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Abstract—Intra-day price variations in financial markets are
driven by the sequence of orders, called the order flow, that is
submitted at high frequency by traders. This paper introduces
a novel application of the Sequence Generative Adversarial
Networks framework to model the order flow, such that random
sequences of the order flow can then be generated to simulate
the intra-day variation of prices. As a benchmark, a well-
known parametric model from the quantitative finance literature
is selected. The models are fitted, and then multiple random
paths of the order flow sequences are sampled from each model.
Model performances are then evaluated by using the generated
sequences to simulate price variations, and we compare the
empirical regularities between the price variations produced by
the generated and real sequences. The empirical regularities
considered include the distribution of the price log-returns, the
price volatility, and the heavy-tail of the log-returns distributions.
The results show that the order sequences from the generative
model are better able to reproduce the statistical behaviour of
real price variations than the sequences from the benchmark.

I. INTRODUCTION

Most of today’s fast-paced markets are organised as order-
driven markets, examples being found among the world’s
largest equity exchanges, such as the NASDAQ, the NYSE,
Hong Kong, Shanghai, Shenzhen, London and Toronto Stock
Exchange, and the Euronext. The order flow is the dynamic
sequence of orders submitted by traders in an order-driven
market, and is the lever that causes the variation of prices at
high-frequency timescales, such as intra-day price variations.

The state-of-the-art in the application of deep learning
for modelling high-frequency price variations has focused
on directly predicting the directional price change [1]–[3],
[3]–[6]. Although this previous work has reported promising
results, there are a number of advantages in addressing the
generative modelling of the order flow itself, including the
computation of future order intensities for high-frequency
trading strategies [7], the provision of data-driven insights into
the market microstructure [8], and as a simulator for evaluating
and back-testing trading strategies [9], with the advantage
addressed here being the simulation of future price variations
using the generated order sequences.

To our knowledge there is currently a gap in the machine
learning literature in applying deep learning, or any machine
learning models, to modelling the order flow. This paper fills
this gap by introducing the Sequence Generative Adversarial

Network (SeqGAN) [10] for modelling the order flow. Since
there is currently no related work in the machine learning
literature, a well-known model from the quantitative finance
literature is selected as benchmark. Model performance is
evaluated by performing a statistical analysis of the simu-
lated intra-day price variation resulting from the generated
sequences, and comparing the results to ones acquired from
corresponding analyses of real data.

II. RELATED WORK

There are two philosophies of statistical modelling when
deriving conclusions from data. One assumes a data generating
process, while the other uses algorithmic models that treat the
data mechanism as unknown. In modelling order flow data,
the former approach gives rise to the zero-intelligence models
in the quantitative finance literature, while machine learning
models fall into the latter class of algorithmic models.

Zero-intelligence models assume that the order flow is gov-
erned by stochastic processes without any assumptions about
rational trader behaviour. The current state-of-the-art uses a
framework that models the irregularly-spaced market, limit,
and cancellation orders using independent counting processes.
Most commonly the multiple Poisson process is used, where
each process models the independent arrival of an order at
a given price [11], [12]. These zero-intelligence models are
able to reproduce many empirical regularities found in real
price variations. However, due to simplified assumptions about
the data-generating mechanism, these models are sensitive to
regime shifts, and lack generalisation power. Tractability and
parametric estimation can also be an issue.

These drawbacks may be overcome by machine learning
approaches that learn directly from data without assuming
any data-generating process. However, to our knowledge, no
previous work has applied machine learning to the modelling
of the order flow. The closest related work that applies deep
learning to order flow data is in [1]–[3], [3]–[6], which predict
high-frequency price variations using the limit order book or
order flow related data, though they do not address the problem
of modelling the order flow sequences. [13]–[15] have applied
GANs to directly model price time-series; however, in this
paper, we are instead interested in learning the data-generating
process that produces these price time-series.
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III. DOMAIN BACKGROUND

In this section, some features of order-driven markets are
briefly introduced. Readers are directed to [16] for further
technical details of order-driven markets.

