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higher conductance sublevels. Given that the three conduc-
tance levels we identified match, respectively, the maximum
conductance state O4 and sublevels O3 and O2 — produced
when four, three, or two LBDs contribute to gating (Coombs
et al., 2017; Coombs and Cull-Candy, 2021) — our findings sug-
gest that JNJ-118 simply reduces the probability that any
individual AMPAR subunit will “gate.” Interestingly, although
maximum conductance single-channel openings were less
prevalent in the presence of the drug they were clearly still
detectable. This would suggest that even when JNJ-118 is
bound, all subunits are capable of contributing to gating. In
turn, this suggests that the drug does not prevent expansion
of the “gating ring” (Yu et al., 2021) but rather reduces the
extent of this expansion or the likelihood that it occurs.

The action of JNJ-118 contrasts, in certain key features,
with that described for the antiepileptic noncompetitive
AMPAR antagonist, perampanel. Perampanel binding sites
are found on each GluA subunit (Yelshanskaya et al., 2016),
and their occupancy renders the subunit unable to contribute
to gating (Yuan et al., 2019). For example, when two peram-
panel molecules are bound, the receptor never produces O3
or O4 openings and hence only opens to the lowest two con-
ductance levels, whereas receptors occupied by four perampa-
nel molecules are completely inhibited (Yuan et al., 2019). By
contrast, JNJ-118 does not fully inhibit even GluA2/y2.0m
receptors, which likely contain four TARPs and hence four
binding sites (Hastie et al., 2013). Indeed, a small proportion
of openings to the highest conductance level O4 are still seen.
Interestingly, however, GluA2/y2.0m peak currents were
inhibited to a greater extent than those of GluA2/y8, possibly
reflecting differences in TARP stoichiometry.

JNJ-118 Reduces the Functional Impact of y8 Incor-
poration. We found that although JNJ-118 application accel-
erated GluA2/y8 deactivation and desensitization Kkinetics,
decreased steady-state currents, decreased weighted mean
conductance from NSFA, increased block by intracellular sper-
mine, and decreased kainate efficacy, the effects were not suf-
ficient to fully revert the properties to those of TARPless
AMPARs. Our data are thus consistent with the previous sug-
gestion that several of the changes induced in AMPARs by
JNJ-118 could result from a partial disruption of the interac-
tion between y8 and GluA subunits (Maher et al., 2016).

Although the ability of JNJ-118 to reduce the proportion of
single-channel openings to the higher conductance levels can
be accounted for by restrictions placed on channel gating, the
mechanism by which the drug accelerates deactivation kinet-
ics and reduces the steady-state current is less apparent.
TARP modulation of kinetic properties is generally viewed as
an effect of the TARP’s first extracellular loop on the AMPAR
LBD (Tomita et al., 2005; Turetsky et al., 2005; Cais et al.,
2014; Dawe and Bowie, 2016), with additional influence from
the TARP’s intracellular domains (Turetsky et al., 2005;
Milstein and Nicoll, 2009). However, from cryo-EM images of
hippocampal AMPARs bound to JNJ-118, it is difficult to
determine how the drug might influence the LBD or the
intracellular domain of the AMPAR (Yu et al., 2021). As
there is tight coupling between LBD closure and channel
opening (Kristensen et al., 2011; Chen et al., 2017), it follows
that although deactivation/desensitization is dictated by the
LBD, it will also be strongly influenced by the state of the
gate. Therefore, the reduction in gating ring expansion seen
in the presence of JNJ-118 (Yu et al, 2021) may well

destabilize the open channel gate. This could accelerate deac-
tivation and desensitization independent of any direct influ-
ence of JNJ-118 on the LBD.

Our observations on recovery from desensitization add fur-
ther support to the idea that JNJ-118 mediates functional
changes by directly influencing the channel gate rather than
the LBDs. Recovery from desensitization — the transition
from the desensitized to the closed state — is the only prop-
erty of GluA2/y8 that we found to be unaltered by JNJ-118.
Recovery from desensitization involves large rearrangements
of the LBD dimers which are distant from the JNJ-118 bind-
ing site, but only very subtle rearrangements of the trans-
membrane regions which contain the drug binding site (Chen
et al., 2017; Twomey et al., 2017). Thus, unlike channel acti-
vation, deactivation, and desensitization, recovery from
desensitization does not involve substantial movement (open-
ing or closing) of the gate adjacent to the JNJ-118 binding
site. Therefore, it is perhaps unsurprising that recovery from
desensitization appears insensitive to JNJ-118.

