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A B S T R A C T

Health technology assessment systems base their decision-making on health-economic evalu-

ations. These require accurate relative treatment effect estimates for specific patient popula-

tions. In an ideal scenario, a head-to-head randomized controlled trial, directly comparing the

interventions of interest, would be available. Indirect treatment comparisons are necessary to

contrast treatments which have not been analyzed in the same trial.

Population-adjusted indirect comparisons estimate treatment effects where there are: no

head-to-head trials between the interventions of interest, limited access to patient-level data,

and cross-trial differences in effect measure modifiers. Health technology assessment agencies

are increasingly accepting evaluations that use these methods across a diverse range of

therapeutic areas. Popular approaches include matching-adjusted indirect comparison (MAIC),

based on propensity score weighting, and simulated treatment comparison (STC), based on

outcome regression. There is limited formal evaluation of these methods and whether they

can be used to accurately compare treatments. Thus, I undertake a review and a simulation

study that compares the standard unadjusted indirect comparisons, MAIC and STC across 162

scenarios.

This simulation study assumes that the trials are investigating survival outcomes and measure

continuous covariates, with the log hazard ratio as the measure of effect — one of the most

widely used setups in health technology assessment applications. MAIC yields unbiased

treatment effect estimates under no failures of assumptions. The typical usage of STC produces

bias because it targets a conditional treatment effect where the target estimand should be a

marginal treatment effect. The incompatibility of estimates in the indirect comparison leads

to bias as the measure of effect is non-collapsible. When adjusting for covariates, one must

integrate or average the conditional model over the population of interest to recover a compatible

marginal treatment effect.

I propose a marginalization method based on parametric G-computation that can be easily

applied where the outcome regression is a generalized linear model or a Cox model. In addition,

I introduce a novel general-purpose method based on the ideas underlying multiple imputation,

which is termed multiple imputation marginalization (MIM) and is applicable to a wide range of

models, including parametric survival models. The approaches view the covariate adjustment

regression as a nuisance model and separate its estimation from the evaluation of the marginal

treatment effect of interest. Both methods can accommodate a Bayesian statistical framework,

which naturally integrates the analysis into a probabilistic framework, typically required for

health technology assessment.

Another simulation study provides proof-of-principle for the methods and benchmarks their

performance against MAIC and the conventional STC. The simulations are based on scenarios

with binary outcomes and continuous covariates, with the log-odds ratio as the measure of
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effect. The marginalized outcome regression approaches achieve more precise and more

accurate estimates than MAIC, particularly when covariate overlap is poor, and yield unbiased

marginal treatment effect estimates under no failures of assumptions. Furthermore, regression-

adjusted estimates of the marginal effect provide greater precision and accuracy than the

conditional estimates produced by the conventional STC, which are systematically biased

because the log-odds ratio is a non-collapsible measure of effect.

The marginalization methods outlined in this thesis are necessary and important for health

technology assessment more generally, because marginal treatment effects should be the

preferred inferential target for reimbursement decisions at the population level. Treatment

effectiveness inputs in health economic models are often informed by the treatment coefficient of

a multivariable regression. An often overlooked issue is that this has a conditional interpretation,

and that the coefficients of the regression must be marginalized over the target population of

interest to produce a relevant estimate for reimbursement decisions at the population level.



I M PA C T S TAT E M E N T

There are two sides to the story told by this thesis. One addresses a substantive problem

in health technology assessment, which is the application of population-adjusted indirect

comparisons. These are regularly used to adjust for cross-trial differences in covariates where

there is limited access to patient-level data. The other side of the story is methodological. It

highlights the importance of carefully considering whether a marginal or conditional treatment

effect is of interest in health technology assessment.

The initial objective of the thesis was to investigate the former. However, the latter ensued

when evaluating the distinct methodologies for population-adjusted indirect comparisons. Dif-

ferent methodologies estimate different measures of effect, yet marginal effects should be the

preferred inferential target for decisions at the population level. The typical usage of regression

adjustment, in the context of indirect treatment comparisons, targets a conditional treatment

effect. I propose marginalization methods that make the effect estimate compatible in indirect

treatment comparisons and relevant for population-level decision-making. The methods are

not limited to the primary context of this thesis and are applicable, more generally, in health

technology assessment.

The findings of this thesis can help stakeholders evaluate the value of new health techno-

logies. Potential stakeholders include a wide range of organizations and professionals within

these organizations:

• National and local regulatory bodies, and health technology assessment agencies. The

research advances some of the latest concepts and techniques in health technology

assessment, and can be used to update reporting standards and identify best practices.

• Small and large pharmaceutical, biotechnology, or medical device companies, with

the research describing statistical developments in health technology assessment, and

providing recommendations on potential methodological and strategic initiatives.

• Contract research organizations can benefit from this research to help unlock perspect-

ives and generate insights for their clients.
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1

C H A P T E R 1 : I N T R O D U C T I O N

1.1 M OT I VAT I O N F O R T H E T H E S I S

The development of novel pharmaceuticals requires several stages, which include regulatory

evaluation and, in several jurisdictions (including the United Kingdom), health technology

assessment (HTA) [1]. To obtain regulatory approval at the licensing stage, a new technology

must demonstrate efficacy and randomized controlled trials (RCTs) are the most reliable design

for this purpose [2], due to their potential in limiting bias in the study sample [3]. Evidence

supporting regulatory approval is often provided by a two-arm RCT, typically comparing the new

technology to placebo or standard of care, but not necessarily against other active interventions.

Then, in certain jurisdictions, HTA addresses whether the health care technology should be

publicly funded by the health care system. For HTA, manufacturers must convince payers

that their product offers the best “value for money” of all available options in the market. This

demands more than a demonstration of efficacy [4] and will often require comparing the

effectiveness of treatments that have not been trialed against each other [5].

This evaluation of alternative health care interventions lies at the heart of HTAs, such as

those commissioned by the National Institute of Health and Care Excellence (NICE),1 the body

responsible for providing guidance on whether health care technologies should be publicly

funded by the National Health Service in England and Wales [5]. Other well-regarded HTA

agencies issuing recommendations include the Canadian Agency for Drugs and Technologies

in Health, and the Pharmaceutical Benefits Advisory Committee in Australia.

In the absence of data from head-to-head RCTs, indirect treatment comparisons (ITCs) are

at the top of the hierarchy of evidence when assessing the relative effects of interventions and

can inform treatment and reimbursement decisions, being very prevalent in HTA [6]. Standard

ITCs use indirect evidence obtained from RCTs through a common comparator arm [6, 7].

These techniques are compatible with both individual patient data (IPD) and aggregate-level

data (ALD), with IPD considered the gold standard [8]. However, they assume that there are no

cross-trial differences in the distributions of effect measure modifiers, i.e., that relative treatment

effects are constant across study populations. Therefore, they almost always produce biased

estimates when these differences exist [9].

The motivation for the thesis is as follows. In many HTA processes, there are: (1) cross-trial

imbalances in effect measure modifiers, implying that relative treatment effects are not constant

1 Originally set up as the National Institute for Clinical Excellence, which explains the NICE acronym.
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26 I N T R O D U C T I O N

across studies; (2) no head-to-head trials comparing the interventions of interest; and (3)

IPD available for at least one intervention (e.g. from the trial of the manufacturer submitting

evidence), but only published ALD for the relevant comparator(s). Several methods, labeled

population-adjusted indirect comparisons, have been introduced to estimate relative treatment

effects in this scenario, requiring access to IPD from at least one of the trials. These methods

include matching-adjusted indirect comparison (MAIC) [10–12], based on inverse propensity

score weighting [13], and simulated treatment comparison (STC) [14], based on outcome

regression [15]. There is also a simpler alternative, crude direct post-stratification (also known

as non-parametric standardization, subclassification or direct adjustment) [16], but this fails if

any of the covariates are continuous or where there are several covariates for which one must

account [17], in which case it is also statistically inefficient (i.e., inaccurate).

The NICE Decision Support Unit has published a technical support document with formal

submission guidelines for population adjustment with limited access to IPD, which provide

recommendations on the use of MAIC and STC in HTA [9, 18]. Various reviews [9, 18–20]

define the relevant terminology and assess the theoretical validity of these methodologies but

do not express a preference. Questions remain about the correct application of the methods

and their validity in HTA [9, 18, 21]. Thus, Phillippo et al. [9] state that current guidance can

only be provisional, as more thorough understanding of the properties of population-adjusted

indirect comparisons is required.

As remarked by Phillippo et al. [9, 18], further research must: (1) examine these methods

through comprehensive simulation studies; and (2) develop novel methods for population

adjustment. In addition, recommendations have highlighted the importance of embedding the

methods within a Bayesian framework, which allows for the principled propagation of uncertainty

to the wider health economic model [22], and is particularly appealing for “probabilistic sensitivity

analysis” [23], used to characterize the impact of the uncertainty in the model inputs on the

decision-making process. This component is often mandatory in the normative framework of

HTA bodies such as NICE [22].

Consequently, several simulation studies have been conducted since the release of the

NICE technical support document to assess population-adjusted indirect comparisons [24–29].

These have primarily assessed the performance of MAIC relative to standard ITCs in a limited

number of simulation scenarios. In general, the studies set relatively low covariate imbalances

and do not vary these, even though MAIC is prone to imprecision when high imbalances lead

to poor covariate overlap [30], i.e., where the degree of similarity in the covariate ranges across

studies is low. Most importantly, existing simulation studies typically consider binary covariates

at non-extreme values, not close to zero or one. In these scenarios, MAIC is likely to perform

well as covariate overlap is strong.

Propensity score weighting methods such as MAIC are known to be highly sensitive to

scenarios with poor overlap [31–34], in which case they are not statistically precise because

of their inability to extrapolate beyond the covariate space observed in the patient-level data.

With poor overlap, extreme weights may produce unstable treatment effect estimates with high

variance. Hence, it is important to evaluate the performance of MAIC in the face of practical
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scenarios with poor overlap between the studies’ covariate distributions. A related problem in

finite samples is that feasible weighting solutions may not exist [35], e.g. where sample sizes

are small and the number of covariates is large [36, 37].

A recent simulation study by Phillippo et al. [34] comprehensively examines MAIC, STC

and a novel method by the authors called multilevel network meta-regression [38] in practical

scenarios with poor covariate overlap. However, the target estimand of the simulation study is

a conditional treatment effect as opposed to a marginal treatment effect, which should be the

target for population-level reimbursement decisions in HTA [39].

1.2 A I M S A N D S T RU C T U R E O F T H E T H E S I S

This thesis seeks to address the following research objectives:

• To review methods currently used for population-adjusted indirect comparisons, eval-

uating and comparing their statistical performance through comprehensive simulation

studies;

• To develop novel outcome modeling methodologies that improve the performance of

the existing population adjustment methods and can be embedded within a Bayesian

framework;

• To influence practice by making recommendations on the way and circumstances in

which population-adjusted indirect comparisons should be applied;

• To provide clarifications on what the target of the analysis, i.e. the estimand, should

be for population-adjusted indirect comparisons, given that these are used to inform

reimbursement decisions at the population level in HTA.

I now describe the structure of the thesis and the research questions tackled by each indi-

vidual chapter. In Chapter 2, I carry out an up-to-date review of MAIC and STC. I demonstrate

that MAIC and the typical usage of STC, as described by HTA guidance and recommendations

[18], target different estimands. STC targets a conditional treatment effect as opposed to a

marginal estimand, which is the appropriate target for HTA decisions at the population level. In

addition, the conditional estimand cannot be combined in any indirect treatment comparison

or compared between studies because conditional estimands vary across different covariate

adjustment sets. This is a recurring problem in meta-analysis and is particularly troublesome

where the measure of effect is non-collapsible [40, 41].

In Chapter 3, I conduct a comprehensive simulation study to benchmark the performance of

MAIC and the typical usage of STC against the standard ITC. The simulation study provides

proof-of-principle for the methods and is based on scenarios with survival outcomes, con-

tinuous covariates and the Cox proportional hazards regression as the outcome model, with

the log hazard ratio as the measure of effect. This is one of the most common setups in

HTA applications [30]. The methods are evaluated in a wide range of settings; varying the
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trial sample size, effect-modifying strength of covariates, prognostic effect of covariates, im-

balance/overlap of covariates and the level of correlation in the covariates. 162 simulation

scenarios are considered. An objective of the simulation study is to inform the circumstances

under which population adjustment should be applied and which specific method is preferable

in a given situation.

In this simulation study, MAIC yields treatment effect estimates that are unbiased and

relatively accurate, with its potential for bias reduction outweighing the loss of precision when

all effect modifiers are accounted for in the adjustment. Robust sandwich standard errors

slightly underestimate the variability when effective sample sizes are small. The simulation

study demonstrates that the conventional version of STC produces systematically biased

estimates with inappropriate coverage rates because it targets the wrong estimand, which is

incompatible in the indirect comparison. As the (log) hazard ratio is non-collapsible, marginal

and conditional estimands do not coincide. As a result, the typical usage of STC produces bias.

The crucial element that has been missing from the application of STC is the marginalization

of treatment effect estimates. When adjusting for covariates, one must integrate or average

the conditional estimates over the joint covariate distribution to recover a marginal treatment

effect that is compatible in the indirect comparison. In Chapter 4, I develop several methods

to accomplish this and present these methods in detail. Firstly, I propose a marginalization

method based on parametric G-computation [42, 43] or model-based standardization [44–47],

often applied in observational studies in epidemiology and medical research where treatment

assignment is non-random. In addition, I introduce a novel general-purpose method based on

the ideas underlying multiple imputation [48], which I term multiple imputation marginalization

(MIM) and is applicable to a wide range of models, including parametric survival models.

Both parametric G-computation and multiple imputation marginalization can be viewed as

extensions to the conventional STC, with all methods making use of effectively the same

outcome model. The novel methodologies are outcome regression approaches, thereby

capable of extrapolation, that target marginal treatment effects. They do so by separating the

covariate adjustment regression model from the evaluation of the marginal treatment effect of

interest. The conditional parameters of the regression are viewed as nuisance parameters, not

directly relevant to the research question. The methods can be implemented in a Bayesian

statistical framework, which explicitly accounts for relevant sources of uncertainty, allows for

the incorporation of prior evidence (e.g. expert opinion), and naturally integrates the analysis

into a probabilistic framework.

The development of outcome regression approaches that target compatible marginal treat-

ment effects is appealing and impactful. These methodologies tend to be more efficient than

weighting, providing more stable estimators [49]. MAIC is a weighting method that cannot

extrapolate where the overlap between studies is insufficient. Conversely, outcome regression

models can extrapolate beyond the covariate space observed in the patient-level data, thereby

overcoming some limitations of MAIC. We view extrapolation as an advantage because poor

overlap and small sample sizes are pervasive issues in HTA [30]. While extrapolation can also
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be viewed as a disadvantage if it is not valid, in our case it expands the range of scenarios in

which population adjustment can be used.

In Chapter 5, I carry out a simulation study to benchmark the performance of the novel

“marginalized” outcome regression methods against MAIC and the conventional STC. The

simulations provide proof-of-principle and investigate scenarios with binary outcomes and

continuous covariates, with the log-odds ratio as the measure of effect. The novel approaches

achieve greater precision and accuracy than MAIC and are unbiased under no failures of

assumptions. Furthermore, the marginalized regression-adjusted estimates provide greater

statistical precision that the conditional estimates produced by the conventional version of STC.

While this precision comparison is irrelevant, because it is made for estimators of different

estimands, it supports previous research on non-collapsible measures of effect [44, 50].

Finally, Chapter 6 contains some concluding remarks. I highlight the importance of carefully

considering what the target estimand should be for population-adjusted indirect comparisons.

I clarify why marginal treatment effects should be the preferred inferential target. Avenues

for future work are also discussed. While this thesis intends to influence applied practice, I

note that a real case study demonstrating the application of the methodologies is missing. I

provide proof-of-principle through simulation studies and code for simulated examples for a

range of population adjustment methods in the supplementary appendices. Nevertheless, the

application of the methodologies to real examples is a key priority for future research.
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L I M I T E D A C C E S S T O I N D I V I D U A L PAT I E N T D ATA : A R E V I E W

In Section 2.1, I establish the context for population-adjusted indirect comparisons. In Section

2.2, I outline the data structure/requirements for the methods. In Sections 2.3 and Sections

2.4, I present an updated review of MAIC and STC, respectively. In Section 2.5 I clarify that

each methodology targets a different estimand, something that is currently overlooked by the

literature. Finally, Section 2.6 provides some brief concluding remarks. Part of the content of

this chapter is included in the article “Methods for Population Adjustment with Limited Access

to Individual Patient Data: A Review and Simulation Study” (Remiro-Azócar et al., 2021).1

2.1 C O N T E X T

HTA often takes place late in the drug development process, after a new medical technology

has obtained regulatory approval, typically based on a two-arm RCT that compares the new

intervention to placebo or standard of care before the licensing stage. At the licensing stage,

the question of interest is whether or not the drug is effective. In HTA, the relevant policy

question is: “given that there are finite resources available to finance health care, which is the

best treatment of all available options in the market?”. In order to answer this question, one

must evaluate the relative effectiveness of interventions that may not have been trialed against

each other.

The following scenario is common in the appraisal of new oncology drugs. Consider an

active treatment A, which needs to be compared to another active treatment B for the purposes

of reimbursement. Treatment A is new and being tested for cost-effectiveness, while treatment

B is typically an established intervention, already on the market. Both treatments have been

evaluated in a RCT against a common comparator C, e.g. standard of care or placebo, but

not against each other. Indirect treatment comparison methods are performed to estimate

the relative treatment effect of A vs. B for a specific outcome. The objective is to perform the

analysis that would be conducted in a hypothetical head-to-head RCT between A and B, which

indirect treatment comparisons seek to emulate.

The RCT is widely considered the gold standard design to evaluate the efficacy of interven-

tions [2] due to its high internal validity [3], i.e., its potential for limiting bias within the study

1 The article has been published in Research Synthesis Methods and is available at: https://doi.org/10.1002/
jrsm.1511
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sample. Appropriate randomization guarantees covariate balance on expectation, so that the

treatment groups are comparable and confounding is limited. Therefore, assuming no structural

issues (e.g. no dropout, informative missingness, measurement error, etc.), RCTs allow for

unbiased estimation of the relative treatment effect within the study.

RCTs may target marginal or conditional estimands. These are calibrated at different

hierarchical levels. The marginal or population-average effect is calibrated at the population

level. It quantifies how mean outcomes change when moving all randomized individuals

between two hypothetical worlds: from one where everyone receives treatment B to one where

everyone receives treatment A [51–53]. Conversely, conditional effects are calibrated at the

subgroup or individual level. A conditional effect compares average treatment outcomes when

switching the treatment of an individual in the trial from B to A, fully conditioned on the average

combination of subject-level covariates, or the average effect across sub-populations of patients

who share the same covariate values.

The marginal effect is typically, but not necessarily, estimated by an “unadjusted” analysis.

This may be a simple comparison of the expected outcomes for each group or a univariable

regression including only the main treatment effect. RCTs typically report unadjusted analyses,

which rely on measured and unmeasured covariates being balanced between treatment groups

due to randomization.

The conditional treatment effect is often estimated as the treatment coefficient of an “adjus-

ted” analysis, e.g., a multivariable regression of outcome on the main effects of randomized

treatment and a set of baseline covariates, such as prior medical history, demographic factors

or physiological status. In this analysis, the target estimand is a weighted average of (also

conditional) individual-level or subgroup-specific effects. These effects are conditional on the

baseline covariates that have also been included in the model. The covariates are pre-specified

in the protocol or analysis plan and are likely to be prognostic variables, associated with the

clinical outcome of interest.

Note that, as highlighted by Daniel et al. [50], “the words conditional and adjusted (likewise

marginal and unadjusted) should not be used interchangeably”. A recurring theme throughout

this thesis is that marginal need not mean unadjusted because covariate-adjusted analyses

may also target marginal estimands [54]. Population-adjusted indirect comparisons are used to

inform reimbursement decisions in HTA at the population level, where interest lies in the impact

of a health technology on the target population for the decision problem. Therefore, marginal

treatment effect estimates are required [54].

The indirect comparison between treatments A and B is typically carried out on the “linear

predictor” scale [6, 7]; namely, assuming additive effects for a given linear predictor, e.g. log-

odds ratio for binary outcomes or log hazard ratio for survival outcomes. Indirect treatment

comparisons can be “anchored” or “unanchored”. Anchored comparisons make use of a

connected treatment network. In this case, this is available through the common comparator

C (Figure 1). Unanchored comparisons use disconnected treatment networks or single-arm

trials and require much stronger assumptions than their anchored counterparts [9]. The use of

unanchored comparisons where there is connected evidence is discouraged and often labeled
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as problematic by HTA agencies [9, 18]. This is because it does not respect within-study

randomization and is not protected from imbalances in any covariates that are prognostic of

outcome (in essence implying that absolute outcomes can be predicted from the covariates, a

heroic assumption). This set of covariates is, almost invariably, a larger set of covariates than

the set of effect measure modifiers. Hence, our focus in this thesis is on anchored comparisons.

Figure 1: Diagram of the connected network in an anchored indirect comparison.

In the standard anchored scenario, a company submitting evidence for reimbursement to

HTA bodies has access to patient-level data from its own trial that compares its product A
against standard intervention C. However, as disclosure of proprietary, confidential patient-level

data from industry-sponsored clinical trials is rare, IPD on baseline covariates, treatment

and outcomes for the competitor’s trial, comparing the relative efficacy or effectiveness of

treatment B against C, are regularly unavailable. This is the case for both the manufacturer

submitting evidence for reimbursement and the national HTA agency evaluating the evidence.

For this study, only summary outcome measures and marginal moments of the covariates,

e.g. means with standard deviations for continuous variables or proportions for binary and

categorical variables, as found in so-called “Table 1” of clinical trial publications, are available.

We consider, without loss of generality, that IPD are available for a trial comparing intervention

A to intervention C (denoted AC) and published ALD are available for a trial comparing B to C
(BC).

We briefly introduce some notation. Let Z denote a treatment indicator. Active treatment

A is denoted Z = 1, active treatment B is denoted Z = 2, and the common comparator C is

denoted Z = 0. In addition, consider that S denotes a specific study. The AC study, comparing

treatments A and C is denoted S = 1. The BC study is denoted S = 2. The true relative

treatment effect between Z and Z′ in study population S is indicated by ∆(S)
ZZ′ and is estimated

by ∆̂(S)
ZZ′ .

Standard methods for indirect comparisons such as the Bucher method [7], a special case of

network meta-analysis, allow for the use of ALD to give a standard ITC. These estimate the

marginal A vs. B treatment effect as:

∆̂12 = ∆̂(1)
10 − ∆̂(2)

20 , (1)

where ∆̂(1)
10 is the estimated relative treatment effect of A vs. C in the AC population, and

∆̂(2)
20 is the estimated relative treatment effect of B vs. C in the BC population. Standard ITC

methods do not typically explicitly specify the target population for the A vs. B treatment effect
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estimate ∆̂12, hence the lack of superscript in the notation, regardless of whether the analysis

is based on ALD or on IPD from each study [55].

The available patient-level data can be used to estimate ∆̂(1)
10 and its variance, e.g. by fitting

a univariable regression of outcome on treatment. The estimate ∆̂(2)
20 and an estimate of its

variance may be directly published or derived non-parametrically from aggregate outcomes

made available in the literature. The majority of RCT publications will report an estimate ∆̂(2)
20

targeting a marginal treatment effect, typically derived from a simple regression of outcome on a

single independent variable, treatment assignment. In addition, the estimate ∆̂12 should target

a marginal treatment effect for reimbursement decisions at the population level. Therefore, ∆̂(1)
10

should target a marginal treatment effect that is compatible with ∆̂(2)
20 . As the indirect comparison

is based on relative effects observed in separate RCTs, the within-trial randomization of the

originally assigned patient groups is preserved. The within-trial relative effects are statistically

independent of each other; hence, their variances are simply summed to estimate the variance

of the marginal A vs. B treatment effect.

One can also take a Bayesian approach to estimating the indirect treatment comparison,

e.g. using Markov chain Monte Carlo (MCMC) simulation, in which case variances would be

derived empirically from draws of the posterior density. In my opinion, a Bayesian analysis is

helpful because simulation from the posterior distribution provides a framework for probabilistic

decision-making, directly allowing for both statistical estimation and inference, and for principled

uncertainty propagation [6].

Standard ITCs such as the Bucher method [7] assume that there are no differences across

trials in the distribution of effect measure modifiers. A variable is an effect measure modifier,

effect modifier for short, if the relative effect of a particular intervention on the outcome, as

measured on a specific scale (e.g. the linear predictor), varies at different levels of the variable.

For instance, if women react differently to a drug therapy than men on the log-odds ratio scale,

then gender modifies the effect of the drug on such scale. Within the biostatistics literature,

effect modification is usually referred to as heterogeneity or interaction, because effect modifiers

are considered to alter the effect of treatment by interacting with it on a specific scale [56], and

are typically detected by examining statistical interactions [57].

In the Bucher method, one assumes that the relative effect of A vs. C in the AC population

(denoted ∆(1)
10 ) is equivalent to that which would have occurred in the BC population (indicated

as ∆(2)
10 ). Again, the Bucher method and most conventional network meta-analysis methods do

not explicitly specify a target population of policy interest (whether this is AC, BC or otherwise)

[55]. Hence, they cannot account for differences in covariates across study populations. The

Bucher method is only valid when either: (1) the A vs. C treatment effect is homogeneous,

such that there is no effect modification; or (2) the distributions of the effect modifiers are the

same in both studies.

If the A vs. C treatment effect is heterogeneous and the effect modifiers are not equidistrib-

uted across trials, relative treatment effects are no longer constant across the trial populations,

except in the pathological case where the bias induced by different effect modifiers is in opposite

directions and cancels out. Hence, the assumptions of the Bucher method are broken. In
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this scenario, a standard ITC between A and B is liable to produce biased and overprecise

estimates of the treatment effect [58]. These features are undesirable, particularly from the

economic modeling point of view, as they impact negatively on probabilistic sensitivity analysis.

As a result, population adjustment methodologies such as MAIC and STC have been

introduced and have become increasingly popular in HTA. These target the A vs. C treatment

effect that would be observed in the BC population, thereby performing an adjusted indirect

comparison in such population. MAIC and STC implicitly assume that the target population is

the BC population. The population-adjusted A vs. B treatment effect is estimated as:

∆̂(2)
12 = ∆̂(2)

10 − ∆̂(2)
20 , (2)

where ∆̂(2)
10 is the estimated relative treatment effect of A vs C (mapped to the BC population),

and ∆̂(2)
20 is the estimated marginal treatment effect of B vs. C (in the BC population). Again,

the estimate ∆̂(2)
12 should target a marginal treatment effect for reimbursement decisions at the

population level. Therefore, ∆̂(2)
10 should target a marginal treatment effect that is compatible

with ∆̂(2)
20 [39].

Variances are combined in the same way as the Bucher method. As the relative effects,

∆̂(2)
10 and ∆̂(2)

20 , are specific to separate studies, the within-trial randomization of the originally

assigned patient groups is preserved. Because the estimates are based on different study

samples (IPD are unavailable for BC), the within-trial relative effects are assumed statistically

independent of each other. Hence, their variances are simply summed to estimate the variance

of the A vs. B treatment effect.

A reference intervention is required to define the effect modifiers. In the methods considered

in this thesis, we are selecting the effect modifiers influencing treatment A with respect to C
(as opposed to the treatment effect modifiers of B vs. C). This is because we have to adjust for

these in order to perform the indirect comparison in the BC population, implicitly assumed to

be the target population. If one had access to IPD for the BC study and only published ALD for

the AC study, one would have to adjust for the factors modifying the effect of treatment B with

respect to C, in order to perform the comparison in the AC population.

Those studying the generalizability of treatment effects often make a distinction between

sample-average and population-average marginal effects [17, 59–62]. Typically, another implicit

assumption made by population-adjusted indirect comparisons is that the marginal treatment

effects estimated in the BC sample, as described by its published covariate moments in the

case of ∆̂(2)
10 , coincide with those that would be estimated in the target population of the trial.

Namely, either the study sample on which inferences are made is the study target population,

or it is a simple random sample (i.e., representative) of such population, ignoring sampling

variability in their descriptive characteristics. Throughout the text, when referring to the AC and

BC “populations”, we are in fact referring to the AC and BC study samples. We do not view

these as samples of the trial populations, but as the populations themselves.

In indirect treatment comparisons, a challenge also arising from treatment effect heterogen-

eity is inconsistency [63]. This concerns the relationship between direct and indirect pairwise

treatment comparisons. While inconsistency is also induced by imbalances in effect modifiers
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(between the direct and indirect evidence), it is a property specific to loops of evidence. In the

network displayed in Figure 1, there are no such loops — direct evidence for a comparison

between A and B is unavailable. Therefore, inconsistency is not covered by this thesis.

The use of population adjustment in HTA, both in published literature as well as in submissions

for reimbursement, and its acceptability by national HTA bodies, e.g. in England and Wales,

Scotland, Canada and Australia [21], is increasing across diverse therapeutic areas [21, 30,

64, 65]. As of January 20, 2022, a search among titles, abstracts and keywords for “matching-

adjusted indirect comparison” and “simulated treatment comparison” in Scopus, reveals at least

174 peer-reviewed applications of MAIC and STC and conceptual papers about the methods.

To capture the use of population-adjusted indirect comparisons in submissions for reimburse-

ment, the NICE website2 was queried for published technology appraisals (TAs) using the terms

“matching-adjusted indirect comparison” and “simulated treatment comparison”. NICE TAs are

recommendations on the clinical and cost-effectiveness of treatments in the National Health

Service in England and Wales. Manufacturer submissions, evidence review group reports and

NICE committee feedback documents completed between 1 January, 2010 and January 20,

2022 were systematically reviewed.

A total of 55 TAs using MAIC or STC were identified in the search — of these, 48 have

been published since 2017. Figure 2 shows the rapid growth of peer-reviewed publications

and NICE TAs featuring MAIC or STC since the introduction of these methods in 2010. MAIC

and STC are mainly applied in the evaluation of cancer drugs, as 45 of the 55 NICE TAs using

population adjustment have been in the oncology area. MAIC is used more predominantly than

STC. Of the 55 identified appraisals, 50 employed MAIC and 9 employed STC to support the

submission for reimbursement.
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Figure 2: Number of peer-reviewed publications and technology appraisals from the National Institute for
Health and Care Excellence (NICE) using population-adjusted indirect comparisons per year.

2 Appraisal consultation documents are publicly available in the website https://www.nice.org.uk/.

https://www.nice.org.uk/
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2.2 DATA S T RU C T U R E

We briefly outline the data requirements for the MAIC and STC methodologies. Consider that

IPD are available for a randomized trial of size N comparing two interventions: treatment A
and treatment C. Treatment A is a novel active intervention being tested for cost-effectiveness,

which for reimbursement purposes needs to be compared to other established active treatments

that are already on the market. The manufacturer submitting evidence to HTA bodies has

access to IPD from its AC trial. We shall assume that the following data are available for the

n−th subject (n = 1, . . . , N) in the trial:

• A covariate vector of K baseline characteristics xn = (xn,1, . . . , xn,K), e.g. age, gender,

comorbidities;

• A treatment indicator zn. Without loss of generality, we assume here for simplicity that zn

∈ {0, 1} for the common comparator and active treatment, respectively;

• An observed outcome yn, e.g. a time-to-event or binary indicator for some clinical

measurement.

Given this information, one can compute an estimate ∆̂(1)
10 of the A vs. C treatment effect in the

AC population, and an estimate of its variance. In the Bucher method, such estimate would be

plugged in to Equation 1. On the other hand, MAIC and STC generate a population-adjusted

estimate ∆̂(2)
10 of the A vs. C treatment effect in the BC population that would be plugged in to

Equation 2.

Treatment A needs to be compared to another active intervention, treatment B, but there

are no head-to-head trials. A randomized trial comparing B and a common comparator C has

been conducted by a competitor company. IPD are unavailable for this BC trial but published

ALD are available. For the BC trial, the available data consist of the following components:

• A vector θ = (θ1, . . . , θK) of published summary values for the baseline characteristics.

For ease of exposition, we shall assume that these are means and are available for all K
covariates (alternatively, one would take the intersection of the available covariates).

• An estimate ∆̂(2)
20 of the B vs. C treatment effect in the BC population, and an estimate of

its variance, either published directly or derived from aggregate outcomes in the literature.

Each baseline characteristic k = 1, . . . , K can be classed as a prognostic variable (a covariate

that affects outcome), an effect modifier, both or none. For simplicity in the notation, it is

assumed that all available baseline characteristics are prognostic of the outcome and that a

subset of these, x(EM)
n ⊆ xn, are selected as effect modifiers (of treatment A) on the linear

predictor scale. Similarly, for the published summary values, θ(EM) ⊆ θ.



38 M E T H O D S F O R P O P U L AT I O N A D J U S T M E N T W I T H L I M I T E D I P D : A R E V I E W

2.3 M AT C H I N G - A D J U S T E D I N D I R E C T C O M PA R I S O N

Matching-adjusted indirect comparison (MAIC) is a population adjustment method based on

inverse propensity score weighting [13]. IPD from the AC trial are weighted so that the means

and, potentially, higher moments of specified covariates match those in the BC trial. The

weights for the subjects in the IPD are estimated using a propensity score logistic regression

model:

ln (wn) = α0 + x(EM)
n α1,

where α0 and α1 are the logistic regression parameters, and the weight wn assigned to each

individual n represents the “trial selection” or “trial assignment” odds, i.e., the odds of being

enrolled in the BC trial as opposed to being enrolled in the AC trial. These are defined as a

function of the baseline characteristics modifying the effect of treatment A, x(EM)
n for subject n.

Note that in standard applications of propensity score weighting, e.g. in observational studies,

the propensity score logistic regression is for the treatment group assigned to the subject. In

MAIC, the objective is to balance covariates across studies so the propensity score model is

for the trial in which the participant is enrolled.

The logistic regression parameters cannot be derived using conventional methods such

as maximum-likelihood estimation because IPD are not available for BC. Signorovitch et al.

[10] propose using a method of moments to estimate the model parameters by setting the

weights so that the mean effect modifiers are exactly balanced across the two trial populations.

After centering the AC effect modifiers on the published BC means, such that θ(EM) = 0, the

weights are estimated by minimizing the objective function:

Q(α1) =
N

∑
n=1

exp
(

x(EM)
n α1

)
,

where N represents the number of subjects in the AC trial. Q(α1) is a convex function that

can be minimized using standard algorithms, e.g. Broyden–Fletcher–Goldfarb–Shanno [66], to

yield a unique finite solution α̂1 = argmin[Q(α1)]. Then, the estimated weight for subject n is:

ŵn = exp(x(EM)
n α̂1).

Consequently, the mean outcomes under treatment z ∈ {0, 1} in the BC population are

predicted as the weighted average:

µ̂z =
∑Nz

n=1 yn,zŵn

∑Nz
n=1 ŵn,z

,

where Nz represents the number of subjects in arm z of the AC trial, yn,z denotes the outcome

for patient n receiving treatment z in the patient-level data, and ŵn,z is the weight assigned

to participant n under treatment z. Note that we have summary data from the BC trial to

estimate absolute outcomes under C. However, in this anchored scenario, we do not focus on
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the absolute outcomes as the objective is to generate a relative effect for A vs. C in the BC
population.

Such relative effect is typically estimated by fitting a weighted model, i.e., a model where the

contribution of each subject to the likelihood is weighted. For instance, if the outcome of interest

is a time-to-event outcome, an “odds-weighted” Cox model can be fitted by maximizing its

weighted partial likelihood [67]. In this case, a subject n from the AC trial, who has experienced

an event at time t, contributes the following term to the partial likelihood function:

(
exp(βzzn)

∑j∈R(t) ŵj exp(βzzj)

)ŵn

, (3)

where R(t) is the set of subjects without the event and uncensored prior to t, i.e., the risk

set. Here, the fitted coefficient β̂z of the weighted regression (i.e., the value of the parameter

maximizing the partial likelihood in Equation 3) is the estimated relative effect for A vs. C, such

that ∆̂(2)
10 = β̂z.

In the original MAIC approach, covariates are balanced for active treatment and control arms

combined and standard errors are computed using a robust sandwich estimator, which allows

for heteroskedasticity [10, 68]. Typically, implementations of this estimator do not explicitly

account for the fitting of the logistic regression model for the weights, assuming these to be

fixed.

Terms of higher order than means can also be balanced, e.g. by including squared covariates

in the method of moments to balance variances. However, this decreases the degrees of

freedom and may increase finite-sample bias [69]. Balancing both means and variances (as

opposed to means only) appears to result in more biased and less accurate treatment effect

estimates when the variances of covariates differ across trials [25, 27].

A proposed modification to MAIC uses entropy balancing [70] instead of the method of

moments to estimate the weights [25, 28]. Entropy balancing has the additional constraint

that the weights are as close as possible to unit weights. Potentially, it should penalize

extreme weighting schemes and provide greater precision. However, Phillippo et al. recently

demonstrated that weight estimation via entropy balancing and the method of moments are

mathematically identical [71]. Other proposed modifications to MAIC include balancing the

covariates separately for active treatment and common comparator arms [25, 28, 72], and

using the bootstrap [73, 74] to compute standard errors [75], which does not rely upon strong

assumptions about the estimation of the MAIC weights. Balancing the covariates separately

seems to provide greater precision in simulation studies [25]. However, we do not recommend

this approach because it may break randomization, distorting the balance between treatment

arms A and C on covariates that are not accounted for in the weighting. If these covariates are

prognostic of outcome, this would compromise the internal validity of the within-study treatment

effect estimate for A vs. C.

As MAIC is a reweighting procedure, it will reduce the effective sample size (ESS) of the

AC trial. The approximate ESS of the weighted IPD is estimated as (∑n ŵn)
2 / ∑n ŵ2

n; the

reduction in ESS can be viewed as a rough indicator of the lack of overlap between the AC
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and BC covariate distributions. For relative effects to be conditionally constant and eventually

produce an unbiased indirect comparison, one needs to include all effect modifiers in the

weighting procedure, whether in imbalance or not [18] (see Supplementary Appendix A for

a non-technical overview of the full set of assumptions made by MAIC, and more generally,

by population-adjusted indirect comparisons). The exclusion of balanced covariates does not

ensure their balance after the weighting procedure. Including too many covariates or poor

overlap in the covariate distributions can induce extreme weights and large reductions in ESS.

This is a pervasive problem in NICE TAs, where most of the reported ESSs are small with a

large percentage reduction from the original sample size [30].

Propensity score mechanisms are very sensitive to poor overlap [31–33]. In particular,

weighting methods are unable to extrapolate — in the case of MAIC, extrapolation beyond

the covariate space observed in the AC IPD is not possible. Almost invariably, the level of

overlap between the covariate distributions will decrease as a greater number of covariates

are included. Therefore, no purely prognostic variables should be balanced to avoid loss of

effective sample size and consequent inflation of the standard error due to over-balancing

[9]. Cross-trial imbalances in purely prognostic variables should not produce bias as relative

treatment effects are unaffected due to within-trial randomization [18].

2.4 S I M U L AT E D T R E AT M E N T C O M PA R I S O N

While MAIC is a reweighting method, simulated treatment comparison (STC) [14] is a population

adjustment method based on outcome regression [15]. Outcome regression methods are

promising because they may increase precision and statistical power with respect to propensity

score-based methodologies [76–78]. Contrary to most propensity score methods, outcome

regression mechanisms are able to extrapolate beyond the covariate space where overlap is

insufficient, using the linearity assumption or other appropriate assumptions about the input

space. However, the validity of the extrapolation depends on the accuracy in capturing the true

covariate-outcome relationships.

