slightly worse.

Figure 4 also shows the underlying prevalence rates pA and pB as

grey points, plotted as their difference � pA�pBð Þ versus their mean

pAþpBð Þ=2. This corresponds to the baseline model where prevalence

pA predicts pB and vice versa. The points are symmetric about the

x-axis, and they fan out from the origin. The figure shows how

the algorithm ‘shrinks’ the residuals by shifting the grey points

towards the coloured points. Table 3 compares the SDs of the resid-

uals under the baseline and fitted models. Overall the algorithm

explains more than 88% of the baseline variance (Figure 4A), and

more than 94% when adjusted for bias (Figure 4B).

4 | DISCUSSION

The study has explored the feasibility of a reversible and generalizable

algorithm to convert prevalence rates for thinness, overweight and

obesity from one BMI reference to another. The algorithm assumes

that the difference in prevalence attributable to the two references

can be explained as a shift on the underlying BMI z-score scale, where

the magnitude of the shift depends on the two references, and the

age and sex of the group of children being assessed.

The algorithm is made easier to implement by providing the rele-

vant z-score shift in a table indexed by the two references, age and

sex. However, the algorithm's performance depends critically on the

assumption that the difference in prevalence on the z-score scale truly

is equal to the z-score difference between the cut-offs.

Figure 3 tests this assumption by plotting prevalence differ-

ence against cut-off difference, and if true the data ought to be

distributed symmetrically along the line of equality, indicating a

lack of bias. The data of Deren16 (in red) follow this pattern, the

regression lines for obesity and overweight being close to the line

of equality, with regression slope confidence intervals including

one (Table 2 model #3). However for Wijnhoven16 the data are

biased, departing materially from the line of equality, with regres-

sion slopes of around 0.7 with tight confidence intervals. This

demonstrates that the algorithm can be unbiased or biased,

depending on the dataset; with Deren it is reversible while with

Wijnhoven it is not.

So given this, how well does the algorithm perform? It provides a

coherent way to convert prevalences from one reference to another,

but the key issue is whether the associated prediction error is small

enough for the algorithm to be useful. Figure 4A shows that the

TABLE 3 The residual SD (%) of prevalence for obesity, overweight and thinness, that is the SD of observed minus predicted prevalence,
under three models: (i) baseline, where pA predicts pB and vice versa; (ii) algorithm (3); and (iii) bias-adjusted algorithm (4)

Model Obesity (n = 236) Overweight (n = 236) Thinness (n = 132) All (n = 604)

(i) Baseline RSD (%) 4.5 6.6 9.2 6.6

(ii) Algorithm RSD (%) 1.8 2.6 2.5 2.3

Variance explained (%) 84.3 85.0 92.8 88.2

(iii) Adjusted algorithm RSD (%) 1.1 1.6 2.2 1.6

Variance explained (%) 94.3 94.3 94.1 94.2

Notes: The percentage of the baseline variance explained by the algorithm is also shown. The algorithm explains 88% of the baseline variance, increasing to

94% when adjusted for bias.
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algorithm explains 88% of the variance in prevalence between the

pairs of references, which is substantial. Thus one can use the algo-

rithm as it stands, that is, viewing it as generalisable, and obtain useful

estimates of prevalence. However, the prediction error of 12% is

inflated due to heterogeneity between datasets.

Alternatively one can use the bias-adjusted algorithm, with

dzA,B�0:84 rather than dzA,B in (3). This explains a substantial 94% of

the variance and halves the prediction error to 6% (Figure 4B). How-

ever, the coefficient of 0.84 is based on just the two datasets and can-

not be assumed universally representative—it requires validation.

So in summary there is a trade-off between wider generality

(using the algorithm unadjusted) and better fit (adjusting the algorithm

for bias), and the key question is, ‘Which is more useful?’. There is a

paper in preparation which describes a materially improved version of

the algorithm.

Why should the regression slope in Figure 3 be less than one? It

means that shifting from one cut-off to a higher cut-off (positive dzA,B,

e.g., from WHO to IOTF) the algorithm underestimates the true prev-

alence of overweight and obesity (and exaggerates it for negative

dzA,B), which means that the target BMI distribution has a heavier

upper tail than the reference distribution, as measured on the z-score

scale—it indicates a secular trend to increasing skewness, as has been

documented for US data.27 The heavier tail may be due to the LMS

method's S (coefficient of variation) being larger, and/or L (Box-Cox

power) being smaller.22

The reversibility of the algorithm is useful for systematic reviews

of child obesity prevalence. The researcher can choose which

reference—IOTF, WHO or CDC—to use as their baseline, and then

apply the algorithm to convert prevalences based on the other refer-

ences to the baseline prevalence. Researchers in the future may want

to cite these prevalences, but first rebasing them to a different refer-

ence, and this can be done with no loss of information.

Deren et al.16 chose to use IOTF grade 1 (BMI 18.5 at age 18) to

define thinness. However, Table 1 and Figure S1 show that IOTF

grade 2 (BMI 17 at age 18) is closer to the WHO and CDC cut-offs,

and hence would need less extrapolation in the conversion. Grade 2 is

also the grade recommended for use in the original IOTF paper.7 This

indicates that thinness conversion should work better with IOTF

grade 2 than grade 1, the cut-offs being closer together.

The study has some limitations. The two example datasets provide

only a glimpse of how the algorithm might work in practice, and other

studies are needed to apply it to other data. Also, Deren16 and

Wijnhoven24 used different definitions of the IOTF cut-offs, respectively,

reference 6 and reference 8, though the two are very similar in practice.

The study also has strengths. The algorithm is theoretically based

and is reversible, although arguably not generalizable. It has been

applied to BMI and the IOTF, WHO and CDC reference cut-offs. But

it is sufficiently general that it can be applied to any anthropometric

reference, with any measurement, where the cut-offs are defined as

z-scores and can be back-transformed to measurement units. This

provides an opportunity to exploit for example the historical literature

of overweight and obesity prevalence data based on locally developed

BMI references.28 The algorithm is likely to fit better with older

datasets, as the duration of any secular trend to greater obesity will

have been shorter.

In conclusion, the paper describes an algorithm for converting

between prevalence rates of overweight, obesity and thinness based

on the IOTF, WHO and CDC BMI reference cut-offs. Applied to two

example datasets the algorithm performs well, and its reversibility

makes it a useful tool for harmonizing prevalence rates across

references.

A follow-up paper in preparation describes an improved version

of the algorithm, which is both reversible and generalisable.
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