The order flow is the sequence of placement and cancel-
lation of limit orders and market orders by traders in order-
driven markets. A limit order is a type of order to buy or sell a
volume of a traded asset at a specified price or better. Although
the price is guaranteed, the filling of a limit order is not. If a
submitted limit order cannot be immediately executed against
an existing order in the limit order book (LOB), then the limit
order is added to the LOB until it is cancelled, amended, or
executed against subsequent orders. Meanwhile, market orders
are immediately executed against limit orders queued at the
best price in the order book, as fully as possible. Any unfilled
portion may then be converted to limit orders at the same price,
or executed at the next best available price until the market
order is fully executed.

At any given time, the total volumes of limit orders in the
LOB are grouped by price. This is the common state of the
LOB as visualised and evaluated by traders. An example is
shown in Figure 1. Buy limit orders are on the left side, sorted
by the highest price to the right, while sell limit orders are on
the right side, sorted by the lowest price to the left.

Fig. 1. A sample visualisation of a limit order book.

Some necessary common terminology for various measures
in the LOB must now be defined. The highest buy (or, lowest
sell) price in the LOB at time t is the best bid b(t) (or,
best ask a(t)). The mid-price is a(t)+b(t)

2 , and is the most
common reference price when trading at high-frequency time-
scales. In the example of Figure 1, the mid-price is $54.70.
Finally, we will need to define the relative price. Since the
prices in an LOB are constantly changing, it is more useful to
have a relative measure of the price rather than any specific
price. From a modelling perspective, this will also naturally
normalise any price variables. The relative price a buy (or,
sell) order at time t is the number of ticks from a(t) (or, b(t)),
where a tick is the smallest permissible price change imposed
by the exchange. In the example of Figure 1, and assuming
a tick of $0.01, the relative price for the orders at $54.68 is
exactly 3 since it is 3 ticks away from a(t) = $54.71.

IV. TECHNICAL BACKGROUND

Though recurrent neural networks (RNNs) have been suc-
cessful in modelling sequence data [17], RNNs trained with
maximum likelihood suffer from exposure bias in the infer-
ence stage when generating sequences [18]. The generative

adversarial networks (GAN) framework [19] is a potential
solution to the exposure bias problem. GANs are made up
of a generator Gθ and discriminator Dφ, parameterised by θ
and φ respectively. The generator Gθ is trained to produce
a sequence Y1:T = (y1, . . . , yT ), where yt ∈ Y and Y is
some set of discrete tokens. The discriminator Dφ is a binary
classifier trained to distinguish the generated sequence Y1:T
from a real sequence X1:T . The probability Dφ(Y1:T ), which
measures how likely it is that generated sequence is a real
sequence, is used as feedback for guidance as to how to
further improve Gθ. However, standard GANs are designed
for real-valued continuous data, which is not appropriate for
the order flow data considered in this paper, since the orders
are naturally discrete event tokens.

The work in [10] addresses the adversarial learning of
discrete sequences by introducing the SeqGAN framework.
In a SeqGAN, the training of the generator is treated as a
reinforcement learning (RL) problem. At any given timestep t,
the state s is the sequence produced thus far, y1, . . . , yt−1. The
action a is then which token to select as yt from Y . The action
to be taken in a given state is determined by the generator
Gθ(yt|Y1:t−1), which is a stochastic policy parameterised by θ.
The generator is updated via policy gradient, utilising rewards
in the form of the output of the discriminator Dφ. The action
value defined by the authors of [10] for updating the generator
is as follows:

QGθDφ(s = Y1:t−1, a = yt) ={
1
N

∑N
n=1Dφ(Y

n
1:T ) if t < T,

Dφ(Y1:t), if t = T,

(1)

where Y n1:T ∈ MCGθ (Y1:t;N), MCGβ (Y1:t;N) represents
an N -times Monte Carlo search algorithm for sampling the
unknown last T−t tokens using the generator Gθ as the rollout
policy, and Y n1:T is a sampled sequence. The gradient for the
generator objective J(θ) is computed as:

∇θJ(θ) ≈
T∑
t=1

∇θ logGθ(yt|Y1:t−1) ·QGθDφ(Y1:t−1,yt), (2)

After improving the generator via policy gradient update for
a number of epochs, Dφ is re-trained using negative examples
produced from the improved Gθ by minimising the binary
cross-entropy loss. Readers are directed to the original paper
[10] for more detailed explanations and derivations.

V. METHODOLOGY

A. Problem Formulation

An order in the order flow is defined in this paper to be a
discrete event token that represents a buy or sell market, limit,
or cancellation order at a given relative price q. Let O be this
set of event tokens, defined as follows:



O ∈ {L ∪M∪ C ∪ E}, (3)
L ∈ {lB,1, . . . , lB,Q, lA,1, . . . , lA,Q}, (4)
C ∈ {cB,1, . . . , cB,Q, cA,1, . . . , cA,Q}, (5)

M∈ {µB , µA}, (6)
E ∈ {ηB , ηA}, (7)

where L is the set of all limit order event tokens,M is the set
of all market order event tokens, C is the set of all cancellation
event tokens, and E is the set of all other event tokens.

Each event token in L, M, C, and E , can be described
as follows. The token lB,q represents a bid limit order at a
relative price q from the best ask, while lA,q represents an ask
limit order at a relative price q from the best bid. Using a
similar notation, cB,q and cA,q are tokens for the cancellation
of active bid and ask limit orders. All limit and cancellation
orders not within Q relative prices are represented by a single
token ηA for the ask side, and ηB for the bid side of the order
book, respectively. Finally, market orders arriving at the best
bid and best ask are represented by µB and µA respectively.
For the limit and cancellation orders, prices more than Q ticks
away from the best bid and best ask are not considered, since
trading activities that impact the market occur mostly at prices
closer to the best bid and best ask [20].

Given this set O of order event tokens, the order flow is
defined here as a finite-length sequence O1:T = {o1, . . . , oT },
where ot ∈ O is a token indicating the type of order event
arriving at a given relative price. Therefore we have here
a discrete token sequence modelling problem. We aim to
train Gθ on O1:T to produce a novel sequence of orders
O′1:T = {o′1, . . . , o′T } such that the probabilistic difference
between generated and real sequences is minimised.

B. SeqGAN Modelling of Order Flow Sequences

The algorithm for training the generator Gθ and discrim-
inator Dφ using the SeqGAN framework is described in
Algorithm 1. A recurrent neural network (RNN) with long-
short term memory cells [21] is implemented as the generator
model Gθ, while the discriminator Dθ is implemented by
a convolutional neural network [22]. In both networks, the
tokens (y1, . . . , yT ) are embedded into a continuous space
(x1, . . . , xT ) using a fully connected layer.

In the original SeqGAN paper [10], the start state s0 in
the SeqGAN framework is a special token defining the start
of a sequence, commonly used in natural language processing
datasets. For the work here, it is proposed that the start state
be a sequence of order flow, our reason being that it would
be unnatural for an order flow to abruptly start, unlike a text
sentence. Therefore, to generate an order flow O′1:T , a start
sequence is defined as O−T+1:0 = {o−T+1,−T+2,...,o0}, where
the length of the start sequence is set to be the same as the
length of the sequence to be generated. A given start sequence
is always associated with a positive sequence example in the
training set such that O−T+1:0 concatenated with a positive
example O1:T forms a continuous sequence of order flow

Algorithm 1: Algorithm for training the SeqGAN
generator and discriminator on the order flow.
Input:

Order flow real sequences X = {O1:T }1:N ;
Order flow start sequences S = {O−T+1:0}1:N