In STC, IPD from the AC trial are used to fit a regression model describing the observed

outcomes in terms of the relevant baseline characteristics and the treatment variable. STC

has different formulations [9, 14, 18, 19]. In the conventional version described by the NICE

Decision Support Unit Technical Support Document 18 [9, 18], the covariates are centered at

the published mean values θ from the BC population. Under a generalized linear modeling

framework, the following linear predictor is fitted to the observed AC IPD:

g(µn) = β0 + (xn − θ) β1 +
[

βz +
(

x(EM)
n − θ(EM)

)
β2

]
1(zn = 1), (4)

where, for a generic subject n, µn is the expected outcome on the natural scale, e.g. the

probability scale for binary outcomes, g(·) is an invertible canonical link function, β0 is the

intercept, β1 is a vector of K regression coefficients for the prognostic variables, β2 is a vector

of interaction coefficients for the effect modifiers (modifying the effect of treatment A vs. C) and
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βz is the A vs. C treatment coefficient. For binary outcomes in logistic regression, one uses the

logit(µn) = ln[µn/(1 − µn)] link function, but other choices are possible in practice, e.g. the

identity link for standard linear regression with continuous-valued outcomes, or the log link for

Poisson regression with count outcomes. Covariates are sometimes centered separately for

active treatment and common comparator arms. We do not recommend this approach because

it may break randomization.

The regression in Equation 4 models the conditional outcome mean given treatment and

the centered baseline covariates. Because the IPD covariates are centered at the published

mean values from the BC population (θ and θ(EM), respectively), the estimated β̂z is directly

interpreted as the A vs. C treatment effect in the BC population or, more specifically, in a

pseudopopulation with the BC covariate means and the AC correlation structure. Typically,

analysts set ∆̂(2)
10 = β̂z in Equation 2, inputting this coefficient into the health economic decision

model [79, 80]. For uncertainty quantification purposes, the variance of said treatment effect is

obtained from the standard error estimate of the treatment coefficient in the fitted model [9, 18].

In a Cox proportional hazards regression framework, a log link function could be employed in

Equation 4 between the hazard function and the linear predictor component of the model.

For relative effects to be conditionally constant across studies, one needs to include all

imbalanced effect modifiers in the model. In addition, the relationship between the effect

modifiers and outcome must be correctly specified; in the case of this chapter, the effect

modifiers must have an additive interaction with treatment on the linear predictor scale. It is

optional to include (and to center) imbalanced variables that are purely prognostic. These will

not remove bias further but a strong fit of the outcome model may increase precision. The NICE

technical support document [18] suggests adding purely prognostic variables if they increase

the precision of the model and account for more of its underlying variance, as reported by

model selection criteria (e.g. residual deviance or information criteria). However, such tools

should not guide decisions on effect modifier status, which must be defined prior to fitting the

outcome model. As effect-modifying covariates are likely to be good predictors of outcome, the

inclusion of appropriate effect modifiers should provide an acceptable fit.

Alternative “simulation-based” formulations to STC have been proposed [19, 81]. These

are outlined as follows. The joint distribution of BC covariates is approximated under certain

parametric assumptions to characterize the BC population, e.g. simulating continuous covari-

ates at the individual level from a multivariate normal with the BC means and the correlation

structure observed in the AC IPD. A regression of the outcome on the predictors is fitted to

the AC patient-level data (this time, the covariates are not centered at the mean BC values).

Then, the coefficients of this regression are applied to the simulated subject profiles and the

linear predictions for patients under A and under C in the BC population are averaged out.

The treatment effect for A vs. C is given by subtracting the average linear prediction under C
from the average linear prediction under A. Neither the original conceptual publications nor

the NICE technical support document provide detailed information about variance estimation,

which is likely to be complicated and probably requires bootstrapping or similar approaches.
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It is worth noting that, in the linear predictor scale, the arithmetic mean of the average linear

predictor (the average linear predictor for patients sampled under the centered covariates) and

its geometric mean (the linear predictor evaluated at the expectation of the centered covariates)

coincide. Therefore, provided that the number of simulated subjects is sufficiently large (i.e.,

in expectation or ignoring sampling variability), the “covariate simulation” approach generates

estimates that are equivalent to those of the “plug-in” methodology.

2.5 C L A R I F I C AT I O N O F E S T I M A N D S

An important issue that has not been discussed in the literature is that MAIC and the typical

usage of STC target different types of estimands. In MAIC, as is typically the case for propensity

score methods, ∆̂(2)
10 targets a marginal treatment effect [51, 82, 83]. In biostatistics [84–87]

and epidemiology [88–90], this marginal effect is also known as a population-average or

population-level treatment effect, as it measures the average treatment effect for A vs. C at the

population level. MAIC targets a marginal treatment effect for A vs C, in the BC population,

because the weighted regression is a simple regression of outcome on treatment assignment

alone. Therefore, assuming a reasonably large sample size and appropriate randomization

in the AC trial, the fitted regression coefficient β̂z in Equation 3 estimates a relative effect

between subjects that have the same distribution of baseline characteristics (corresponding

to the BC population), assuming that trial AC is reasonably large and has been appropriately

randomized [91].

On the other hand, in the version of STC outlined by the NICE Decision Support Unit, ∆̂(2)
10

targets a conditional, rather than a marginal treatment effect. The conditional treatment effect

denotes the average effect at the individual or subgroup level [51, 92]. STC targets a conditional

treatment effect because the estimate is the regression coefficient extracted from the fitted

multivariable regression in Equation 4, conditional on the baseline covariates included as

predictors, that have also been adjusted for. While the treatment coefficient β̂z in STC targets

an average treatment effect, it does not target a population-level measure, contrary to the

marginal effect, which is the effect of moving all trial participants from one treatment to the other.

While there is only one marginal effect for a specific population (as described by its covariate

distribution), there may be many average conditional effects for a given population, one for

every possible combination of covariates and model specification considered for adjustment.

Conditional measures of effect are clinically relevant in medical research, where one desires

to apply the results of RCTs to individual patients. If there is treatment effect heterogeneity

and this is accounted for by the inclusion of treatment-by-covariate interactions, conditional

effect estimates are relevant as patient-centered evidence in a clinician–patient context, e.g. in

precision or personalized medicine. Here, decision-making relates to the treatment benefit for

an individual subject with specific covariate values. Conditional estimands are typically not

of interest when making decisions at the population level in HTA and health policy, as they

characterize effects at the unit or subgroup level.
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A measure of effect is said to be collapsible if marginal and conditional effects coincide in

the absence of confounding bias [88, 93]. The property of collapsibility is closely related to that

of linearity [94, 95], e.g. mean differences in a linear regression are collapsible [51, 88, 92, 93].

However, most applications of population-adjusted indirect comparisons are in oncology and

are typically concerned with time-to-event outcomes, or rate outcomes modeled using logistic

regression [30]. These yield non-collapsible measures of treatment effect such as (log) hazard

ratios [51, 88, 92, 96] or (log) odds ratios [51, 87, 88, 92, 93, 96, 97].

With non-collapsible effect measures, there may be sizable differences between marginal

and conditional estimands for non-null effects do not coincide [94], even with covariate balance

and in the absence of confounding [88, 93, 98–100]. For both collapsible and non-collapsible

measures of effect, maximum-likelihood estimators targeting distinct estimands will have

different standard errors [50]. Therefore, marginal and conditional estimates quantify parameter

uncertainty differently, and conflating these will lead to the incorrect propagation of uncertainty to

the wider health economic decision model, which will be problematic for probabilistic sensitivity

analyses.

Therefore, the relative effect estimate ∆̂(2)
10 in STC is unable to target a marginal treatment

effect and the comparison of interest, a comparison of compatible marginal effects, cannot be

performed. A comparison of conditional effects is not of interest for decisions at the population

level, and also, cannot be carried out. A compatible conditional effect for B vs. C is unavailable

because its estimation requires fitting the non-centered version of Equation 4, adjusting for

the same set of covariates and with the same outcome regression specification, to the BC
patient-level data [50]. Such data are unavailable and it is unlikely that the estimated treatment

coefficient from this model is available in the clinical trial publication.

Hence, ∆̂(2)
10 is incompatible with ∆̂(2)

20 in the indirect comparison (Equation 2) for STC, even

if all effect modifiers are accounted for and the outcome model is correctly specified. If we

intend to target a marginal estimand for the A vs. C treatment effect (in the BC population)

and naively assume that STC does so, ∆̂(2)
12 may produce a biased estimate of the marginal

treatment effect for A vs. B, even if all the assumptions in Supplementary Appendix A are

met. None of the reviewed technology appraisals and peer-reviewed publications that use STC

discuss the estimand that is targeted or take any steps for “marginalization”. Neither do any of

the simulation studies that have evaluated the performance of STC in the anchored scenario

[24, 26, 34, 101].

On the other hand, ∆̂(2)
10 targets a marginal treatment effect in MAIC. There are no compatibil-

ity issues in the indirect treatment comparison as ∆̂(2)
10 and ∆̂(2)

20 target comparable estimands of

the same form. In the Bucher method, if the estimate ∆̂(1)
10 is derived from a simple comparison

of group means or from an univariable regression of outcome on treatment in the AC IPD,

this targets a marginal effect and there are no compatibility issues in the indirect treatment

comparison either.
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2.6 C O N C L U D I N G R E M A R K S

In this chapter, I have carried out an up-to-date review of MAIC and STC. I have demonstrated

that MAIC and the typical usage of STC, as described by HTA guidance and recommendations,

target different estimands. STC targets a conditional treatment effect as opposed to a marginal

estimand, which is the appropriate target for HTA decisions at the population level. In addition,

the conditional estimand cannot be combined in any indirect treatment comparison or compared

between studies because conditional estimands vary across different covariate adjustment

sets. This is a recurring problem in meta-analysis and is particularly troublesome where the

measure of effect is non-collapsible.
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L I M I T E D A C C E S S T O I N D I V I D U A L PAT I E N T D ATA : A S I M U L AT I O N

S T U DY

In this chapter, I conduct a comprehensive simulation study to benchmark the performance of

MAIC and the typical usage of STC against the standard indirect treatment comparison. The

simulation study provides proof-of-principle for the methods and is based on scenarios with

survival outcomes, continuous covariates and the Cox proportional hazards regression as the

outcome model, with the log hazard ratio as the measure of effect.

Section 3.1 describes the simulation study, which evaluates the properties of the approaches

described in Chapter 2 under a variety of conditions. Section 3.2 presents the results of the

simulation study. An extended discussion of my findings and their implications is provided in

Section 3.3. Finally, Section 3.4 provides some brief concluding remarks. Part of the work in

this chapter is included in the article “Methods for Population Adjustment with Limited Access

to Individual Patient Data: A Review and Simulation Study” (Remiro-Azócar et al., 2021).1

3.1 S I M U L AT I O N S T U DY D E S I G N

3.1.1 Aims

The objectives of the simulation study are to evaluate MAIC, STC and the Bucher method across

a wide range of scenarios, thereby benchmarking and comparing the statistical performance of

existing methods for unadjusted and population-adjusted indirect comparisons, and providing

proof-of-principle for the methodologies. For each estimator, we assess the following properties

[102]: (1) unbiasedness; (2) variance unbiasedness; (3) randomization validity;2 and (4)

precision. The selected performance measures evaluate these criteria specifically (see 3.1.5).

The simulation study is reported following the ADEMP (Aims, Data-generating mechanisms,

Estimands, Methods, Performance measures) structure [102]. All simulations3 and analyses

were performed using R software version 3.6.3 [103]. Supplementary Appendix C lists the

1 The article has been accepted for publication in Research Synthesis Methods and is available at: https://doi.
org/10.1002/jrsm.1511

2 In a sufficiently large number of repetitions, (100 × (1 − α))% confidence intervals based on normal distributions
should contain the true value (100 × (1 − α))% of the time, for a nominal significance level α.

3 The files required to run the simulations are available at http://github.com/remiroazocar/population_

adjustment_simstudy.
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specific settings of each simulation scenario and Supplementary Appendix E presents example

R code implementing MAIC, STC and the Bucher method on a simulated example.

3.1.2 Data-generating mechanisms

In line with the typical oncology application of MAIC and STC, we consider survival or time-to-

event outcomes (e.g. overall or progression-free survival), using the log hazard ratio as the

measure of effect.

For trials AC and BC, we follow Bender et al. [104] to simulate Weibull-distributed survival

times under a proportional hazards parametrization.4 Using the notation for the AC trial data,

survival time tn (for subject n) is generated according to the formula:

tn =

(
− ln un

λ exp[xnβ1 + (βz + x(EM)
n β2)1(zn = 1)]

)1/ν

, (5)

where un is a uniformly distributed random variable, un ∼ Uniform(0, 1). We set the inverse

scale of the Weibull distribution to λ = 8.5 and the shape to ν = 1.3 as these parameters

produce a functional form reflecting frequently observed mortality trends in metastatic cancer

patients [27] (as illustrated in Figure 3 and Figure 4, which display the survival curves implied

by the parameters). Four correlated or uncorrelated continuous covariates xn are generated

per subject using a multivariate Gaussian copula [106]. Two of these are purely prognostic

variables; the other two (x(EM)
n ) are effect modifiers, modifying the effect of both treatments A

and B with respect to C on the log hazard ratio scale, and prognostic variables.

We introduce random right censoring to simulate loss to follow-up within each trial. Censoring

times tc,n are generated from the exponential distribution tc,n ∼ Exp(λc), where the rate

parameter λc = 0.96 is selected to achieve a censoring rate of 35% under the active treatment

at baseline (with the values of the covariates set to zero), considered moderate censoring [107].

We fix the value of λc before generating the datasets, by simulating survival times for 1,000,000

subjects with Equation 5 and using the R function optim (Brent’s method [108]) to minimize the

difference between the observed and targeted censoring proportion.

The number of subjects in the BC trial is 600, under a 1:1 active treatment vs. control

allocation ratio. This sample size corresponds to that of a reasonably large Phase III RCT [109].

Different values are not explored as preliminary results showed that these drive performance

less than the number of subjects in the AC trial. While the number of subjects in BC contributes

to sampling variability, the reweighting or regressions are performed in the AC patient-level

data. For the BC trial, the individual-level covariates and outcomes are aggregated to obtain

summaries. The continuous covariates are summarized as means — these would typically

be available to the analyst in the published study as a table of baseline characteristics. The

4 At baseline, this formulation has a hazard function h0(t) = λνtν−1, a cumulative hazard function H0(t) = λtν,
a density function f0(t) = λνtν−1 exp(−λtν) and a survival function S0(t) = exp(−λtν) at time 0 ≤ t < ∞,
where λ > 0 is a positive inverse scale (rate) parameter, and ν > 0 is a positive shape parameter. This follows the
proportional hazards parametrization of the Weibull distribution in the NICE technical support document on survival
analysis, where λ is referred to as a scale parameter [105].
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marginal B vs. C treatment effect and its variance are estimated through a Cox proportional

hazards regression of outcome on treatment. These estimates make up the only information

on aggregate outcomes available to the analyst.

The simulation study examines five factors in a fully factorial arrangement with 3 × 3 × 3 ×
2 × 3 = 162 scenarios to explore the interaction between factors. The simulation scenarios are

defined by varying the values of the following parameters, which are inspired by applications of

MAIC and STC in NICE technology appraisals:

• The number of patients in the AC trial, N ∈ {150, 300, 600} under a 1:1 active inter-

vention vs. control allocation ratio. The sample sizes correspond to typical values for a

Phase III RCT [109] and for trials included in applications of MAIC and STC submitted to

HTA authorities [30].

• The strength of the association between the prognostic variables and the outcome,

β1,k ∈ {− ln(0.67),− ln(0.5),− ln(0.33)} (moderate, strong and very strong prognostic

variable effect), where k indexes a given covariate. These regression coefficients corres-

pond to fixing the conditional hazard ratios for the effect of each prognostic variable at

approximately 1.5, 2 and approximately 3, respectively.

• The strength of interaction of the effect modifiers with treatment, β2,k ∈ {− ln(0.67),

− ln(0.5),− ln(0.33)} (moderate, strong and very strong interaction effect), where k
indexes a given effect modifier.

• The level of correlation between covariates, cor(xn,k, xn,l) ∈ {0, 0.35} (no correlation

and moderate correlation), for subject n and covariates k ̸= l.

• The degree of covariate imbalance.5 For both trials, each covariate k follows a normal

marginal distribution. For the BC trial, we fix xn,k ∼ Normal(0.6, 0.22), for subject n. For

the AC trial, the normal distributions have mean µk, such that xn,k ∼ Normal(µk, 0.22),

varying µk ∈ {0.45, 0.3, 0.15}. This yields strong, moderate and poor covariate overlap,

respectively, corresponding to average percentage reductions in ESS across scenarios

of 19%, 53% and 79%. These percentage reductions in ESS are representative of the

range encountered in NICE TAs (see below).

Each active intervention has a very strong conditional treatment effect βz = ln(0.25) at

baseline (when the effect modifiers are zero) versus the common comparator. The covariates

may represent comorbidities, which are associated with shorter survival and, in the case of

the effect modifiers, which interact with treatment to render it less effective. Figure 3 shows

5 Due to the simulation study design, where the covariate distributions are symmetric, covariate balance is a proxy
for covariate overlap in this parameter setting. Imbalance refers to the difference in covariate distributions across
studies, as measured by the difference in (standardized) average covariate values. Overlap describes the degree of
similarity in the covariate ranges across studies — there is complete overlap if the ranges are the same. In real
scenarios, lack of complete overlap does not necessarily imply imbalance (and vice versa). Imbalances in effect
modifiers across studies bias the standard indirect comparison, motivating the use of population adjustment. Lack
of complete overlap hinders the use of population adjustment, as the covariate data may be too limited to make any
conclusions in the regions of non-overlap.
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the Weibull-distributed survival curves for patients under the active treatment (A and B) with

varying levels of the covariates. Figure 4 shows the Weibull-distributed survival curves for

subjects under the common comparator (C). In Figures 3 and 4, the strength of each prognostic

term and each effect-modifying interaction is moderate.

0.0 0.2 0.4 0.6 0.8 1.0

0.
2

0.
4

0.
6

0.
8

1.
0

Time

S
ur

vi
va

l p
ro

ba
bi

lit
y

AC  with poor overlap
AC  with moderate overlap
AC  with strong overlap
BC

Figure 3: Weibull-distributed curves used to simulate survival times for subjects under the active treat-
ment for different trial populations. The covariates are associated with shorter survival and, in
the case of the effect modifiers, interact with treatment to render it less effective. As the mean
values of the AC covariates decrease, overlap decreases.
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Figure 4: Weibull-distributed curves used to simulate survival times for subjects under the common
comparator for different trial populations.



3.1 S I M U L AT I O N S T U DY D E S I G N 49

The simulation study meets the shared effect modifier assumption [18], i.e., active treatments

A and B have the same set of effect modifiers with respect to the common comparator, and

the interaction effects β2,k of each effect modifier k are identical for both treatments.

The varying degrees of covariate overlap are inspired by applications of MAIC in technology

appraisals submitted to NICE. Only 13 of the 27 appraisals carrying out a MAIC have effective

sample sizes available, albeit some appraisals contain multiple comparisons for different

endpoints. In most applications, weighting considerably reduces the effective sample size from

the original AC sample size. The median percentage reduction is 58% (range: 7.9% to 94.1%;

interquartile range: 42.2% to 74.2%). The final effective sample sizes are also representative

of those in the technology appraisals, which are also small (median: 80; range: 4.8 to 639;

interquartile range: 37 to 174).

3.1.3 Estimands

The estimand of interest is the marginal A vs. B treatment effect in the BC population. The

treatment coefficient βz = ln(0.25) is identical for both A vs. C and B vs. C, and the shared

effect modifier assumption holds in the simulation study. Hence, the true conditional effect for A
vs. B in the BC population is zero. Because the true unit-level treatment effects are zero for all

subjects, the true marginal treatment effect for A vs. B in the BC population is zero (∆(2)
12 = 0),

which implies a “null” simulation setup in terms of this contrast, and marginal and conditional

estimands for A vs. B in the BC population coincide by design.

Note that the true marginal effect for A vs. B in the BC population is a composite of that

for A vs. C and that for B vs. C, both of which are non-null. These are the same and cancel

out. For reference, the true values of the marginal treatment effect in the BC population for the

active treatments vs. the common comparator (∆(2)
10 and ∆(2)

20 ) are provided in Table 1. These

have been computed as follows. Two potential cohorts of 500,000 subjects are simulated,

with the BC covariate distribution and the outcome-generating mechanism in subsection 3.1.2.

One cohort is under the active treatment and the other is under the common comparator. The

number of simulated subjects is sufficiently large to minimize sampling variability. The two

cohorts are concatenated and simple univariable Cox regressions are fitted, regressing the

simulated survival times on an indicator variable denoting treatment status. The treatment

coefficient of each regression estimates the expected difference in the potential outcomes on

the log hazard ratio scale, and serves as the log of the true marginal hazard ratio for the two

interventions under consideration. This is because the survival times have been generated

according to the true data-generating mechanism, where the true conditional effects are explicit,

and which uses the correct conditional model by definition. Due to the non-collapsibility of

the hazard ratio, this simulation-based approach has been adopted in previous research to

determine the true marginal effect [84, 110, 111].
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Interaction effect (β2,k) Main covariate effect (β1,k) True marginal treatment effects (∆(2)
10 , ∆(2)

20 )
-ln(0.67) − ln(0.67) -0.69
-ln(0.67) − ln(0.5) -0.67
-ln(0.67) − ln(0.33) -0.64
-ln(0.5) − ln(0.67) -0.43
-ln(0.5) − ln(0.5) -0.42
-ln(0.5) − ln(0.33) -0.41
-ln(0.33) − ln(0.67) -0.07
-ln(0.33) − ln(0.5) -0.08
-ln(0.33) − ln(0.33) -0.09

Table 1: True marginal log hazard ratios for the active treatments versus the common comparator
corresponding to different simulation settings. The covariates are assumed to be uncorrelated.

3.1.4 Methods

Each simulated dataset is analyzed using the following methods:

• Matching-adjusted indirect comparison, as originally proposed by Signorovitch et al.

[10], where covariates are balanced for active treatment and control arms combined

and weights are estimated using the method of moments. To avoid further reductions in

effective sample size and precision, only the effect modifiers are balanced. A weighted

Cox proportional hazards model is fitted to the IPD using the R package survival

[112]. Standard errors for the A vs. C treatment effect are computed using a robust

sandwich estimator [10, 68] by setting robust=TRUE in coxph. Given the often arbitrary

factors driving selection into different trials, the data-generating mechanism in subsection

3.1.2 does not specify a trial assignment model. Nevertheless, the logistic regression

model for estimating the weights is considered the “best-case” model because the “right”

subset of covariates is selected as effect modifiers. The estimated weights are adequate

for bias removal because the balancing property [113–116] holds with respect to the

effect modifier means. Namely, conditional on the weights, all effect modifier means are

balanced between the two trials, and one can potentially achieve unbiased estimation

of treatment effects in the BC population due to conditional exchangeability over trial

assignment.

• Simulated treatment comparison: a Cox proportional hazards regression on survival

time is fitted to the IPD, with the IPD effect modifiers centered at the BC mean values.

The outcome regression is correctly specified. We include all of the covariates in the

regression but only center the effect modifiers.

• The Bucher method [7] gives the standard indirect comparison. We know that this will be

biased as it does not adjust for the bias induced by the imbalance in effect modifiers.

In all methods, the variances of the within-trial relative effects are summed to estimate the

variance of the A vs. B treatment effect, V̂(∆̂(2)
12 ). Confidence intervals are constructed using

normal distributions: ∆̂(2)
12 ± 1.96

√
V̂(∆̂(2)

12 ), assuming relatively large N.
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3.1.5 Performance measures

We generate and analyze 1,000 Monte Carlo replicates of trial data per simulation scenario. Let

∆̂(2)
12,q denote the estimator for the q-th Monte Carlo replicate and let E(∆̂(2)

12 ) denote its mean

across the 1,000 simulations. Based on a test run of the method and simulation scenario with

the highest long-run variability (MAIC under Scenario 109), we assume that SD(∆̂(2)
12 ) ≤ 0.45

and that, conservatively, the variance across simulations of the estimated treatment effect is

always less than approximately 0.2. Given that the Monte Carlo standard error (MCSE) of the

bias is equal to
√

Var(∆̂(2)
12 )/Nsim, where Nsim is the number of simulations, it is at most 0.014

under 1,000 simulations. We consider the degree of precision provided by the MCSE, which

quantifies the simulation uncertainty, under 1,000 repetitions to be acceptable in relation to the

size of the effects. If the empirical coverage rate of the methods is 95%, Nsim = 1000 implies

that the MCSE of the coverage is
(√

(95 × 5)/1000
)
= 0.69%, with the worst-case MCSE

being 1.58% under 50% coverage. We also consider this degree of precision to be acceptable.

Hence, the simulation study is conducted under Nsim = 1000.

The following criteria are considered jointly to assess the methods’ performances. MCSEs

are estimated for each performance metric in order to quantify the simulation uncertainty due

to using a finite number of simulation replicates.

• To assess aim 1, we compute the bias in the estimated treatment effect

E(∆̂(2)
12 − ∆(2)

12 ) =
1

1000

1000

∑
q=1

∆̂(2)
12,q − ∆(2)

12 .

As ∆(2)
12 = 0, the bias is equal to the average estimated treatment effect across the

simulations. The MCSE of the bias is estimated as
√

1
1000×999 ∑1000

q=1 (∆̂
(2)
12,q − E(∆̂(2)

12 )).

• To assess aim 2, we calculate the variability ratio of the treatment effect estimate,

defined [117] as the ratio of the average model standard error and the observed standard

deviation of the treatment effect estimates (empirical standard error):

VR
(

∆̂(2)
12

)
=

1
1000 ∑1000

q=1

√
V̂(∆̂(2)

12,q)√
1

999 ∑1000
q=1 (∆̂

(2)
12,q − (∆̂(2)

12 ))
2

. (6)

VR being greater than (or smaller) than one suggests that, on average, standard errors

overestimate (or underestimate) the variability of the treatment effect estimate. It is

important to note that this metric assumes that the correct estimand and corresponding

variance are being targeted. A variability ratio of one is of little use if this is not the case,

e.g. if both the model standard errors and the empirical standard errors are taken over
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estimates targeting the wrong estimand. The MCSE of the variability ratio is approximated

as: √√√√√ 1
1000 ∑1000

q=1

(√
V̂(∆̂(2)

12,q)− E
(√

V̂(∆̂(2)
12 )
))2

999 × ESE(∆̂(2)
12 )

2
+

(
1

1000 ∑1000
q=1

√
V̂(∆̂(2)

12,q)
)2

2 × 999 × ESE(∆̂(2)
12 )

2
,

where ESE(∆̂(2)
12 ) is the estimated empirical standard error, which is the denominator in

Equation 6.

• Aim 3 is assessed using the coverage of confidence intervals, estimated as the pro-

portion of times that the true treatment effect is enclosed in the (100 × (1 − α))%

confidence interval of the estimated treatment effect, where α = 0.05 is the nominal signi-

ficance level. The MCSE of the coverage is computed as

√
Cover(∆̂(2)

12 )×(1−Cover(∆̂(2)
12 ))

1000 ,

where Cover(∆̂(2)
12 ) is the estimated coverage percentage.

• We use empirical standard error (ESE) to assess aim 4 as it measures the precision or

long-run variability of the treatment effect estimate. The ESE is defined above, as the

denominator in Equation 6. The MCSE of the empirical standard error is estimated as
ESE(∆̂(2)

12 )√
2×999

.

• The mean square error (MSE) of the estimated treatment effect

MSE(∆̂(2)
12 ) = E

[
(∆̂(2)

12 − ∆(2)
12 )

2
]
=

1
1000

1000

∑
q=1

(∆̂(2)
12,q − ∆(2)

12 )
2,

provides a summary value of overall accuracy (efficiency), integrating elements of bias

(aim 1) and variability (aim 4). The Monte Carlo standard error of the MSE is computed as√
∑1000

q=1

[
(∆̂(2)

12,q−∆(2)
12 )2−MSE(∆̂(2)

12 )

]2

1000×999 , where MSE(∆̂(2)
12 ) is the estimated mean square error.

3.2 R E S U LT S O F T H E S I M U L AT I O N S T U DY

The performance measures across all 162 simulation scenarios are illustrated in Figures 5 to 9

using nested loop plots [118], which arrange all scenarios into a lexicographical order, looping

through nested factors. In the nested sequence of loops, we consider first the parameters with

the largest perceived influence on the performance metric. Notice that this order is considered

on a case-by-case basis for each performance measure. Given the large number of simulation

scenarios, depiction of Monte Carlo standard errors, quantifying the simulation uncertainty, is

difficult. The performance metrics for each scenario and the Monte Carlo standard errors of

each performance metric are reported in Supplementary Appendix C. In MAIC, 1 of 162,000

weighted regressions had a separation issue, i.e., there is a total lack of covariate overlap

(Scenario 115, with N = 150). Results for this replicate were discarded. The outcome

regressions converged for all replicates in STC and the Bucher method.
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3.2.1 Unbiasedness of treatment effect

The impact of the bias will depend on the uncertainty in the estimated treatment effect [119, 120],

measured by the empirical standard error. To assess such impact, we consider standardizing

the biases [120] by computing these as a percentage of the empirical standard error. In a review

of missing data methods, Schafer and Graham [119] consider bias to be troublesome under

1,000 simulations if its absolute size is greater than about one half of the estimate’s empirical

standard error, i.e., the standardized bias has magnitude greater than 50%. Under this rule of

thumb, MAIC does not produce problematic biases in any of the simulation scenarios. On the

other hand, STC and the Bucher method generate problematic biases in 71 of 162 scenarios,

and in 147 of 162 scenarios, respectively. The biases in MAIC do not appear to have any

practical significance, as they do not degrade coverage and efficiency.

Figure 5 shows the bias for the methods across all scenarios. MAIC is the least biased

method, followed by STC and the Bucher method. In the scenarios considered in this simulation

study, STC produces negative bias when the interaction effects are moderate and positive bias

when they are very strong. In addition, biases vary more widely when prognostic effects are

larger. When interaction effects are weaker, stronger prognostic effects shift the bias negatively.

Note that all methods perform the same unadjusted analysis (i.e., a simple regression of

outcome on treatment) to estimate the marginal treatment effect of B versus C. Because the

BC study is a relatively large RCT, this comparison is unbiased with respect to the true marginal

log hazard ratios in the BC population, reported in Table 1. Therefore, any bias in the A vs. B
comparison should arise from bias in the A vs. C comparison, for which marginal treatment

effects are non-null. The degree of systematic bias in STC arises from a mismatch between

the conditional estimates produced for A versus C and the corresponding marginal estimands

that should be targeted. This mismatch is a result of the non-collapsibility of the (log) hazard

ratio (see Section 2.5).

In some cases, e.g. under very strong prognostic variable effects and moderate effect-

modifying interactions, STC even has increased bias compared to the Bucher method. In

other scenarios, e.g. where there are strong effect-modifying interactions and moderate or

strong prognostic variable effects, STC estimates are virtually unbiased. This is because, in

these scenarios, the conditional and marginal estimands for A vs. C are almost identical and

the non-collapsibility of the measure of effect does not induce bias. It is worth noting that

conclusions arising from the interpretation of these patterns or other trends in Figure 5 for STC

are by-products of non-collapsibility. Any generalization should be cautious, as the divergence

between conditional and marginal estimands is simply due to a mathematical property of the

(log) hazard ratio.

As expected, the strength of interaction effects is an important driver of bias in the Bucher

method and the incurred bias increases with greater covariate imbalance. This is because

the more substantial the imbalance in effect modifiers and the greater their interaction with

treatment, the larger the bias of the unadjusted comparison. The impact of these factors on the

bias appears to be slightly reduced when prognostic effects are stronger and contribute more
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“explanatory power” to the outcome. Varying the number of patients in the AC trial does not

seem to have any discernible impact on the bias for any method. Biases in MAIC seem to be

unaffected when varying the degree of covariate imbalance/overlap.
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Figure 5: Bias across all simulation scenarios. The nested loop plot arranges all 162 scenarios into a
lexicographical order, looping through nested factors. In the nested sequence of loops, we
consider first the parameters with the largest perceived influence on the performance metric.

3.2.2 Unbiasedness of variance of treatment effect

In the Bucher method, the variability ratio is close to one under the vast majority of simulation

scenarios (Figure 6). This suggests that standard error estimates for the methods are unbiased,

i.e., that the model standard errors coincide with the empirical standard errors. In STC,

variability ratios are generally close to one under N = 300 and N = 600, and any bias in the

estimated variances appears to be negligible. However, the variability ratios decrease when

the AC sample size is small (N = 150). In these scenarios, there is some underestimation

of variability by the model standard errors. It is important to recall that this metric assumes

that the correct estimand and corresponding variance are being targeted. This is not the

case in our application of STC, in the sense that both model standard errors and empirical

standard errors are taken over an incompatible indirect treatment comparison. MAIC standard
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errors underestimate variability when N = 150, and also when covariate overlap is poor,

in which case underestimation under N = 150 is exacerbated. Under the smallest sample

size and poor covariate overlap, variability ratios are often below 0.9, with model standard

errors clearly underestimating the empirical standard errors. This is likely due to the robust

sandwich estimator used to derive the standard errors. In the literature, this has exhibited

an underestimation of variability in small samples [121, 122]. The understated uncertainty is

problematic for inference, and will also be propagated through the cost-effectiveness analysis,

potentially leading to inappropriate decision-making [23].
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Figure 6: Variability ratio across all simulation scenarios.

3.2.3 Randomization validity

From a frequentist viewpoint [123], 95% confidence intervals are randomization-valid if these

are guaranteed to include the true treatment effect 95% of the time. This means that the

empirical coverage rate should be approximately equal to the nominal coverage rate, in this

case 0.95 for 95% confidence intervals, to obtain appropriate type I error rates for testing a

“no effect” null hypothesis. Theoretically, the empirical coverage rate is statistically significantly

different to 0.95 if, roughly, it is less than 0.9365 or more than 0.9635, assuming 1,000

independent simulations per scenario. These values differ by approximately two standard
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errors from the nominal coverage rate. When randomization validity cannot be attained, one

would at least expect the interval estimates to be confidence-valid, i.e., the 95% confidence

intervals include the true treatment effect at least 95% of the time.

In general, empirical coverage rates for MAIC do not overestimate the advertised nominal

coverage rate. Only 4 of 162 scenarios have a rate above 0.9635. On the other hand, empirical

coverage rates are significantly below the nominal coverage rate when the AC sample size

is low (N = 150) and under poor covariate overlap. With N = 150, 24 of 54 coverage rates

are below 0.9365. When covariate overlap is poor, 38 of 54 coverage rates are below 0.9365

— 18 of these under N = 150. When there is both poor overlap and a low AC sample size,

coverage rates for MAIC are inappropriate: these may even fall below 90%, i.e., at least double

the nominal rate of error. Poor coverage rates are a decomposition of both the bias and

the standard error used to compute the width of the confidence intervals. It is not bias that

degrades the coverage rates for this method but the standard error underestimation mentioned

in subsection 3.2.2. Poor coverage is induced by the standard errors used in the construction

of the confidence intervals.

Figure 7 shows the empirical coverage rates for the methods across all scenarios. Undercov-

erage is a pervasive problem in STC, for which 126 of 162 scenarios have empirical coverage

rates below 0.9365. In the case of STC, undercoverage can be attributed to the bias induced by

the non-collapsibility of the log hazard ratio, discussed in subsection 2.5. The coverage rates

drop under the most important determinants of bias, e.g. moderate effect-modifying interactions

and very strong prognostic variable effects. Under these conditions, the bias of STC is high

enough to shift the coverage rates negatively, pulling these below 80% in some scenarios.
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Figure 7: Empirical coverage percentage of 95% confidence intervals across all simulation scenarios.
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Confidence intervals from the Bucher method are not confidence-valid for virtually all scen-

arios. Coverage rates deteriorate markedly under the most important determinants of bias.

When there is greater imbalance between the covariates and when interaction effects are

stronger, the induced bias is larger and coverage rates are degraded. Under very strong inter-

actions with treatment, empirical coverage may drop below 50%. Therefore, the Bucher method

will incorrectly detect significant results a large proportion of times in these scenarios. Such

overconfidence will lead to very high type I error rates for testing a “no effect” null hypothesis.

3.2.4 Precision and efficiency

Several trends are revealed upon visual inspection of the empirical standard error across

scenarios (Figure 8). As expected, the ESE decreases for all methods (i.e., the estimate is

more precise) as the number of subjects in the AC trial increases. The strengths of interaction

effects and of prognostic variable effects appear to have a negligible impact on the precision of

population adjustment methods. The degree of covariate overlap has an important influence on

the ESE and population adjustment methods incur losses of precision when covariate overlap

is poor. When overlap is poor, there exists a subpopulation in BC that does not overlap with

the AC population. Therefore, inferences in this subpopulation rely largely on extrapolation.

Outcome regression methods such as STC require greater extrapolation when the covariate

overlap is poorer [18]. In reweighting methods such as MAIC, extrapolation is not even possible.

When covariate overlap is poor, observations in the AC patient-level data (those that are not

covered by the range of the effect modifiers in the BC population) are assigned very low weights

(low odds of enrolment in BC vs. AC). On the other hand, the relatively small number of units

in the overlapping region of the covariate space are assigned very large weights, dominating

the reweighted sample. These extreme weights lead to large reductions in ESS and to the

deterioration of precision and efficiency.

In MAIC, the presence of correlation mitigates the effect of decreasing covariate overlap on a

consistent basis. This is due to the correlation increasing the overlap between the joint covariate

distributions of AC and BC, lessening the reduction in effective sample size and providing

greater stability to the estimates. ESE for the Bucher method does not vary across different

degrees of covariate overlap, as these are not considered by the method, and overprecise

estimates are produced.

Contrary to ESE, MSE also takes into account the true value of the estimand as it incorporates

the bias. Hence, main drivers of bias and ESE are generally key properties for MSE. Figure 9

is inspected in order to explore patterns in the mean square error. Estimates are less accurate

for MAIC when prognostic variable effects are stronger, AC sample sizes are smaller and

covariate overlap is poorer. As bias is negligible for MAIC, precision is the driver of accuracy.

On the contrary, as the Bucher method is systematically biased and overprecise, the driver of

accuracy is bias. Poor accuracy in STC is also driven by bias, particularly under low sample

sizes and strong prognostic variable effects. STC was consistently less accurate than MAIC,

with larger mean square errors in all simulation scenarios. In some cases where the STC



58 M E T H O D S F O R P O P U L AT I O N A D J U S T M E N T W I T H L I M I T E D I P D : A S I M U L AT I O N S T U DY

bias was strong, e.g. very strong prognostic variable effects and moderate effect-modifying

interactions, STC even increased the MSE compared to the Bucher method.
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Figure 8: Empirical standard error across all simulation scenarios.
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Figure 9: Mean square error across all simulation scenarios.
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In accordance with the trends observed for the ESE, the MSE is also very sensitive to the

value of N and decreases for all methods as N increases. We highlight that the number of

subjects in the BC trial (not varied in this simulation study) is a less important performance

driver than the number of subjects in AC; while it contributes to sampling variability, the

reweighting or regressions are performed in the AC patient-level data.