The Accessibility of the JNJ-118 Binding Site. We
found no evidence that the gating state of the channel influ-
enced JNJ-118’s ability to inhibit the currents. Thus, inhibition
of open channels occurred within hundreds of milliseconds, and
inhibition of closed channels was mostly complete after a single
200-millisecond application of JNJ-118, reaching equilibrium
after two or three applications. This observation fits with recent
structural information on the resting and active states of
GluA1/GluA2/y8/CNIH2 (Zhang et al., 2021), which revealed
that, although gating transitions lead to expected rearrange-
ments in the transmembrane domains, the JNJ-118 binding
site is remarkably unchanged by activation.

We found that adding JNJ-118 to the intracellular solution
occluded inhibition by extracellularly applied drug. This is of
interest given that the JNJ-118 binding site, although found
toward the extracellular side of the transmembrane regions
(Yu et al., 2021; Zhang et al., 2021), appears from the cryo-EM
structures to be less accessible from the extracellular space
than it does from within the membrane. This raises the possi-
bility that JNJ-118 could access its binding site through the
membrane’s lipid phase even when applied from the outside.

The 7y8-selective blockers represent an exciting develop-
ment for the treatment of epilepsy. Most obviously, given
their selective inhibition of forebrain AMPARS, they offer the
promise of reduced motor side-effects (Zwart et al., 2014;
Kato et al., 2016; Maher et al., 2016). However, the nonselec-
tive negative allosteric modulator perampanel, particularly
at higher doses, additionally causes mood disturbance includ-
ing depression and aggression (Ettinger et al., 2015; Villa-
nueva et al., 2021). The action of JNJ-118 that we have
identified — a reduction of single-channel conductance rather
than a complete block — might suggest a further potential ben-
efit of y8-selective drugs. By producing partial inhibition of
forebrain AMPARs, 78-selective drugs such as JNJ-118 may
enable a more nuanced intervention that could help to limit
behavioral side-effects.
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Fig S1. JNJ-118 effects on kinetics and steady-state current of GIuA2(Q)/y8.
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Figure S1. JNJ-118 effects on kinetics and steady-state current of GluA2(Q)/y8

a) Representative outside-out patch responses (10 mM glutamate, 200 ms) (black bars)
recorded at —60 mV from HEK293 cells transfected with GluA2/y8 (left) or GluA2/y8.om (right)
in control conditions (black) or in the presence of 1 uM JNJ-118 (grey). Lower panels are
scatter and paired plots (as in Fig 2) showing the effects of JNJ-118 on the weighted mean
time constant of desensitization (7, ,..) and fractional steady-state component (Iss/lpeak) for
GluA2, GluA2/y8 and GluA2/y8.om. Indicated p-values (adjusted for multiple comparisons as
described in Table 1) are from two-sided Wilcoxon signed rank exact tests following a non-
parametric omnibus test (Table S$1). b) Representative outside-out patch responses (10 mM



glutamate, 1 ms) (black bars) recorded at -60 mV from HEK293 cells transfected with
GIluA2/y8 (left) or GIuA2/y8.pm (right) in control conditions (black) or in the presence of 1 uM
JNJ-118 (grey). Lower panels are scatter and paired plots showing the effects of JNJ-118 on
the weighted mean time constant of deactivation (t,, ... .) for GluA2, GluA2/y8 and GIuA2/
y8.om. Indicated p-values (adjusted as described in Table 1) are from two-sided Wilcoxon
signed rank exact tests following a non-parametric omnibus test (Table S1).
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Fig S2. JNJ-118 effects on deactivation and rectification of GIuA2(Q)/y2 and GIuA2(Q)/y2.om.
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Figure S2. JNJ-118 effects on deactivation and rectification of GluA2(Q)/y2 and
GluA2(Q)/y2.om