1 Initialise Gθ and Dφ with random parameters θ and φ;
2 Pre-train Gθ using MLE on X with starting sequences

S;
3 Generate samples using Gθ using starting state S;
4 Pre-train Dθ by minimising CE on generated samples

as negative examples and X as positive examples;
5 repeat
6 for g-steps do
7 Uniformly sample starting sequence s from S;
8 Generate o′1, . . . , o

′
T using Gθ with starting

state s;
9 for t in 1 : T do

10 Compute Q(a = o′t, s = O′1:t−1) using Eq.
1;

11 Update θ using Eq. 2;

12 for d-steps do
13 for each s in S do
14 Generate sequence sample using Gθ with

starting state s;
15 Append sequence sample to array of

negative examples;

16 Uniformly sample equal number of negative
examples and positive examples X;

17 Use bootstrapped data to train Dθ for a number
of epochs given by Eq. 1;

18 until SeqGAN converges;

that exists in the real data. When generating a simulated
sequence O′1:T , the start state can be uniformly sampled with
replacement from the set of start sequences.

C. Benchmark Model

Since the generative modelling of order flow sequences
in this paper is novel, no direct comparison with existing
approaches in the machine learning literature can be made.
However, the quantitative finance literature contains well-
known stochastic process approaches for the modelling of
order flow, as presented in Section II. Among these, the
multiple Poisson process [11], [12] is the most suitable and
reliable to use here as a benchmark model, due to its ubiquity
in practice, as well as its simplicity in parameter estimation.
In the multiple Poisson model, one Poisson process is used for
modelling the arrival of a single order event tokenised in set O.
Interested readers are directed to [12] for more details of the
model and how it is fitted. After the arrival rate parameter for
each of the processes is fitted, the procedure for generating a
sequence of tokens is quite straightforward. For each process,
the arrival time of the token is sampled from the process.



Then, all of the generated token sequences are concatenated
into a single data-structure and sorted by time to obtain the
generated order flow.

VI. DATASET

Order flow data from most stock exchanges is either very
expensive or difficult to obtain for the typical researcher.
However, cryptocurrency exchanges allow access to the same
kind of order flow data as could be obtained from regular
stock exchanges, but at virtually no cost. The data for our
experiments are for this reason obtained from Coinbase, a
digital currency exchange. In this paper we gathered the order
flow for the BTC-USD currency pair in the period between 4
Nov 2017 to 1 Dec 2017.

Data from the period between 4 Nov and 29 Nov is used
for training. In this period, the order flow is partitioned into
slices of 400 events. Each of the slices is split equally into
two to obtain the real order flow sequence Ô1:T and the start
sequence Ô−T+1:0. All of the real order flow sequences are
concatenated into a single dataset for training the discriminator
Dφ, while the start sequences are concatenated into a dataset
to be used for generating a sequence of order flow in the
generator Gθ. For testing, we use the data from the period
between 30 Nov and 1 Dec.

VII. RESULTS: MACRO-BEHAVIOUR ANALYSES

For model evaluation, a set of macro-behaviour analyses
are conducted to investigate how well the intra-day mid-
price variations of the simulated order flow from both models
reproduce important empirical regularities found in real mid-
price variations. Specifically, this section will compare the
mid-price log-returns distribution and the mid-price volatility
for both models to that of the real mid-price series, over the
test period between 30 Nov and 1 Dec 2017.

To simulate the intra-day price variation, the order volume
and inter-order arrival time for each generated order needs to
be sampled from an empirical distribution. The benchmark
model needs only to sample the order volume, since the
multiple Poisson model naturally models the arrival time of
each order. The empirical distributions for the order volume
and inter-order arrival time are estimated from the data in the
training period. We generate enough order flow data from each
model to produce a 1 minute interval mid-price time series for
a period of 48 hours.