3.3 D I S C U S S I O N O F S I M U L AT I O N S T U DY R E S U LT S

In this section, I discuss the implications of, and recommendations for, performing population

adjustment, based on the simulation study. Finally, I highlight potential limitations of the

simulation study, primarily relating to the extrapolation of its results to practical guidance. We

have seen in Section 3.2 that the typical use of STC produces systematic bias as a result of

the non-collapsibility of the log hazard ratio. The estimate ∆̂(2)
10 targets a conditional treatment

effect that is incompatible with the estimate ∆̂(2)
20 . This leads to bias in estimating the marginal

treatment effect for A vs B, despite all assumptions for population adjustment being met. Given

the clear inadequacy of STC in this setting, we focus on MAIC as a population adjustment

method.

3.3.1 Summary of findings

B I A S - VA R I A N C E T R A D E - O F F S Before performing population adjustment, it is important

to assess the magnitude of the bias induced by effect modifier imbalances. Such bias depends

on the degree of covariate imbalance and on the strength of interaction effects, i.e., the effect

modifier status of the covariates. The combination of these two factors determines the level of

bias reduction that would be achieved with population adjustment.

Inevitably, due to bias-variance trade-offs, the increase in variability that we are willing

to accept with population adjustment depends on the magnitude of the bias that would be

corrected. Such variability is largely driven by the degree of covariate overlap and by the AC
sample size. Hence, while the potential extent of bias correction increases with greater covariate

imbalance, so does the potential imprecision of the treatment effect estimate (assuming that

the imbalance is accompanied by poor overlap).

In our simulation study, under no failures of assumptions, this trade-off always favours the

bias correction offered by MAIC over the precision of the Bucher method, implying that the

reductions in ESS based on unstable weights are worth it, even under stronger covariate

overlap. Across scenarios, the relative accuracy of MAIC with respect to that of the Bucher

method improves under greater degrees of covariate imbalance and poorer overlap. It is worth

noting that, even in scenarios where the Bucher method is relatively accurate, it is still flawed in

the context of inference and decision-making due to overprecision and undercoverage.

The magnitude of the bias that would be corrected with population adjustment also depends

on the strength of interaction effects, i.e., the effect modifier status of the covariates. In the

simulation study, the lowest effect-modifying interaction coefficient was − ln(0.67) = 0.4.
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Despite the relatively low magnitude of bias induced in this setting, MAIC was consistently more

efficient than the Bucher method. Larger interaction effects warrant greater bias reduction but

do not degrade the precision of the population-adjusted estimate. Hence, the relative accuracy

of MAIC with respect to the Bucher method improves further as the effect-modifying coefficients

increase.

VA R I A N C E E S T I M AT I O N I N M A I C MAIC was generally randomization-valid, except in

situations with poor covariate overlap and small sample sizes, where robust sandwich standard

errors underestimated empirical estimates of the standard error and, consequently, there was

undercoverage. MAIC exhibited variability ratios below 0.9 in scenarios with the smallest

sample size and poor covariate overlap. In these scenarios, confidence intervals were narrow,

achieving coverage rates which were statistically significantly below 95% and sometimes

dropping below 90%. As mentioned in subsection 3.2.2, this is probably due to the robust

sandwich estimator used to derive the standard errors, which has previously underestimated

variability in small samples in simulation studies [121, 122]. It is worth noting that this estimator

is based on large-sample (asymptotic) arguments and infinite populations. Therefore, it is not

surprising that performance is poor under the smallest effective sample sizes, which occur

where the AC trial sample size is small and covariate overlap is poor. Where effective sample

sizes are small, confidence intervals derived from robust sandwich variance estimators should

be interpreted cautiously, as these may understate uncertainty and this underestimation will

be propagated through the cost-effectiveness analysis, potentially leading to inappropriate

decision-making.

This robust variance estimator is easy to use by analysts performing MAIC (and propensity

score weighting, in general) because it is computationally efficient and is typically implemented

in standard routines in statistical computing software such as R. For instance, in R, by setting

robust=TRUE in the coxph function, built in the survival package [112] for survival analysis,

or using the sandwich package [124] for the treatment coefficient of a weighted generalized

linear model. It is worth noting that these readily available implementations assume that the

weights are fixed or known and do not account for the uncertainty in the estimation of the

weights.

In principle, one could circumvent this issue by using the bootstrap to obtain the variance

and confidence intervals of the A vs. C treatment effect, as in the simulation study by Petto et

al. [25] or in the article by Sikirica et al. [75]. Bootstrap methods are beneficial because they

can account for the variability of the estimated weights and are straightforward to implement,

potentially providing unbiased variance estimators with a large number of resamples. However,

bootstrapping is orders of magnitude more expensive computationally than applying the closed-

form sandwich variance estimator. In addition, bootstrap resampling procedures are inherently

random and exhibit some seed-dependence, which is only mitigated by increasing the number

of resamples and computational demand. It is necessary to compare different approaches to

variance estimation and assess whether implementations of the bootstrap can compete with

the robust sandwich estimator.
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Another alternative to variance estimation is the development of closed-form robust sandwich

estimators that properly account for the uncertainty in estimating the propensity score logistic

regression for the weights. These have been explicitly derived for accurate variance estimation

in the causal inference literature [125–128], but not for MAIC.

3.3.2 Implications for practice

J U S T I F I C AT I O N O F E F F E C T M O D I F I E R S TAT U S In the simulation study, we know that

population adjustment is required as we set the cross-trial imbalances between covariates and

have specified some of these as effect modifiers. Most applications of population adjustment

present evidence of the former, e.g. through tables of baseline characteristics with covariate

means and proportions (“Table 1” in a RCT publication). However, quantitative evidence justify-

ing the effect modifier status of the selected covariates is rarely brought forward. Presenting this

type of supporting evidence is very important when justifying the use of population adjustment.

Typically, the selection of effect modifiers is supported by clinical expert opinion. However,

clinical expert judgment and subject-matter knowledge are fallible when determining effect

modifier status because: (1) the therapies being evaluated are often novel; and (2) effect

modifier status is scale-specific — clinical experts may not have the mathematical intuition to

assess whether covariates are effect modifiers on the linear predictor scale (as opposed to the

natural outcome scale).

Therefore, applications of population adjustment often balance all available covariates on the

grounds of expert opinion. This is probably because the clinical experts cannot rule out bias-

inducing interactions with treatment for any of the baseline characteristics. Almost invariably,

the level of covariate overlap and precision will decrease as a larger number of covariates

are accounted for in the analysis. Presenting quantitative evidence along with clinical expert

opinion would help establish whether adjustment is necessary for each covariate [129].

As proposed by Phillippo et al. [9], we encourage the analyst to fit regression models with

interaction terms to the IPD for an exploratory assessment of effect modifier status. One

possible strategy is to consider each potential effect modifier one-at-a-time by adding the

corresponding interaction term to the main (treatment) effect model [77]. Then, the interaction

coefficient can be multiplied by the difference in effect modifier means to gauge the level

of induced bias [18]. This analysis should be purely exploratory, since individual trials are

typically underpowered for interaction testing [130, 131]. The dichotomization or categorization

of continuous variables, the poor representation of a variable, e.g. a limited age range, and

incorrectly assuming linearity may dilute interactions further.

Meta-analyses of multiple trials, involving the same outcome and similar treatments and

conditions, provide greater power to detect interactions, particularly using IPD [131, 132].

With unavailable IPD, it may still be possible to conduct an IPD meta-analysis if the owners

of the data are willing to provide the interaction effects [133], or one may conduct an ALD

meta-analysis if covariate-treatment interactions are included in the clinical trial reports [130].

In any case, the identification of effect modifiers is in essence observational [134, 135], and
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requires much more evidence than demonstrating a main treatment effect [136]. Therefore,

it may be reasonable to balance a variable if there is a strong biological rationale for effect

modification, even if the interaction is statistically weak, e.g. the P-value is large and the null

hypothesis of interaction is not rejected [136].

N UA N C E S I N T H E I N T E R P R E TAT I O N O F R E S U LT S It is worth noting that the conclusions

of this simulation study are dependent on the outcome and model type. We have considered

survival outcomes and the Cox proportional hazards model, as these are the most prevalent

outcome type and modeling framework in MAIC and STC applications. However, further

simulation studies are required with alternative outcome types and models. For example,

exploratory simulations with binary outcomes and logistic regression have found that the

performance of MAIC is more affected by low sample sizes and poor covariate overlap than

seen for survival outcomes. This is likely due to logistic regression being less efficient [137]

and more prone to small-sample bias [138] than Cox regression.

Furthermore, we have only considered and adjusted for two effect modifiers that induce bias

in the same direction, i.e., the effect modifiers in a given study have the same means, the

cross-trial differences in means are in the same direction, and the interaction effects are in

the same direction. In real applications of population adjustment, it is not uncommon to see

more than 10 covariates being balanced [30]. As this simulation study considered percentage

reductions in effective sample size for MAIC that are representative of scenarios encountered

in NICE TAs, real applications will likely have imbalances for each individual covariate that are

smaller than those considered in this study. In addition, the means for the effect modifiers within

a given study will differ, with the mean differences across studies and/or the effect-modifying

interactions potentially being in opposite directions. Therefore, the induced biases could cancel

out but, then again, this is not directly testable in a practical scenario.

3.3.3 Limitations

P OT E N T I A L F A I L U R E S I N A S S U M P T I O N S Most importantly, all the assumptions required

for indirect treatment comparisons and valid population adjustment hold, by design, in the

simulation study. While the simulation study provides proof-of-principle for the methods, it does

not inform how robust these are to failures in assumptions. The assumptions are hard to meet

and most of them are not directly testable. It is important that researchers are aware of these,

as their violation may lead to biased estimates of the treatment effect. In practice, we will

never come across an idealistic scenario in which all assumptions perfectly hold. Therefore,

researchers should exercise caution when interpreting the results of population-adjusted

analyses. These should not be taken directly at face value, but only as tools to simplify a

complex reality.

Firstly, MAIC, STC and the Bucher method rely on trials AC and BC being internally valid,

implying appropriate designs, the absence of non-compliance, appropriate randomization and

reasonably large sample sizes. Secondly, all indirect treatment comparisons (standard or
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population-adjusted) rely on consistency under parallel studies, i.e., potential outcomes are

homogeneous for a given treatment regardless of the study assigned to a subject. For instance,

treatment C should be administered in the same setting in both trials, or differences in the

nature of treatment should not change its effect. This means that MAIC and STC cannot

account for cross-trial differences that are perfectly confounded with the nature of treatments,

e.g. treatment administration or dosing formulation. MAIC and STC can only account for

differences in the characteristics of the trial populations.

In practice, the additional assumptions made by MAIC and STC may be problematic. Firstly,

it assumed that one accounts for all effect modifiers.6 By design, the simulation study assumes

that complete information is available for both trials and that all effect modifiers are included.

In practice, this assumption is hard to meet — it is difficult to ascertain the effect modifier

status of covariates, particularly for new treatments with limited prior empirical evidence and

clinical domain knowledge. Hence, the analyst may select the effect modifiers incorrectly. In

addition, information on some effect modifiers could be unmeasured or unpublished for one of

the trials. The incorrect omission of effect modifiers leads to the wrong specification of the trial

assignment logistic regression model in MAIC, and of the outcome regression in STC. Relative

effects will no longer be conditionally constant across trials and this will lead MAIC and STC to

produce biased estimates.

In the simulation study, we know the correct data-generating mechanism, and are aware of

which covariates are purely prognostic variables and which covariates are effect modifiers. This

is something that one cannot typically ascertain in practice. Exploratory simulations show that

the relative precision and accuracy of MAIC deteriorate, with respect to STC and the Bucher

method, if we treat all four covariates as effect modifiers. This is due to the loss of effective

sample size and inflation of the standard error due to the overspecification of effect modifiers.

Alternatively, it is more burdensome to specify the outcome regression model for STC

than the propensity score model for MAIC; the outcome regression requires specifying both

prognostic and interaction terms, while the trial assignment model in MAIC only requires the

specification of effect modifiers. The relative precision and accuracy of STC deteriorate if

the terms corresponding to the purely prognostic covariates are not included in the outcome

regression. Nevertheless, this does not alter the conclusions of the simulation study: the other

terms in the outcome regression already account for a considerable portion of the variability of

the outcome and relative effects have very similar accuracy in any case.

Another assumption made by MAIC and STC, that holds in this simulation study, is that there

is some overlap between the ranges of the selected covariates in AC and BC. In population

6 In the anchored scenario, we are interested in a comparison of relative outcomes or effects, not absolute outcomes.
Hence, an anchored comparison only requires conditioning on the effect modifiers, the covariates that explain the
heterogeneity of the A vs. C treatment effect. This assumption is denoted the conditional constancy of relative
effects by Phillippo et al. [9, 18], i.e., given the selected effect-modifying covariates, the marginal A vs. C treatment
effect is constant across the AC and BC populations. There are analogous formulations of this assumption
[17, 59–61, 139], such as the conditional ignorability, unconfoundedness or exchangeability of trial assignment for
such treatment effect, i.e., trial selection is conditionally independent of the treatment effect, given the selected
effect modifiers. One can consider that being in population AC or population BC does not carry any information
about the marginal A vs C treatment effect, once we condition on the treatment effect modifiers. This means
that after adjusting for these effect modifiers, treatment effect heterogeneity and trial assignment are conditionally
independent.
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adjustment methods, the indirect comparison is performed in the BC population. This implies

that the ranges of the covariates in the BC population should be covered by their respective

ranges in the AC trial. In practice, this assumption may break down if the inclusion/exclusion

criteria of AC and BC are inconsistent. When there is no overlap, weighting methods like

MAIC are unable to extrapolate beyond the AC population, and may not even produce an

estimate. However, STC can extrapolate beyond the covariate space observed in the AC
patient-level data, using the the linearity assumption or other appropriate assumptions about

the input space. Note that the validity of the extrapolation depends on accurately capturing the

true covariate-outcome relationships. We view extrapolation as a desirable property because

poor overlap, with small effective sample sizes and large percentage reductions in effective

sample size, is a pervasive issue in HTA [30].

MAIC and STC make certain assumptions about the joint distribution of covariates in BC.

Where no correlation information is available for the BC study, both methods seem to assume

that the joint BC covariate distribution is the product of the published marginal distributions.

The implicit assumptions are, in fact, more nuanced. In MAIC, as stated in the NICE Decision

Support Unit Technical Support Document [18], “when covariate correlations are not available

from the (BC) population, and therefore cannot be balanced by inclusion in the weighting model,

they are assumed to be equal to the correlations amongst covariates in the pseudo-population

formed by weighting the (AC) population.” In the typical usage of STC, the correlations between

the BC covariates are assumed to be equal to the correlations between covariates in the AC
study. In the “covariate simulation” approach to STC, discussed in Section 2.4, this assumption

is also made, albeit more explicitly, if the correlation structure observed in the AC IPD is used

to simulate the covariates.

Indirect treatment comparisons are typically conducted on the linear predictor scale [18],

upon which the treatment effect is assumed to be additive. We have assumed that the effect

modifiers have been defined on the linear predictor scale and are additive on this scale. In the

simulation study, it is known that effect modification is linear on the log hazard ratio scale. A

central component of population-adjusted indirect comparisons is the specification of a model

that is typically parametric. That is the propensity score model for the weights in MAIC or the

outcome regression in STC. Parametric modeling assumptions may not be appropriate in real

applications, where there is a danger of model misspecification. This is more evident in a

regression adjustment method like STC, where an explicit outcome regression is formulated.

The parametric model depends on functional form assumptions that will be violated if the

covariate-outcome relationships are not correctly captured.

Even though the logistic regression model for the weights in MAIC does not make reference

to the outcome, MAIC is also susceptible to model misspecification bias, albeit in a more implicit

form. The model for estimating the weights in the simulation study is the best-case model

because the right subset of covariates has been selected as effect modifiers and the balancing

property holds for the weights with respect to the effect modifier means, as mentioned in

subsection 3.1.4. In practice, the model can lead to a biased estimate if effect modifiers are

omitted. Also, scale conflicts may arise if effect modification status, which is scale-specific,
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has been justified on the wrong scale, e.g. when treatment effect modification is specified as

linear but is non-linear or multiplicative, e.g. age in cardiovascular disease treatments. Note

that, in practice, we find that it may be more difficult to specify a correct parametric model for

the outcome than an approximately correct parametric model for the trial assignment weights.

3.4 C O N C L U D I N G R E M A R K S

In the performance measures I have considered, MAIC was the least biased and most accurate

method. I therefore recommend its use for survival outcomes, provided that its assumptions are

reasonable. MAIC was generally randomization-valid, except in situations with poor covariate

overlap and small sample sizes, where standard errors underestimated variability and there was

undercoverage. STC was systematically biased because it targets a conditional treatment effect

for A vs. C. This effect was incompatible in the indirect comparison due to the non-collapsibility

of the log hazard ratio. The bias induced by STC could have considerable impact on decision

making and policy, and could lead to perverse decisions and subsequent misuse of resources.

Therefore, STC should be avoided in settings with a non-collapsible measure of effect. The

Bucher method is systematically biased and overprecise when there are imbalances in effect

modifiers and interaction effects that induce bias in the treatment effect.

An important objective, that I develop in the next chapter, is proposing an alternative for-

mulation to outcome regression that estimates a marginal treatment effect for A vs. C. A

crucial additional step, missing from the current implementation, is to integrate or average the

conditional effect estimates over the BC covariates. Then, outcome regression could potentially

obtain a marginal treatment effect estimate that is comparable to the marginal B vs. C estimate

published in the BC study. This would avoid the bias caused by incompatibility in the indirect

comparison and provide inference for the marginal treatment effect for A vs. B in the BC
population.
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The crucial element that has been missing from the application of outcome regression is the

marginalization of treatment effect estimates. When adjusting for covariates, one must integrate

or average the conditional estimate over the relevant joint covariate distribution to recover a

marginal treatment effect that is compatible in the indirect comparison. In this chapter, I develop

several methods to accomplish this and present these methods in detail.

Section 4.1 presents the context for the use of outcome regression in population-adjusted

indirect comparisons, and some assumptions. Section 4.2 outlines the data structure/re-

quirements for the methods. Section 4.3 introduces a covariate simulation step, which is

necessary to approximate the joint covariate distribution of the BC population. Then, several

methodologies are proposed for marginalizing the conditional effect estimates produced by the

conventional covariate-adjusted outcome regression. Section 4.4 describes a marginalization

method based on parametric G-computation or model-based standardization, often applied in

observational studies in epidemiology and medical research where treatment assignment is

non-random. Section 4.5 adapts parametric G-computation to a Bayesian statistical framework,

which explicitly accounts for relevant sources of uncertainty, allows for the incorporation of

prior evidence (e.g. expert opinion), and naturally integrates the analysis into a probabilistic

framework, typically required for HTA. In Section 4.6, Bayesian parametric G-computation is

extended to a novel general-purpose method based on the ideas underlying multiple imputation.

This method is termed multiple imputation marginalization (MIM) and is applicable to a wide

range of models, including parametric survival models. Section 4.7 clarifies how to combine

the effect estimates in an indirect treatment comparison. Section 4.8 provides some insight for

setting the number of resamples/syntheses in each method. Finally, Section 4.9 provides some

brief concluding remarks.

Part of the research in this chapter is condensed in the article “Parametric G-computation

for Compatible Indirect Treatment Comparisons with Limited Individual Patient Data” (Remiro-

Azócar et al., 2021), and in the working paper “Marginalization of Regression-Adjusted Treat-

ment Effects in Indirect Comparisons with Limited Patient-Level Data” (Remiro-Azócar et al.,

2021).1

1 The former has been submitted to Research Synthesis Methods and is available at: https://arxiv.org/abs/
2108.12208. The latter is available at: https://arxiv.org/abs/2008.05951
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4.1 I N T R O D U C T I O N

4.1.1 The need for outcome regression approaches

Matching-adjusted indirect comparison (MAIC) is the most commonly used population-adjusted

indirect comparison method [30]. In Chapter 2, we learned that “matching-adjusted” is a

misnomer, as the indirect comparison is actually “weighting-adjusted”, with the population

adjustment based on propensity score weighting. A logistic regression is used to model the trial

assignment odds conditional on a selected set of baseline covariates. The weights estimated

by the model represent the “trial selection” odds, i.e., the odds of being enrolled in the BC trial

as opposed to being enrolled in the AC trial. These are balancing scores that, when applied to

the AC IPD, form a pseudo-population that has balanced covariate moments with respect to the

BC population. The weights are often applied to a weighted simple regression to estimate the

marginal treatment effect for A vs. C in the BC population. However, MAIC does not explicitly

require an outcome model. The development of outcome regression methods, which estimate

an outcome-generating mechanism given treatment and the baseline covariates, is appealing

for several reasons:

(1) Statistical precision and efficiency. Outcome regression tends to give more precise

estimates than weighting. Weighting is particularly inefficient and unstable where covariate

overlap is poor and effective sample sizes are small [37, 125, 140–142], as it is sensitive to

inordinate influence by extreme weights. Outcome regression can extrapolate the association

between outcome and covariates where overlap is insufficient, while weighting methods cannot

extrapolate beyond the observed covariate space in the AC IPD. Valid extrapolation, using

the linearity assumption or other appropriate assumptions about the input space, requires

accurately capturing the true covariate-outcome relationships.

(2) Different modeling assumptions. While MAIC relies on a correctly specified model for

the conditional odds of trial assignment given the covariates, outcome regression methods rely

on a correctly specified model for the conditional expectation of the outcome given treatment

and the covariates. In my experience, identifying the variables that affect outcome is more

straightforward than identifying the factors that drive trial assignment in the context of population-

adjusted indirect comparisons. This is not typically the case in the standard use of propensity

score weighting in observational studies, where one identifies the factors that drive treatment

(as opposed to trial) assignment. Nevertheless, in our scenario, the factors driving selection

into different RCTs are often arbitrary [143, 144]. Researchers may benefit from the use of

distinct modeling approaches with different assumptions, as these can yield different results,

especially if there is a violation of assumptions.

(3) Flexibility. Researchers could use augmented or doubly robust methods [53, 145–147]

that combine the model for the expectation of the outcome with the trial assignment odds model.

These are attractive due to their increased robustness to model misspecification: consistent

estimation only requires the correct specification of either of the two models, not necessarily
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both [145, 148]. Even with the reduced misspecification risk, they tend to have improved

precision and efficiency with respect to the standard weighting estimators [149].

4.1.2 Some assumptions

Besides the differences in (typically parametric) model specification, weighting methods such

as MAIC and outcome regression methods such as those discussed in this chapter mostly

require the same set of assumptions. An in-depth non-technical description of these is detailed

in Supplementary Appendix A. The assumptions include:

1. Internal validity of the AC and BC trials, e.g. appropriate randomization and sufficient

sample sizes so that the treatment groups are comparable, no interference, negligible

measurement error or missing data, the absence of non-compliance, etc.

2. Consistency under parallel studies such that both trials have identical control treatments,

sufficiently similar study designs and outcome measure definitions, and have been

conducted in care settings with a high degree of similarity.

3. Accounting for all effect modifiers of treatment A vs. C in the adjustment. This assumption

is called the conditional constancy of the A vs. C marginal treatment effect [18], and

requires that a sufficiently rich set of baseline covariates has been measured for the

AC study and is available in the BC study publication. Another advantage of outcome

regression with respect to weighting is that, by being less sensitive to overlap issues,

it allows for the inclusion of larger numbers of effect modifiers. This makes it easier to

satisfy the conditional constancy of relative effects.

4. Overlap between the covariate distributions in AC and BC. More specifically, that the

ranges of the selected covariates in the AC trial cover their respective moments in the BC
population. The overlap assumption (often referred to as “positivity”) can be overcome

in outcome regression if one is willing to rely on model extrapolation, assuming correct

model specification [53].

5. Correct specification of the BC population. Namely, that it is appropriately represented

by the information available to the analyst, that does not have access to patient-level

data from the BC study.

Most assumptions are causal and untestable, with their justification typically requiring prior

substantive knowledge [136]. Nevertheless, we shall assume that they hold throughout the rest

of the thesis. We have already discussed potential failures of assumptions in Section 3.3.3, in

the context of our first simulation study, but also do so in Section 5.3.3, in the context of our

second simulation study, and in Supplementary Appendix A.
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4.2 DATA S T RU C T U R E

The outlined methodologies have the following data requirements. For the AC trial IPD, let

DAC = (x, z, y). Here, x is a matrix of baseline characteristics (covariates), e.g. age, gender,

comorbidities, baseline severity, of size N × K, where N is the number of subjects in the trial

and K is the number of available covariates. For each subject n = 1, . . . , N, a row vector

xn of K covariates is recorded. As per Section 2.2, it is assumed that all available baseline

characteristics are prognostic of the outcome and that a subset of these, x(EM) ⊆ x, is selected

as effect modifiers on the linear predictor scale, with a row vector x(EM)
n recorded for each

subject. We let y = (y1, y2, . . . , yN) represent a vector of outcomes and z = (z1, z2, . . . , zN)

is a treatment indicator (zn = 1 if subject n is under treatment A and zn = 0 if under C). For

simplicity, we shall assume that there are no missing values in DAC. As outlined in subsection

5.3.2, the outcome regression methodologies can be readily adapted to address this issue,

particularly under a Bayesian framework, but this is an area for future research.

We let DBC = [θ, ρ, ∆̂(2)
20 , V̂(∆̂(2)

20 )] denote the information available for the BC study. No

individual-level information on covariates, treatment or outcomes is available. Here, θ rep-

resents a vector of published covariate summaries, e.g. proportions or means. For ease of

exposition, we shall assume that these are available for all K covariates (otherwise, one would

take the intersection of the available covariates), and that the selected effect modifiers are

also available such that θ(EM) ⊆ θ. An estimate ∆̂(2)
20 of the B vs. C treatment effect in the BC

population, and an estimate of its variance V̂(∆̂(2)
20 ), either published directly or derived from

crude aggregate outcomes in the literature, are also available. Note that these are not used

in the adjustment mechanism but are ultimately required to perform inference for the indirect

comparison in the BC population.

Finally, we let the symbol ρ stand for the dependence structure of the BC covariates.

Under certain assumptions about representativeness, this can be retrieved from the AC
trial, e.g. through the observed pairwise correlations, or from external data sources such as

registries. This information, together with the published covariate summary statistics, is required

to characterize the joint covariate distribution of the BC population. A pseudo-population of

N∗ subjects is simulated from this joint distribution, such that x∗ denotes a matrix of baseline

covariates of dimensions N∗ × K, with a row vector x∗i of K covariates simulated for each

subject i = 1, . . . N∗. Notice that the value of N∗ does not necessarily have to correspond to

the actual sample size of the BC study; however, the simulated cohort must be sufficiently large

so that the sampling distribution is stabilized, minimizing sampling variability. Again, a subset of

the simulated covariates, x∗(EM) ⊆ x∗, makes up the treatment effect modifiers on the linear

predictor scale, with a row vector x∗(EM)
i for each subject i = 1, . . . , N∗. In this chapter, the

asterisk superscript represents unobserved quantities that have been constructed in the BC
population.

The outcome regression approaches discussed in this chapter estimate treatment effects

with respect to a hypothetical pseudo-population for the BC study. Before outlining the specific
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outcome regression methods, we explain how to generate values for the individual-level

covariates x∗ for the BC population using Monte Carlo simulation.

4.3 I N D I V I D UA L - L E V E L C OVA R I AT E S I M U L AT I O N

Ideally, the BC population should be characterized by the full joint distribution of covariates.

However, the restriction of limited IPD makes it unlikely that the joint distribution of the BC
covariates is available. Where there are not many covariates and these are binary, this is

sometimes available as a cross-tabulation. However, most of the time we need to approximate

the joint distribution appropriately. This is important to avoid bias arising from the incomplete

specification of the BC population. The published summary values θ and the correlation

structure ρ are combined, making certain parametric assumptions about the marginal distribu-

tional forms, to infer the joint distribution of the BC covariates and construct an appropriate

pseudo-population for inferences. The proposed approaches allow the analyst to bring in some

prior knowledge or evidence to inform the potential distributions of the covariates. However, it is

worth noting that we cannot give a general recipe for this step, which requires context-specific

knowledge that is likely not available from the observed data in the trials.

Firstly, the marginal distributions for each covariate are specified. The mean and, if applicable,

the standard deviation of the marginals are sourced from the BC report to match the published

summary statistics. As the true marginal distributional forms are not known, some parametric

assumptions are required. For instance, if it is reasonable to assume that sampling variability for

a continuous covariate can be described using a normal distribution, and the covariate’s mean

and standard deviation are published in the BC report, we can assume that it is marginally

normally distributed. Hence, we can also select the family for the marginal distribution using the

theoretical validity of the candidate distributions alongside the IPD. For example, the marginal

distribution of duration of prior treatment at baseline could be modeled as a log-normal or

Gamma distribution as these distributions are right-skewed and bounded to the left by zero.

Truncated distributions can be used to resemble the inclusion/exclusion criteria for continuous

covariates in the BC trial, e.g. age limits, and avoid deterministic overlap violations.

Secondly, the correlations between covariates are specified. We suggest two possible data-

generating model structures for this purpose: (1) simulating the covariates from a multivariate

Gaussian copula [38, 106]; or (2) factorizing the joint distribution of the covariates into the

product of marginal and conditional distributions. The former approach is perhaps more

general-purpose. The latter is more flexible, defining separate models for each variable, but

its specification can be daunting where there are many covariates and interdependencies are

complex.

Any multivariate joint distribution can be decomposed in terms of univariate marginal distri-

bution functions and a dependence structure [150]. A Gaussian copula “couples” the marginal

distribution functions for each covariate to a multivariate Gaussian distribution function. The

main appeal of a copula is that the correlation structure of the covariates and the marginal

distribution for each covariate can be modeled separately. We may use the pairwise correlation
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structure observed in the AC patient-level data as the dependence structure, while keeping

the marginal distributions inferred from the BC summary values and the IPD. Note that the

term “Gaussian” does not refer to the marginal distributions of the covariates but to the correla-

tion structure. While the Gaussian copula is sufficiently flexible for most modeling purposes,

more complex copula types (e.g. Clayton, Gumbel, Frank) may provide different and more

customizable correlation structures [106].

Alternatively, we can account for the correlations by factorizing the joint distribution of covari-

ates in terms of marginal and conditional densities. This strategy is common in implementations

of sequential conditional algorithms for parametric multiple imputation [151, 152]. For instance,

consider two baseline characteristics: age, which is a continuous variable, and the presence of

a comorbidity c, which is dichotomous. We can factorize the joint distribution of the covariates

such that p(age, c) = p(c | age)p(age).
In this scenario, we draw agei for subject i from a suitable marginal distribution, e.g. a normal,

with the mean and standard deviation sourced from the published BC summaries or official life

tables. The mean πc
i of c (the conditional proportion of the comorbidity) given the age, can be

modeled through a regression: πc
i = g−1(αc

0 + αc
1(agei − age)), with ci ∼ Bernoulli(πc

i ) where

g(·) is an appropriate link function. Here, the coefficients αc
0 and αc

1 represent respectively the

overall proportion of comorbidity c in the BC population (marginalizing out the age), and the

correlation level between comorbidity c and (the centered version of) age. The former coefficient

can be directly sourced from the published BC summaries, whereas the latter could be derived

from pairwise correlations observed in the AC IPD or from external sources, e.g. clinical expert

opinion, registries or administrative data, applying the selection criteria of the BC trial to subset

the data. Figure 10 provides an example of a similar probabilistic structure with three covariates:

age and the presence of two comorbidities, c and d. In this example, the distribution of the

covariates is factorized such that p(age, c, d) = p(d | c, age)p(c | age)p(age).
It is important to acknowledge that this “covariate simulation” step arises due to a suboptimal

scenario, where patient-level data on covariates are unavailable for the BC study. Ideally, this

should be freely available or, at least, disclosed by the sponsor company. Raw patient-level data

are always the preferred input for statistical inference, allowing for the testing of assumptions

[153]. The underlying reasons for unavailable IPD are diverse and span across a range of

issues. Perhaps the most sensitive of these is privacy, with the General Data Protection

Regulation [154] ratified by the European Union in 2018 recognizing data concerning health as

a special category of data with specific protection safeguards and disclosure regulations.

We note that, if the main hindrance to the availability of IPD is privacy, the manufacturer itself

could facilitate statistical inference by using the IPD to create fully artificial covariate datasets

[155]. The release of such datasets would not involve a violation of privacy or confidentiality

and would avoid the need for the “covariate simulation” step. Alternatively, Bonofiglio et al.

[156] have recently proposed a framework where access to covariate correlation summaries is

made possible through distributed computing. It is unclear whether access to such framework

would be granted to a competitor submitting evidence for reimbursement to HTA bodies, albeit

the summaries could be reported in clinical trial publications.
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Figure 10: An example of individual-level Monte Carlo covariate simulation where the joint distribution
of three baseline characteristics, age, comorbidity c and comorbidity d, is factorized into the
product of marginal and conditional distributions, such that p(age, c, d) = p(d | c, age)p(c |
age)p(age). The joint distribution is valid because the conditional distributions defining the
covariates are compatible: we start with a marginal distribution for age and construct the joint
distribution by modeling each additional covariate, one-by-one, conditionally on the covariates
that have already been simulated. This diagram adopts the convention of Kruschke [157].
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4.4 M A R G I N A L I Z AT I O N V I A PA R A M E T R I C G - C O M P U TAT I O N

The crucial element that has been missing from the typical application of outcome regression is

the marginalization of the A vs. C treatment effect estimate. When adjusting for covariates, one

must integrate or average the conditional estimate over the joint BC covariate distribution to

recover a marginal treatment effect that is compatible in the indirect comparison. Parametric G-

computation [42, 43, 158–160] is an established method for marginalizing regression-adjusted

conditional estimates. The literature on population-adjusted indirect comparisons has been

developed separately to G-computation, despite the close relationships between the methodo-

logies. We build a new link between the two in the next paragraphs.

Succinctly, G-computation in this context consists of: (1) predicting the conditional outcome

expectations under treatments A and C for each subject in the BC population; (2) averaging the

predictions to produce marginal outcome means on the natural scale; and (3) back-transforming

the averages to the linear predictor scale, contrasting the linear predictions to estimate the

marginal A vs. C treatment effect in the BC population. This marginal effect is compatible in

the indirect treatment comparison. This procedure is a form of standardization, a technique

which has been performed for decades in epidemiology, e.g. when computing standardized

mortality ratios [146]. Parametric G-computation is often called model-based standardization

[44–46] because a parametric model is used to predict the conditional outcome expectations

under each treatment. When the covariates and outcome are discrete, the estimation of the

conditional expectations could be non-parametric, in which case G-computation is numerically

identical to crude direct post-stratification [16].

G-computation marginalizes the conditional estimates by separating the regression modeling

outlined for STC in Section 2.4 from the estimation of the marginal treatment effect for A vs. C.

Firstly, a regression model of the observed outcome y on the covariates x and treatment z is

fitted to the AC IPD:

g(µn) = β0 + xnβ1 +
(

βz + x(EM)
n β2

)
1(zn = 1). (7)

Again, µn is the expected outcome of subject n on the natural scale, g(·) is an appropriate

invertible canonical link function, β0 is the intercept, β1 is a vector of regression coefficients for

the prognostic variables, β2 is a vector of interaction coefficients for the effect modifiers and

βz represents a conditional A vs. C treatment effect. Contrary to Equation 4, this regression

model is not centered on the mean BC covariates for reasons we shall explain shortly. In the

context of G-computation, the regression model in Equation 7 is often called the “Q-model”.

Having fitted the Q-model, the regression coefficients are treated as nuisance parameters.

The parameters are applied to the simulated covariates x∗ to predict hypothetical outcomes

for each subject under both possible treatments. Namely, a pair of predicted outcomes, also

called potential outcomes [62], under A and under C, is generated for each subject. Because

G-computation has been developed within the counterfactual framework for causal inference

[42], we refer to these outcomes as counterfactual outcomes. In our description, these are
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known as counterfactual to denote what outcomes might have been observed had subjects in

a different population, in which the A vs. C trial was not conducted, received treatment.

Parametric G-computation typically relies on maximum-likelihood estimation to fit the regres-

sion model in Equation 7. In this case, the methodology proceeds as follows. We denote the

maximum-likelihood estimate of the regression parameters as β̂ = (β̂0, β̂1, β̂2, β̂z). Leaving

the simulated covariates x∗ at their set values, we fix the treatment values, indicated by a

vector z∗ = (z∗1 , z∗2 , . . . , z∗N∗), for all N∗. By plugging treatment A into the maximum-likelihood

regression fit for each simulated individual, we predict the marginal outcome mean, on the

natural scale, when all subjects are under treatment A:

µ̂1(x∗) =
∫

x∗
g−1(β̂0 + x∗ β̂1 + β̂z + x∗(EM) β̂2)p(x∗)dx∗ (8)

≈ 1
N∗

N∗

∑
i=1

g−1(β̂0 + x∗i β̂1 + β̂z + x∗(EM)
i β̂2). (9)

Equation 8 follows from the law of total expectation, such that the (marginal) expected outcome

is equal to the expected value of the conditional expected outcome, given the predictors. The

joint probability density function for the BC covariates is denoted p(x∗). This could be replaced

by a probability mass function if the covariates are discrete or by a mixture density if there is a

combination of discrete and continuous covariates. Replacing the integral by the summation in

Equation 9 follows from using the empirical joint distribution of the simulated covariates as a

non-parametric estimator of the density p(x∗) [50].

Similar to above, by plugging treatment C into the regression fit for every simulated observa-

tion, we predict the marginal outcome mean in the hypothetical scenario in which all units are

under treatment C:

µ̂0(x∗) =
∫

x∗
g−1(β̂0 + x∗ β̂1)p(x∗)dx∗ (10)

≈ 1
N∗

N∗

∑
i=1

g−1(β̂0 + x∗i β̂1). (11)

To estimate the marginal or population-average treatment effect for A vs. C in the linear

predictor scale, one back-transforms to this scale the average predictions, taken over all

subjects on the natural outcome scale, and calculates the difference between the average

linear predictions:

∆̂(2)
10 = g(µ̂1)− g(µ̂0), (12)

where we have removed the dependence on x∗ for simplicity in the notation. If the outcome

model in Equation 7 is correctly specified, the estimators for the marginal outcome means on

the natural scale should be consistent with respect to convergence to their true value, and so

should the marginal treatment effect estimate ∆̂(2)
10 → ∆(2)

10 .
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For illustrative purposes, consider a logistic regression for binary outcomes. In this case, µ̂1

is the average of the individual counterfactual probabilities predicted by the regression when

all participants are assigned to treatment A. Similarly, µ̂0 is the average probability when

everyone is assigned to treatment C. The inverse link function g−1(·) would be the inverse

logit function expit(·) = exp(·)/[1 + exp(·)], and the average predictions in the probability

scale could be substituted into Equation 12 and transformed to the log-odds ratio scale, using

the logit link function.

More interpretable summary measures of the marginal contrast, e.g. odds ratios, relative

risks or risk differences, can also be produced by manipulating the average natural outcome

means differently than in Equation 12, mapping these to other scales. For instance, a marginal

odds ratio can be estimated as exp[g(µ̂1)]/ exp[g(µ̂0)] = µ̂1/(1−µ̂1)
µ̂0/(1−µ̂0)

, where g(·) denotes

the logit link function. Clinicians and epidemiologists often criticize the (log) odds ratio as a

summary measure of effect, suggesting that other measures such as the relative risk are more

relevant for clinical decision-making and causal inference [53, 161–163]. Nevertheless, the

standard scale commonly used for performing indirect treatment comparisons is the log-odds

ratio scale [6, 7, 9] and this linear predictor scale is used to define effect modification, which is

scale-specific [18]. Hence, we assume that the marginal log-odds ratio is the relative effect

measure of interest.