a) Representative outside-out patch responses (10 mM glutamate, 1 ms) (black bars)
recorded at -60 mV from HEK293 cells transfected with GluA2/y2 (left) or GluA2/y2.om (right)
in control conditions (black) or in the presence of 1 uM JNJ-118 (grey). Lower panels are
scatter and paired plots showing the effects of JNJ-118 on the weighted mean time constant
of deactivation (1, ,....)- Indicated p-values (adjusted for multiple comparisons as described in
Table 1) are from two-sided Wilcoxon signed rank exact tests following a non-parametric



omnibus test (Table $1). b) Representative responses evoked by 10 mM glutamate (200 ms;
black bars) (as in Fig 2) showing the effects of 1 uyM JNJ-118 on Rectification Index and V,
(from individual double Boltzmann fitted conductance-voltage relationships) for GluA2/y2 and
GluA2/y2.om. Indicated p-values (adjusted as described in Table 1) are from two-sided
Wilcoxon signed rank exact tests following a non-parametric omnibus test (Table S1).
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Table S1. Omnibus tests for actions of JNJ-118 on GIuA2 co-expressed with wild- type or
mutated forms of y8 and y2.



Measure Test Condition Statistic df p-value Figure

hsllcen (%) nparLD Main effect of TARP 33.41 2.67 <0.0001 1b and 6b
Main effect of drug 59.98 1.00 <0.0001
Interaction TARP:drug 11.48 2.73 <0.0001

Tw, deact (MS) nparLD Main effect of TARP 8.23 3.52 <0.0001 S1b and S2a
Main effect of drug 26.52 1.00 <0.0001
Interaction TARP:drug 10.24 3.10 <0.0001

Tw, des (MS) nparLD Main effect of TARP 24.26 3.44 <0.0001 6c and S1a
Main effect of drug 94.82 1.00 <0.0001
Interaction TARP:drug 33.96 3.07 <0.0001

Issllpeak (%) nparLD Main effect of TARP 17.49 3.02 <0.0001 6c and S1a
Main effect of drug 21.01 1.00 <0.0001
Interaction TARP:drug 6.96 3.33 <0.0001

Y (pPS) nparLD Main effect of TARP 8.43 3.72 <0.0001 2b and 6¢
Main effect of drug 16.59 1.00 <0.0001
Interaction TARP:drug 10.89 3.24 <0.0001

Popen nparLD Main effect of TARP 11.50 3.38 <0.0001 2b and 6¢
Main effect of drug 23.67 1.00 <0.0001
Interaction TARP:drug 4.77 2.86 0.0029

RI (+60/l-60) nparL.D Main effect of TARP 22.11 3.28 <0.0001 4c and S2b
Main effect of drug 40.26 1.00 <0.0001
Interaction TARP:drug 15.07 3.09 <0.0001

Vb (MmV) nparLD Main effect of TARP 33.41 2.67 <0.0001 4c and S2b
Main effect of drug 59.98 1.00 <0.0001
Interaction TARP:drug 11.48 2.72 <0.0001

JNJ-118i,¢ K-W 11.96 2.00 0.0025 5d

inhib. (%)

Ikalloiu nparLD Main effect of TARP 33.54 1.49 <0.0001 7b
Main effect of drug 59.25 1.00 <0.0001
Interaction TARP:drug 11.36 1.82 <0.0001

Tw, rec (MS) nparLD Main effect of TARP 36.89 3.80 <0.0001 7d
Main effect of drug 8.94 1.00 0.028
Interaction TARP:drug 3.31 3.21 0.017

Table S1. Omnibus tests for actions of JNJ-118 on GIuA2 co-expressed with wild-type
or mutated forms of y8 and y2.



Omnibus tests performed prior to the pairwise statistical analyses presented in Table 1 and
illustrated in the indicated figures. nparL.D, non-parametric, robust rank-based method for
longitudinal (repeated measures) data analysis (Noguchi et al., 2012). K-W, non-parametric
Kruskal-Wallis rank sum test.