A. Mid-Price Returns Distribution

We first compare the log-returns distributions from the simu-
lated mid-prices to that for the real mid-price time series using
the two-sample Kolmogorov-Smirnov (K-S) test. Denoting
the dataset of log-returns computed from one sample of a
simulated time series as A, and the dataset of log-returns from
the real mid-price series as B, the K-S test is then performed
under the null hypothesis that datasets A and B are sampled
from the same distribution. Since 100 samples of the simulated
order flow sequences were obtained for both models, the K-S
test has to be performed 100 times for each model.

However, we now encounter the issue of multiple compar-
ison since the more samples of the simulated mid-prices we
test, the more likely it is that one of them would pass the K-
S test. To avoid this bias, Hochberg’s step-up procedure [23]
is implemented as an additional step to control the outcome
of the multiple K-S tests. The procedure sorts the hypotheses
of the 100 K-S tests by p-value, and determines which of the
hypotheses, those with the lowest p-values, should be rejected.
For these tests, a larger than usual significance level of 0.1
is chosen since simulating noisy financial time-series is an
immense challenge. Then, comparing the SeqGAN model and
the benchmark, we say that the model with the least number
of hypotheses rejected by Hochberg’s step-up procedure is that
which is more likely to produce an order flow with realistic
macro-behaviour.

TABLE I
NUMBER OF KOLMOGOROV-SMIRNOV TEST HYPOTHESES (OUT OF 100

SAMPLES) REJECTED IN HOCHBERG’S STEP-UP PROCEDURE. THE LENGTH
COLUMN REFERS TO THE FIRST 1, 6 AND 48 HOURS FOR EACH OF THE 100

SAMPLES.

Time-Series Length SeqGAN Model Benchmark Model
1 Hour 73 86
6 Hours 88 91
48 Hours 98 100

Table I shows the number of hypotheses rejected for the
SeqGAN model and benchmark model, with the experiments
replicated for the first 1 hour, 6 hours, and 48 hours of the
mid-price time-series. It can be observed that as the time-
series length is increased, the similarity between the log-return
distributions of the simulated order flow and the real order
flow deteriorates, as would be expected. For the longer time-
series, quite a large number of the samples are rejected for
both models, but this is again as expected since high-frequency
financial time-series are extremely challenging to realistically
replicate, especially for long time periods.

Recall that the simulated order flow for the mid-price
time series is produced iteratively where, initially, a new
simulated sequence is generated from a starting sequence of
real order flow. This generated sequence is then fed back as
a starting sequence to generate another new sequence, and so
on. The performance for time-series of different lengths in
Table I would suggest that as each new sequence is generated,
conditioned on a previously generated sequence, the resulting
statistical behaviour of the mid-price log-returns starts to
deviate from that of the actual ones. Although Generative
Adversarial Networks in theory mitigate this exposure bias
problem, it seems as if for this experiment the problem even
so persists in the long run.

Nonetheless, the results here show the simulated order flow
produced by the SeqGAN model is better at reproducing the
mid-price log-returns of real data than the benchmark for all
three time-series lengths in the experiment.

B. Mid-Price Tail Exponents
Next, the tails of the absolute log-returns distributions for

the simulated mid-price of each of the models are compared



to those of the real data. Empirical studies have reported
strong evidence of power law behaviour [16] in the absolute
log-return distributions of financial time series. Power law
probability distributions are “heavy-tailed”, meaning the right
tails of the distributions still contain a great deal of probability.
Power law distributions are probability distributions with the
form p(x) ∝ x−α, and it is the tail-exponent α that is the
subject of this analysis in this section.

The Jarque-Bera (JB) test [24] is first applied to the real
mid-price series, for the first 1 hour, 6 hours and 48 hours, to
determine if there are heavy tails in the absolute log-returns
distribution. From Table II, it can be observed that the kurtosis
of the test distributions is much larger than 3, indicating heavy
tails with very high statistical significance.