Note that the estimated absolute outcomes µ̂1 and µ̂0, e.g. the average outcome probabilities

under each treatment in the case of logistic regression, are sometimes desirable in health

economic models without any further processing [164]. In addition, these could be useful

in unanchored comparisons, where there is no common comparator group included in the

analysis, e.g. if the competitor trial is an RCT without a common control or a single-arm

trial evaluating the effect of treatment B alone. In the unanchored case, absolute outcome

means are compared across studies as opposed to relative effects. As mentioned in Chapter

2, unanchored comparisons make very strong assumptions which are largely considered

impossible to meet (absolute effects are conditionally constant as opposed to relative effects

being conditionally constant) [9, 18].

4.4.1 Cox proportional hazards regression

The most popular outcome types in applications of population-adjusted indirect comparisons

are survival or time-to-event outcomes (e.g. overall or progression-free survival), and the most

prevalent measure of effect is the (log) hazard ratio [30]. Therefore, developing G-computation

approaches where the nuisance model is a Cox proportional hazards regression is important

and useful to practitioners. In this setting, ∆̂(2)
10 and ∆̂(2)

20 should target marginal log hazard ratios

for indirect treatment comparisons in the linear predictor scale. Something to bear in mind is

that, even if Cox models are very frequently used in evidence synthesis for time-to-event data,

health economic modelers typically use parametric survival models for extrapolation purposes.

In Section 4.6, we develop a novel general-purpose methodology that can be used in scenarios

where the outcome regression of interest is a parametric survival model.



4.4 M A R G I N A L I Z AT I O N V I A PA R A M E T R I C G - C O M P U TAT I O N 77

This subsection builds on previous research by Stitleman et al. [165], Sjölander [166, 167]

and Lambert [168], who have developed approaches for regression-based standardization or G-

computation with Cox proportional hazards models. These approaches use standardization to

adjust for measured confounders in an observational study, allowing one to obtain standardized

survival curves and marginal hazard ratio estimates over the covariate distribution observed in

the sample. I extend the approaches to the context of population-adjusted indirect comparisons.

In this scenario, one must marginalize over the population of an external trial (the BC study) to

perform an indirect comparison in such population. While model-based standardization with

Cox regressions is relatively common in epidemiological research, it has not yet been applied

to population-adjusted indirect comparisons in HTA, neither in health technology appraisals nor

in peer-reviewed publications.

Consider that a Cox proportional hazards model has first been fitted, conditional on covariates

which follow the functional form in the linear predictor of Equation 7. For the generalized linear

model, we were interested in the average counterfactual outcome predictions in the natural

scale. With Cox regression, the average counterfactual survival probabilities are of interest. We

proceed similarly as in Equations 8-12. Leaving the simulated covariates x∗ at their set values,

we fix the value of treatment at z∗i for all i = 1, . . . , N∗. By plugging treatment A into the Cox

regression fit for each simulated unit, we compute the expected marginal survival probability

when all subjects are under treatment A [165]:

P̂(T1 > t) =
1

N∗

N∗

∑
i=1

Ŝ(1)
i (t | x∗i ) (13)

=
1

N∗

N∗

∑
i=1

exp[−Ĥ0(t))]exp(β̂0+x∗i β̂1+β̂z+x∗(EM)
i β̂2). (14)

Above, t denotes a particular time point and T1 denotes a potential counterfactual event time

under treatment A, such that P̂(T1 > t) is the mean treatment-specific probability of surviving

beyond t. In Equation 13, Ŝ(1)
i (t | x∗i ) denotes an estimate of the counterfactual survival

probability under treatment A at time t for simulated subject i with covariates x∗i . Equation 14

follows from expressing the survival function in terms of Ĥ0(t), an estimate of the baseline

cumulative hazard function at time t, raised to the power of the exponentiated linear predictor

term. Estimates of the baseline cumulative hazard are easily obtained from Cox regressions

fitted with the standard survival analysis software packages.

Similarly, the expected marginal survival probability when all simulated subjects are under

treatment C is given by:

P̂(T0 > t) =
1

N∗

N∗

∑
i=1

Ŝ(0)
i (t | x∗i ) (15)

=
1

N∗

N∗

∑
i=1

exp[−Ĥ0(t)]exp(β̂0+x∗i β̂1), (16)
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where T0 denotes a potential counterfactual event time under treatment C, and Ŝ(0)
i (t | x∗i )

denotes the estimated counterfactual survival probability under treatment C at time t for subject

i with simulated covariates x∗i . The marginal hazard at time t for treatment z∗ ∈ {0, 1} can be

expressed as the negative logarithm of the survival probability, − ln[P̂(Tz∗ > t)]. Therefore,

the estimate of the marginal log hazard ratio for A vs. C in the BC population at time t is:

∆̂(2)
10,t = ln{− ln[P̂(T1 > t)]} − ln{− ln[P̂(T0 > t)]}, (17)

where P̂(T1 > t) and P̂(T0 > t) are obtained using Equations 13 and 14, and Equations 15

and 16, respectively.

The Cox regression assumes that the true marginal log hazard ratio is independent of time

due to the proportional hazards assumption. However, as pointed out by Varadhan et al.,

[169] the estimate ∆̂(2)
10,t in Equation 17 may vary across different values of t. We have to

set t to a specific time point, or alternatively, to estimate the marginal hazard ratio over a

set of time points and display the estimates graphically. When selecting a value of t, bear in

mind that, in Equation 17, the marginal log hazard ratio estimate is undefined at t for which

P̂(Tz∗ > t) = 1 for treatment z∗ ∈ {0, 1} [165]. A simulation procedure for marginalizing

estimates of conditional hazard ratios has recently been proposed by Daniel et al. [50]. This

approach should avoid these issues by averaging the marginal log hazard ratio over a set time

frame, but adapting the methodology to the current setting is beyond the scope of this chapter.

One can manipulate the expected marginal survival probabilities differently than in Equation

17 to produce estimates of the marginal risk difference (the additive difference in survival

probabilities) or the marginal log relative risk at a particular time point [165]. These effect

measures are more easily interpreted. However, indirect treatment comparisons with survival

outcomes are typically performed in the log hazard ratio scale [6], and this linear predictor

scale is used to define effect modification, which is scale-specific [18]. Therefore, the marginal

log hazard ratio is the relative effect measure of interest.

4.4.2 Model fitting and selection

The regression in Equation 7 will be our working model from now onward:

g(µn) = β0 + xnβ1 +
(

βz + x(EM)
n β2

)
1(zn = 1).

Therefore, we briefly discuss some good practices for model fitting and model selection. Time

and care should be taken to perform these exercises and fit an appropriate regression.

The inclusion of all imbalanced effect modifiers in Equation 7 is required for unbiased

estimation of both the marginal and conditional A vs. C treatment effects in the BC population

[170]. As discussed in Section 2.4 for STC, a strong fit of the regression model, evaluated by

model checking criteria such as the residual deviance and information criteria, may increase

precision. Hence, we could select the model with the lowest information criterion conditional on

including all effect modifiers [170]. Model checking criteria should not guide causal decisions
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on effect modifier status, which should be defined prior to fitting the outcome model. As effect-

modifying covariates are likely to be good predictors of outcome, the inclusion of appropriate

effect modifiers should provide an acceptable fit. In addition, note that any model comparison

criteria will only provide information about the observed AC data and therefore tell just part of

the story [171]. We have no information on the fit of the selected model to the BC patient-level

data.

At this point, the readers may be wondering why the outcome regression is different to the

model fitted in Section 2.4. In the conventional outcome regression described in 2.4 and by the

NICE technical support document for STC [18], the IPD covariates are centered by plugging

in the mean BC covariate values. In the Q-model required for G-computation, outlined in this

section, the covariates are not centered and the regression fit is used to make predictions for

the simulated covariates. The underlying reason for this has been described for generalized

linear models with non-linear link functions, such as logistic or Poisson regression [172–174].

On the natural scale, averaging the individual outcome predictions made at the centered

covariates of the sample does not consistently estimate the marginal mean response for the

centered sample. In the words of Bartlett [172], “prediction at the mean” value of the baseline

covariates for a treatment group does not result in the “marginal mean” under such treatment.

Similarly, in the words of Qu and Luo [173], the “mean at mean covariates” of the study sample

is generally not equivalent to the marginal response over the subjects in the sample. The

former results in a conditional estimate whereas the latter produces a marginal population-level

estimate, of interest in our scenario.

We have postulated a single outcome model for all subjects in the AC IPD, which includes

the necessary treatment-covariate interaction terms to capture effect modification over the

covariates. Nevertheless, another possible strategy is to fit two outcome models separately for

each treatment group in the randomized trial, i.e., to fit one regression to the patients under

treatment A and then another regression among the patients under C, then predicting the

conditional outcome expectations and averaging these out on the entire simulated pseudo-

population. This is perhaps a more “objective” approach to covariate adjustment, as the

model-fitting is performed independently of reference to a conditional treatment effect (in this

case, the fitted regressions do not have a treatment coefficient), but obviates the estimation

of treatment-by-covariate interactions [125, 175]. Throughout this chapter, we consider the

nuisance model in Equation 7 to be a parametric regression. Alternatively, non-parametric

estimators of the conditional expectation may be less susceptible to model misspecification.

We discuss the potential application of these methods in Section 6.3.

4.4.3 Variance estimation

From a frequentist perspective, it is not easy to derive analytically a closed-form expression for

the standard error of the marginal A vs. C treatment effect with non-linear outcome models.

Deriving the asymptotic distribution is not straightforward as the estimate is a non-linear function

of each of the components of β̂. When using maximum-likelihood estimation to fit the outcome
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model, standard errors and interval estimates can be obtained using resampling-based methods

such as the traditional non-parametric bootstrap [176] or the m-out-of-n bootstrap [169]. In our

bootstrap implementation, we only resample the IPD of the AC trial due to patient-level data

limitations for the BC study. The standard error would be estimated as the sample standard

deviation of the resampled marginal treatment effect estimates. Assuming that the sample size

N is reasonably large, we can appeal to the asymptotic normality of the marginal treatment

effect and construct Wald-type normal distribution-based confidence intervals. Alternatively,

one can construct interval estimates using the relevant quantiles of the bootstrapped treatment

effect estimates, without necessarily assuming normality. This avoids relying on the adequacy

of the asymptotic normal approximation, an approximation which will be inappropriate where

the true model likelihood is distinctly non-normal [177], and may allow for the more principled

propagation of uncertainty.

An alternative to bootstrapping for statistical inference is to simulate the parameters of the

multivariable regression in Equation 7 from the asymptotic multivariate normal distribution with

means set to the maximum-likelihood estimator and with the corresponding variance-covariance

matrix, iterate over Equations 8-12 and compute the sample variance. This parametric simu-

lation approach is less computationally intensive than bootstrap resampling. It has the same

reliance on random numbers and may offer similar performance [178]. It is equivalent to

approximating the posterior distribution of the regression parameters, assuming constant non-

informative priors and a large enough sample size. Again, this large-sample formulation relies

on the adequacy of the asymptotic normal approximation.

4.5 B AY E S I A N PA R A M E T R I C G - C O M P U TAT I O N

A Bayesian approach to parametric G-computation may be beneficial for several reasons. Firstly,

the maximum-likelihood estimates of the outcome regression coefficients may be unstable

where the sample size N of the AC IPD is small, the data are sparse or the covariates are highly

correlated, e.g. due to finite-sample bias or variance inflation. This leads to poor frequentist

properties in terms of precision. A Bayesian approach with default shrinkage priors, i.e., priors

specifying a low likelihood of a very large effect, can reduce variance, stabilize the estimates

and improve their accuracy in these cases [158].

Secondly, we can use external data and/or contextual information on the prognostic effect

and effect-modifying strength of covariates, e.g. from covariate model parameters reported

in the literature, to construct informative prior distributions for β1 and β2, respectively, and

skeptical priors (i.e., priors with mean zero, where the variance is chosen so that the probability

of a large effect is relatively low) for the conditional treatment effect βz, if necessary. Where

meaningful prior knowledge cannot be leveraged, one can specify generic default priors instead.

For instance, it is unlikely in practice that conditional odds ratios are outside the range 0.1 − 10.

Therefore, we could use a null-centered normal prior with standard deviation 1.15, which is

equivalent to just over 95% of the prior mass being between 0.1 and 10. As mentioned earlier,

this “weakly informative” contextual knowledge may result in shrinkage that improves accuracy
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with respect to maximum-likelihood estimators [158]. Finally, it is simpler to account naturally

for issues in the AC IPD such as missing data and measurement error within a Bayesian

formulation [179, 180].

In the generalized linear modeling context, consider that we use Bayesian methods to fit the

outcome regression model in Equation 7. The difference between Bayesian G-computation and

its maximum-likelihood counterpart is in the estimated distribution of the predicted outcomes.

The Bayesian approach also marginalizes, integrates or standardizes over the joint posterior

distribution of the conditional nuisance parameters of the outcome regression, as well as the

joint covariate distribution p(x∗). Following Keil et al. [158], Rubin [181] and Saarela et al.

[182], we draw a vector of size N∗ of predicted counterfactual outcomes y∗
z∗ under each set

intervention z∗ ∈ {0, 1} from its posterior predictive distribution under the specific treatment.

This is defined as p(y∗
z∗ | DAC) =

∫
β p(y∗

z∗ | β)p(β | DAC)dβ, where p(β | DAC) is the

posterior distribution of the outcome regression coefficients β, which encode the predictor-

outcome relationships observed in the AC trial IPD. The posterior predictive distribution [158]

is given by:

p(y∗
z∗ | DAC) =

∫
x∗

p(y∗ | z∗, x∗,DAC)p(x∗ | DAC)dx∗ (18)

=
∫

x∗

∫
β

p(y∗ | z∗, x∗, β)p(x∗ | β)p(β | DAC)dβdx∗. (19)

As noted by Keil et al. [158], the posterior predictive distribution p(y∗
z∗ | DAC) is a function

only of the observed data DAC, the joint probability density function p(x∗) of the simulated

BC pseudo-population, which is independent of β, the set treatment values z∗, and the prior

distribution p(β) of the regression coefficients.

In practice, the integrals in Equations 18 and 19 can be approximated numerically, using full

Bayesian estimation via Markov chain Monte Carlo (MCMC) sampling. This is carried out as

follows. As per the maximum-likelihood procedure, we leave the simulated covariates at their

set values and fix the value of treatment to create two counterfactual datasets: one where all

simulated subjects are under treatment A and another where all simulated subjects are under

treatment C. The outcome regression model in Equation 7 is fitted to the original AC IPD with

the treatment actually received. From this model, conditional parameter estimates are drawn

from their posterior distribution p(β | DAC), given the observed patient-level data and some

suitably defined prior p(β).

It is relatively straightforward to integrate the model-fitting and outcome prediction within

a single Bayesian computation module using efficient simulation-based sampling methods

such as MCMC. Assuming convergence of the MCMC algorithm, we form realizations of the

parameters {β̂(l) = (β̂
(l)
0 , β̂

(l)
1 , β̂

(l)
2 , β̂

(l)
z ) : l = 1, 2, . . . , L}, where L is the number of MCMC

draws after convergence and l indexes each specific draw. Again, these conditional coefficients

are nuisance parameters, not of direct interest in our scenario. Nevertheless, the samples are

used to extract draws of the conditional expectations for each simulated subject i (the posterior

draws of the linear predictor transformed by the inverse link function) from their posterior
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distribution. The l-th draw of the conditional expectation for simulated subject i set to treatment

A is:

µ̂
(l)
1,i = g−1(β̂

(l)
0 + x∗i β̂

(l)
1 + β̂

(l)
z + x∗(EM)

i β̂
(l)
2 ). (20)

Similarly, the l-th draw of the conditional expectation for simulated subject i under treatment C
is:

µ̂
(l)
0,i = g−1(β̂

(l)
0 + x∗i β̂

(l)
1 ). (21)

The conditional expectations drawn from Equations 20 and 21 are used to impute the

individual-level outcomes {y∗(l)1,i : i = 1, . . . , N∗; l = 1, 2, . . . , L} under treatment A and

{y∗(l)0,i : i = 1, . . . , N∗; l = 1, 2, . . . , L} under treatment C, as independent draws from their

posterior predictive distribution at each iteration of the MCMC chain. For instance, if the

outcome model is a normal linear regression with a Gaussian likelihood, one multiplies the

simulated covariates and the set treatment z∗i for each subject i by the l-th random draw of the

posterior distribution of the regression coefficients, given the observed IPD and some suitably

defined prior, to form draws of the conditional expectation µ̂
(l)
z∗,i (which is equivalent to the linear

predictor because the link function is the identity link in linear regression). Then each predicted

outcome y∗(l)z∗,i would be drawn from a normal distribution with mean equal to µ̂
(l)
z∗,i and standard

deviation equal to the corresponding posterior draw of the error standard deviation. With a

logistic regression as the outcome model, one would impute values of a binary response y∗(l)z∗,i

by random sampling from a Bernoulli distribution with mean equal to the expected conditional

probability µ̂
(l)
z∗,i.

Producing draws from the posterior predictive distribution of outcomes is fairly simple using

dedicated Bayesian software such as BUGS [183], JAGS [184] or Stan [185], where the outcome

regression and prediction can be implemented simultaneously in the same module. Over the L
MCMC draws, these programs typically return a L × N∗ matrix of simulations from the posterior

predictive distribution of outcomes. The l-th row of this matrix is a vector of outcome predictions

of size N∗ using the corresponding draw of the regression coefficients from their posterior

distribution. We can estimate the marginal treatment effect for A vs. C in the BC population by:

(1) averaging out the imputed outcome predictions in each draw over the simulated subjects,

i.e., over the columns, to produce the marginal outcome means on the natural scale; and (2)

taking the difference in the sample means under each treatment in a suitably transformed scale.

Namely, for the l-th draw, the A vs. C marginal treatment effect is:

∆̂(2,l)
10 = g

(
1

N∗

N∗

∑
i=1

y∗(l)1,i

)
− g

(
1

N∗

N∗

∑
i=1

y∗(l)0,i

)
. (22)

The average, variance and interval estimates of the marginal treatment effect can be derived

empirically from draws of the posterior density, i.e., by taking the sample mean, variance

and the relevant percentiles over the L draws, which approximate the posterior distribution

of the marginal treatment effect. The computational expense of the Bayesian approach to

G-computation is expected to be similar to that of the maximum-likelihood version, given that

the latter typically requires bootstrapping for uncertainty quantification. Computational cost can
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be reduced by adopting approximate Bayesian inference methods such as integrated nested

Laplace approximation (INLA) [186] instead of MCMC sampling to draw from the posterior

predictive distribution of outcomes.

Note that Equation 22 is the Bayesian version of Equation 12. Other parameters of interest

can be obtained, e.g. the risk difference by using the identity link function in this equation, but

these are typically not of direct relevance in our scenario. Again, where the contrast between

two different interventions is not of primary interest, the absolute outcome draws from their

posterior predictive distribution under each treatment may be relevant. The average, variance

and interval estimates of the absolute outcomes can be derived empirically over the L draws.

An argument in favor of a Bayesian approach is that, once the simulations have been conducted,

one can obtain a full characterization of uncertainty on any scale of interest.

In the Cox regression scenario described in subsection 4.4.1, Bayesian G-computation would

follow a similar approach, and would involve drawing the marginal survival probabilities under

each treatment from their posterior predictive distribution.

4.6 M U LT I P L E I M P U TAT I O N M A R G I N A L I Z AT I O N

We now develop a general-purpose marginalization procedure labeled multiple imputation

marginalization (MIM) because it contains many similarities to multiple imputation. This pro-

cedure might be useful where the effect measure of interest cannot be readily summarized

in terms of predicted outcomes and G-computation cannot be easily applied. An example

scenario where this is the case is when the outcome model is a parametric survival regression.

Parametric survival distributions, e.g. exponential, Weibull, Gompertz, log-logistic, log-normal

and generalized gamma, are commonly used in health economic evaluations to extrapolate

published Kaplan-Meier survival curves from the clinical trial follow-up period to a lifetime

horizon [105, 187–190]. As well as permitting survival extrapolation, these may allow for

non-proportional and time-varying hazards — for instance, the treatment coefficient of (a para-

metrization of) the Weibull, log-logistic or log-normal models is interpreted as an “acceleration

factor” as opposed to a hazard ratio [105]. The area under the extrapolation is used to estimate

the mean survival benefit of an intervention in cost-effectiveness analyses, typically in terms of

life years or quality-adjusted life years. Parametric survival models are particularly of interest in

oncology health technology appraisals.

Consider that the outcome model of interest is a parametric survival model. In this scenario,

an anchored regression-adjusted indirect comparison would be conducted as follows: (1) a

univariable parametric survival regression of outcome on treatment group is fitted to the BC
trial data (the subject-level data is typically reconstructed from digitized Kaplan-Meier curves,

e.g. using the algorithm by Guyot et al. [191]); (2) a multivariable covariate-adjusted parametric

survival model (of the same family as the model in Step 1) is fitted to the AC trial data with

treatment group as a covariate; (3) the coefficients of the covariate-adjusted regression are

marginalized to derive a marginal treatment effect estimate for A vs. C in the BC population

(with the location or rate coefficient and, potentially, ancillary coefficients such as shapes being
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treated as nuisance parameters); and (4) this relative treatment effect is applied to the survival

curve of common comparator C in the BC study to yield a survival curve for treatment A in

the BC population. The marginalization procedure in Step 3 cannot be readily conducted

in this scenario using parametric G-computation because the treatment effect measure is

difficult to summarize in terms of the potential outcomes. This motivates the development of a

general-purpose framework such as MIM.

Conceptually, MIM splits the population adjustment into two separate stages: (1) the gener-

ation (synthesis) of synthetic datasets; and (2) the analysis of the generated datasets. The

synthesis is completely separated from the analysis — only after the synthesis has been com-

pleted is the marginal effect of treatment on the outcome estimated. This is analogous to the

separation between design and analysis in propensity score methods, between imputation and

analysis in multiple imputation, or between fitting (and predicting outcomes with) the Q-model

and estimating the marginal treatment effect in G-computation.

Similarly to Bayesian G-computation, MIM sits naturally within a Bayesian framework in

integrating different sources of evidence to fully characterize probabilistic relationships among

a set of relevant variables, using a simulation approach. A more detailed explanation of

each module is provided below. Figure 11 displays a Bayesian directed acyclic graph (DAG)

summarizing the general MIM structure and the links between the modules. In this graphical

representation, the nodes represent the variables of the model (constants are denoted as

squares and stochastic nodes are circular); single arrows indicate probabilistic relationships

and double arrows indicate logical functions. The plate notation indicates repeated analyses.

We return to Figure 11 and provide further explanations for the notation throughout this section.

For consistency with the rest of the chapter, MIM is presented within a generalized linear

modeling formulation. Nevertheless, its formal integration in a unified parametric survival

analysis framework for HTA, which contains many particularities, is a necessary and important

piece of currently ongoing research.

4.6.1 Generation of synthetic datasets: a missing data problem

The first stage, synthetic data generation, consists of two steps. Initially, the first-stage

regression builds a model to capture the relationship between the outcome y and the covariates

x and treatment z in the observed IPD. In the outcome prediction step, we generate predicted

outcomes y∗ for A and C in the BC population by drawing from the posterior predictive

distribution of outcomes, given the observed predictor-outcome relationships in the AC trial

IPD, the simulated covariates x∗ and the set treatment.

These steps are identical to those described for the Bayesian G-computation procedure

in Section 4.5. Interestingly, Bayesian G-computation follows closely the basic principles of

multiple imputation [48]. This is a simulation technique where missing data points are replaced

with a set of plausible values conditional on some pre-specified imputation mechanism. Multiple

imputation can be regarded as a fundamentally Bayesian operation [48, 171, 192], as the

imputed outcomes are drawn from the posterior predictive distribution of observed outcomes.
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Our problem can be conceptualized as a missing data problem, where the individual-level

outcomes for treatments A and C in the BC population are treated as systematically missing

data under a complete case analysis [193]. Namely, we only observe the outcomes for the

subjects in the AC trial, with the outcomes experienced in the BC population “missing”. The

imputation mechanism would be the statistical model in Equation 7 relating the outcomes y to

the predictors (x, z). This dependence structure is estimated using the original IPD and used

to construct the posterior predictive distribution of outcomes.

SYNTHETIC DATA GENERATION

ANALYSIS OF SYNTHETIC DATASETS

x µ

y

z

β µ∗ x∗

z∗

y∗

1. First-stage regression

2. Outcome prediction

z∗ η(m)

y∗(m)

δ
(2,m)
10 ∆

(2)
10

m = 1, 2, . . . ,M

3. Second-stage regression

4. Pooling

Figure 11: A Bayesian directed acyclic graph representing multiple imputation marginalization (MIM)
and accounting for its two main stages: (1) synthetic data generation; and (2) the analysis
of synthetic datasets. Square nodes represent constant variables, circular nodes indicate
stochastic variables, single arrows denote stochastic dependence, double arrows indicate
logical relationships and the plate notation indicates repeated analyses. The difference
between MIM and Bayesian G-computation is that MIM requires specifying a marginal
structural model for each synthesis, the second-stage regression, in the analysis stage. The
results of these regressions are then pooled across all syntheses.
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Practically, we may frame Bayesian G-computation as conducting L hypothetical trials

comparing A vs. C in the BC population. Extending the parallel with the missing data literature,

the outcome-generation process in these trials is based on the assumption of a missing-at-

random mechanism. Namely, the missing relative outcomes for A vs. C in the BC population

are conditionally exchangeable with those observed in the AC population (conditioning on

the predictors that have been adjusted for). Therefore, this missing-at-random assumption

is analogous to the conditional constancy of relative effects, which is untestable using the

available data alone.

There is one conceptual difference between the synthesis stage of MIM and parametric G-

computation, which arises in order to facilitate the presentation of MIM. Instead of considering

two counterfactual datasets with N∗ subjects each (one under treatment A and the other under

treatment C), each synthesis considers a single dataset with N∗ individuals that maintains the

original treatment allocation ratio of the AC trial. Treatment in all synthetic datasets will be

fixed to z∗ = (z∗1 , . . . , z∗N∗), a vector of size N∗. In practice, this different conceptualization

will not make a difference provided that N∗ is reasonably large (different values of N∗ are

explored in Supplementary Appendix D, in the context of a simulation study in Chapter 5). This

is because, in the synthetic samples, we “enforce” the randomization of individuals into A and

C by simulating the covariates for active treatment and control arms combined.

As per Bayesian G-computation, the synthesis stage can be performed using MCMC. Iterating

over the L converged draws of the MCMC algorithm, one generates M ≤ L synthetic datasets,

D∗
AC = {D∗(m)

AC : m = 1, 2 . . . , M}, where D∗(m)
AC = (x∗, z∗, y∗(m)). Here, x∗ is a N∗ × K

matrix of individual-level BC covariates, drawn from their approximate joint distribution as per

Section 4.3, and z∗ is the assigned treatment in the syntheses, as previously described. Each

y∗(m) is a vector of predicted outcomes of size N∗. We fill in y∗(m) by drawing from its posterior

predictive distribution. In line with the multiple imputation framework, these draws are repeated

independently M times to create M completed syntheses, with the posterior samples making

up the imputed datasets. In standard multiple imputation, it is not uncommon to release as little

as 5 imputed datasets [48, 194]. However, MIM is likely to require a larger value of M as it

imputes an entire dataset as opposed to a relatively small proportion of missing values, i.e.,

the “fraction of missing information” is 1.

Within a survival analysis framework, the fitted first-stage regression would be used to

predict survival times in the simulated pseudo-population for the BC study. One would assume

that censoring is non-informative, which is an assumption made, in any case, by the Cox

proportional hazards regression and the standard parametric survival models. Namely, one

would not attempt to simulate censoring according to any given distribution, or to mimic

any particular censoring pattern (essentially, assuming that all times are uncensored in the

simulated data structure).
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4.6.2 Analysis of synthetic datasets

In the second stage, the analysis of synthetic datasets, we seek inferences about the marginal

A vs. C treatment effect in the BC population, ∆(2)
10 , given the synthesized outcomes. This will

ultimately be compared with the treatment effect for B vs. C, to produce a marginal treatment

effect for A vs. B in the BC population. The analysis stage consists of another two steps. In

the second-stage regression step, we regress each predicted outcome y∗(m) on the treatment

indicator z∗ alone, to generate estimates of the marginal A vs. C treatment effect in each

synthesis. This second-stage regression is effectively a marginal structural model of outcome

on treatment [195], and adds some computational expense with respect to Bayesian parametric

G-computation. In the pooling step, the treatment effect estimates and their variances are

combined across all M syntheses to produce an estimate of the average marginal treatment

effect in the BC population.

In a typical problem involving multiple imputation, the imputation (i.e., synthesis) and analysis

stages may be performed simultaneously in a joint model [171]. However, this is problematic

in MIM as the dependent variable y∗ of the analysis is completely synthesized. Consider the

Bayesian DAG in Figure 11. In a joint model, the predicted outcomes are a collider variable

and block the only path between the first and the second module, i.e., information from the

directed arrows “collides” at the node. Due to these non-trivial joint modeling issues, we have

considered the data synthesis and analysis stages as separate units in a two-stage modular

framework. The analysis stage conditions on the response variable predicted by the synthesis

stage, treating it as observed data.

4.6.2.1 Second-stage regression

We fit M second-stage regressions of predicted outcomes y∗ on the treatment z∗. Identical

analyses are performed on each y∗(m) (z∗ is fixed), such that for m = 1, 2, . . . , M:

g(η(m)
i ) = δ

(m)
0 + δ

(m)
10 z∗i , (23)

where η
(m)
i is the expected outcome on the natural scale of subject i in the m-th synthesis, the

coefficient δ
(m)
0 is an intercept term and δ

(m)
10 denotes the marginal A vs. C treatment effect

in the m-th synthesis. There is some non-trivial computational complexity to performing a

Bayesian fit in this step. This would embed a nested simulation scheme. Namely, if we draw M
samples {y∗(m) : m = 1, 2, . . . M} in the synthesis stage, a further number of samples, say

R, of the treatment effect {δ̂
(m,r)
10 : m = 1, 2 . . . M; r = 1, 2, . . . R} would be drawn for each of

these realizations separately. This structure is likely to be unfeasible in terms of running time

and we choose to prioritize computational efficiency.

Using maximum-likelihood estimation, we generate a point estimate δ̂
(m)
10 of the marginal

treatment effect and a measure of its variance v̂(m) in each synthesis y∗(m). The model is

relatively simple as we have enforced randomization in the trial by simulating covariates for

both arms jointly. Hence, this step emulates the unadjusted analysis of an RCT. A marginal
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treatment effect estimate is produced because a simple regression of outcome on treatment

alone is performed (covariate adjustment was performed by the first-stage regression, i.e., the

Q-model), with the fitted coefficient δ̂
(m)
10 estimating a relative effect between subjects that, on

expectation, have the same distribution of covariates [91]. Assigned treatment was already

included as a predictor in the first-stage regression. Hence, the second-stage regression is

more restrictive and therefore “congenial” (i.e., compatible for unbiased estimation) with the

synthesis stage [192].

4.6.2.2 Pooling

We now combine the M point estimates of the A vs. C treatment effect and their variances to

generate a posterior distribution for the A vs. C marginal treatment effect, in the BC population.

Due to the two-stage structure of MIM, it is necessary to pool the estimates across the

analyses to estimate this effect. The analysis of a single synthesis accounts for two sources of

uncertainty: (1) the uncertainty in the regression coefficients used to generate the predicted

outcomes; and (2) prediction error or random individual variation. However, it will produce

attenuated measures of variability for the average A vs. C treatment effect. We must account

for a third source of variation to produce valid statistical inference: the uncertainty due to the

data being synthesized. This is incorporated by pooling across multiple syntheses, a question

shared with the domain of statistical disclosure limitation [196–202].

In statistical disclosure limitation, data agencies mitigate the risk of identity disclosure by

releasing multiple fully synthetic datasets, i.e., datasets that only contain simulated values,

in lieu of the original confidential data of real survey respondents. Raghunathan et al. [196]

describe full synthesis as a two-step process: (1) construct multiple synthetic populations by

repeatedly drawing from the posterior predictive distribution, conditional on a model fitted to

the original data; and (2) draw random samples from each synthetic population and release

these synthetic samples to the public. In practice, as indicated by Reiter and Raghunathan

[201], it is not a requirement to generate the populations, but only to generate values for the

synthetic samples. Once the samples are released, the analyst seeks inferences based on the

synthetic data alone.

MIM is analogous to this problem, albeit there are some differences. In MIM, the analyst also

acts as the synthesizer of data, and there is no “original data” on outcomes as such – the AC
trial has not been conducted in the BC population. In any case, values for the samples are

generated in the synthesis stage by repeatedly drawing from the posterior predictive distribution

of outcomes. This is conditional on the predictor-outcome relationships indexed by the model

fitted to the AC IPD, and on the simulated covariates.

The target for inference in this step is the marginal A vs. C treatment effect conditional on

the synthetic outcomes (and treatment), i.e., we seek to construct the posterior distribution

p(∆(2)
10 | y∗, z∗). Following Raab et al. [202], we view each y∗(m) as a random sample from

p(y∗ | β̂(m), x∗, z∗), where β̂(m) is sampled from its posterior p(β | DAC). Hence, the “true”

marginal treatment effect δ
(m)
10 for the m-th synthesis, corresponding to β̂(m), can be defined as
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a function of this sample. In each second-stage regression in Equation 23, this is the treatment

effect estimated by δ̂
(m)
10 .

Therefore, following Raghunathan et al. [196], the estimators {δ̂
(m)
10 , v̂(m); m = 1, 2, . . . , M}

from the second-stage regressions are treated as “data”, and are used to construct an approx-

imation to the posterior density p(∆(2)
10 | y∗, z∗). This density is assumed to be approximately

normal and is parametrized by its first two moments: the mean µ∆, and the variance σ2
∆. To

derive the conditional distribution p(µ∆, σ2
∆ | y∗, z∗) of these moments given the syntheses,

the estimators {δ̂
(m)
10 , v̂(m); m = 1, 2, . . . , M}, where v̂(m) is the point estimate of the variance

in the m-th second-stage regression, are treated as sufficient summaries of the syntheses,

and µ∆ and σ2
∆ are treated as parameters. Then, the posterior distribution p(∆(2)

10 | y∗, z∗) is

constructed as:

p(∆(2)
10 | y∗, z∗) =

∫
µ∆,σ2

∆

p(∆(2)
10 | µ∆, σ2

∆)p(µ∆, σ2
∆ | y∗, z∗)d(µ∆, σ2

∆). (24)

We have two options to approximate the posterior distribution. The first involves direct Monte

Carlo simulation and the second uses a simple normal approximation. In analogy with the

theory of multiple imputation [48], both approaches require the following quantities for inference:

δ̄10 =
M

∑
m=1

δ̂
(m)
10 /M, (25)

v̄ =
M

∑
m=1

v̂(m)/M, (26)

b =
M

∑
m=1

(δ̂
(m)
10 − δ̄10)

2/(M − 1), (27)

where δ̄10 is the average of the treatment effect point estimates across the M syntheses, v̄ is

the average of the point estimates of the variance (the “within” variance), and b is the sample

variance of the point estimates (the “between” variance). These quantities are computed using

the point estimates from the second-stage regressions.

In many applications, the target estimand is non-scalar and has multiple components.

For instance, this is the case where the outcome model is a multivariate regression (i.e.,

with multiple dependent variables) of correlated outcomes with treatment. This scenario

typically evaluates surrogate endpoints and involves combining correlated treatment effects

corresponding to multiple outcomes [203]. The inferential framework for pooling outlined in this

section is extended to multi-component estimands in Supplementary Appendix B.

P O O L I N G V I A P O S T E R I O R S I M U L AT I O N After deriving the quantities in Equations 25, 26

and 27, the posterior in Equation 24 is approximated by direct Monte Carlo simulation. Firstly,

one draws µ∆ and σ2
∆ from their posterior distributions, conditional on the syntheses. These

distributions are derived by Raghunathan et al. [196]. We draw values of µ∆ from a normal

distribution:

p(µ∆ | y∗, z∗) ∼ N(δ̄10, v̄/M), (28)
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We draw values of σ2
∆ from a chi-squared distribution with M − 1 degrees of freedom:

p
(
(M − 1)b/(σ2

∆ + v̄) | y∗, z∗
)
∼ χ2

M−1. (29)

Given draws of µ∆ and σ2
∆, we draw values of ∆(2)

10 from a t-distribution with M − 1 degrees of

freedom [196]:

p(∆(2)
10 | µ∆, σ2

∆) ∼ tM−1
(
µ∆, (1 + 1/M)σ2

∆
)

, (30)

where the σ2
∆/M term in the variance is necessary as an adjustment for there being a finite

number of syntheses; as M → ∞, the variance tends to σ2
∆.

By performing a large number of simulations, we are estimating the posterior distribution in

Equation 24 by approximating the integral of the posterior in Equation 30 with respect to the

posteriors in Equations 28 and 29 [196]. Hence, the resulting draws of ∆(2)
10 are samples from

the posterior distribution p(∆(2)
10 | y∗, z∗) in Equation 24. We can take the expectation over

the posterior draws to produce a point estimate ∆̂(2)
10 of the marginal A vs. C treatment effect,

in the BC population. An estimate of its variance V̂(∆̂(2)
10 ) can be directly computed from the

draws of the posterior density. Uncertainty measures such as 95% interval estimates can be

calculated from the corresponding empirical quantiles.

The posterior distributions in Equations 28, 29 and 30 have been derived under certain

normality assumptions, which are adequate for reasonably large sample sizes, where the

relevant sample sizes are both the size of the AC trial and the size N∗ of the synthetic datasets.

Another assumption is that priors for the parameters in this step are diffuse, i.e., non-informative

in the range where the posteriors have support from the data [196].

P O O L I N G V I A C O M B I N I N G RU L E S A simple alternative to direct Monte Carlo simulation

is to use a basic normal approximation to the posterior density in Equation 24, such that the

sampling distribution in Equation 30 is a Normal as opposed to a t-distribution. The posterior

mean is the average of the treatment effect point estimates across the M syntheses. The simple

combining rule for the variance arises from using b − v̄ to estimate σ2
∆, which is equivalent

to setting σ2
∆ at its approximate posterior mean in Equation 29 [200]. Again, the b/M term is

necessary as an adjustment for there being a finite number of syntheses.

Consequently, point estimates for the A vs. C treatment effect and its variance can be derived

using the following plug-in estimators:

∆̂(2)
10 = δ̄10, (31)

V̂
(

∆̂(2)
10

)
= (1 + 1/M)b − v̄. (32)

Interval estimates can be approximated using a normal distribution, e.g. taking ±1.96 times

the square root of the variance computed in Equation 32 [196]. A heavier-tailed t-distribution

with ν f = (M − 1)(1 + v̄/[(1 + 1/M)b)]2 degrees of freedom has also been proposed, as

normal distributions may produce excessively narrow intervals and undercoverage when M is
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more modest [198]. Note that the combining rules in Equations 31 and 32 are only appropriate

for reasonably large M. The choice of M is discussed in Section 4.8.

4.7 I N D I R E C T T R E AT M E N T C O M PA R I S O N

The estimated marginal treatment effect for A vs. C is typically compared with that for B vs. C
to estimate the marginal treatment effect for A vs. B in the BC population. This is the indirect

treatment comparison in the BC population performed in Equation 2.

There is some flexibility in this step. Bayesian G-computation and the indirect comparison

can be performed in one step under an MCMC approach. Similarly, so can the MIM pooling

stage and the indirect comparison. In these cases, the estimation of ∆(2)
20 would be integrated

within the estimation or simulation of the posterior of ∆(2)
10 , under suitable priors, and a posterior

distribution for ∆(2)
12 would be generated. This would require inputting as data the available

aggregate outcomes for each treatment group in the published BC study, or reconstructing

subject-level data from these outcomes. For binary outcomes, event counts from the cells of a

2 × 2 contingency table would be required to estimate probabilities of the binary outcome as

the incidence proportion for each treatment (dividing the number of subjects with the binary

outcome in a treatment group by the total number of subjects in the group), to then estimate a

marginal log-odds ratio for B vs. C. For survival outcomes, one can input patient-level data (with

outcome times and event indicators for each subject) reconstructed from digitized Kaplan-Meier

curves, e.g. using the algorithm by Guyot et al. [191].

The advantage of this approach is that it directly generates a full posterior distribution for

∆(2)
12 . Hence, its output is perfectly compatible with a probabilistic cost-effectiveness model.

Samples of the posterior are directly incorporated into the decision analysis, so that the

relevant economic measures can be evaluated for each sample without further distributional

assumptions [6]. If necessary, we can take the expectation over the draws of the posterior

density to produce a point estimate ∆̂(2)
12 of the marginal A vs. B treatment effect, in the BC

population. Variance and interval estimates are derived empirically from the draws.

Alternatively, we can perform the G-computation and indirect comparison, or the MIM pooling

and indirect comparison, in two steps. Irrespective of the selected inferential framework, point

estimates ∆̂(2)
10 and ∆̂(2)

20 can be directly substituted in Equation 2. As the associated variance

estimates V̂(∆̂(2)
10 ) and V̂(∆̂(2)

20 ) are statistically independent, these are summed to estimate

the variance of the A vs. B treatment effect:

V̂(∆̂(2)
12 ) = V̂(∆̂(2)

10 ) + V̂(∆̂(2)
20 ). (33)

With relatively large M and sample sizes, interval estimates can be constructed using normal

distributions, ∆̂(2)
12 ± 1.96

√
V̂(∆̂(2)

12 ). This two-step strategy is simpler and easier to apply but

sub-optimal in terms of integration with probabilistic sensitivity analysis, although one could

perform forward Monte Carlo simulation from a normal distribution with mean ∆̂(2)
12 and variance

V̂(∆̂(2)
12 ). Ultimately, it is the distribution of ∆(2)

12 that is relevant for HTA purposes.
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4.8 N U M B E R O F R E S A M P L E S O R S Y N T H E T I C DATA S E T S

When performing parametric G-computation with maximum-likelihood estimation, the choice

of the number of bootstrap resamples is important. Similarly, when performing Bayesian

parametric G-computation, the number L of converged MCMC draws is important, as is the

number M ≤ L of syntheses in MIM. Given recent advances in computing power, we encourage

setting these values as large as possible, in order to maximize the precision and accuracy of

the treatment effect estimator, and to minimize the Monte Carlo error in the estimate. A sensible

strategy is to increase the number of bootstrap resamples/syntheses until repeated analyses

across different random seeds give similar results, within a specified degree of accuracy.

In MIM, MCMC simulation is used in the synthesis stage. The value of M is likely to be

a fraction of the total number of iterations/posterior samples required for convergence. As

computation time is driven by the synthesis stage, increasing M provides more precise and

efficient estimation [198, 204] of the treatment effect at little cost in the analysis stage. In the

context of statistical disclosure limitation, it is not uncommon to set the number of syntheses as

low as M = 10 [205]. This is because the original survey data may involve several hundreds of

subjects and variables. Releasing a large number of syntheses with a large number of subjects

may not be practical, placing undue demands on the analyst, e.g. in terms of storage costs

and processing needs. MIM has been developed with much smaller numbers of subjects and

covariates in mind, in a context in which the data synthesizer and analyst are the same entity.

For MIM, an inconvenience of the expressions in Equation 29 and Equation 32 is that these

may produce negative variances. When the posterior in Equation 29 generates a negative

value of σ2
∆, i.e., when (M−1)b

χ∗ < v (where χ∗ is the draw from the posterior in Equation 29),

the variance of the posterior distribution in Equation 30 is negative. Similarly, Equation 32

produces a negative variance when (1 + 1/M)b < v̄. This is because the formulations have

been derived using method-of-moments approximations, where estimates are not necessarily

constrained to fall in the parameter space. Negative variances are unlikely to occur if M and

the size of the synthetic datasets are relatively large. This is due to lower variability in σ2
∆ and

V̂
(

∆̂(2)
10

)
[199]: v̄ decreases with larger syntheses and b is less variable with larger M [198].

Reasonable values of M are likely to depend on the specific setting, e.g. the size of the AC
trial and the properties of the outcome model type, and we discuss these in the context of a

simulation study in subsection 5.1.4.

4.9 C O N C L U D I N G R E M A R K S

In this chapter, I have developed several methods to marginalize the conditional covariate-

adjusted treatment effect estimates produced by the conventional outcome regression. Firstly, I

have proposed a marginalization method based on parametric G-computation or model-based

standardization. In addition, I have introduced a novel general-purpose method based on the

ideas underlying multiple imputation, which I have termed multiple imputation marginalization,

and is applicable to a wide range of models, including parametric survival models.
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Both parametric G-computation and multiple imputation marginalization can be viewed as

extensions to the conventional STC, with all methods making use of the same outcome model

(albeit, in the conventional STC, this is centered). The novel methodologies are outcome

regression approaches, thereby capable of extrapolation, that target marginal treatment effects.

They do so by separating the covariate adjustment regression model from the evaluation of the

marginal treatment effect of interest. The conditional parameters of the regression are viewed

as nuisance parameters, not directly relevant to the research question. The methods can be

implemented in a Bayesian statistical framework, which explicitly accounts for relevant sources

of uncertainty, allows for the incorporation of prior evidence (e.g. expert opinion), and naturally

integrates the analysis into a probabilistic framework.

Finally, an advantage of the outcome modeling approaches proposed in this chapter is

that they produce estimates for both conditional and marginal estimands, as the conditional

estimates are standardized into marginals. On the other hand, propensity score weighting-

based methods such as MAIC are restricted to marginal inference; the marginal estimates

cannot be directly “expanded” into conditionals.
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In this chapter, I carry out a simulation study to benchmark the performance of the novel

“marginalized” outcome regression methods I have proposed in Chapter 4. The simulations

are useful to provide proof-of-principle for the new methods, ensuring they are viable in the

scenarios for which they were designed. The simulation study is also useful for comparative

evaluation with existing methods such as MAIC and STC. The simulations investigate settings

with binary outcomes and continuous covariates, with the log-odds ratio as the measure of

effect. Binary outcomes such as response to treatment or the occurrence of an adverse event

are relatively common in applications of population-adjusted indirect comparisons, particularly

in oncology technology appraisals.

Section 5.1 outlines the simulation study design and execution. Section 5.2 describes the

results from the simulation study. I present an extended discussion of my findings in Section

5.3. Finally, Section 5.4 provides some brief concluding remarks. Part of the research in

this chapter is condensed in the article “Parametric G-computation for Compatible Indirect

Treatment Comparisons with Limited Individual Patient Data” (Remiro-Azócar et al., 2021),

and in the working paper “Marginalization of Regression-Adjusted Treatment Effects in Indirect

Comparisons with Limited Patient-Level Data” (Remiro-Azócar et al., 2021).1

5.1 S I M U L AT I O N S T U DY D E S I G N

5.1.1 Aims

The simulation study in Chapter 3 evaluated the performance of existing approaches to

population-adjusted indirect comparisons. The objectives of the simulation study in this chapter

are to evaluate the statistical properties of the novel approaches to outcome regression and to

compare the performance of these methods with that of the existing approaches. A range of

scenarios, that may be encountered in practice, is considered.

1 The former has been submitted to Research Synthesis Methods and is available at: https://arxiv.org/abs/
2108.12208. The latter is available at: https://arxiv.org/abs/2008.05951
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We evaluate each estimator on the basis of the following finite-sample frequentist character-

istics [102]: (1) unbiasedness; (2) variance unbiasedness; (3) randomization validity;2 and (4)

precision. The selected performance measures assess these criteria specifically (see 5.1.5).

The simulation study is reported following the ADEMP (Aims, Data-generating mechanisms,

Estimands, Methods, Performance measures) structure [102]. All simulations and analyses

were performed using R software version 3.6.3 [103]. The design of the simulation study

is similar to that presented in Chapter 3, but features binary outcomes instead of survival

outcomes, with a logistic regression outcome model as opposed to a Cox model, and a differ-

ent treatment allocation ratio in the trials.3 Example R code implementing the methods on a

simulated example is provided in Supplementary Appendix F.

5.1.2 Data-generating mechanisms

We consider binary outcomes using the log-odds ratio as the measure of effect. The binary

outcome may be response to treatment or the occurrence of an adverse event.

For trials AC and BC, outcome yn for subject n is simulated from a Bernoulli distribution with

probabilities of success generated from logistic regression, such that:

logit[p(yn | xn, zn)] = β0 + xnβ1 + (βz + x(EM)
n β2)1(zn = 1),

using the notation of the AC trial data. Four correlated continuous covariates xn are generated

per subject by simulating from a multivariate normal distribution with pre-specified variable

means and covariance matrix [206]. Two of the covariates are purely prognostic variables;

the other two (x(EM)
n ) are effect modifiers, modifying the effect of both treatments A and B

versus C on the log-odds ratio scale, and prognostic variables. The strength of the association

between the prognostic variables and the outcome is set to β1,k = − ln(0.5), where k indexes

a given covariate. This regression coefficient fixes the conditional odds ratio for the effect of

each prognostic variable on the odds of outcome at 2, indicating a strong prognostic effect.

The strength of interaction of the effect modifiers is set to β2,k = − ln(0.67), where k indexes a

given effect modifier. This fixes the conditional odds ratio for the interaction effect on the odds of

the outcome at approximately 1.5. Both active treatments have the same effect modifiers with

respect to the common comparator and identical interaction coefficients for each. Therefore,

the shared effect modifier assumption [18] holds in the simulation study by design. Pairwise

Pearson correlation coefficients between the covariates are set to 0.2, indicating a moderate

level of positive correlation.

The binary outcome represents the occurrence of an adverse event. Each active intervention

has a very strong conditional treatment effect βz = ln(0.17) at baseline (when the effect

modifiers are zero) versus the common comparator. Such relative effect is associated with

2 In a sufficiently large number of repetitions, (100 × (1 − α))% interval estimates based on normal distributions
should contain the true value (100 × (1 − α))% of the time, for a nominal significance level α.

3 The files required to run the simulations are available at http://github.com/remiroazocar/marginalized_
indirect_comparisons_simstudy.

http://github.com/remiroazocar/marginalized_indirect_comparisons_simstudy
http://github.com/remiroazocar/marginalized_indirect_comparisons_simstudy
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a “major” reduction of serious adverse events in a classification of extent categories by the

German national HTA agency [207]. The covariates may represent comorbidities, which are

associated with greater rates of the adverse event and, in the case of the effect modifiers,

which interact with treatment to render it less effective. The intercept β0 = −0.62 is set to fix

the baseline event percentage at 35% (under treatment C, when the values of the covariates

are zero).

The number of subjects in the BC trial is 600, under a 2:1 active treatment vs. control

allocation ratio. For the BC trial, the individual-level covariates and outcomes are aggregated

to obtain summaries. The continuous covariates are summarized as means and standard

deviations, which would be available to the analyst in the published study in a table of baseline

characteristics (“Table 1” of the RCT publication). The binary outcomes are summarized as

overall event counts, e.g. from the cells of a 2 × 2 contingency table. Typically, the published

study only provides this aggregate information to the analyst.

The simulation study investigates two factors in an arrangement with nine scenarios, thus

exploring the interaction between these factors. We have selected the factors because they had

the largest perceived influence on the performance metrics of the simulation study in Chapter

3. The simulation scenarios are defined by the values of the following parameters:

• The number of subjects in the AC trial, N ∈ {200, 400, 600} under a 2:1 active inter-

vention vs. control allocation ratio. The sample sizes correspond to typical values for

a Phase III RCT [109] and for trials included in applications of MAIC submitted to HTA

authorities [30].

• The degree of covariate imbalance. For both trials, each covariate k follows a normal mar-

ginal distribution with mean µk and standard deviation σk, such that xi,k ∼ Normal(µk, σ2
k )

for subject i. For the BC trial, we fix µk = 0.6. For the AC trial, we vary the means

of the marginal normal distributions such that µk ∈ {0.45, 0.3, 0.15}. The standard

deviation of each marginal distribution is fixed at σk = 0.4 for both trials. This setup

corresponds to standardized differences [208] or Cohen effect size indices [209] (the

difference in means in units of the pooled standard deviation) of 0.375, 0.75 and 1.125,

respectively. This yields strong, moderate and poor covariate overlap; with overlap

between the univariate marginal distributions of 85%, 71% and 57%, respectively, with

N = 600. To compute the overlap percentages, we have followed a derivation by Cohen

[209] for normally-distributed populations with equal size and equal variance. Note that

the percentage overlap between the multivariate joint covariate distributions of each

study is substantially lower. The strong, moderate and poor covariate overlap scenarios

correspond to average percentage reductions in effective sample size of 22%, 60%

and 85%, respectively. These percentage reductions are representative of the range

encountered in NICE technology appraisals [30, 91], as discussed in subsection 3.1.3.
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5.1.3 Estimands

The estimand of interest is the marginal log-odds ratio for A vs. B in the BC population. The

treatment coefficient βz = ln(0.17) is the same for both A vs. C and B vs. C, and the shared

effect modifier assumption holds in the simulation study. Subtracting the treatment coefficient

for A vs. C by that for B vs. C yields a true conditional treatment effect of zero for A vs. B in the

BC population. Therefore, the true conditional treatment effect for A vs. B in the BC population

is zero. As the true subject-level conditional effects are zero for all units, the true marginal

log-odds ratio in the BC population is zero (∆(2)
12 = 0). This implies a null hypothesis-like

simulation setup of no treatment effect for A vs. B, and marginal and conditional estimands in

the BC population coincide by design.

Note that the true marginal effect for A vs. B in the BC population is a composite of that for

A vs. C and that for B vs. C, both of which are non-null. These are the same and cancel out.

For reference, the true marginal log-odds ratio in the BC population for the active treatments

vs. the common comparator (∆(2)
10 and ∆(2)

20 ) is computed as -1.15. This has been calculated

by simulating two potential cohorts of 500,000 subjects, with the BC covariate distribution

and the outcome-generating mechanism in subsection 5.1.2. One cohort is under the active

treatment and the other is under the common comparator. The number of simulated subjects

is sufficiently large to minimize sampling variability. The two cohorts are concatenated and a

simple logistic regression is fitted, regressing the simulated binary outcomes on an indicator

variable for treatment assignment. The treatment coefficient estimates the average difference

in the potential outcomes on the log-odds ratio scale, and serves as the log of the true marginal

odds ratio for the two interventions under consideration. Due to the non-collapsibility of the odds

ratio and as per subsection 3.1.3, this simulation-based approach is necessary to determine

the true marginal effect for A vs. C and B vs. C.

All methods compared in the simulation study perform the same unadjusted analysis (i.e.,

a simple regression of outcome on treatment) to estimate the marginal treatment effect of

B versus C. Because the BC study is a relatively large RCT, this comparison should be

unbiased with respect to the true marginal log-odds ratio in BC. Therefore, any bias in the A
vs. B comparison should arise from bias in the A vs. C comparison, for which marginal and

conditional relative treatment effects are non-null.

5.1.4 Methods

5.1.4.1 Matching-adjusted indirect comparison

Matching-adjusted indirect comparison (MAIC) is implemented using the original method of

moments formulation presented by Signorovitch et al. [10, 18, 71, 91]. To avoid further

reductions in effective sample size and precision, only the effect modifiers are included in the

weighting model. A weighted logistic regression is fitted to the AC IPD and standard errors

for the A vs. C marginal treatment effect are computed by resampling via the ordinary non-
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parametric bootstrap with replacement [74, 75], with 1,000 resamples of each simulated dataset.

The average marginal log-odds ratio for A vs. C is calculated as the mean across the 1,000

bootstrap resamples. Its corresponding standard error is the sample standard deviation across

the resamples. Note that the standard version of MAIC [10, 18, 71, 91] uses a robust sandwich

estimator for variance estimation [68, 210, 211] that accounts for the heteroskedasticity or

correlation induced by the weighting. Nevertheless, this has understated variability under small

effective sample sizes in the simulation study of Chapter 3, and most software implementations

of the estimator treat the weights as fixed quantities. The bootstrap approach should account

for the uncertainty in estimating the weights from the data.

In our implementation of MAIC, we only balance the covariate means and balance these for

active treatment and control arms combined. Other approaches have been proposed, such

as balancing the covariates separately for active treatment and common comparator arms

[25, 28], or balancing terms of higher order than means, e.g. by including squared covariates

in the weight estimation to balance variances. The former approach is discouraged because it

may break randomization in the IPD, distorting the balance between treatment arms A and C
on covariates that are not accounted for in the weighting, and potentially compromising the

internal validity of the within-study estimate. The latter approach may increase finite-sample

bias [69] and has performed poorly in recent simulation studies, in terms of both bias and

precision, where covariate variances differ across studies [25, 27, 34, 164].

Given the often arbitrary factors driving selection into different trials, the data-generating

mechanism in subsection 5.1.2 does not specify a trial assignment model. As per subsection

3.1.4, the logistic regression model for estimating the weights is the best-case model because

it selects the right subset of covariates as effect modifiers and the balancing property holds for

the weights with respect to the effect modifier means.

In a test simulation scenario with N = 200, bootstrapped MAIC has a running time of

approximately 2.7 seconds per simulated dataset, using an Intel Core i7-8650 CPU (1.90 GHz)

processor. Computation time increases linearly with the number of bootstrap resamples.

5.1.4.2 Conventional simulated treatment comparison

The conventional version of simulated treatment comparison (STC), as described by HTA

guidance and recommendations [18], is implemented. A covariate-adjusted logistic regression

is fitted to the IPD using maximum-likelihood estimation. The outcome regression is correctly

specified. All covariates are accounted for in the regression but only the treatment effect

modifiers are centered at their mean BC values, and interaction terms are only included for

the effect modifiers. The log-odds ratio estimate for A vs. C is the treatment coefficient of the

centered multivariable regression, with its standard error quantifying the standard deviation of

the treatment effect.

In a test simulation scenario with N = 200, the conventional STC has a running time of 0.02

seconds per simulated dataset.
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5.1.4.3 Maximum-likelihood parametric G-computation

We consider two implementations of parametric G-computation. In the first implementation, we

use maximum-likelihood estimation to fit the multivariable outcome regression. The Q-model is

correctly specified. We construct the joint distribution of the four BC covariates by simulating

these from a multivariate Gaussian copula. This uses normally-distributed marginals with

the BC means and standard deviations, and the pairwise linear correlations of the AC IPD.

N∗ = 1000 subject profiles are simulated for the BC pseudo-population, a value high enough

to minimize sampling variability and provide an adequate degree of precision. Outcomes

in the BC population are predicted by plugging the simulated covariates into the maximum-

likelihood fit. The procedure is resampled using the ordinary non-parametric bootstrap with

replacement, with 1,000 resamples of each simulated dataset. Increasing further the number

of resamples produces minimal gains in estimation precision and accuracy, with the Monte

Carlo error across different random seeds remaining relatively insensitive to these increases.

The average marginal log-odds ratio for A vs. C is calculated as the mean across the 1,000

bootstrap resamples. Its corresponding standard error is the sample standard deviation across

the resamples.

In a test simulation scenario with N = 200, parametric G-computation using maximum-

likelihood estimation has a running time of approximately 3.5 seconds per replicate. Computa-

tion time increases linearly with the number of bootstrap resamples.

5.1.4.4 Bayesian parametric G-computation

In the second implementation of parametric G-computation, we use MCMC simulation to fit

the outcome regression. This is implemented using the package rstanarm [212], a high-level

appendage to the rstan package [213], the R interface for Stan [185]. Again, the Q-model

is correctly specified. The joint distribution of the BC covariates is constructed by simulating

N∗ = 1000 subjects from a multivariate Gaussian copula, with normally-distributed marginals

with the BC means and standard deviations, and the pairwise linear correlations of the AC
IPD. Predicted outcomes for the simulated covariates are drawn from their posterior predictive

distribution.

We use the default independent “weakly informative” priors for the logistic regression intercept

and predictor coefficients, i.e., the likelihood dominates under a reasonably large amount of

data and the prior strongly influences the posterior if the data are weak [214]. These are

normally-distributed priors centered at mean 0. The scale of the normal prior distribution for

the intercept is 1. The scale parameter of the normal priors for the other coefficients is 2.5,

rescaled in terms of the standard deviation of the predictor in question. This places most of the

prior mass in the range of plausible effects, discarding coefficient values that are implausibly

strong, e.g. log-odds ratios over 3 (corresponding, approximately, to odds ratios over 20). This

provides some regularization and helps stabilize computation. Alternative prior specifications

are considered to check that we are not incorporating any unintended information into the

models through the priors. Results are robust to the definitions of the prior distributions.
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We run two Markov chains with 4,000 total iterations per chain. These include 2,000

warmup/burn-in iterations for each chain that are not used for posterior inference. This gives

a total of 4,000 iterations for performing the analysis. Approximate mixing of the chains

was attained, with all within-chain relative to between-chain statistics (R-hat) below 1.1 [215].

Satisfactory convergence was confirmed by the inspection of trace plots and the assessment of

diagnostics such as the effective sample size and the Gelman-Rubin convergence diagnostic

(potential scale reduction factor) [215]. The average marginal treatment effect for A vs. C is

estimated taking the sample mean of the marginal log-odds ratio across the 4,000 MCMC

iterations. The corresponding standard error is estimated using the sample standard deviation

of the posterior draws of the marginal log-odds ratio.

In a test simulation scenario with N = 200, Bayesian parametric G-computation has a

running time of approximately 4.2 seconds per replicate. Computation time increases linearly

with the total number of MCMC iterations.

5.1.4.5 Multiple imputation marginalization

In the synthesis stage (first-stage regression and outcome prediction), we follow the MCMC

procedure outlined for Bayesian G-computation to generate the syntheses, using identical

prior specifications. We run two MCMC chains using rstanarm with 4,000 iterations per

chain, where the burn-in is of 2,000 iterations. The convergence and mixing of the chains

are satisfactory. The first-stage logistic regression is correctly specified. The joint distribution

of the BC covariates is constructed by simulating from a multivariate Gaussian copula, with

normally-distributed marginals with the BC means and standard deviations, and the pairwise

linear correlations of the AC IPD. Predicted outcomes for the simulated covariates are drawn

from their posterior predictive distribution as for Bayesian G-computation.

The MCMC chains are thinned every 4 iterations to use M = 4000/4 = 1000 syntheses in

the analysis stage. Each synthesis is of size N∗ = 1000, while keeping the same treatment

allocation ratio of the original AC trial. We consider the selected value of M to provide an

adequate degree of precision. In a test simulation scenario (N = 200), M = 1000 is high

enough to minimize the Monte Carlo noise in the treatment effect estimate, such that the

Monte Carlo error across different random seeds is small with respect to the uncertainty in

the estimator (estimates are approximately within 0.01 across seeds). We explore varying the

value of N∗ in Supplementary Appendix D. We consider a two-step approach to pooling and

the indirect comparison. In this formulation, the combining rules in Equations 31 and 32 are

used to pool the point estimates of the second stage regressions and to estimate the marginal

log-odds ratio for A vs. C in the BC population. Under M = 1000, variance estimates for the

marginal A vs. C treatment effect are never negative under any scenario.

In a test simulation scenario with N = 200, MIM has a running time of approximately 7.9

seconds per replicate. Assuming that the total number of MCMC iterations is fixed, computation

time increases linearly with the number of syntheses M.
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5.1.4.6 Indirect treatment comparison

For all methods, the marginal log-odds ratio for B vs. C is estimated directly from the event

counts, and its standard error is computed using the delta method [216]. The marginal log-odds

ratio estimate for A vs. B and its standard error are obtained by combining the within-study point

estimates, as per Section 4.7 (using Equation 2 to compare point estimates and Equation 33 to

sum the point estimates of the variance). Wald-type 95% interval estimates are constructed for

the marginal A vs. B treatment effect using normal distributions.

In Bayesian G-computation, we have used a two-step approach for: (1) the population-

adjusted analysis of the AC trial (estimation of the marginal effect for A vs. C); and (2) the

indirect treatment comparison (estimation of the marginal effect for A vs. B). We also consider

integrating the two in one stage, using MCMC sampling. In this case, for estimation of the

marginal log-odds ratio for B vs. C, the true underlying event rates/proportions for the treatments

are given non-informative Jeffreys Beta(0.5, 0.5) priors. The number of events in each arm

is sampled from two independent Binomial likelihoods, parametrized by the aforementioned

event probabilities and the total number of subjects in each arm. Means and variances for the

marginal A vs. B treatment effect are obtained empirically from the posterior samples, with

interval estimates calculated from the quantiles of the posterior distribution.

Similarly, in MIM, we have used a two-step approach for: (1) pooling (estimation of the

average marginal effect for A vs. C); and (2) the indirect treatment comparison (estimation

of the marginal effect for A vs. B). We consider using posterior simulation (Equations 28-30)

to pool the point estimates from the second-stage regressions, integrating the pooling and

the indirect comparison within a single Bayesian computation module. In this case, we apply

MCMC sampling using the aforementioned prior specifications for the event rates in the BC
study.

While the Bayesian inferential frameworks might be convenient for parametric G-computation

and for MIM in the context of probabilistic sensitivity analysis, the selected inferential framework

has little bearing on computation time and on the results of this simulation study, both in terms

of a single case study and of the long-run frequentist statistical properties of the methods.

Integrating the indirect treatment comparison step within a Bayesian module leads to virtually

identical performance measures than the two-step approaches. Therefore, results are not

reported.

5.1.5 Performance measures

We generate and analyze 2,000 Monte Carlo replicates of trial data per simulation scenario.

Recall that in our implementations of MAIC, G-computation (both versions) and MIM, a large

number of bootstrap resamples, MCMC draws or syntheses are performed for each of the 2,000

replicates. For instance, the analysis for one simulation scenario using Bayesian G-computation

contains 4,000 MCMC draws (after burn-in) times 2,000 simulation replicates, which equals

a total of 8 million posterior draws. Based on the method and simulation scenario with the
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highest long-run variability (the conventional STC with N = 200 and poor covariate overlap),

we consider the degree of precision provided by the Monte Carlo standard errors under 2,000

replicates to be acceptable in relation to the size of the effects.4

We evaluate the performance of the outcome regression methods and MAIC on the basis of

the following criteria: (1) bias; (2) variability ratio; (3) empirical coverage rate of the interval

estimates; (4) empirical standard error (ESE); and (5) mean square error (MSE). These criteria

are explicitly defined in Chapter 3, albeit note that there are 2,000 simulation replicates (not

1,000) in the current simulation study.

With respect to the simulation study aims in subsection 5.1.1, the bias in the estimated

treatment effect assesses aim 1. This is equivalent to the average estimated treatment effect

across simulations because the true treatment effect ∆(2)
12 = 0. The variability ratio evaluates

aim 2. This represents the ratio of the average model standard error and the sample standard

deviation of the treatment effect estimates (the empirical standard error) [117]. Coverage

targets aim 3, and is estimated as the proportion of simulated datasets for which the true

treatment effect is contained within the nominal (100 × (1 − α))% interval estimate of the

estimated treatment effect. In this simulation study, α = 0.05 is the nominal significance level.

The empirical standard error is the standard deviation of the treatment effect estimates across

the 2,000 simulated datasets. Therefore, it measures precision or long-run variability, and

evaluates aim 4. The mean square error is equivalent to the average of the squared bias plus

the variance across the 2,000 simulated datasets. Therefore, it is a summary value of overall

accuracy (efficiency), that accounts for both bias (aim 1) and variability (aim 4).

5.2 R E S U LT S O F T H E S I M U L AT I O N S T U DY

Performance metrics for all simulation scenarios are displayed in Figure 12, Figure 13 and

Figure 14. Figure 12 displays the results for the three data-generating mechanisms under

N = 200. Figure 13 presents the results for the three scenarios with N = 400. Figure 14

depicts the results for the three scenarios with N = 600. From top to bottom, each figure

considers the scenario with strong overlap first, followed by the moderate and poor overlap

scenarios. For each scenario, there is a box plot of the point estimates of the A vs. B marginal

treatment effect across the 2,000 simulated datasets. Below, is a summary tabulation of the

performance measures for each method. Each performance measure is followed by its Monte

Carlo standard error, presented in parentheses, which quantifies the simulation uncertainty.

In the figures, ATE is the average marginal treatment effect estimate for A vs. B across the

simulated datasets (this is equal to the bias as the true effect is zero). LCI is the average

4 Conservatively, we assume that SD(∆̂(2)
12 ) ≤ 1.71 and that the variance across simulations of the estimated

treatment effect is always less than 2.92. Given that the MCSE of the bias is equal to
√

Var(∆̂(2)
12 )/Nsim, where

Nsim = 2000 is the number of simulations, it is at most 0.038 under 2,000 simulations. We consider the degree of
precision provided by the MCSE of the bias to be acceptable in relation to the size of the effects. If the empirical
coverage rate of the methods is 95%, Nsim = 2000 implies that the MCSE of the coverage is

(√
(95 × 5)/2000

)
=

0.49%, with the worst-case MCSE being 1.12% under 50% coverage. We also consider this degree of precision to
be acceptable. Hence, the simulation study is conducted under Nsim = 2000.



104 M A R G I N A L I Z AT I O N O F R E G R E S S I O N - A D J U S T E D T R E AT M E N T E F F E C T S : A S I M U L AT I O N S T U DY

lower bound of the 95% interval estimate. UCI is the average upper bound of the 95% interval

estimate. VR, ESE and MSE are the variability ratio, empirical standard error and mean square

error, respectively. Cov is the empirical coverage rate of the 95% interval estimates. G-comp

(ML) stands for the maximum-likelihood version of parametric G-computation and G-comp

(Bayes) denotes its Bayesian counterpart using MCMC estimation.

In MIM, no simulation replicates produce negative variances and ad hoc truncation is not

required. Weight estimation cannot be performed for 4 of the 18,000 replicates in MAIC, where

there are no feasible weighting solutions. This issue occurs in the most extreme scenario,

corresponding to N = 200 and poor covariate overlap. Feasible weighting solutions do not

exist due to separation problems, i.e., there is a total lack of covariate overlap. Because

MAIC is incapable of producing an estimate in these cases, the affected replicates are dis-

carded altogether (the scenario in question analyzes 1,996 simulated datasets for MAIC). This

phenomenon has also been observed in a recent simulation study [34], where MAIC cannot

generate an estimate in scenarios with small sample sizes and poor overlap.

U N B I A S E D N E S S O F T R E AT M E N T E F F E C T E S T I M AT E S The impact of the bias largely

depends on the uncertainty in the estimated treatment effect, quantified by the empirical

standard error. We compute standardized biases (bias as a percentage of the empirical

standard error). With N = 200, MAIC has standardized biases of magnitude 11.3% and 16.1%

under moderate and poor covariate overlap, respectively. Otherwise, the magnitude of the

standardized bias is below 10%. Similarly, under N = 200, the maximum-likelihood version

of parametric G-computation has standardized biases of magnitude 13.3% and 24.8% in the

scenarios with moderate and poor overlap, respectively. In all other scenarios, the standardized

bias has magnitude below 10%. For Bayesian parametric G-computation, standardized biases

never have a magnitude above 10% and troublesome biases are not produced in any of the

simulation scenarios. The maximum absolute value of the standardized bias is 9.7% in a

scenario with N = 200 and moderate covariate overlap. In MIM, no standardized biases are

larger than 10% in either direction, and the maximum absolute value is 9.4% in a simulation

scenario with N = 200 and moderate overlap.

To evaluate whether the bias in MAIC and parametric G-computation has any practical

significance, we investigate whether the coverage rates are degraded by it. Coverage is

not affected for maximum-likelihood parametric G-computation, where empirical coverage

rates for all simulation scenarios are very close to the nominal coverage rate, 0.95 for 95%

interval estimates. In the case of MAIC, there is discernible undercoverage in the scenario with

N = 200 and poor covariate overlap (empirical coverage rate of 0.916). This is the scenario

with the lowest effective sample size after weighting. Hence, the results are probably related to

small-sample bias [217] in the weighted logistic regression [138]. This bias for MAIC was not

observed in the more extreme scenarios of the simulation study in Chapter 3, which considered

survival outcomes and the Cox proportional hazards regression as the outcome model. In

absolute terms, the bias of MAIC is greater than that of MIM and both versions of parametric

G-computation where the number of patients in the AC trial is small (N = 200) or covariate
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overlap is poor. In fact, when both of these apply, the bias of MAIC is important (-0.144).

Otherwise, with N = 400 or greater, and moderate or strong overlap, the aforementioned

methods produce similarly low levels of bias.

Figure 12: Point estimates and performance metrics across all methods for each simulation scenario
with N = 200. The model standard error for the MAIC outlier in the poor overlap scenario
has an inordinate influence on the variability ratio; removing it reduces the variability ratio to
0.980 (0.019).
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Figure 13: Point estimates and performance metrics across all methods for each simulation scenario
with N = 400.
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Figure 14: Point estimates and performance metrics across all methods for each simulation scenario
with N = 600.
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STC generates problematic negative biases in all nine scenarios considered in this simulation

study, with a standardized bias of magnitude greater than 50% in all cases. STC consistently

produces the highest bias of all methods, and the magnitude of this bias appears to increase

under the smallest sample size (N = 200). Recall that all methods perform the same unadjus-

ted analysis for the B versus C comparison, which should be unbiased with respect to the true

marginal log-odds ratio in BC (-1.15). The systematic bias in STC is due to the divergence of

the conditional estimates produced for A versus C from the corresponding marginal estimand

that should be targeted. This is a result of the non-collapsibility of the (log) odds ratio.

U N B I A S E D N E S S O F VA R I A N C E E S T I M AT E S In MAIC, the variability ratio of treatment

effect estimates is close to one under all simulation scenarios except one. That is the scenario

with N = 200 and poor covariate overlap, where the variability ratio is 1.122. This high value is

attributed to the undue influence of an outlier (as seen in the box plot of point estimates) on the

average model standard error. Once the outlier is removed, the variability ratio decreases to

0.98, just outside from being within Monte Carlo error of one but not statistically significantly

different. This suggests very little bias in the standard error estimates in this scenario, i.e., that

the model standard errors tend to coincide with the empirical standard error. In the simulation

study of Chapter 3, robust sandwich standard errors underestimated the variability of estimates

in MAIC under small sample sizes and poor covariate overlap. The non-parametric bootstrap

seems to provide more conservative variance estimation in these extreme settings.

In STC, variability ratios are generally close to one with N = 400 and N = 600. Any bias in

the estimated variances appears to be negligible, although there is a slight decrease in the

variability ratios when the AC sample size is small (N = 200). Recall that this metric assumes

that the correct estimand and corresponding variance are being targeted. However, in our

application of STC, both model standard errors and empirical standard errors are taken over

an incompatible indirect treatment comparison.

In maximum-likelihood parametric G-computation, variability ratios are generally very close

to one. In Bayesian parametric G-computation, variability ratios are generally close to one but

are slightly above it in some scenarios with N = 600 (1.05 and 1.052 with moderate and poor

covariate overlap, respectively). This suggests some overestimation of the empirical standard

error by the model standard errors. On the other hand, MIM displays some underestimation of

variability by the model standard errors. This is more pronounced under the smallest sample

size, with variability ratios of 0.93 and 0.921 for moderate and poor overlap, respectively. The

underestimation is likely due to the normality assumptions used to derive the model standard

errors — the posterior distribution of ∆(2)
10 is assumed to be normal in the derivation of the

combining rules, and low sample sizes may break the normality assumption.

R A N D O M I Z AT I O N VA L I D I T Y The empirical coverage rate should be approximately equal

to the nominal coverage rate, in this case 0.95 for 95% interval estimates, to obtain appropriate

type I error rates for testing a “no effect” null hypothesis. Theoretically, the empirical coverage

rate is statistically significantly different to 0.95 if, roughly, it is less than 0.94 or more than 0.96,
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assuming 2,000 independent simulations per scenario. These values differ by approximately

two standard errors from the nominal coverage rate. Poor coverage rates are a decomposition

of both the bias and the standard error used to compute the Wald-type interval estimates. In

the simulation scenarios, none of the methods lead to overly conservative inferences but there

are some issues with undercoverage.

Empirical coverage rates for MAIC are significantly different from the advertised nominal

coverage rate in three scenarios. In the three, the coverage rate is below 0.94 (empirical

coverage rates of 0.938, 0.93 and 0.916). The last two of these occur in scenarios with

poor covariate overlap, with the latter corresponding to the smallest effective sample size

after weighting (N = 200). This is the scenario which integrates the two most important

determinants of small-sample bias, in which MAIC has exhibited discernible bias. In this case,

undercoverage is bias-induced. On the other hand, in our previous simulation study in Chapter

3, undercoverage was induced by the robust sandwich variance underestimating standard

errors.

In the conventional version of STC, coverage rates are degraded by the bias induced by the

non-collapsibility of the log-odds ratio. Almost invariably, there is undercoverage. Interestingly,

the empirical coverage does not markedly deteriorate — coverage percentages never fall below

90%, i.e., never at least double the nominal rate of error. In general, both versions of parametric

G-computation exhibit appropriate coverage. Only one scenario provides rates below 0.94

(Bayesian G-computation with N = 200 and poor overlap, with an empirical coverage rate of

0.93). No scenarios have empirical coverage above 0.96. Coverage rates for the maximum-

likelihood implementation are always appropriate, with most empirical coverage percentages

within Monte Carlo error of 95%.

In MIM, coverage rates generally exhibit some underestimation of the advertised nominal

coverage rate. Empirical coverage rates are significantly below the nominal rate in four scen-

arios (empirical coverage rates of 0.936, 0.936, 0.93 and 0.923). Again, the most inappropriate

of these (0.923) occurs where there is poor covariate overlap and the AC sample size is

low (N = 200). In this scenario, it is not bias that degrades the coverage rate for MIM. Poor

coverage is induced by the standard errors used to construct the Wald-type interval estimates,

which underestimate variability.

P R E C I S I O N A N D E F F I C I E N C Y MIM and both versions of parametric G-computation have

reduced empirical standard errors compared to MAIC across all scenarios. Interestingly,

conventional STC is even less precise than MAIC in most scenarios (all the scenarios with

moderate or strong overlap, where reductions in effective sample size after weighting are

tolerable). Several trends are revealed upon comparison of the ESEs, and upon visual

inspection of the spread of the point estimates in the box plots. As expected, the ESE increases

for all methods (i.e., estimates are less precise) as the number of subjects in the AC trial is

lower. The decrease in precision is more substantial for MAIC than for the outcome regression

methods.
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The degree of covariate overlap has an important influence on the ESE and population

adjustment methods incur losses of precision when covariate overlap is poor. Again, this

loss of precision is more substantial for MAIC than for the outcome regression approaches.

Where overlap is poor, there exists a subpopulation in BC that does not overlap with the AC
population. Therefore, inferences in this subpopulation rely largely on extrapolation. Outcome

regression approaches require greater extrapolation when the covariate overlap is weaker,

thereby incurring a loss of precision.

Where covariate overlap is strong, MIM and both versions of parametric G-computation

display very similar ESEs than MAIC. As mentioned earlier, conventional STC offers even lower

precision than MAIC in these cases. To illustrate this, consider the scenario with N = 200

and moderate overlap, where MAIC is expected to have a low effective sample size after

weighting and perform comparatively worse than outcome regression. Even in this scenario,

MAIC appears to be more precise (empirical standard error of 0.541) than conventional

STC (empirical standard error of 0.558). As overlap decreases, precision is reduced more

markedly for MAIC compared to the outcome regression methods. Under poor overlap, MAIC

considerably increases the ESE compared to the conventional STC.