TABLE II
TEST PERIOD KURTOSIS AND P-VALUES FROM THE JARQUE-BERA TEST,

AND COMPUTED TAIL-EXPONENTS, FOR THE REAL MID-PRICE
TIME-SERIES ABSOLUTE LOG-RETURNS. THE LENGTH COLUMN REFERS

TO THE FIRST 1, 6, AND 48 HOURS OF THE SERIES.

Time-Series Length Tail-Exponent Kurtosis p-value
1 Hour 3.67 8.79 0.00
6 Hour 2.98 8.46 0.00
48 Hour 3.30 10.98 0.00

We then equivalently test the absolute log-returns of the
simulated mid-price series for heavy tails. Table III shows
the aggregated results of the Jarque-Bera test across the 100
samples generated by the SeqGAN and benchmark models.
The measured kurtoses are averaged, and the Hochberg Step-
Up procedure is again applied to determine the proportion of
tests to be accepted at a 1% significance, after controlling for
repetition bias. It can be observed that the average kurtosis is
much larger than 3, and the null hypotheses of the Jarque-
Bera test across all samples are rejected. The results thus
strongly indicate that the simulated mid-price series for both
the SeqGAN and the benchmark models do replicate the heavy
tails reported for real financial time-series.

TABLE III
MEAN KURTOSIS FROM THE JARQUE-BERA TEST, AND THE NUMBER OF

TESTS REJECTED BY THE HOCHBERG STEP-UP PROCEDURE, FOR THE 100
MID-PRICE TIME-SERIES SAMPLES GENERATED BY THE SEQGAN AND

BENCHMARK MODELS. THE LENGTH COLUMN REFERS TO THE FIRST 1, 6,
AND 48 HOURS FOR EACH OF THE 100 SAMPLES.

Length Metric SeqGAN Model Benchmark Model

1 Hour Mean Kurtosis 7.31 6.97
Rejection Count 0 0

6 Hours Mean Kurtosis 7.49 7.19
Rejection Count 0 0

48 Hours Mean Kurtosis 8.80 7.53
Rejection Count 0 0

We next compare the tail-exponents of the simulated mid-
price distribution to those of the real data in Table II. First, the
distribution of tail-exponents is computed for the sampled mid-
price time-series of each model. We then apply the one-sample
two-tailed Student t-test between the tail-exponents from the
simulated mid-price series and real mid-price series. Table IV

shows the resulting p-value and t-statistics. We see that the
null hypotheses of the tests for both models are rejected with
high confidence, implying that neither model was realistically
producing the tail-exponents. It can also be observed from
the t-statistics that the distribution tails of both models are
lighter than those of the real returns distribution. However,
the t-statistics of the SeqGAN model are much smaller that
those of the benchmark model, indicating that the SeqGAN
model simulates mid-price variations with closer tail-exponent
behaviours to those of the real data.

TABLE IV
TEST PERIOD RESULTS OF ONE-SAMPLE TWO-TAILED STUDENT T-TESTS

FOR THE TAIL-EXPONENT DISTRIBUTIONS OF EACH MODEL AGAINST THE
REAL TAIL-EXPONENTS, ROUNDED TO TWO DECIMAL PLACES. THE

LENGTH COLUMN REFERS TO THE FIRST 1, 6 AND 48 HOURS FOR EACH OF
THE 100 SAMPLES.

Length Metric SeqGAN Model Benchmark Model

1 Hour p-value 0.00 0.00
t-statistic 2.66 3.29

6 Hours p-value 0.00 0.00
t-statistic 2.84 4.05

48 Hours p-value 0.00 0.00
t-statistic 2.23 3.71

C. Mid-Price Volatility

Finally, the volatility in the mid-price produced by the two
models is compared to the volatility of the real mid-price in
the test set. Volatility is one of the most important measures
of an asset’s value as it measures the risk that would be
undertaken when trading the security and is crucial in the
construction of optimal portfolios. There are a number of
measures of volatility defined in the literature, and the choice
depends on the purpose. For intra-day price variations, the
volatility definitions that have significance importance are the
realised volatility vr, the realised volatility per trade vp, and
the intraday volatility vd, as described in more detail in [16].