In MAIC, extrapolation is not even possible. Where covariate overlap is poor, the observations

in the AC IPD that are not covered by the ranges of the selected covariates in BC are assigned

weights that are very close to zero. The relatively small number of individuals in the overlapping

region of the covariate space are assigned inflated weights, dominating the reweighted sample.

These extreme weights lead to large reductions in ESS and affect very negatively the precision

of estimates.

Similar to the trends observed for the ESE, the MSE is also very sensitive to the value of N
and to the level of covariate overlap. The MSE decreases for all methods as N and the level of

overlap increase. The accuracy of MAIC and the marginalized outcome regression methods

is comparable when the AC sample size is high or covariate overlap is strong. As the AC
sample size and overlap decrease, the relative accuracy of MAIC with respect to MIM and both

approaches to parametric G-computation is markedly reduced. Accuracy for the conventional

version of STC is comparatively poor and this is driven by bias.

Where covariate overlap is strong or moderate, the marginalized outcome regression meth-

ods have the highest accuracy, followed by MAIC and STC. Where overlap is poor, the

marginalized outcome regression methods are considerably more accurate than MAIC, with

much smaller mean square errors. MAIC also provides less accurate estimates than STC in

terms of mean square error. The variability of estimates under MAIC increases considerably in

these scenarios. The precision is sufficiently poor to offset the loss of bias with respect to STC.
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5.3 D I S C U S S I O N O F S I M U L AT I O N S T U DY R E S U LT S

5.3.1 Summary of findings

The marginalized outcome regression methods and MAIC can yield unbiased estimates of the

marginal A vs. B treatment effect in the BC population. Conventional STC targets a conditional

treatment effect for A vs. C that is incompatible in the indirect comparison. Bias is produced

because the log-odds ratio is a non-collapsible measure of effect. Across all scenarios, MIM and

both versions of parametric G-computation largely eliminate the bias induced by effect modifier

imbalances. There is some negative bias in MAIC and the marginalized outcome regression

methods where the sample size N is small. In the case of MAIC, this is problematic where

covariate overlap is poor. The bias for MAIC was not observed in our previous simulation study

in Chapter 3. In that study, the model of interest was a Cox proportional hazards regression

with survival outcomes. The difference in results is likely due to logistic regression being more

prone to small-sample or sparse data bias [217] than Cox regression [138].

As for precision, the marginalized outcome regression approaches have reduced variability

compared to MAIC. The superior precision is demonstrated by their lower empirical standard

errors across all scenarios. Because the methods are generally unbiased, precision is the driver

of comparative accuracy. The simulation study confirms that, under correct model specification,

parametric G-computation and MIM have lower mean square errors than weighting and are

therefore more efficient. The differences in performance are exacerbated where covariate

overlap is poor and sample sizes are low. In these cases, the effective sample size after

weighting is small, and this leads to inflated variances and wider interval estimates for MAIC.

Specific bias-variance trade-offs will depend on the outcome model of interest, e.g. the logistic

regression with binary outcomes setup in this study is less efficient than the Cox regression

with survival outcomes [137] explored in our previous simulation study (Chapter 3).

The performance measures for Bayesian G-computation and MIM are very similar, as they

use the same MCMC procedure to fit the outcome model and to predict outcomes. In terms

of bias, precision and efficiency, there is no particular reason to believe that the performance

metrics for Bayesian G-computation or MIM are superior one to the other. In terms of variance

estimation and coverage, the performance measures for both parametric G-computation

approaches are superior to those of MIM. MIM exhibits undercoverage in some scenarios due

to the model standard errors underestimating variability. Generally speaking, coverage rates for

the interval estimates are more appropriate for the parametric G-computation methods than for

MIM. Where the outcome regression is a generalized linear model, parametric G-computation

is easier to implement and has lesser potential complications. In any case, MIM could be

useful with different outcome model types. Further research on this method is required, and

will focus on developing alternative variance estimators that avoid negative variances and are

more conservative.

For the conventional STC, outcome regression may have decreased precision relative to

MAIC, as dictated by the empirical standard errors. On the other hand, the marginalized
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outcome regression methods are more precise than both MAIC and conventional STC. From a

frequentist perspective, the standard error of the estimator of a conditional log-odds ratio for A
vs. C, targeted by conventional STC, is larger than the standard error of a regression-adjusted

estimate of the marginal log-odds ratio for A vs. C, produced by G-computation and MIM. This

precision comparison likely lacks relevance, because one is comparing estimators that target

different estimands. Nevertheless, it supports previous findings on non-collapsible measures of

effect when adjusting for prognostic covariates [44, 50]. When we marginalize and compare

estimators targeting like-for-like marginal estimands, we find that outcome regression is no

longer detrimental for precision and efficiency compared to weighting.

In our previous simulation study in Chapter 3 [91], we evaluated MAIC using a robust

sandwich variance estimator. This underestimated variability and produced narrow interval

estimates under small effective sample sizes. In the simulation study in this chapter, the

bootstrap procedure provides more conservative variance estimation compared to the sandwich

estimator in the more extreme settings. This implies that the bootstrap approach should be

preferred for statistical inference where there are violations of the overlap assumption and

small sample sizes.

5.3.2 Implications for practice

E X T R A P O L AT I O N C A PA B I L I T I E S A N D P R E C I S I O N C O N S I D E R AT I O N S We expect the

conclusions in the previous paragraphs to be robust. The number of simulated datasets per

scenario (2,000) is large enough so that the outlined performance differences are not due to

chance. Nevertheless, we now clarify some aspects of the conclusions that are more nuanced.

In real applications, the effective sample sizes and percentage reductions in effective sample

size may be lower and higher, respectively, than those considered in this simulation study

[30]. In these situations, covariate overlap is poor and this leads to a high loss of precision in

MAIC. The marginalized outcome regression methods should be considered because they are

substantially more statistically efficient. This is particularly the case where the outcome model

is a logistic regression, more prone to small-sample bias [34, 138], imprecision [137], and

inefficiency [137] than other models, e.g. the Cox regression. In addition, where sample sizes

are small and the number of covariates is large, feasible weighting solutions may not exist for

MAIC due to separation problems [35], as observed in one of the scenarios of this simulation

study (N = 200 with poor overlap) and, notably, in another recent simulation study [34]. An

advantage of outcome regression is that it can be applied in these settings. MAIC cannot

extrapolate beyond the covariate space observed in the IPD. Therefore, it cannot overcome the

failure of assumptions that is the lack of covariate overlap and is incapable of producing an

estimate.

Moreover, we note that MAIC requires accounting for all effect modifiers (balanced and

imbalanced), as excluding balanced covariates from the weighting procedure does not ensure

balance after the weighting. On the other hand, outcome regression methods do not necessarily



5.3 D I S C U S S I O N O F S I M U L AT I O N S T U DY R E S U LT S 113

require the inclusion of the effect modifiers that are in balance. This may mitigate losses of

precision further, particularly where the number of potential effect modifiers is large.

With limited overlap, outcome regression methods can use the linearity assumption to

extrapolate beyond the AC population, provided the true relationship between the covariates

and the outcome is adequately captured. We view this as a desirable attribute because poor

overlap, with small effective sample sizes and large percentage reductions in effective sample

size, is a pervasive issue in health technology appraisals [30]. Nevertheless, where overlap is

more considerable, one may wish to restrict inferences to the region of overlap and avoid relying

on a model for extrapolation outside this region (reducing the dependence on assumptions that

are inherently untestable) [218, 219].

Note that the model extrapolation uncertainty is not reflected in the interval estimates for the

outcome regression approaches and that some consider weighting approaches to give a “more

honest reflection of the overall uncertainty” [146]. The gain in efficiency produced by outcome

regression must be counterbalanced against the potential for model misspecification bias.

Weighting methods are often perceived to rely on less demanding parametric assumptions, yet

model misspecification is an issue for both methods as we discuss later in this section.

It is worth noting that we have used the standard MAIC formulation proposed by Signorovitch

et al. [10, 18, 71, 91] and that our conclusions are based on this approach. Nevertheless, MAIC

is a rapidly developing methodology with novel implementations. An alternative formulation

based on entropy balancing has been recently presented [25, 28, 70, 71]. This approach is

similar to the original version with a subtle modification to the weight estimation procedure.

While it has some interesting computational properties, Phillippo et al. [71] have recently

shown that the standard method of moments and entropy balancing produce weights that

are mathematically equivalent (up to optimization error or a normalizing constant). Drawing

from Zubizarreta [220], Jackson et al. [35] propose a distinct weight estimation procedure that

satisfies the conventional method of moments and maximizes the effective sample size. A

larger effective sample size translates into minimizing the variance of the weights, with more

stable weights producing a gain in precision at the expense of introducing some bias.

A potential extension to MAIC could involve estimating the treatment mechanism in the AC
trial as well as the trial assignment mechanism. In a randomized trial, the treatment assignment

mechanism is known — the true conditional probability of treatment among the randomized

subjects is known and, in expectation, independent of the covariates. Nevertheless, modeling

this probability, e.g. using a parametric model, is beneficial to control for random (chance)

imbalances in baseline covariates between study arms. In other contexts, this has improved

the precision and efficiency of propensity score estimators [125, 221–225].

B AY E S I A N M O D U L A R I T Y The marginalized outcome regression methods, particularly the

Bayesian approaches, can be readily adapted to address missing values in the AC IPD. As

seen in subsection 4.6.1, Bayesian G-computation and the synthesis stage of MIM follow very

closely the principles of multiple imputation, which is also, arguably, a fundamentally Bayesian

operation. Missing covariates and outcomes in the IPD could be imputed in each MCMC
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iteration, accounting naturally for the uncertainty in the missing data. Addressing “missingness”

in the BC study is not possible without access to the patient-level data.

Throughout the thesis, we have made certain assumptions about the covariate distribution in

the BC population. We have treated the covariate moments θ and the correlation information

ρ as fixed. The Bayesian frameworks could be extended to account for this additional layer

of uncertainty, in the specification of θ and ρ and also in the selected marginal distribution

forms for BC. Bayesian regression approaches can also account for other issues such as

measurement error in the IPD [179, 180]. Bayesian model averaging can be incorporated to

capture structural or model uncertainty [226]. By drawing outcome predictions under various

models, complex relationships in the patient-level data may be reproduced more accurately,

offering some protection against parametric model misspecification.

In the Bayesian procedures, both “hard” (e.g. the results of a meta-analysis) and “soft”

(e.g. clinical rationale from experts) evidence can be used to form the prior distributions for

the conditional prognostic and interaction effects. The specification of the parametric outcome

model requires “dichotomizing” whether a variable is an effect modifier or not, i.e., in statistical

terms, specifying whether interactions with treatment do or do not exist. Bayesian shrinkage

methods allow interactions to be “half in, half out” of the model [227–229]. For instance, one can

specify skeptical or regularization prior distributions for the interaction effects, over all potential

candidate effect modifiers. In the words of Simon and Freedman [229], this “encourages the

quantification of prior belief about the size of interactions that may exist. Rather than forcing

the investigator to adopt one of two extreme positions regarding interactions, it provides for the

specification of intermediate positions”.

5.3.3 Limitations of the methods and simulation study

M E T H O D L I M I TAT I O N S Care must be taken where sample sizes are small in population-

adjusted indirect comparisons. Low sample sizes cause substantial issues for the accuracy

of MAIC due to unstable weights. Also, MIM assumes that the posterior distribution of ∆(2)
10

is approximately normal, and low sample sizes may break this normality assumption. As the

sponsor company is directly responsible for setting the value of N, the AC trial should be

as large as possible to maximize precision and accuracy. The sample size requirements for

indirect comparisons, and more generally for economic evaluation, are considerably larger than

those required to demonstrate an effect for the main clinical outcome in a single RCT. However,

trials are usually powered for the main clinical comparison, even if there is a prospective

indirect, potentially adjusted, comparison down the line. Ideally, if the manufacturer intends

to use standard or population-adjusted indirect comparisons for reimbursement purposes, its

clinical study should be powered for the relevant methods.

Note that sponsors tend to run multiple RCTs instead of one larger RCT for marketing

authorization applications. If there are many different IPD RCTs, it is necessary to fit the

covariate-adjusted regression to each patient-level dataset and marginalize against the BC
pseudo-population in G-computation and MIM. Similarly, one would apply MAIC to each study
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individually, reweighting each patient-level dataset against the BC study report. Then, a meta-

analysis of effect measure estimates can be performed in the same population using the

marginalized or weighted results from the IPD studies and the original effect estimate published

in the ALD study.

The population adjustment methods outlined in this thesis are only applicable to pairwise

indirect comparisons, and not easily generalizable to larger network structures of treatments

and studies. This is because the methods have been developed in the two-study scenario seen

in this simulation study, very common in HTA submissions, where there is one AC study with

IPD and another BC study with ALD. In this very sparse network, indirect comparisons are

vulnerable to bias induced by effect modifier imbalances. In larger networks, multiple pairwise

comparisons do not necessarily generate a consistent set of relative effect estimates for all

treatments. This is because the comparisons must be undertaken in the ALD populations.

Another issue is that the ALD population(s) may not correspond precisely to the target

population for the decision. Marginal estimands in different populations may not match if there

are differences in the distribution of effect modifiers. This is a problem of external validity: if

populations are non-exchangeable, an internally valid estimate for the marginal estimand in

one population is not necessarily unbiased for the marginal estimand in the other(s) [230, 231].

To address this, one suggestion would be for the decision-maker to define a target population

for a specific disease into which all manufacturers should conduct their indirect comparisons.

The outcome regression approaches discussed in Chapter 4 could be applied to produce

marginal effects in any target population. The target could be represented by the joint covariate

distribution of a registry, cohort study or some other observational dataset, and one would

marginalize over this distribution. Similarly, MAIC can reweight the IPD with respect to a

different population than that of the BC study.

M E T H O D A S S U M P T I O N S The comments about potential failures of assumptions in Section

3.3.3 are still relevant, with additional concerns being raised in the next few paragraphs.

Population-adjusted indirect comparisons mostly depend on the same assumptions (detailed

in Supplementary Appendix A) including: (i) internal validity of the AC and BC trials, (ii)

consistency under parallel studies, (iii) accounting for all effect modifiers of treatment A vs. C
in the adjustment (i.e., the conditional constancy of the A vs. C marginal treatment effect or the

conditional ignorability, unconfoundedness or exchangeability of trial assignment/selection for

such treatment effect), (iv) that there is overlap between the covariate distributions in AC and

BC (more specifically, that the ranges of the selected covariates in the AC trial cover some of

their respective ranges in the BC population), (v) that the joint covariate distribution of the BC
population has been correctly specified, (vi) and parametric modeling assumptions.

Assumptions (i) and (ii) are made by any indirect treatment comparison or meta-analysis.

The other, largely untestable, assumptions are unique to population-adjusted analyses and

their violation may lead to bias. The most crucial assumptions underlying population-adjusted

indirect comparisons relate to the correct specification of the trial assignment logistic regression
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(in the case of MAIC), and of the covariate-adjusted outcome regression (in the case of

conventional STC, parametric G-computation and MIM).

In practice, there will be model misspecification if there is incomplete information on effect

modifiers for one or both of the trials. Conditional exchangeability (“no omitted effect modifiers”)

is a fundamental assumption for all methods. However, it is not directly testable with the

available data due to the lack of additional individual-level outcome information for the BC
study [61]. In collaboration with clinical experts, the most plausible effect modifiers should be

selected for the base-case analysis. Nevertheless, the effect modifier status of covariates is

difficult to ascertain, particularly for novel treatments with limited prior empirical evidence and

clinical domain knowledge [136]. Therefore, we will never be completely certain that all effect

modifiers have been accounted for, or of the validity of the population adjustment.

Consequently, sensitivity analyses are warranted under alternative model specifications to

explore the dependence of inferences on the model and the robustness of results [232–234].

In the context of “generalizability”, Nguyen et al. [233] have recently developed an approach for

sensitivity analysis. This is applicable where potential effect modifiers are measured only in the

AC trial but not in the BC study, given some assumptions about the missing effect modifiers.

Dahabreh [175] proposes a bias function strategy for sensitivity analyses, which does not

require individual-level information on unobserved effect modifiers. Further research should

adapt this recent work to our “limited patient-level data” setup.

Parametric modeling assumptions will not hold under incorrect model specification, e.g. in

the outcome regression methods, if only linear relationships are considered and the selected

covariates have non-linear interactions with treatment on the linear predictor scale. This simu-

lation study only considers a best-case scenario with correct parametric model specification.

To predict the outcomes, we use the logistic regression model implied by the data-generating

mechanism. Similarly, the model for estimating the weights is the best-case model in MAIC

because the right subset of covariates has been selected as effect modifiers and the balancing

property holds for the weights with respect to the effect modifier means, as mentioned in

subsections 3.1.4 and 5.1.4.1.5 Also, effect modification has been correctly specified as linear,

but scale conflicts would arise if effect modification status, which is scale-specific, had been

justified on the wrong scale, e.g. if the true treatment effect modification were non-linear or

multiplicative, e.g. age in cardiovascular disease treatments.

In real applications, these modeling assumptions are difficult to hold because, unlike in

simulations, the correct specification is unknown, particularly where there are a large number

of covariates and complex relationships exist between them. The simulation study presented

in this chapter demonstrates proof-of-concept for the outcome regression methods and for

MAIC, but does not investigate how robust the methods are to failures in assumptions. Future

5 The MAIC implementation is optimal in terms of precision and accuracy because the trial assignment model only
balances the two covariates that interact with treatment. Nevertheless, these are not the only two covariates that
are associated with trial assignment. Consider balancing the full set of covariates that predict trial assignment (a
total of four covariates, including the two predictors with only main effects in the data-generating outcome model).
Variance would be increased without improving the potential for bias reduction in the BC population. The behavior
of MAIC would be more unstable because of weaker overlap. More extreme weights would be produced, and
finite-sample or “chance” overlap violations would be more likely, particularly with small AC sample sizes.
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simulation studies should explore performance in scenarios where assumptions are violated, in

order to draw more accurate conclusions with respect to practical applications and limitations.

The general-purpose nature of the methods presented in Chapter 4 may provide some degree

of robustness against model misspecification because the covariate-adjusted outcome model

does not necessarily need to be parametric. Non-parametric regression techniques or other

data-adaptive estimation approaches can be used to detect (higher-order) interactions, product

terms and non-linear relationships, offering more flexible functions to predict the conditional

outcome expectations. These may enhance the likelihood of correct model specification with

respect to parametric regressions, but are prone to overfitting, particularly with small sample

sizes. They can also minimize “data snooping” problems (e.g. the analyst selecting the model

specification or the effect modifiers on the basis of statistically significant treatment effects),

specially when there are no clear hypotheses about effect modification ex ante.

S P E C I F I C AT I O N O F T H E BC P O P U L AT I O N Population-adjusted indirect comparisons

make certain assumptions to approximate the joint distribution of covariates in the BC trial,

but these assumptions differ slightly. In MAIC, as stated in the NICE Decision Support Unit

technical support document [18], “when covariate correlations are not available from the (BC)

population, and therefore cannot be balanced by inclusion in the weighting model, they are

assumed to be equal to the correlations amongst covariates in the pseudo-population formed

by weighting the (AC) population.” In the conventional version of STC, the correlations between

the BC covariates are assumed to be equal to the correlations between covariates in the AC
trial.

In the marginalization methods proposed in Chapter 4 (parametric G-computation and MIM),

more explicit and stringent distributional assumptions are made in the “covariate simulation”

step. The methods assume the joint distribution of the BC covariates is specified correctly,

by the combination of the specified marginal distributions and correlation structure. In the

simulation study, we have assumed that the pairwise correlations of the covariates and the

parametric forms of their marginal distributions are identical across trials. It is important to

assess the robustness of the methods to failures in these distributional assumptions.

Note that the covariate distributional assumptions could be relaxed or verified empirically if

trial publications included more complete summary statistics, e.g. information on the covariates’

correlation structure or their observed marginal distributions, as opposed to simple summary

tables of means/proportions and standard deviations. This information would allow us to

approximate the full joint distribution of the BC covariates more accurately and reduce the risk

of misspecifying the BC population. We have decided to mimic the AC pairwise correlations

as, in principle, the relationships between covariates should be similar across trials.

5.4 C O N C L U D I N G R E M A R K S

In Chapter 2, I established that the traditional regression adjustment approach in population-

adjusted indirect comparisons targets a conditional treatment effect for A vs. C. In Chapter
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3, I showed empirically that this effect is incompatible in the indirect treatment comparison,

producing biased estimation where the measure of effect is non-collapsible. In addition,

this effect is not of interest in our scenario because, as discussed in the next chapter, we

seek marginal effects for policy decisions at the population level. In Chapter 4, I proposed

several approaches for marginalizing the conditional estimates produced by covariate-adjusted

regressions. The procedures are applicable to a wide range of outcome models and target

marginal treatment effects for A vs. C that have no compatibility issues in the indirect treatment

comparison.

In this chapter, I have demonstrated that the novel marginalized outcome regression ap-

proaches achieve greater precision than MAIC and are unbiased under no failures of assump-

tions. Hence, the development of these approaches is appealing and impactful. As observed

in the simulation study in this chapter, these methodologies are more efficient than weighting,

providing more stable estimators. We can now capitalize on the advantages offered by out-

come regression with respect to weighting in our scenario, e.g. extrapolation capabilities and

increased statistical precision. Furthermore, I have shown that the marginalized regression-

adjusted estimates provide greater statistical precision than the conditional estimates produced

by the conventional version of STC. While this precision comparison is irrelevant, because it is

made for estimators of different estimands, it supports previous research on non-collapsible

measures of effect [44, 50].

Marginal and conditional effects are regularly conflated in the literature on population-

adjusted indirect comparisons, with many simulation studies comparing the bias, precision and

efficiency of estimators of different effect measures. The implications of this conflation are

widely misunderstood but must be acknowledged in order to provide meaningful comparisons

of methods. I have built on previous research conducted by the original authors of STC, who

have also suggested the use of a preliminary “covariate simulation” step [19, 81]. Nevertheless,

up until now, there was no consensus on how to marginalize the conditional effect estimates.

For instance, in Chapter 2, I discouraged the “covariate simulation” approach when attempting

to average on the linear predictor scale [91]. Averaging on the linear predictor scale, i.e.,

computing the conditional linear prediction under each treatment for every simulated subject

and averaging the linear predictions across all subjects, then calculating the difference between

the average predictions, reduces to the conventional version of STC (i.e., to “plugging in” the

mean BC covariate values). It is equivalent to averaging “predictions at the mean” [172] or

estimating the “mean at mean covariates” [173] (as discussed in subsection 4.4.3), hence

producing conditional effect estimates for A vs. C, as opposed to marginal estimates. I hope to

have established some clarity.

The presented marginalization methods have been developed in a very specific context,

common in HTA, where access to patient-level data is limited and an indirect comparison

is required. However, their principles are applicable to estimate marginal treatment effects

in other situations. For instance, in scenarios which require marginalizing out regression-

adjusted estimates over the study sample in which they have been computed. Alternatively,

the frameworks can be used to transport the results of a randomized experiment to any other
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external target population; not necessarily that of the BC trial. In both cases, the required

assumptions are weaker than those required for population-adjusted indirect comparisons.





6

C H A P T E R 6 : C O N C L U D I N G R E M A R K S

In this final chapter, I provide a succinct summary of the thesis’ contributions (Section 6.1),

referring back to the aims set out in Chapter 1. In Section 6.2, I address the last of these

objectives, providing clarifications on what the target of the analysis, i.e. the estimand, should

be for population-adjusted indirect comparisons. Part of the research in this section is included

in the commentary “Target estimands for population-adjusted indirect comparisons” (Remiro-

Azócar, 2021).1 Finally, Section 6.3 suggests themes worth exploring for ongoing and future

research.

6.1 C O N T R I B U T I O N S O F T H E T H E S I S

We return to the objectives of the thesis, set out in Chapter 1. These are:

• To review methods currently used for population-adjusted indirect comparisons, eval-

uating and comparing their statistical performance through comprehensive simulation

studies;

• To develop novel outcome modeling methodologies that improve the performance of

the existing population adjustment methods and can be embedded within a Bayesian

framework;

• To influence practice by making recommendations on the way and circumstances in

which population-adjusted indirect comparisons should be applied;

• To provide clarifications on what the target of the analysis, i.e. the estimand, should

be for population-adjusted indirect comparisons, given that these are used to inform

reimbursement decisions at the population level in HTA.

I have addressed the first research objective by: (1) providing a detailed review of the

methods currently used for population-adjusted indirect comparisons in HTA in Chapter 2; and

(2) by conducting comprehensive simulation studies in Chapter 3 and Chapter 5. The studies

identified issues with the typical approach to outcome regression. Namely, the treatment

coefficient of the multivariable regression used for covariate adjustment produces a conditional

1 The article has been submitted to Statistics in Medicine and is available at: https://arxiv.org/abs/2112.08023.
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estimate, which is incompatible in the indirect comparison and not relevant for reimbursement

decisions at the population level.

I have addressed the second objective by proposing several approaches to marginalization

in Chapter 4, and by evaluating their statistical performance with respect to that of the existing

methods for population adjustment in Chapter 5. The novel methodologies are applicable

for the most common types of outcome models in evidence synthesis in HTA, generalized

linear models and survival models, and can accommodate a Bayesian statistical framework.

The methods integrate or average out the covariate-adjusted conditional model over the BC
covariate distribution to produce marginal treatment effect estimates in the BC population.

The recovered marginal estimates allow for compatible indirect treatment comparisons and

are appropriate for population-based inference. I find that, when adjusting for covariate

differences across populations, (marginalized) outcome regression is unbiased under no

failures of assumptions, and more precise and efficient than weighting in estimating marginal

treatment effects.

The results of the simulation studies in Chapter 3 and 5 can be translated into practice,

thereby addressing the third objective of the thesis. For instance, I have established that MAIC

incurs more substantial precision losses than outcome modeling where covariate overlap is

poor and effective sample sizes after weighting are small. This suggests that MAIC should

be avoided in these scenarios and outcome modeling preferred. In addition, I have shown

that, when the effect measure of interest is the log-odds ratio, regression-adjusted estimates

of the marginal effect are more precise and efficient than the original conditional estimates

produced by conventional outcome regression. This has implications for practice, where

conditional estimates are often preferred on the grounds of precision and efficiency [164].

Another example of an implication for practice is that the robust sandwich variance estimator in

MAIC underestimates variability where effective sample sizes are small. In these cases, the

non-parametric bootstrap should be preferred for uncertainty quantification.

The final objective is addressed in the next section. Some disagreement remains on what

the target estimand should be for population-adjusted indirect treatment comparisons. The

debate is of central importance for policy-makers and applied practitioners in HTA. The debate

is also of crucial importance for this thesis, where I have established a clear preference for

marginal estimands as the inferential target in population-adjusted indirect comparisons.

6.2 TA R G E T E S T I M A N D S F O R P O P U L AT I O N - A D J U S T E D I N D I R E C T C O M PA R I S O N S

I recently participated in a very interesting discussion with Phillippo, Dias, Ades and Welton

[39, 164], in response to their research article titled “Assessing the performance of population

adjustment methods for anchored indirect comparisons: A simulation study” [34]. The original

article presents an extensive simulation study evaluating the statistical performance of different

population adjustment methods in the context of anchored indirect treatment comparisons.

Three methods are investigated: MAIC, STC, and a novel method recently proposed by the

authors called multilevel network meta-regression (ML-NMR) [38].
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In a recent editorial, co-authored with Anna Heath and Gianluca Baio [39], I highlight that the

different methodologies target distinct measures of effect (as per Section 2.5). MAIC is based

on propensity score weighting and targets a marginal treatment effect. STC and ML-NMR

are outcome modeling-based methods, with effects estimated by the treatment coefficient

of a multivariable regression. As we have seen in this thesis, the typical implementation of

STC targets a conditional treatment effect that, almost invariably, is incompatible in a pairwise

indirect comparison, producing bias for non-collapsible measures of effect [39, 91]. ML-NMR,

developed by the authors of the simulation study [38], extends outcome modeling to handle

larger networks of treatments and studies. It targets a conditional treatment effect without

the estimand compatibility issues of STC. In my original response [39], I remark that the

appropriateness of each methodology depends on the preferred inferential target, and that one

should carefully consider whether a marginal or conditional treatment effect is of interest in a

population-adjusted indirect comparison.

In their reply to my editorial, Phillippo et al. demonstrate that ML-NMR can potentially be

used to target marginal treatment effects [164]. Therefore, the method could support inference

at the individual level and at the population level. This extension is a very relevant and impactful

development for evidence synthesis, which will help overcome many limitations of pairwise

indirect treatment comparisons in the estimation of marginal effects. Nevertheless, disagree-

ment remains on what the target estimand for HTA should be. In their response, Phillippo

et al. comprehensively endorse the use of conditional treatment effect estimates to inform

decision-making at the population level [164]. However, HTA agencies make reimbursement

decisions at the population level. Therefore, I believe that estimates of the marginal treatment

effect are necessary. Settling this debate is of central importance to offer a conclusion for

policy-makers and applied practitioners in the field.

6.2.1 Target estimands in randomized controlled trials

The objective of population-adjusted indirect comparisons (and, more generally, of evidence

synthesis in HTA) is to emulate the analysis that would have been performed in an ideal

head-to-head RCT, directly comparing the drugs of interest. There has been much relevant

debate over what the target estimand of an RCT should be. Note that, by “ideal”, I mean that

the hypothetical RCT should have high internal validity, but also high external validity (this shall

be discussed in Section 6.2.3) [235, 236].

Phillippo et al. use the following arguments to select the conditional estimand as the most

appropriate inferential target for decision-makers in population-adjusted indirect comparisons

[164]:

1. Conditional estimands account for differences in the distribution of prognostic covari-

ates between groups but “marginal estimands do not account for known population

characteristics”.
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2. Conditional estimands have a “population-average” interpretation if treatment-by-covariate

interactions are excluded from the analysis.

3. Conditional estimands are “a more efficient choice” than marginal estimands.

I examine these points, which follow from common misunderstandings, on a case-by-case

basis. All of the arguments are based on properties that are inherent to estimators (the

method of analysis), not estimands (the target of the analysis). Point 1 conflates the terms

“marginal” and “unadjusted”. Nevertheless, estimates of the marginal effect need not be crude

or unadjusted and may also be covariate-adjusted [50]. Points 2 and 3 generalize conclusions

based on covariate adjustment with linear regression, and do not apply to non-linear models

with non-collapsible measures of effect. With respect to the second point, the population-level

interpretation of conditional estimates follows from collapsibility and does not necessarily

hold for the underlying conditional estimands. For non-collapsible effect measures, neither

conditional estimates nor estimands have a population-level interpretation. Concerning the

third point, estimators of marginal effects tend to be more precise and efficient than estimators

of conditional effects where the measure of effect is non-collapsible. In any case, precision and

efficiency comparisons are inconsequential for estimators targeting distinct estimands.

6.2.1.1 Marginal is not synonymous with unadjusted

RCT analyses often adjust for one or more baseline covariates to correct for empirical confound-

ing caused by chance imbalances between treatment groups. Covariate-adjusted analyses

have many advantages over unadjusted analyses. Incorporating the prognostic information

can result in a more efficient use of data and, as stated by Phillippo et al. [164], the adjusted

analysis is “the recommended analysis that would be undertaken in the ideal (RCT) evidence

scenario” in the trials literature [40, 237–239].

Nevertheless, the term “marginal” is not interchangeable with “unadjusted”. Marginal is

often interpreted as unadjusted and conditional as adjusted. However, the distinction between

marginal and conditional describes the estimand, and that between adjusted and unadjusted

relates to the estimator. It is true that unadjusted estimates of the marginal effect ignore any

information on the distribution of prognostic covariates in the sample. Therefore, these cannot

directly compensate for any lack of balance between treatment groups. However, estimates

of the marginal effect can also be covariate-adjusted. In fact, covariate-adjusted marginal

estimates are regularly used in the RCTs literature to correct for chance imbalances in baseline

covariates and to improve precision [240–242].

Indeed, one can adjust for covariates using the outcome model and then average or stand-

ardize over a specific population to estimate marginal (but covariate-adjusted) effects that do

compensate for lack of balance [50, 243, 244]. For instance, in their reply, Phillippo et al. [164]

illustrate how the conditional effect estimates produced by ML-NMR could be marginalized

where the outcome regression is a generalized linear model, by integration over the joint

covariate distribution in the target population. The resulting covariate-adjusted estimate of
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the marginal effect would fully exploit the covariate information and account for imbalances in

baseline characteristics.

After all, “population-adjusted” indirect comparisons are “covariate-adjusted” indirect compar-

isons. MAIC uses weighting to produce a covariate-adjusted estimate of the marginal effect that

is combined with an unadjusted marginal estimate in a pairwise indirect comparison. Similarly,

STC can be adapted using G-computation or model-based standardization [159], as outlined

in Chapter 4 of this thesis, so that a covariate-adjusted marginal estimate is produced that has

no compatibility issues in the indirect treatment comparison [245, 246]. One can estimate the

marginal mean outcomes by treatment group, based on the fitted outcome regression. Then,

the model-based predictions can be averaged over the joint covariate distribution of the target

trial (that with aggregate-level data) and contrasted to produce an estimate of the marginal

treatment effect that accounts for baseline covariates [245, 246].

In summary, I do not call for crude unadjusted analyses over analyses adjusted for measured

covariates [39]. Covariate-adjusted analyses may target marginal or conditional effects, and

the debate is about covariate-adjusted estimates of the marginal estimand versus covariate-

adjusted estimates of the conditional estimand.

O N T H E P R E F E R E N C E S O F R E G U L ATO RY AG E N C I E S Phillippo et al. state that “it is

recommended practice to include prespecified prognostic factors in the analysis model” [164].

Indeed, covariate adjustment is strongly advised by regulatory authorities such as the United

States Food and Drug Administration (FDA) [247, 248] and the European Medicines Agency

(EMA) [249] when approving new treatments. Nevertheless, this does not mean that the

conditional estimand is the primary focus of such agencies. Recent FDA guidance seems

to encourage the use of covariate-adjusted estimates of the marginal treatment effect as

opposed to covariate-adjusted estimates of the conditional effect [247]. The addendum to the

International Council for Harmonisation E9 guidelines, Statistical Principles for Clinical Trials

[250], which introduces the estimands framework and has been adopted by the FDA and the

EMA, discusses “population-level summary measures” of outcome as the primary target of

inference in RCTs. This suggests a preference for marginal estimands (see 6.2.1.2).

6.2.1.2 On the population-average interpretation of conditional estimands

Phillippo et al. argue that conditional estimands may have a “population-average” or an

“individual-level” interpretation [164]. For instance, covariate adjustment through the “analysis of

covariance” (ANCOVA) linear model specifies main effects but excludes treatment-by-covariate

interactions. Therefore, the conditional treatment effect is assumed identical across covariate

levels and is, therefore, not specific to subgroup membership. Conversely, with the inclusion of

interaction terms, the conditional treatment effect is believed to differ across covariate values

and the estimate may have an “individual-level” interpretation. It is argued that the “population-

average” estimate of the conditional effect can be used to make population-level decisions

[164].
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I make two important remarks. Firstly, the homogeneity or uniformity of the conditional

treatment effect estimate follows from statistical modeling assumptions, which may not be

plausible. While the estimator may assume constancy across all patients, the true subgroup

effects are not necessarily constant. If the constancy assumption does not hold, the ANCOVA

conditional estimand no longer has a population-average interpretation, and corresponds to an

ambiguous weighted average of subgroup-specific estimands [251]. In any case, the preference

for marginal or conditional estimands as inferential targets should not depend on the estimator.

Conditional estimands can be well defined as subgroup-specific or individual-level effects,

regardless of modeling assumptions. On the other hand, the population-level interpretation of

the conditional estimate depends on such implicit assumptions.

Secondly, the population-level interpretation of the conditional estimate in the case of no

interaction relies on the measure of effect being collapsible. An effect measure is collapsible

when the marginal measure can be expressed as a weighted average of the subgroup-specific

conditional measures [93, 99, 252, 253]. Mean differences in linear regression are collapsible

across covariates. Without interaction terms, one assumes that there is no effect modification

on the mean difference scale, such that mean differences are the same in every subgroup. In

this case, the subgroup-specific mean difference estimates are also equal to the marginal mean

difference estimate. The “population-average” interpretation of any conditional estimate simply

reflects that it coincides with the marginal estimate due to collapsibility. Therefore, making a

distinction [164] between “population-average” conditional and “population-average” marginal

estimands is not necessary.

The situation is even more nuanced where the measure of effect is non-collapsible, as is

the case for the (log) odds ratio or the (log) hazard ratio. Unlike the mean difference, these

are non-collapsible because the marginal measure cannot represent a weighted average of

the individual- or subgroup-level conditional measures, even in the absence of confounding

[88, 98, 254]. Consider that a conditional log-odds ratio estimate is derived from the treatment

coefficient of a main effects logistic regression, assuming homogeneity. This estimate, which

is equal to the constant subgroup-specific effect estimates, cannot have a population-level

interpretation [88, 96, 253, 255]. This is a mathematical phenomenon that pertains to numeric

properties of the measure of effect [93, 99]. For the odds ratio, it is consequence of a special

case of Jensen’s inequality [254].

T H E T R A N S P O RTA B I L I T Y O F E F F E C T M E A S U R E S A general empirical observation is

that conditional effects are more generalizable or transportable than marginal effects across

different populations [164], because marginal estimands may change across different marginal

covariate distributions. It is worth noting that this is currently an area of debate. Another intuition

is that conditional effects are less transportable because the estimand is dependent on the

selected adjustment model. There may be many conditional estimands for a given population,

one for every possible combination of baseline covariates and model specification. Conditioning

on different covariate sets leads to different conditional estimands, with their estimates not

being comparable across studies [50, 256]. On the other hand, marginal estimands can be
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clearly defined without reference to a particular adjustment model. Pearl and Bareinboim

[139] claim that marginal effects are more transportable than conditional effects, providing a

mathematical proof. In the words of Daniel et al. [50], this result highlights that “any measured

covariate can be adjusted for in the analysis, and then marginalized over according to any

desired reference distribution, resulting in a marginal estimand that is just as transportable as

any conditional estimand”.

6.2.1.3 Efficiency considerations

The main argument by Phillippo et al. is that the conditional estimand is more efficient than the

marginal estimand in the hypothetical evidence scenario described by the ideal RCT [164]. It is

claimed that the conditional is a more appropriate target estimand for health policy because it

provides “more efficient decision-making”.

It is true that for linear regression with maximum-likelihood estimation and continuous

outcomes, a covariate-adjusted estimate of the conditional treatment effect should have a lower

standard error than the unadjusted estimate of the marginal effect. The decrease in standard

error is greater when the correlation between the baseline covariate(s) and outcome is strong,

leading to a reduction in residual variance [257]. Nevertheless, this is not the case when

working with non-collapsible effect measures such as odds ratios in logistic regression with

binary outcomes [44, 96, 257, 258], or hazard ratios in Cox proportional hazards regression

with survival outcomes [259, 260]. These are two of the most widely used parameters, statistical

models and outcome types in evidence synthesis in HTA [30].