Table V shows each of these volatilities computed from the
real mid-price in the test period. A comparison to the mid-
price volatilities of the SeqGAN and benchmark models is
performed as follows. First, the empirical distributions of the
volatility measures are computed across the simulated mid-
price series produced by each model. A one-sample two-tailed
Student t-test is then applied between the the data in the
empirical distributions, and the volatility computed from the
real mid-price. The results from the tests are given in Table
VI, where it can be observed that the null hypotheses for all
the tests are rejected with high confidence. This implies that
neither model can generate an order flow able to reproduce the
volatility of the real mid-price time series, with the negative
t-statistics implying that the simulated mid-price time-series
have much lower volatility than the real time-series. However,
comparing the SeqGAN and benchmark models, it can be
observed from the t-statistics in Table VI that the volatility of
the mid-price is in general better replicated by the SeqGAN
model. An exception to this would be the intraday volatility for
time-series lengths 6 hours and 48 hours, which the t-statistics



show were reproduced more closely by the benchmark model
than the SeqGAN model.

TABLE V
VOLATILITY MEASURES COMPUTED FROM THE REAL MID-PRICE

TIME-SERIES IN THE TEST PERIOD. THE LENGTH COLUMN REFERS TO THE
FIRST 1, 6, AND 48 HOURS FOR EACH OF THE 100 SAMPLES.

Time-Series Length vr vp vd
1 Hour 0.00177 0.00149 0.0308
6 Hours 0.00186 0.00153 0.099
48 Hours 0.00257 0.00211 0.178

TABLE VI
P-VALUE AND T-STATISTICS OF THE ONE-SAMPLE TWO TAILED STUDENT

T-TEST BETWEEN DIFFERENT VOLATILITY DISTRIBUTIONS OF THE
SEQGAN AND BENCHMARK MODELS, AGAINST THE REAL VOLATILITY

MEASURES, ROUNDED TO TWO DECIMAL PLACES. THE LENGTH COLUMN
REFERS TO THE FIRST 1, 6, AND 48 HOURS FOR EACH OF THE 100

SAMPLES.

Length Volatility SeqGAN Model Benchmark Model
t-statistics p-value t-statistics p-value

1 Hour
vr -0.92 0.00 -0.99 0.00
vp -0.99 0.00 -1.10 0.00
vd -0.89 0.00 -0.93 0.00

6 Hours
vr -1.04 0.00 -1.13 0.00
vp -0.99 0.00 -1.19 0.00
vd -1.11 0.00 -0.95 0.00

48 Hours
vr -1.32 0.00 -1.46 0.00
vp -1.27 0.00 -1.43 0.00
vd -1.18 0.00 -1.03 0.00

VIII. CONCLUSION

A novel application of the SeqGAN framework for gen-
erating simulated order flow sequences was introduced and
benchmarked against a well-known model from the quantita-
tive finance literature. An analysis of the macro-behaviour of
the mid-price movements showed that the SeqGAN model is
substantially better able than the benchmark model to replicate
the overall returns distribution, the returns distribution tails
and the volatility of the real mid-price time-series. While
the results showed that there is further work to be done to
improve this approach to the generative modelling of the
order flow, financial sequences are in general hard to predict
and even harder to simulate. Future work that could improve
the generative modelling of order sequences could include
improving the architecture to inject other covariates into the
input of the generator, or extending the architecture to jointly
model the event tokens, order volume, and inter-order arrival
times. Also, further analysis on the actual sequences that were
generated by the models could determine what is needed to
improve the model. On the basis of its current performance,
and with further work along these lines, including comparison
of this method against an increased number of benchmarks, we
believe the SeqGAN model could be of substantial practical
value to the financial community in the future.
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