In these cases, adjusted estimates of the conditional estimand tend to have reduced precision

and efficiency with respect to unadjusted estimates of the marginal estimand. For odds and

hazard ratios, the covariate-adjusted maximum-likelihood estimator of a conditional effect has a

standard error at least as large as the unadjusted maximum-likelihood estimator of a marginal

estimand, in the ideal RCT [50, 258, 259]. In fact, for non-collapsible effect measures, it is

marginalized covariate-adjusted estimates that tend to have lower standard errors than both the

original covariate-adjusted estimates of the conditional [44, 50] and the unadjusted estimates

of the marginal [240–242]. In addition, covariate-adjusted estimates of the marginal odds ratio

seem to be less susceptible to small-sample and sparse-data bias than covariate-adjusted

estimates of the conditional odds ratio [261].

Pursuing greater precision and efficiency would make the covariate-adjusted marginal

estimates more attractive than the original conditional estimates for non-collapsible effect

measures in the ideal RCT. However, these comparisons are arguably inconsequential, because

they are made for estimators targeting different estimands [50, 242]. One has to suitably

define the target estimand before performing a “like-for-like” comparison of different estimators.

When adjusted and unadjusted estimates of the marginal estimand are compared in the ideal

RCT, covariate adjustment does increase precision by leveraging the prognostic information

accounting for unexplained variation in the outcome.

A small but important aside: in contrast to the “ideal RCT” scenario, covariate adjustment

increases the variance of indirect treatment comparisons [91]. This is a desirable feature
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because standard unadjusted approaches such as the Bucher method [7] ignore cross-trial

differences in covariates that influence the outcome. Therefore, as seen in Chapter 3, they

may produce overly precise estimates and undercoverage [58, 91]. Covariate-adjusted indirect

comparisons account for the additional uncertainty produced by covariate differences. A

reduction in precision is natural and necessary, and a function of the “distance” between the

covariate distributions; we are trying to learn about a treatment effect in a different study

than that in which it was originally observed. The simulation study in Chapter 5 shows

that standardized regression-adjusted (and in some cases, weighting-adjusted) estimates of

the marginal (log) odds ratio are also more precise than regression-adjusted estimates of the

conditional (log) odds ratio in this context. These results are expected to hold for non-collapsible

effect measures in general.

I emphasize that the estimand of interest should be tailored to the scientific question that is

being addressed. Namely, the choice of estimand should determine the estimator, and not vice

versa. It makes sense to proceed sequentially, first determining the estimand that best answers

the decision problem, and then using a method or analytic approach that is well suited for

estimating it from the clinical trial data. Statistical efficiency should not drive the choice of the

estimand. On the other hand, the estimand, unambiguously selected on the basis of relevance

to decision-making, should drive the choice of the most statistically efficient estimator. This is

because efficiency is a property inherent to estimators, not estimands.

6.2.2 Target estimands in health technology assessment

The development of pharmaceuticals is a multi-stage process, and HTA generally takes place

late in this process. Subsection 6.2.1 has described factors that are relevant in preparation for

the drug licensing stage. In this stage, the efficacy of a new medical technology is typically

evaluated versus placebo or standard of care in an RCT. This trial may provide evidence

supporting the regulatory approval of the drug by agencies such as the FDA and the EMA.

In this setting, power considerations to test the “no effect” null hypothesis may also deserve

attention.2 Indirect treatment comparisons are not typically applied for hypothesis testing or

to obtain regulatory approval. These are highly underpowered in scenarios commonly met in

practice [24, 101, 263] and often lead to a conclusion of “no clinical benefit” [264].

I now set aside the long-standing debate about target estimands in RCTs and focus on

the decision problem at hand. Following regulatory approval, a pharmaceutical product can

be submitted to HTA agencies worldwide, e.g. NICE in England and Wales, which formulate

recommendations on whether health care technologies should be publicly funded by national

health care systems. The population adjustment methodologies evaluated and developed in

this thesis aim to quantify treatment efficacy or effectiveness in this scenario. Nevertheless, the

demonstration of efficacy and/or effectiveness is necessary but not sufficient for HTA agencies.

2 Covariate adjustment tends to produce increased power to detect a non-null treatment effect [238, 257, 258]. Power
comparisons between marginal and conditional estimands are relevant because both share the same null value
[50, 262], e.g. under the null hypothesis of no treatment effect, both marginal and conditional odds ratios are equal
to one.
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The resulting treatment effect estimates are used as inputs to health economic evaluations,

e.g. cost-effectiveness analyses comparing two or more competitor treatments. HTA bodies

typically make reimbursement decisions on the basis of these evaluations.

For instance, NICE operates an appraisal process in which companies submit evidence

on both relative clinical and cost effectiveness. In this process, it is the mean cost and

effectiveness at the population level that are relevant [265]. Evidence synthesis methods inform

the mean treatment benefit in such analyses, where the main quantity of interest tends to be the

incremental cost-effectiveness ratio (ICER), which is a population-level measure. For differential

cost-effectiveness inferences and policies based on subject-level covariates, individual-level

ICERs have been proposed [266]. However, these are currently of secondary interest in policy

and may be problematic [267]. Within centralized health care systems such as the National

Health Service, planning entities and providers use the appraisal process to set population-

level policies such as quality measures and clinical guidelines, and to select treatments for the

population of patients within their remit. In this context, the marginal treatment effect is a more

relevant target than the conditional effect.

Conditional estimands would be of greater relevance in clinical practice or personalized/pre-

cision medicine, from the perspective of physicians making treatment decisions for individual

patients. This is particularly the case if there is treatment effect heterogeneity and this is

accounted for by the inclusion of treatment-by-covariate interactions. As advocated by Hauck et

al. [40], conditional treatment effects “come as close as possible to the clinically most relevant

subject-specific measure of effect”. For instance, physicians may be interested in how effective

treatment is conditional on the age, gender and/or medical history of a particular patient, and

may not desire to average over these characteristics. Indeed, marginal estimands make little

sense in the context of clinical care and are not applicable in the context of decision-making for

individual patients.

If health care providers and reimbursement agencies were to make decisions at such level

of granularity, conditional estimands would be of greater interest than marginal estimands.

However, the research questions made by bodies such as NICE investigate how the average

effect of an intervention impacts outcomes at the population level, and are used to make broad

policy decisions and recommendations. In the health decision sciences, conditional treatment

effects could also be of interest for individual-level microsimulation models that simulate the

impact of interventions or policies on individual trajectories, which may be averaged out to

estimate an overall population-level ICER.

Finally, a very important consideration in health economic evaluation is uncertainty quantific-

ation [268], where the assessment of parameter uncertainty is a central component [269, 270].

The conflation of marginal and conditional estimands is an issue for both collapsible and non-

collapsible effect measures, because estimators targeting different estimands will produce dif-

ferent variance estimates. These variances quantify parameter uncertainty in cost-effectiveness

analyses. Marginal and conditional estimates will quantify parameter uncertainty differently,

and conflating these will lead to the incorrect propagation of uncertainty to the wider health
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economic decision model. This is particularly dangerous for probabilistic sensitivity analysis

[271].

6.2.3 External validity

6.2.3.1 Established population-adjusted indirect comparison methods

In subsection 6.2.2, I established why marginal estimands should be preferred as inferential

targets for population-level reimbursement decisions in HTA. In 6.2.1.2, I stated that there is

only one well-defined marginal estimand for a specific population. Nevertheless, marginal

estimands can change if the population definition is modified. As population-adjusted indirect

comparisons assume treatment effect heterogeneity, different populations with different effect

modifier distributions will have marginal estimands of distinct magnitudes. In addition, as

I discuss in this section, most “population-adjusted” indirect comparisons refer to “sample-

adjusted” indirect comparisons. This clouds the discussion of estimands further.

The methods explored in this thesis have been developed in the context of pairwise com-

parisons in a two-study scenario, where there is one “index” study with IPD and another

“comparator” study with unavailable IPD and only published aggregate-level data. A distinctive

feature of the methodologies is that, due to patient-level data limitations, the methods contrast

treatments in the comparator study (BC) sample, defined by the summary moments of baseline

characteristics in “Table 1” of the publication. Inferences can only be interpreted within this

sample-specific context, which imposes constraints on the marginal estimand that is targeted.

As currently conceptualized, the methods imply that the comparator study sample on which

inferences are made is exactly the study’s target population. Alternatively, the assumption is

that the study sample is a random sample, i.e., representative, of such population, ignoring

sampling variability in the patients’ baseline characteristics and assuming that no random

error attributable to such exists. In reality, the subjects of the comparator study have been

sampled from a, typically more diverse, target population of eligible patients, defined by the

trial’s inclusion and exclusion criteria.

Random sampling is seldom feasible in recruitment strategies for trial participants. For

instance, individuals with health-seeking behaviors are more likely to enroll in the trial. Candid-

ates who meet the trial eligibility criteria may not be invited to participate [272]. Conversely,

invited study-eligible individuals may not provide informed consent, an ethical necessity for

enrollment, and choose not to participate. In summary, it is rarely the case that a study sample

is a random sample of the target population of the study, because trial participation is subject

to convenience sampling, and volunteerism or self-selection [272, 273]. This is a problem of

external validity with respect to the target population of the trial.

A more important limitation is that, even if the comparator study sample is representative

of the study’s target population, such target population may be systematically different to the

target population of policy interest [273, 274], i.e., the group of patients who will receive the

intervention in routine clinical practice. The populations targeted by clinical trials tend to be more
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narrowly defined and less heterogeneous in composition and health status,3 to maximize power

in efficacy and safety testing, and to enhance statistical precision and efficiency [277–279].

In addition, the comparator study may have been conducted in many separate geographical

regions, different to that of relevance for HTA decision-making. Payers reimburse treatments at

the local market level and HTA decisions are likely to concern local patient populations [280].

These are questions of external validity with respect to the target population for the decision.

In terms of estimands, let’s consider three distinct marginal estimands. MAIC and our

implementations of parametric G-computation and MIM would target a sample-average marginal

estimand in the comparator study. However, this may not coincide with the population-average

marginal estimand for the target population of the study. In turn, this may not match the

population-average marginal estimand for the relevant target population required for HTA

decision-making. If the samples or populations are non-exchangeable, an internally valid

estimate for the marginal estimand in one sample/population is not necessarily unbiased for the

marginal estimand in the others [230, 231]. The relationships between the different samples

and populations are displayed in Figure 15. This diagram has been inspired by Degtiar and

Rose [281]. Moving horizontally, pairwise methods such as MAIC are limited to transporting

inferences from the index study sample to the comparator study sample.

Index study sample

Index study
population

Comparator
study sample

Comparator
study population

“Real-world” sample

Decision-making
target population

Transportability

Sampling Generalizability

Figure 15: External validity addresses whether inferences can be extended beyond specific samples.
Researchers make a distinction between generalizability and transportability. Generalizability
entails generalizing the findings from an RCT to the population from which the trial parti-
cipants were drawn, i.e., the RCT sample is a proper subset of the trial-eligible population.
Transportability involves translating inferences to an external target sample or population.

6.2.3.2 ML-NMR: new directions for evidence synthesis?

ML-NMR presents abundant opportunities for evidence synthesis. Following the “marginaliza-

tion” extension by Phillippo et al. [164], it allows for the estimation of marginal estimands in any

of the study samples included in the meta-analysis. For instance, one could produce estimates

in the most heterogeneous study, which may be more representative of the target population

for HTA decision-making. Alternatively, one could produce estimates in the most homogeneous

study to avoid overlap violations. Better yet, inferences may not be necessarily restricted to

one of the studies included in the meta-regression. The target sample or population could be

3 An exception are so-called “pragmatic”, “effectiveness” or “practical” trials [275, 276]. These are large-scale multi-
center trials carried out in “real-world” settings. Their patients tend to be more representative of decision-making
target populations because the trials have broad eligibility criteria and design elements that promote enrollment of a
wide range of participants. However, this may come at the expense of lower adherence and higher drop-out rates.



132 C O N C L U D I N G R E M A R K S

generated from an external data source. Presuming that this contains the covariates that have

been adjusted for in the studies, inferences would be transported to the target of interest.

The target could be defined by HTA policy-makers for the specific disease under study. It

could be characterized by the joint covariate distribution observed in an observational sample

or in secondary health data sources such as disease registries, cohort studies and insurance

claims databases. Such administrative datasets have high cross-sectional richness, and are

typically larger, less selected, and more representative of target populations of interest than the

participants recruited into trials [282–284]. Electronic health records from hospital systems are

also valuable tools to define appropriate “real-world” targets [285]. These are compelling due

to several aspects, including reasonably large sample sizes and a high degree of clinical detail,

specificity and breadth [286, 287]. HTA bodies such as NICE are increasingly using “real-world

data” to identify representative populations and inform or update assessments of effectiveness

and cost-effectiveness [288]. These covariate data are likely to be available at the time of the

HTA appraisal process.

The sponsor of the index study, submitting evidence to HTA bodies, could use pairwise

methods to weight or standardize its results to the external target source provided by decision-

makers. However, IPD are unavailable for the comparator trial, for both the manufacturer

submitting the evidence and the HTA agency assessing the evidence. Hence, the submitting

company cannot weight or standardize the comparator study results to the external target.

Therefore, it is challenging for the pairwise methods explored in this thesis, as currently

conceptualized, to facilitate an indirect comparison in this target.

Finally, we should ask ourselves to what substantive population are indirect treatment com-

parisons supposed to apply to. The main premise of population-adjusted indirect comparisons

is to provide equipoise, removing bias due to covariate differences across studies and compar-

ing effect estimates in the same population. However, because treatment effects are assumed

heterogeneous, any discussion of equipoise needs to be framed within the question: “equipoise

to whom?”. Equipoise in a particular study sample does not guarantee equipoise in the target

population for decision-making. Any claim about equipoise is ill-formed without reference to

the desired target population for inference. The same applies to any claim about representat-

iveness. Unfortunately, most applications of population-adjusted indirect comparisons do not

explicitly describe the target population of the analysis, as found by a recent review of HTA

appraisals [30].

6.3 R E C O M M E N DAT I O N S F O R F U T U R E W O R K

Ongoing and future research will focus on the following themes to address limitations of

the current work. Many of the points discussed in subsections 5.3.2, 5.3.3 and 6.2.3 are

complementary to these ideas:

I N T E G R AT I O N O F M A R G I N A L I Z AT I O N M E T H O D S A N D S U RV I VA L A N A LY S I S I N A U N I -

F I E D H TA F R A M E W O R K Further research will consider extensions of this work investigating
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marginalization methods for parametric survival models. These extensions are important be-

cause most applications of population-adjusted indirect comparisons are in oncology and

usually require parametric survival analysis [30]. However, current survival analysis applica-

tions of MAIC and STC in academic papers, submissions for reimbursement and simulation

studies, focus exclusively on the Cox proportional hazards regression as the outcome model of

interest.

D E C O M P O S I T I O N O F T H E A S S U M P T I O N S A N D P OT E N T I A L S O U R C E S O F B I A S I N P O P -

U L AT I O N - A D J U S T E D I N D I R E C T C O M PA R I S O N S Given the large number of assumptions

made by population-adjusted indirect comparisons, future simulation studies should assess

the robustness of the methods to failures in assumptions under different degrees of data avail-

ability and model misspecification. All the assumptions required for valid population-adjusted

indirect comparisons hold, by design, in the simulation studies in Chapter 3 and Chapter 5.

Nevertheless, these assumptions are hard to meet and most of them are not directly testable.

U N A N C H O R E D C O M PA R I S O N S While the thesis has focused on anchored indirect com-

parisons, most applications of population adjustment in HTA are in the unanchored setting

[30], both in published studies and in health technology appraisals. We stress that RCTs

deliver the gold standard for evidence on efficacy and that unanchored comparisons make

very strong assumptions which are largely considered impossible to meet (absolute effects

are conditionally constant as opposed to relative effects being conditionally constant) [9, 18].

Unanchored comparisons effectively assume that absolute outcomes can be predicted from

the covariates, a heroic assumption. However, the number of unanchored comparisons is likely

to continue growing as regulators such as the United States Food and Drug Administration

and the European Medicines Agency are, increasingly, and particularly in oncology, approving

new treatments on the basis of observational or single-armed evidence, or disconnected net-

works with no common comparator [289, 290]. As pharmaceutical companies use this type

of evidence to an increasing extent to obtain accelerated or conditional regulatory approval,

reimbursement agencies will, in turn, be increasingly asked to evaluate interventions where

only this type of evidence is available. Therefore, further examinations of the performance of

population adjustment methods must be performed in the unanchored setting.

D O U B LY- R O B U S T E S T I M AT I O N In this thesis, we have compared two types of “singly-

robust” estimators: weighting-based methods such as MAIC, and outcome modeling-based

methods. The former specify a model for the trial assignment mechanism and the latter specify

a model for treatment effect heterogeneity. Both are said to be singly-robust because they rely

on a single nuisance function. In the outcome modeling approaches, the nuisance function

is the covariate-adjusted outcome regression. Its parameters are not of interest per se, but

are necessary to estimate the marginal treatment effect for A vs. C. Similarly, in MAIC, the

trial assignment logistic regression for the weights is not of interest per se, but is necessary to

estimate the marginal treatment effect for A vs. C.
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There is a third class of estimators: “doubly-robust” methods that combine the weighting

model with the outcome model [145, 221, 291–295], thereby providing two opportunities to

specify the correct model and for valid inference [37]. Typically, the methods are consistent

if either the trial assignment model or the outcome model is correctly estimated, but not

necessarily both [145]. In addition, they are potentially more efficient than singly-robust

weighting estimators [147, 149]. While, in general doubly robust estimators should be less

prone to model misspecification, they may amplify bias and imprecision where the two models

are misspecified [148, 296]. To my knowledge, doubly robust methods have not been developed

for the setting described in this thesis, and remain a topic for further investigation. These

approaches are attractive because, in our context, we often have limited data and inadequate

background knowledge on the drivers of the trial assignment process and, also, of treatment

effect heterogeneity.

N O N - PA R A M E T R I C T E C H N I Q U E S For the outcome regression methods, we have focused

on fitting finite-dimensional, a priori specified, parametric models in the AC study to predict

outcomes in the BC population. For MAIC, we have assumed correct specification of a paramet-

ric trial assignment model. These assumptions may be unreasonable with weak background

theory or information. The general-purpose nature of the proposed outcome regression ap-

proaches may offer some degree of protection against model misspecification. In outcome

regression, one can estimate the Q-model (the first-stage regression, in the case of MIM)

non-parametrically to avoid heavily relying on correct parametric model specification. Flexible

algorithmic frameworks such as Bayesian additive regression trees [297–299] are well-suited

to capture complex functional forms, e.g. interactions, non-linear and higher-order relation-

ships, potentially being less susceptible than parametric regressions to model misspecification.

Bayesian additive regression trees are implemented in many R packages, typically require

little parameter tuning, and have exhibited excellent performance in predictions and causal

inference applications [298, 300].

M AC H I N E L E A R N I N G For both weighting and outcome modeling approaches, estimation of

the nuisance model can be viewed as a prediction problem for which data-adaptive or machine

learning methods can be used, e.g. in G-computation, these would be used to predict the

potential outcomes. Techniques such as super learning [301, 302], a generalized ensemble

methodology that uses cross-validation to combine multiple candidate prediction algorithms

(e.g. splines, random forests, etc.) into a single predictive function, have outperformed the

traditional parametric models under model misspecification in epidemiology applications [301,

303, 304].

Currently, the use of machine learning methods in our scenario is hindered by two issues:

(1) machine learning algorithms have rich data needs; because our scenario is data-poor, they

are prone to overfitting; and (2) limited theoretical justification for valid statistical inference

(e.g. standard errors and interval estimates) when data-adaptive methods are used to estimate

singly-robust nuisance models [305–307]. The use of the non-parametric bootstrap to obtain
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standard errors is not supported by theoretical results and is, generally, not valid [308]. Typically,

one does not know the sampling distribution of the marginal treatment effect estimators, which is

likely irregular. Hence, use of the singly-robust estimators discussed in this thesis in conjunction

with machine learning may be problematic.

On the other hand, the use of doubly-robust estimators together with machine learning

may provide consistent variance estimators and valid interval estimates, due to a particular

orthogonality property some possess [309]. A promising doubly-robust framework that can

be integrated with flexible data-adaptive learners is targeted maximum-likelihood estimation

[291, 293]. This has been used in conjunction with superlearning [303, 310] and cross-fit

estimation [311, 312] to control for confounding in observational studies.

E X T E N S I O N TO L A R G E R N E T W O R K S As mentioned in Section 6.2, a novel outcome

regression method named multilevel network meta-regression (ML-NMR) has recently been

introduced [38, 313]. ML-NMR generalizes IPD network meta-regression [314] to include

aggregate-level data, reducing to this method when IPD are available for all studies.

ML-NMR is an outcome regression approach, with the outcome model of interest being

identical to that of parametric G-computation and MIM. While the methods share the same

assumptions in the two-study scenario, ML-NMR generalizes the regression to handle larger

networks. Like Bayesian G-computation and MIM, ML-NMR has been developed under a

Bayesian framework and estimates the outcome model using MCMC. It also makes parametric

assumptions to characterize the marginal covariate distributions in BC and reconstructs the

joint covariate distribution using a copula. The methods average over the BC population in

different ways; Bayesian G-computation and MIM simulate individual-level covariates from their

approximate joint distribution and ML-NMR uses numerical integration over the approximate

joint distribution (quasi-Monte Carlo methods).

ML-NMR is a timely addition. It is applicable in treatment networks of any size with the

aforementioned two-study scenario as a special case. This is important because a recent

review [30] finds that 56% of NICE technology appraisals include larger networks, where the

standard pairwise population-adjusted indirect comparisons cannot be readily applied.

In its original publication [38], ML-NMR targets a conditional treatment effect (avoiding the

compatibility issues of conventional STC), because the effect estimate is derived from the

treatment coefficient of a covariate-adjusted multivariable regression. However, ML-NMR can

directly calculate marginalization integrals akin to those required for Bayesian G-computation

and MIM (Equations 18 and 19 in Chapter 4). Phillippo et al. have recently demonstrated that

ML-NMR can be adapted to target marginal treatment effects [164]. The population-adjusted

indirect comparisons explored in this thesis target marginal estimands that are specific to the

BC study. These may not be directly relevant for HTA decision-making. On the other hand,

ML-NMR can potentially estimate marginal effects in any target population, presenting novel

and exciting opportunities for evidence synthesis.
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E X T E N S I O N TO O B S E RVAT I O N A L S T U D I E S Throughout the thesis, we have assumed

that the IPD study is a randomized trial. The proposed population adjustment methodologies

could be extended to the situation where the trial with IPD is an observational study. In the

outcome regression approaches, one would have to include all confounders of the treatment-

outcome relationship in the outcome model. In MAIC, a potential extension involves estimating

the treatment assignment mechanism in the observational study as well as the trial assignment

mechanism. The conditional probability of treatment among the study subjects, given the

confounders, could be modeled using a parametric model. Then, additional reweighting by the

inverse probability of treatment would be required.

In this scenario, one must overcome the limited internal validity of the study design. Because

treatment assignment is non-random, additional assumptions would be required, e.g. condi-

tional exchangeability within the study arms (“no unmeasured confounding”) and the associated

overlap/positivity condition [315, 316]. These assumptions are similar to those discussed in

subsection 4.1.2 but would be expected to hold across treatment arms in the IPD study in

addition to across study populations.

C A S E S T U D I E S A N D S O F T WA R E TO O L S In the context of this research, IPD are difficult

to obtain in practice. Therefore, a case study demonstrating the application of the methods is

missing. The proposed methodologies should be applied to real examples in order to influence

applied practice. This is a key priority for future research. Eventually, the research in this

thesis should be implemented in suitable software tools with a number of worked examples.

For instance, an R package would help practitioners and analysts to apply the methods in

submissions for reimbursement.
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Indirect comparisons of treatments seek to mimic the analysis that would be conducted in a

head-to-head RCT and to recover the causal effect of treatment on the clinical outcome of

interest. In our particular case, the term “causal” also alludes to the need to control for effect

modification, an inherently causal concept. Hence, we base our discussion of assumptions

on the ideas underlying the Neyman-Rubin Model for causal treatment effects. This was

originally suggested by Neyman [317] in experiments with randomization-based inference,

with extensions to observational studies later introduced by Rubin [62, 181, 318]. The central

concept of this general framework is that of a potential outcomes approach to causal inference.

Note that this discussion is non-technical and detailed theory and notation based on potential

outcomes are not presented.

MAIC and the outcome regression approaches discussed in this dissertation share the

following assumptions, required to make valid causal inferences in the BC population: (1)

internal validity; (2) consistency under parallel studies; (3) conditional strong ignorability of trial

assignment for the A vs. C treatment effect (this requires both the conditional constancy of

relative effects and overlap/positivity across the covariate distributions); (4) correct specification

of the BC population; and (5) (typically linear/parametric) modeling assumptions. The first two

assumptions are made by any indirect treatment comparison or meta-analysis. Assumptions

that are not specific to indirect treatment comparisons, e.g. those that are specific to the type

of regression model used, such as proportional hazards or non-informative censoring for a Cox

regression, are not discussed.

Note that the following assumptions can only guarantee a valid indirect comparison if the

within-trial relative effects target compatible estimands of the same type. The majority of

RCTs publish an estimate for B vs. C that targets a marginal treatment effect (any published

conditional treatment effect is likely incompatible with that for A vs. C). Therefore, population

adjustment methods should target a marginal treatment effect for A vs. C. If a comparison of

conditional treatment effects is performed, these would have to be adjusted across identical

sets of covariates, using the same model specification.

Those studying the generalizability of treatment effects often make a distinction between

sample-average and population-average marginal effects [17, 59–61]. Typically, another implicit

assumption made by population-adjusted indirect comparisons is that the marginal treatment

effects estimated in the BC sample, as described by its published covariate moments in the

case of the A vs. C treatment effect, coincide with those that would be estimated in the target

population of the trial. Namely, either the study sample on which inferences are made is the

study target population, or it is a simple random sample (i.e., representative) of such population,

ignoring sampling variability.

137
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Furthermore, when referring to “effect modifiers”, we describe the covariates modifying

the treatment effect measure for A vs. C in the linear predictor scale. We select the effect

modifiers of treatment A with respect to C (as opposed to the effect modifiers of treatment B
with respect to C), because we have to adjust for these to perform the indirect comparison in

the BC population, implicitly assumed to be the target population. If we had IPD for the BC
study and ALD for the AC study, we would have to account for the covariates that modify the

effect of treatment B vs. C, in order to perform the comparison in the AC population.

I N T E R N A L VA L I D I T Y

The first set of assumptions relates to the internal validity of the AC and BC trials. The trials

are internally valid under the following structural assumptions, which are necessary for causal

inference:

• Stable unit treatment value assignment (SUTVA). This assumption implies that: (1) the

treatment of a given subject does not affect the potential outcomes of other individu-

als (non-interference) [319, 320]; and (2) there is only one version of each treatment

(treatment-variation irrelevance) [56], implying that the treatment is comparable across

units [321]. The first condition is questionable, for example, in a vaccine trial, where

the outcome of an individual (i.e., developing the flu) depends on the vaccination status

of others because of herd immunity. The second condition is questionable if there are

differences among versions of treatment, e.g. in the delivery mechanism, that are relevant

to the outcome of interest.

• Strongly ignorable treatment assignment. Ignorability implies that treatment assignment

is independent of the potential outcomes [322]. Ignorability can be conditional on the

observed baseline covariates or unconditional. Conditional ignorability is strong when

there is positivity or overlap [323] i.e., any subject has a positive probability of being

assigned to either treatment group given the baseline covariates.

The SUTVA assumption is met by appropriate study design [318]. By design, the condi-

tions of positivity [324] and ignorability [325], whether this is plain or conditional on baseline

characteristics, are met by randomized trials. The random allocation of treatment ensures

that, on expectation, there are no systematic differences in the distribution of (measured and

unmeasured) baseline covariates between treatment groups, i.e., there is covariate balance

[84, 326]. Note that balance is a large sample property. In small samples, one may still observe

modest residual differences in baseline characteristics. As formulated by Senn [327], in a RCT,

over all the randomizations the groups are balanced, but for a particular randomization they

may be unbalanced. Therefore, the internal validity assumptions are met if the AC and BC
studies are appropriately designed trials with appropriate randomization and reasonably large

sample sizes. Finally, we have assumed that internal validity in each trial is not compromised

by other issues, such that there is negligible measurement error or missing data, the absence

of non-compliance, etc.
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In the unanchored case with single-arm studies, strongly ignorable treatment assignment is

not required as there is no common comparator arm. However, unanchored comparisons are

subject to the additional assumptions and biases of non-randomized study designs, which are

often stronger [328].

C O N S I S T E N C Y U N D E R PA R A L L E L S T U D I E S

Consistency under parallel studies [61] is the cross-trial version of the second condition of

SUTVA (treatment-variation irrelevance). This assumption implies that potential outcomes for

an individual under a given treatment are homogeneous regardless of the study assigned to the

individual. For instance, treatment C should be administered in the same setting in both trials,

or differences in the nature of treatment, e.g. in the clinical protocol or delivery mechanism,

should not change its effect. In there are non-negligible differences in the versions of treatment,

for instance, if treatment C is accompanied by adherence counseling in one of the trials, while

such counseling is absent in the other, this assumption could be invalid.

Consistency under parallel studies means that population adjustment methods cannot adjust

for cross-trial differences related to the nature of treatments, e.g. treatment administration,

switching, dosing formulation, titration or co-treatments. Differences of this type are perfectly

confounded with treatment [18], and MAIC and the outcome regression methods can only

adjust for differences in trial population characteristics. This assumption is required to perform

any valid indirect comparison across studies.

C O N D I T I O N A L LY S T R O N G I G N O R A B I L I T Y O F T R I A L A S S I G N M E N T

Strongly ignorable trial assignment (specifically, assignment to the AC trial), conditional on

the selected covariates, is the primary assumption underlying population-adjusted indirect

comparisons and is required for unbiased estimation of ∆(2)
10 . This is akin to the strongly

ignorable sample or trial assignment assumption [61] commonly used in the generalizability,

transportability or external validity literature [17, 59–61]. This literature seeks to calibrate

relative treatment effects obtained from a RCT into a, more diverse, target population. In

MAIC and the discussed outcome regression methods, the indirect comparison is performed

in the BC population, and the A vs. C treatment effect is transported to the BC population.

(Conditionally) strong ignorability consists of two assumptions: (conditional) ignorability and

overlap (or positivity). Note that, even though strong ignorability has been proposed in the

context of propensity score modeling, it is also a crucial assumption for the causal interpretation

of outcome regression results in the BC population.
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Conditional ignorability

There are many ways to articulate this assumption. One can consider that trial assignment/se-

lection is conditionally ignorable, unconfounded or exchangeable for the A vs. C treatment

effect (the potential A vs. C relative outcomes), i.e., conditionally independent of the treatment

effect, given the selected effect modifiers. This means that after adjusting for these effect

modifiers, treatment effect heterogeneity and trial assignment are conditionally independent.

The NICE technical support document [9, 18] describes this assumption as the conditional

constancy of relative effects across populations (namely, given the selected effect-modifying

covariates, the A vs. C treatment effect is constant across populations).

MAIC will only meet conditional ignorability if all (observed or unobserved) effect modifiers

are accounted for, regardless of whether these are balanced before the weighting. Excluding

balanced covariates from the weighting procedure does not ensure balance after the weighting.

The outcome regression methods meet conditional ignorability if all imbalanced effect modifiers

are accounted for in the covariate-adjusted regression model (in the case of multiple imputation

marginalization, that is the first-stage regression).

This is a demanding assumption in practice, which is also untestable. On one hand, it is

tied to the measure used to define the treatment effects and effect modifiers. Most crucially,

ignorability is hard to meet because it requires complete information on all treatment effect

modifiers to be measured and available across trials AC and BC, and for all effect modifiers

to be accounted for by the analyst. Firstly, it is conceivable that information on some effect

modifiers is unavailable or unpublished in one or both studies. Secondly, the analyst may select

the effect modifiers incorrectly. It is generally difficult to ascertain the effect modifier status

of variables, particularly for new treatments with limited prior empirical evidence and clinical

domain knowledge. We can never eliminate the possibility that this assumption is broken, as we

cannot guarantee that there are no unobserved or unmeasured effect modifiers. Nevertheless,

the careful selection of effect modifiers [136] from the observed baseline covariates is within

the investigator’s control and can provide some protection. Overspecification of effect modifiers

should not bias the comparison but may inflate standard errors and lead to a subsequent loss

of precision [18].

Effect modifier status is often determined by carrying out subgroup analyses in the IPD, or

by examining statistical covariate-treatment interactions in outcome regressions fitted to the

IPD [57, 272, 329]. The latter is a preferred approach and the former is typically discouraged

[136]. Non-parametric tree-based regressions have recently been used for this purpose. These

are appealing because they are data-driven and can detect interactions without pre-specifying

which candidate variables to include in the model [330, 331]. Nevertheless, all statistical

approaches are hindered by the lack of power of individual RCTs to identify interactions [91].

In the unanchored case, there is no common comparator group included in the analysis.

Therefore, estimates are based on a comparison of within-trial absolute outcomes from single

treatment arms, obtained from single-arm studies or individual arms of observational studies

or RCTs, not on a comparison of within-trial relative effects. In this scenario, trial assignment
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is ignorable if it is conditionally independent of the potential absolute outcomes given the

covariates accounted for in the adjustment mechanism.

Here, we cannot draw a distinction between the predictors of outcome that are not treatment-

specific (prognostic variables), i.e., associated with outcomes on follow-up regardless of

the treatment provided, and factors that are associated with the outcome under a specific

intervention because of interaction with treatment (effect modifiers). In fact, treatment effect

modification cannot be quantified and is ill-defined. This is because its definition is reliant

on contrasting outcomes between two groups, and there is no reference control group to

define a relative treatment effect in the IPD trial.4 The effect of purely prognostic variables and

variables that are predictive of response to a specific treatment is conflated and cannot be

disentangled. Therefore, unanchored comparisons rely on the assumption of no systematic

cross-trial differences in predictors of the absolute outcome under treatment A, regardless of

whether they have a purely prognostic role or are predictors of the response to treatment. The

population adjustment methods only meet ignorability in the unanchored case if all variables that

are prognostic of outcome under treatment A are balanced. In the unanchored case, ignorable

trial assignment is equivalent to the conditional constancy of absolute effects described in the

literature [9, 18].

Overlap

Conditional ignorability of trial assignment is strong if there is positivity or overlap, i.e., if every

subject in the BC population has a positive probability of being assigned to the AC trial given

the covariates accounted for in the adjustment mechanism. This implies that the ranges of

the covariates in the BC population are covered by their respective ranges in the AC trial.

This assumption may pose a problem if the inclusion/exclusion criteria of AC and BC are

inconsistent. For instance, consider a situation where age is selected as an effect modifier

and the age ranges of trial AC and trial BC are 60-70 and 40-70, respectively. There exists a

subpopulation (age 40-60) in BC that does not overlap with the AC population. Hence, the

AC study provides no evidence about the treatment effect and treatment effect modification in

the excluded age group, and the A vs. C treatment effect estimate may be biased in the full

comparator trial population (ages 40-70).

In such cases, reweighting methods like MAIC cannot extrapolate beyond the observed

covariate space in the AC IPD, as there are no subjects to reweight. Where overlap is

insufficient, outcome regression methods can extrapolate beyond the AC population, using the

linearity assumption or other appropriate assumptions about the input space. However, valid

extrapolation requires accurately capturing the true relationship between the covariates and the

4 If the IPD study is a single-arm trial, it is not possible to determine whether the outcomes are due to strong
prognostic indicators or to the treatment itself and its interaction with effect modifiers, in excess of prognostic impact.
Treatment effect modifiers cannot be identified because single-arm trials do not provide information about outcomes
in a control group not receiving the intervention. Even if the index trial is an RCT comparing treatments A and
C, effect modification for the relative effect of A vs C does not translate across studies if there is not a common
comparator group. For instance, if the comparator study contrasts treatments B and control D, a covariate that
modifies the effect of active intervention A with respect to C is not necessarily an effect modifier with respect to D.
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outcome. Conversely, the exclusion of patients enrolled in AC from the BC population, e.g. if

the AC population is more diverse, does not necessarily violate the overlap assumption. This

is because these methods deliver estimates in the BC population. Hence, adjustment in this

scenario is an interpolation as opposed to an extrapolation of the observed AC data. In this

scenario, ∆̂(2)
10 may be unbiased because the BC population is covered within that of AC. In

MAIC, the excluded subpopulation will receive very low weights (low odds of enrolment in BC
vs. AC), while the included subpopulation receives high weights and dominates the reweighted

sample. These extreme weights lead to large reductions in ESS and to the deterioration

of precision and efficiency. Removing observations from the AC patient-level data, so that

inclusion/exclusion criteria are consistent, explicitly lowers the AC sample size and may

degrade precision further. Of course, when there is no interpolation or extrapolation overlap

whatsoever, MAIC cannot generate population-adjusted estimate for the treatment effect, as a

feasible weighting solution does not exist due to separation problems [35].

If IPD were available for the BC study, the overlap assumption could be easily checked by

visualizing the ranges of the selected covariates and their empirical distributions. However, this

is challenging in our setup without further distributional assumptions due to patient-level data

limitations for BC.

S P E C I F I C AT I O N O F T H E J O I N T C OVA R I AT E D I S T R I B U T I O N I N BC

Population-adjusted indirect comparisons make certain assumptions to approximate the joint

distribution of covariates in the BC trial. The restriction of limited IPD makes it unlikely that

such joint distribution is available. Summary statistics for the marginal distributions are typically

published instead. Where no correlation information is available for the BC study, MAIC and the

conventional centered version of STC seem to assume that the joint BC covariate distribution

is the product of the published marginal distributions. The implicit assumptions are, in fact,

more nuanced and differ slightly between methods.

In MAIC, as stated in the NICE Decision Support Unit [18], “when covariate correlations

are not available from the (BC) population, and therefore cannot be balanced by inclusion in

the weighting model, they are assumed to be equal to the correlations amongst covariates in

the pseudo-population formed by weighting the (AC) population.” In typical usage, MAIC only

balances the marginal distributions of the selected baseline covariates, not the multidimensional

joint covariate distributions, due to the lack of published correlation data for BC. In the typical

usage of STC (i.e., the “plug-in” approach to the method in Section 2.4), the assumption

differs slightly. The correlations between the BC covariates are assumed to be equal to the

correlations between covariates in the AC study.

In the novel outcome regression methods discussed in Chapter 4, (parametric G-computation

and MIM), more explicit distributional assumptions are made to characterize the BC population

in the “covariate simulation” step. The methods assume the joint distribution of the BC
covariates is specified correctly, by the combination of the specified marginal distributions and

correlation structure. In the simulation study in Chapter 5, pseudo-populations are constructed
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under certain parametric assumptions. We have assumed that the pairwise correlations of the

covariates and the parametric forms of their marginal distributions are identical across trials,

because the correlation structure observed in the AC IPD is used in the “covariate simulation”

step. These assumptions cannot be verified empirically as we have no information on the

covariates’ correlation structure and true marginal distributions. Information on correlations or

on the joint distribution of covariates for BC is rarely published, but could be requested. We

have decided to mimic the AC pairwise correlations as, in principle, the relationships between

covariates should be similar across trials.

M O D E L I N G A S S U M P T I O N S

Indirect treatment comparisons are typically conducted on the linear predictor scale [18], upon

which the treatment effect is assumed to be additive for all indirect comparisons. In the

main text, the anchored population-adjusted indirect comparisons have additionally assumed

that the effect modifiers have been defined on the linear predictor scale and are additive

on this scale, but the linearity assumption is not always appropriate. Hence, all population

adjustment methods are subject to scale conflicts or to bias if effect modification status, which

is scale-specific, has been justified on the wrong scale, e.g. when treatment effect modification

is specified as linear but is non-linear or multiplicative, e.g. age in cardiovascular disease

treatments.

This form of model misspecification is more evident in the outcome modeling approaches,

where an explicit outcome regression is formulated. The parametric model depends on

functional form assumptions that will be violated if the relationship between the covariates

and the outcome is not captured correctly, in which case the methods may be biased. Even

though the logistic regression model for the weights in MAIC does not make reference to the

outcome, the method is also susceptible to model misspecification bias, albeit in a more implicit

form. The model for estimating the weights is approximately correct in the simulation studies

because the right subset of covariates has been selected as effect modifiers and the balancing

property holds for the weights, as mentioned in subsection 3.1.4. In practice, the model will be

incorrectly specified if this is not the case, potentially leading to a biased estimate. Note that,

in practice, we find that it may be more difficult to specify a correct parametric model for the

outcome than an approximately correct parametric model for the trial assignment weights.

C O N C L U D I N G R E M A R K S

In practice, some of the assumptions above may be hard to meet. If these are violated, the

resulting treatment effect may be biased. Hence, it is important to assess the robustness of the

methods to failures of assumptions and under different degrees of model misspecification in

future simulation studies.
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I M P U TAT I O N M A R G I N A L I Z AT I O N T O M U LT I - C O M P O N E N T

E S T I M A N D S

In many applications, the target estimand is non-scalar and has multiple components. For

instance, this is the case where the outcome model is a multivariate regression (i.e., with

multiple dependent variables) of correlated outcomes with treatment. This scenario typically

evaluates surrogate endpoints and involves combining correlated treatment effects corres-

ponding to multiple outcomes [203]. With non-scalar or multivariate estimands, the pooling

stage must propagate the covariance or correlation structure of treatment effects through the

analysis. Therefore, the inferential framework outlined in subsection 4.6.2.2 is extended by

Reiter [332]. The column vector of treatment effect point estimates for the m-th synthesis is

denoted ξ̂(m) and has J ≥ 2 components. The estimated J × J covariance matrix of treatment

effect estimates for the m-th synthesis is denoted v̂(m). Analogous to Equations 25, 26 and 27,

the following multivariate quantities are required for inference:

ξ̄ =
M

∑
m=1

ξ̂(m)/M, (34)

v̄ =
M

∑
m=1

v̂(m)/M, (35)

b =
M

∑
m=1

(ξ̂(m) − ξ̄)(ξ̂(m) − ξ̄)⊤/(M − 1). (36)

Here, ξ̄ is a vector of size J of average treatment effect point estimates across the M syntheses,

v̄ is a J × J matrix of the average estimated covariance matrices, and b is the J × J sample

covariance matrix of the treatment effect point estimates.

The target estimands for inference are the average marginal treatment effects in the BC
population, denoted by vector Ξ(2). The posterior distribution p(Ξ(2) | y∗, z∗) is assumed to

be approximately multivariate normal and is constructed as:

p(Ξ(2) | y∗, z∗) =
∫

µΞ,ΣΞ

p(Ξ(2) | µΞ, ΣΞ)p(µΞ, ΣΞ | y∗, z∗)d(µΞ, ΣΞ), (37)

with the posterior density parametrized by two moments: a vector of means µΞ and a J × J
covariance matrix ΣΞ. After deriving the quantities in Equations 34, 35, 36, the posterior in

Equation 37 is approximated by the following distributions (by analogy to Equations 28-30):

p(µΞ | y∗, z∗) ∼ N(ξ̄, v̄/M), (38)
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p ((M − 1)b/(ΣΞ + v̄) | y∗, z∗) ∼ WishartM−1, (39)

p(Ξ(2) | µΞ, ΣΞ) ∼ tM−1 (µΞ, (1 + 1/M)ΣΞ) . (40)

Note that the division in the left-hand side of Equation 39 is an element-wise (Hadamard)

division. One can approximate the integral of the posterior in Equation 40 with respect to the

posteriors in Equations 38 and 39 via simulation. However, it is considerably simpler to use a

multivariate normal approximation to the posterior density in Equation 37, with means ξ̄ and

covariance (1 + 1/M)b − v̄, such that the sampling distribution in Equation 40 is normal. This

yields the following combining rules [332], used to derive point estimates, Ξ̂(2) and Ĉov(Ξ̂(2)),

for the average marginal treatment effects in the BC population and their covariance matrix,

respectively:

Ξ̂(2) = ξ̄, (41)

Ĉov(Ξ̂(2)) = (1 + 1/M)b − v̄. (42)

The plug-in estimators in Equations 41 and 42 are valid for reasonably large M.
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S I M U L AT I O N S T U DY S C E N A R I O S E T T I N G S

In Table 2, parameter values for each simulation scenario are presented.

Table 2: Parameter values for the simulation study scenarios.
Scenario Number of subjects in

AC

Prognostic effect Interaction effect Mean of AC covariates Covariate correlation

1 150 0.40 0.40 0.45 0.00

2 300 0.40 0.40 0.45 0.00

3 600 0.40 0.40 0.45 0.00

4 150 0.69 0.40 0.45 0.00

5 300 0.69 0.40 0.45 0.00

6 600 0.69 0.40 0.45 0.00

7 150 1.11 0.40 0.45 0.00

8 300 1.11 0.40 0.45 0.00

9 600 1.11 0.40 0.45 0.00

10 150 0.40 0.69 0.45 0.00

11 300 0.40 0.69 0.45 0.00

12 600 0.40 0.69 0.45 0.00

13 150 0.69 0.69 0.45 0.00

14 300 0.69 0.69 0.45 0.00

15 600 0.69 0.69 0.45 0.00

16 150 1.11 0.69 0.45 0.00

17 300 1.11 0.69 0.45 0.00

18 600 1.11 0.69 0.45 0.00

19 150 0.40 1.11 0.45 0.00

20 300 0.40 1.11 0.45 0.00

21 600 0.40 1.11 0.45 0.00

22 150 0.69 1.11 0.45 0.00

23 300 0.69 1.11 0.45 0.00

24 600 0.69 1.11 0.45 0.00

25 150 1.11 1.11 0.45 0.00

26 300 1.11 1.11 0.45 0.00

27 600 1.11 1.11 0.45 0.00

28 150 0.40 0.40 0.45 0.35

29 300 0.40 0.40 0.45 0.35

30 600 0.40 0.40 0.45 0.35

31 150 0.69 0.40 0.45 0.35

32 300 0.69 0.40 0.45 0.35

33 600 0.69 0.40 0.45 0.35

34 150 1.11 0.40 0.45 0.35

35 300 1.11 0.40 0.45 0.35

36 600 1.11 0.40 0.45 0.35

37 150 0.40 0.69 0.45 0.35

38 300 0.40 0.69 0.45 0.35

39 600 0.40 0.69 0.45 0.35

40 150 0.69 0.69 0.45 0.35

41 300 0.69 0.69 0.45 0.35

42 600 0.69 0.69 0.45 0.35

43 150 1.11 0.69 0.45 0.35
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Table 2: Parameter values for the simulation study scenarios. (continued)
Scenario Number of subjects in

AC

Prognostic effect Interaction effect Mean of AC covariates Covariate correlation

44 300 1.11 0.69 0.45 0.35

45 600 1.11 0.69 0.45 0.35

46 150 0.40 1.11 0.45 0.35

47 300 0.40 1.11 0.45 0.35

48 600 0.40 1.11 0.45 0.35

49 150 0.69 1.11 0.45 0.35

50 300 0.69 1.11 0.45 0.35

51 600 0.69 1.11 0.45 0.35

52 150 1.11 1.11 0.45 0.35

53 300 1.11 1.11 0.45 0.35

54 600 1.11 1.11 0.45 0.35

55 150 0.40 0.40 0.30 0.00

56 300 0.40 0.40 0.30 0.00

57 600 0.40 0.40 0.30 0.00

58 150 0.69 0.40 0.30 0.00

59 300 0.69 0.40 0.30 0.00

60 600 0.69 0.40 0.30 0.00

61 150 1.11 0.40 0.30 0.00

62 300 1.11 0.40 0.30 0.00

63 600 1.11 0.40 0.30 0.00

64 150 0.40 0.69 0.30 0.00

65 300 0.40 0.69 0.30 0.00

66 600 0.40 0.69 0.30 0.00

67 150 0.69 0.69 0.30 0.00

68 300 0.69 0.69 0.30 0.00

69 600 0.69 0.69 0.30 0.00

70 150 1.11 0.69 0.30 0.00

71 300 1.11 0.69 0.30 0.00

72 600 1.11 0.69 0.30 0.00

73 150 0.40 1.11 0.30 0.00

74 300 0.40 1.11 0.30 0.00

75 600 0.40 1.11 0.30 0.00

76 150 0.69 1.11 0.30 0.00

77 300 0.69 1.11 0.30 0.00

78 600 0.69 1.11 0.30 0.00

79 150 1.11 1.11 0.30 0.00

80 300 1.11 1.11 0.30 0.00

81 600 1.11 1.11 0.30 0.00

82 150 0.40 0.40 0.30 0.35

83 300 0.40 0.40 0.30 0.35

84 600 0.40 0.40 0.30 0.35

85 150 0.69 0.40 0.30 0.35

86 300 0.69 0.40 0.30 0.35

87 600 0.69 0.40 0.30 0.35

88 150 1.11 0.40 0.30 0.35

89 300 1.11 0.40 0.30 0.35

90 600 1.11 0.40 0.30 0.35

91 150 0.40 0.69 0.30 0.35

92 300 0.40 0.69 0.30 0.35

93 600 0.40 0.69 0.30 0.35

94 150 0.69 0.69 0.30 0.35

95 300 0.69 0.69 0.30 0.35

96 600 0.69 0.69 0.30 0.35

97 150 1.11 0.69 0.30 0.35

98 300 1.11 0.69 0.30 0.35

99 600 1.11 0.69 0.30 0.35
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Table 2: Parameter values for the simulation study scenarios. (continued)
Scenario Number of subjects in

AC

Prognostic effect Interaction effect Mean of AC covariates Covariate correlation

100 150 0.40 1.11 0.30 0.35

101 300 0.40 1.11 0.30 0.35

102 600 0.40 1.11 0.30 0.35

103 150 0.69 1.11 0.30 0.35

104 300 0.69 1.11 0.30 0.35

105 600 0.69 1.11 0.30 0.35

106 150 1.11 1.11 0.30 0.35

107 300 1.11 1.11 0.30 0.35

108 600 1.11 1.11 0.30 0.35

109 150 0.40 0.40 0.15 0.00

110 300 0.40 0.40 0.15 0.00

111 600 0.40 0.40 0.15 0.00

112 150 0.69 0.40 0.15 0.00

113 300 0.69 0.40 0.15 0.00

114 600 0.69 0.40 0.15 0.00

115 150 1.11 0.40 0.15 0.00

116 300 1.11 0.40 0.15 0.00

117 600 1.11 0.40 0.15 0.00

118 150 0.40 0.69 0.15 0.00

119 300 0.40 0.69 0.15 0.00

120 600 0.40 0.69 0.15 0.00

121 150 0.69 0.69 0.15 0.00

122 300 0.69 0.69 0.15 0.00

123 600 0.69 0.69 0.15 0.00

124 150 1.11 0.69 0.15 0.00

125 300 1.11 0.69 0.15 0.00

126 600 1.11 0.69 0.15 0.00

127 150 0.40 1.11 0.15 0.00

128 300 0.40 1.11 0.15 0.00

129 600 0.40 1.11 0.15 0.00

130 150 0.69 1.11 0.15 0.00

131 300 0.69 1.11 0.15 0.00

132 600 0.69 1.11 0.15 0.00

133 150 1.11 1.11 0.15 0.00

134 300 1.11 1.11 0.15 0.00

135 600 1.11 1.11 0.15 0.00

136 150 0.40 0.40 0.15 0.35

137 300 0.40 0.40 0.15 0.35

138 600 0.40 0.40 0.15 0.35

139 150 0.69 0.40 0.15 0.35

140 300 0.69 0.40 0.15 0.35

141 600 0.69 0.40 0.15 0.35

142 150 1.11 0.40 0.15 0.35

143 300 1.11 0.40 0.15 0.35

144 600 1.11 0.40 0.15 0.35

145 150 0.40 0.69 0.15 0.35

146 300 0.40 0.69 0.15 0.35

147 600 0.40 0.69 0.15 0.35

148 150 0.69 0.69 0.15 0.35

149 300 0.69 0.69 0.15 0.35

150 600 0.69 0.69 0.15 0.35

151 150 1.11 0.69 0.15 0.35

152 300 1.11 0.69 0.15 0.35

153 600 1.11 0.69 0.15 0.35

154 150 0.40 1.11 0.15 0.35

155 300 0.40 1.11 0.15 0.35
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Table 2: Parameter values for the simulation study scenarios. (continued)
Scenario Number of subjects in

AC

Prognostic effect Interaction effect Mean of AC covariates Covariate correlation

156 600 0.40 1.11 0.15 0.35

157 150 0.69 1.11 0.15 0.35

158 300 0.69 1.11 0.15 0.35

159 600 0.69 1.11 0.15 0.35

160 150 1.11 1.11 0.15 0.35

161 300 1.11 1.11 0.15 0.35

162 600 1.11 1.11 0.15 0.35
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S I M U L AT I O N S T U DY R E S U LT S

Table 3 displays the key performance measures associated with each of the simulated scenarios.

Biases are displayed in red when their absolute size is greater than one half of the treatment

effect estimate’s empirical standard error. Coverage rates are presented in red when these are

statistically significantly different to 0.95; namely, if the rate is less than 0.9365 or more than

0.9635. Monte Carlo standard errors for each measure are presented in parentheses.

Table 3: Performance metrics for each method and simulation scenario. Monte Carlo standard errors
for each measure are presented in parentheses. ATE: average estimated marginal treatment
effect for A vs. B (is equal to the bias as the true effect is zero); LCI: average lower bound of
the 95 percent confidence interval; UCI: average upper bound of the 95 percent confidence
interval; MSE: mean square error; MAE: mean absolute error; Cover: coverage rate of the
95 percent confidence intervals; VR: variability ratio; ESE: empirical standard error; MAIC:
matching-adjusted indirect comparison; STC: simulated treatment comparison.

Scenario Method ATE LCI UCI MSE MAE Cover VR ESE

1 MAIC -0.010 (0.007) -0.429 (0.007) 0.410 (0.007) 0.046 (0.002) 0.170 (0.007) 0.950 (0.007) 1.001 (0.022) 0.214 (0.005)

1 STC -0.065 (0.007) -0.513 (0.008) 0.383 (0.007) 0.059 (0.003) 0.195 (0.007) 0.938 (0.008) 0.974 (0.022) 0.235 (0.005)

1 Bucher -0.095 (0.007) -0.504 (0.007) 0.315 (0.006) 0.054 (0.002) 0.187 (0.007) 0.927 (0.008) 0.985 (0.022) 0.212 (0.005)

2 MAIC 0.010 (0.005) -0.310 (0.005) 0.331 (0.005) 0.026 (0.001) 0.129 (0.005) 0.955 (0.007) 1.020 (0.023) 0.160 (0.004)

2 STC -0.034 (0.005) -0.369 (0.005) 0.300 (0.005) 0.030 (0.001) 0.140 (0.005) 0.950 (0.007) 1.006 (0.023) 0.170 (0.004)

2 Bucher -0.075 (0.005) -0.390 (0.005) 0.239 (0.005) 0.031 (0.001) 0.141 (0.005) 0.928 (0.008) 1.007 (0.023) 0.159 (0.004)

3 MAIC -0.009 (0.004) -0.267 (0.004) 0.250 (0.004) 0.018 (0.001) 0.108 (0.004) 0.939 (0.008) 0.975 (0.022) 0.135 (0.003)

3 STC -0.046 (0.004) -0.312 (0.004) 0.220 (0.004) 0.022 (0.001) 0.120 (0.004) 0.924 (0.008) 0.964 (0.022) 0.141 (0.003)

3 Bucher -0.092 (0.004) -0.347 (0.004) 0.162 (0.004) 0.026 (0.001) 0.129 (0.004) 0.883 (0.010) 0.977 (0.022) 0.133 (0.003)

4 MAIC -0.007 (0.007) -0.407 (0.007) 0.393 (0.006) 0.043 (0.002) 0.163 (0.007) 0.940 (0.008) 0.981 (0.022) 0.208 (0.005)

4 STC -0.111 (0.007) -0.549 (0.007) 0.328 (0.007) 0.065 (0.003) 0.200 (0.007) 0.918 (0.009) 0.974 (0.022) 0.230 (0.005)

4 Bucher -0.081 (0.007) -0.478 (0.007) 0.316 (0.006) 0.049 (0.002) 0.176 (0.007) 0.935 (0.008) 0.983 (0.022) 0.206 (0.005)

5 MAIC 0.006 (0.005) -0.301 (0.005) 0.312 (0.005) 0.024 (0.001) 0.122 (0.005) 0.941 (0.007) 1.003 (0.022) 0.156 (0.003)

5 STC -0.093 (0.005) -0.419 (0.005) 0.234 (0.005) 0.037 (0.002) 0.152 (0.005) 0.913 (0.009) 0.986 (0.022) 0.169 (0.004)

5 Bucher -0.072 (0.005) -0.378 (0.005) 0.233 (0.005) 0.030 (0.001) 0.136 (0.005) 0.920 (0.009) 1.000 (0.022) 0.156 (0.003)

6 MAIC 0.002 (0.004) -0.247 (0.004) 0.251 (0.004) 0.016 (0.001) 0.100 (0.004) 0.943 (0.007) 1.001 (0.022) 0.127 (0.003)

6 STC -0.087 (0.004) -0.346 (0.004) 0.173 (0.004) 0.025 (0.001) 0.127 (0.004) 0.901 (0.009) 1.001 (0.022) 0.132 (0.003)

6 Bucher -0.076 (0.004) -0.324 (0.004) 0.172 (0.004) 0.022 (0.001) 0.119 (0.004) 0.910 (0.009) 1.000 (0.022) 0.127 (0.003)

7 MAIC -0.003 (0.006) -0.386 (0.006) 0.379 (0.006) 0.039 (0.002) 0.157 (0.006) 0.947 (0.007) 0.991 (0.022) 0.197 (0.004)

7 STC -0.184 (0.007) -0.614 (0.007) 0.246 (0.007) 0.082 (0.004) 0.233 (0.007) 0.873 (0.011) 0.995 (0.022) 0.221 (0.005)

7 Bucher -0.073 (0.006) -0.459 (0.006) 0.313 (0.006) 0.044 (0.002) 0.165 (0.006) 0.936 (0.008) 1.000 (0.022) 0.197 (0.004)

8 MAIC 0.000 (0.005) -0.295 (0.005) 0.294 (0.005) 0.023 (0.001) 0.122 (0.005) 0.954 (0.007) 0.995 (0.022) 0.151 (0.003)

8 STC -0.174 (0.005) -0.494 (0.005) 0.146 (0.005) 0.058 (0.002) 0.197 (0.005) 0.817 (0.012) 0.982 (0.022) 0.166 (0.004)

8 Bucher -0.068 (0.005) -0.364 (0.005) 0.229 (0.005) 0.028 (0.001) 0.133 (0.005) 0.925 (0.008) 0.987 (0.022) 0.153 (0.003)

9 MAIC 0.003 (0.004) -0.237 (0.004) 0.242 (0.004) 0.016 (0.001) 0.102 (0.004) 0.951 (0.007) 0.965 (0.022) 0.127 (0.003)

9 STC -0.166 (0.004) -0.420 (0.004) 0.088 (0.004) 0.046 (0.002) 0.179 (0.004) 0.740 (0.014) 0.966 (0.022) 0.134 (0.003)

9 Bucher -0.063 (0.004) -0.303 (0.004) 0.178 (0.004) 0.021 (0.001) 0.116 (0.004) 0.905 (0.009) 0.937 (0.021) 0.131 (0.003)

10 MAIC 0.003 (0.006) -0.399 (0.006) 0.406 (0.006) 0.040 (0.002) 0.160 (0.006) 0.954 (0.007) 1.023 (0.023) 0.201 (0.004)

10 STC -0.007 (0.007) -0.443 (0.007) 0.429 (0.007) 0.050 (0.002) 0.179 (0.007) 0.948 (0.007) 0.993 (0.022) 0.224 (0.005)

10 Bucher -0.138 (0.006) -0.538 (0.006) 0.261 (0.006) 0.058 (0.003) 0.192 (0.006) 0.905 (0.009) 1.037 (0.023) 0.197 (0.004)

11 MAIC 0.003 (0.005) -0.305 (0.005) 0.312 (0.005) 0.024 (0.001) 0.123 (0.005) 0.953 (0.007) 1.021 (0.023) 0.154 (0.003)

11 STC 0.003 (0.005) -0.323 (0.005) 0.329 (0.005) 0.028 (0.001) 0.134 (0.005) 0.950 (0.007) 0.995 (0.022) 0.167 (0.004)

11 Bucher -0.139 (0.005) -0.447 (0.005) 0.168 (0.005) 0.044 (0.002) 0.172 (0.005) 0.860 (0.011) 1.001 (0.022) 0.157 (0.004)

12 MAIC 0.000 (0.004) -0.250 (0.004) 0.250 (0.004) 0.016 (0.001) 0.101 (0.004) 0.964 (0.006) 1.018 (0.023) 0.125 (0.003)

12 STC 0.003 (0.004) -0.257 (0.004) 0.262 (0.004) 0.017 (0.001) 0.106 (0.004) 0.964 (0.006) 1.010 (0.023) 0.131 (0.003)

12 Bucher -0.140 (0.004) -0.389 (0.004) 0.110 (0.004) 0.035 (0.001) 0.156 (0.004) 0.804 (0.013) 1.013 (0.023) 0.126 (0.003)

13 MAIC -0.001 (0.006) -0.389 (0.006) 0.387 (0.006) 0.038 (0.002) 0.155 (0.006) 0.948 (0.007) 1.011 (0.023) 0.196 (0.004)

13 STC -0.040 (0.007) -0.468 (0.007) 0.387 (0.007) 0.050 (0.002) 0.178 (0.007) 0.945 (0.007) 0.990 (0.022) 0.220 (0.005)

13 Bucher -0.131 (0.006) -0.522 (0.007) 0.261 (0.006) 0.057 (0.003) 0.190 (0.006) 0.900 (0.009) 0.996 (0.022) 0.200 (0.004)
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Table 3: Performance metrics for each method and simulation scenario. Monte Carlo standard errors
for each measure are presented in parentheses. ATE: average estimated marginal treatment
effect for A vs. B (is equal to the bias as the true effect is zero); LCI: average lower bound of
the 95 percent confidence interval; UCI: average upper bound of the 95 percent confidence
interval; MSE: mean square error; MAE: mean absolute error; Cover: coverage rate of the
95 percent confidence intervals; VR: variability ratio; ESE: empirical standard error; MAIC:
matching-adjusted indirect comparison; STC: simulated treatment comparison. (continued)

Scenario Method ATE LCI UCI MSE MAE Cover VR ESE

14 MAIC 0.002 (0.005) -0.296 (0.005) 0.300 (0.005) 0.022 (0.001) 0.117 (0.005) 0.955 (0.007) 1.032 (0.023) 0.147 (0.003)

14 STC -0.024 (0.005) -0.344 (0.005) 0.295 (0.005) 0.027 (0.001) 0.131 (0.005) 0.951 (0.007) 1.001 (0.022) 0.163 (0.004)

14 Bucher -0.127 (0.005) -0.427 (0.005) 0.174 (0.005) 0.039 (0.002) 0.162 (0.005) 0.878 (0.010) 1.001 (0.022) 0.153 (0.003)

15 MAIC 0.005 (0.004) -0.237 (0.004) 0.248 (0.004) 0.015 (0.001) 0.097 (0.004) 0.949 (0.007) 1.013 (0.023) 0.122 (0.003)

15 STC -0.019 (0.004) -0.274 (0.004) 0.235 (0.004) 0.017 (0.001) 0.106 (0.004) 0.954 (0.007) 1.002 (0.022) 0.130 (0.003)

15 Bucher -0.120 (0.004) -0.364 (0.004) 0.124 (0.004) 0.030 (0.001) 0.141 (0.004) 0.839 (0.012) 1.006 (0.023) 0.124 (0.003)

16 MAIC -0.010 (0.006) -0.385 (0.006) 0.366 (0.006) 0.038 (0.002) 0.155 (0.006) 0.944 (0.007) 0.980 (0.022) 0.195 (0.004)

16 STC -0.082 (0.007) -0.503 (0.007) 0.339 (0.007) 0.059 (0.003) 0.190 (0.007) 0.915 (0.009) 0.942 (0.021) 0.228 (0.005)

16 Bucher -0.119 (0.006) -0.501 (0.006) 0.264 (0.006) 0.054 (0.002) 0.185 (0.006) 0.904 (0.009) 0.972 (0.022) 0.201 (0.004)

17 MAIC -0.001 (0.005) -0.289 (0.005) 0.288 (0.005) 0.023 (0.001) 0.123 (0.005) 0.942 (0.007) 0.964 (0.022) 0.153 (0.003)

17 STC -0.070 (0.005) -0.385 (0.005) 0.244 (0.005) 0.034 (0.002) 0.146 (0.005) 0.908 (0.009) 0.942 (0.021) 0.170 (0.004)

17 Bucher -0.109 (0.005) -0.403 (0.005) 0.184 (0.005) 0.036 (0.001) 0.154 (0.005) 0.870 (0.011) 0.963 (0.022) 0.156 (0.003)

18 MAIC 0.005 (0.004) -0.230 (0.004) 0.241 (0.004) 0.014 (0.001) 0.093 (0.004) 0.955 (0.007) 1.033 (0.023) 0.116 (0.003)

18 STC -0.063 (0.004) -0.313 (0.004) 0.187 (0.004) 0.020 (0.001) 0.113 (0.004) 0.927 (0.008) 1.021 (0.023) 0.125 (0.003)

18 Bucher -0.104 (0.004) -0.342 (0.004) 0.135 (0.004) 0.025 (0.001) 0.128 (0.004) 0.881 (0.010) 1.034 (0.023) 0.118 (0.003)

19 MAIC 0.000 (0.006) -0.386 (0.006) 0.387 (0.006) 0.039 (0.002) 0.157 (0.006) 0.948 (0.007) 0.995 (0.022) 0.198 (0.004)

19 STC 0.095 (0.007) -0.332 (0.007) 0.522 (0.007) 0.062 (0.003) 0.198 (0.007) 0.911 (0.009) 0.947 (0.021) 0.230 (0.005)

19 Bucher -0.204 (0.006) -0.596 (0.007) 0.187 (0.006) 0.083 (0.003) 0.239 (0.006) 0.830 (0.012) 0.983 (0.022) 0.203 (0.005)

20 MAIC 0.012 (0.005) -0.285 (0.005) 0.309 (0.005) 0.021 (0.001) 0.116 (0.005) 0.960 (0.006) 1.048 (0.023) 0.145 (0.003)

20 STC 0.107 (0.005) -0.212 (0.005) 0.427 (0.005) 0.036 (0.002) 0.154 (0.005) 0.907 (0.009) 1.034 (0.023) 0.158 (0.004)

20 Bucher -0.194 (0.005) -0.495 (0.005) 0.107 (0.005) 0.061 (0.002) 0.207 (0.005) 0.777 (0.013) 1.012 (0.023) 0.152 (0.003)

21 MAIC 0.002 (0.004) -0.240 (0.004) 0.243 (0.004) 0.014 (0.001) 0.095 (0.004) 0.950 (0.007) 1.029 (0.023) 0.120 (0.003)

21 STC 0.102 (0.004) -0.152 (0.004) 0.356 (0.004) 0.027 (0.001) 0.135 (0.004) 0.897 (0.010) 1.007 (0.023) 0.129 (0.003)

21 Bucher -0.203 (0.004) -0.448 (0.004) 0.041 (0.004) 0.056 (0.002) 0.208 (0.004) 0.646 (0.015) 1.015 (0.023) 0.123 (0.003)

22 MAIC -0.009 (0.006) -0.384 (0.006) 0.366 (0.006) 0.036 (0.002) 0.152 (0.006) 0.947 (0.007) 1.006 (0.023) 0.190 (0.004)

22 STC 0.093 (0.007) -0.327 (0.007) 0.513 (0.007) 0.058 (0.003) 0.191 (0.007) 0.913 (0.009) 0.965 (0.022) 0.222 (0.005)

22 Bucher -0.186 (0.006) -0.571 (0.006) 0.199 (0.006) 0.071 (0.003) 0.220 (0.006) 0.849 (0.011) 1.026 (0.023) 0.191 (0.004)

23 MAIC 0.007 (0.004) -0.282 (0.004) 0.297 (0.004) 0.020 (0.001) 0.111 (0.004) 0.953 (0.007) 1.057 (0.024) 0.140 (0.003)

23 STC 0.117 (0.005) -0.197 (0.005) 0.431 (0.005) 0.039 (0.002) 0.161 (0.005) 0.897 (0.010) 1.010 (0.023) 0.159 (0.004)

23 Bucher -0.179 (0.005) -0.475 (0.005) 0.117 (0.005) 0.053 (0.002) 0.194 (0.005) 0.792 (0.013) 1.035 (0.023) 0.146 (0.003)

24 MAIC 0.005 (0.004) -0.231 (0.004) 0.241 (0.004) 0.014 (0.001) 0.093 (0.004) 0.958 (0.006) 1.035 (0.023) 0.116 (0.003)

24 STC 0.116 (0.004) -0.135 (0.004) 0.366 (0.004) 0.029 (0.001) 0.139 (0.004) 0.851 (0.011) 1.032 (0.023) 0.124 (0.003)

24 Bucher -0.182 (0.004) -0.422 (0.004) 0.059 (0.004) 0.047 (0.002) 0.188 (0.004) 0.695 (0.015) 1.023 (0.023) 0.120 (0.003)

25 MAIC 0.004 (0.006) -0.362 (0.006) 0.371 (0.006) 0.033 (0.001) 0.145 (0.006) 0.956 (0.006) 1.022 (0.023) 0.183 (0.004)

25 STC 0.103 (0.007) -0.311 (0.007) 0.518 (0.007) 0.057 (0.003) 0.191 (0.007) 0.911 (0.009) 0.982 (0.022) 0.216 (0.005)

25 Bucher -0.157 (0.006) -0.536 (0.006) 0.221 (0.006) 0.062 (0.002) 0.203 (0.006) 0.880 (0.010) 1.004 (0.022) 0.192 (0.004)

26 MAIC 0.005 (0.005) -0.278 (0.005) 0.289 (0.004) 0.020 (0.001) 0.113 (0.005) 0.952 (0.007) 1.013 (0.023) 0.143 (0.003)

26 STC 0.114 (0.005) -0.196 (0.005) 0.425 (0.005) 0.039 (0.002) 0.162 (0.005) 0.881 (0.010) 0.975 (0.022) 0.163 (0.004)

26 Bucher -0.155 (0.005) -0.446 (0.005) 0.137 (0.005) 0.045 (0.002) 0.176 (0.005) 0.835 (0.012) 1.034 (0.023) 0.144 (0.003)

27 MAIC -0.001 (0.004) -0.233 (0.004) 0.230 (0.004) 0.014 (0.001) 0.094 (0.004) 0.947 (0.007) 0.991 (0.022) 0.119 (0.003)

27 STC 0.104 (0.004) -0.143 (0.004) 0.351 (0.004) 0.028 (0.001) 0.134 (0.004) 0.867 (0.011) 0.977 (0.022) 0.129 (0.003)

27 Bucher -0.161 (0.004) -0.398 (0.004) 0.076 (0.004) 0.040 (0.001) 0.171 (0.004) 0.734 (0.014) 1.005 (0.022) 0.120 (0.003)

28 MAIC -0.006 (0.007) -0.409 (0.007) 0.397 (0.006) 0.044 (0.002) 0.167 (0.007) 0.937 (0.008) 0.978 (0.022) 0.210 (0.005)

28 STC -0.089 (0.007) -0.527 (0.008) 0.349 (0.007) 0.062 (0.003) 0.200 (0.007) 0.925 (0.008) 0.959 (0.021) 0.233 (0.005)

28 Bucher -0.085 (0.007) -0.494 (0.007) 0.323 (0.007) 0.052 (0.002) 0.181 (0.007) 0.935 (0.008) 0.981 (0.022) 0.212 (0.005)

29 MAIC -0.002 (0.005) -0.312 (0.005) 0.309 (0.005) 0.024 (0.001) 0.124 (0.005) 0.955 (0.007) 1.023 (0.023) 0.155 (0.003)

29 STC -0.071 (0.005) -0.400 (0.005) 0.257 (0.005) 0.032 (0.001) 0.144 (0.005) 0.936 (0.008) 1.019 (0.023) 0.164 (0.004)

29 Bucher -0.081 (0.005) -0.394 (0.005) 0.233 (0.005) 0.031 (0.001) 0.141 (0.005) 0.927 (0.008) 1.027 (0.023) 0.156 (0.003)

30 MAIC 0.000 (0.004) -0.253 (0.004) 0.252 (0.004) 0.016 (0.001) 0.100 (0.004) 0.955 (0.007) 1.012 (0.023) 0.127 (0.003)
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Table 3: Performance metrics for each method and simulation scenario. Monte Carlo standard errors
for each measure are presented in parentheses. ATE: average estimated marginal treatment
effect for A vs. B (is equal to the bias as the true effect is zero); LCI: average lower bound of
the 95 percent confidence interval; UCI: average upper bound of the 95 percent confidence
interval; MSE: mean square error; MAE: mean absolute error; Cover: coverage rate of the
95 percent confidence intervals; VR: variability ratio; ESE: empirical standard error; MAIC:
matching-adjusted indirect comparison; STC: simulated treatment comparison. (continued)

Scenario Method ATE LCI UCI MSE MAE Cover VR ESE

30 STC -0.061 (0.004) -0.324 (0.004) 0.201 (0.004) 0.022 (0.001) 0.116 (0.004) 0.918 (0.009) 0.991 (0.022) 0.135 (0.003)

30 Bucher -0.079 (0.004) -0.333 (0.004) 0.176 (0.004) 0.023 (0.001) 0.121 (0.004) 0.912 (0.009) 1.009 (0.023) 0.129 (0.003)

31 MAIC -0.012 (0.006) -0.397 (0.006) 0.373 (0.006) 0.040 (0.002) 0.159 (0.006) 0.949 (0.007) 0.984 (0.022) 0.199 (0.004)

31 STC -0.170 (0.007) -0.599 (0.007) 0.258 (0.007) 0.077 (0.003) 0.224 (0.007) 0.885 (0.010) 0.998 (0.022) 0.219 (0.005)

31 Bucher -0.082 (0.006) -0.479 (0.007) 0.314 (0.006) 0.047 (0.002) 0.172 (0.006) 0.932 (0.008) 1.004 (0.022) 0.202 (0.005)

32 MAIC 0.000 (0.005) -0.297 (0.005) 0.296 (0.005) 0.023 (0.001) 0.121 (0.005) 0.946 (0.007) 0.994 (0.022) 0.152 (0.003)

32 STC -0.149 (0.005) -0.469 (0.005) 0.171 (0.005) 0.049 (0.002) 0.184 (0.005) 0.859 (0.011) 0.993 (0.022) 0.165 (0.004)

32 Bucher -0.069 (0.005) -0.373 (0.005) 0.236 (0.005) 0.028 (0.001) 0.133 (0.005) 0.928 (0.008) 1.008 (0.023) 0.154 (0.003)

33 MAIC 0.002 (0.004) -0.241 (0.004) 0.244 (0.004) 0.015 (0.001) 0.100 (0.004) 0.955 (0.007) 1.000 (0.022) 0.124 (0.003)

33 STC -0.139 (0.004) -0.395 (0.004) 0.117 (0.004) 0.037 (0.001) 0.160 (0.004) 0.814 (0.012) 0.979 (0.022) 0.134 (0.003)

33 Bucher -0.068 (0.004) -0.315 (0.004) 0.179 (0.004) 0.021 (0.001) 0.116 (0.004) 0.917 (0.009) 0.999 (0.022) 0.126 (0.003)

34 MAIC -0.005 (0.006) -0.374 (0.006) 0.364 (0.006) 0.037 (0.002) 0.153 (0.006) 0.942 (0.007) 0.978 (0.022) 0.193 (0.004)

34 STC -0.259 (0.007) -0.680 (0.007) 0.163 (0.007) 0.118 (0.005) 0.283 (0.007) 0.769 (0.013) 0.946 (0.021) 0.227 (0.005)

34 Bucher -0.059 (0.006) -0.445 (0.006) 0.327 (0.006) 0.043 (0.002) 0.163 (0.006) 0.936 (0.008) 0.987 (0.022) 0.199 (0.004)

35 MAIC 0.009 (0.005) -0.276 (0.005) 0.295 (0.005) 0.021 (0.001) 0.118 (0.005) 0.957 (0.006) 1.002 (0.022) 0.146 (0.003)

35 STC -0.241 (0.005) -0.557 (0.005) 0.074 (0.005) 0.084 (0.003) 0.248 (0.005) 0.677 (0.015) 1.004 (0.022) 0.160 (0.004)

35 Bucher -0.045 (0.005) -0.342 (0.005) 0.252 (0.005) 0.024 (0.001) 0.126 (0.005) 0.940 (0.008) 1.016 (0.023) 0.149 (0.003)

36 MAIC -0.001 (0.004) -0.235 (0.004) 0.234 (0.004) 0.015 (0.001) 0.097 (0.004) 0.936 (0.008) 0.982 (0.022) 0.122 (0.003)

36 STC -0.243 (0.004) -0.494 (0.004) 0.008 (0.004) 0.076 (0.002) 0.246 (0.004) 0.507 (0.016) 0.994 (0.022) 0.129 (0.003)

36 Bucher -0.055 (0.004) -0.296 (0.004) 0.186 (0.004) 0.019 (0.001) 0.110 (0.004) 0.921 (0.009) 0.980 (0.022) 0.125 (0.003)

37 MAIC -0.005 (0.006) -0.396 (0.007) 0.386 (0.006) 0.041 (0.002) 0.157 (0.006) 0.941 (0.007) 0.987 (0.022) 0.202 (0.005)

37 STC -0.018 (0.008) -0.446 (0.008) 0.410 (0.007) 0.057 (0.003) 0.186 (0.008) 0.919 (0.009) 0.919 (0.021) 0.238 (0.005)

37 Bucher -0.136 (0.006) -0.537 (0.007) 0.266 (0.006) 0.060 (0.003) 0.194 (0.006) 0.900 (0.009) 1.001 (0.022) 0.204 (0.005)

38 MAIC 0.003 (0.005) -0.298 (0.005) 0.304 (0.005) 0.022 (0.001) 0.120 (0.005) 0.961 (0.006) 1.024 (0.023) 0.150 (0.003)

38 STC -0.004 (0.005) -0.324 (0.005) 0.317 (0.005) 0.026 (0.001) 0.130 (0.005) 0.950 (0.007) 1.005 (0.022) 0.163 (0.004)

38 Bucher -0.125 (0.005) -0.433 (0.005) 0.183 (0.005) 0.039 (0.002) 0.161 (0.005) 0.875 (0.010) 1.029 (0.023) 0.153 (0.003)

39 MAIC -0.001 (0.004) -0.247 (0.004) 0.244 (0.004) 0.014 (0.001) 0.095 (0.004) 0.955 (0.007) 1.048 (0.023) 0.120 (0.003)

39 STC -0.002 (0.004) -0.258 (0.004) 0.255 (0.004) 0.016 (0.001) 0.103 (0.004) 0.966 (0.006) 1.024 (0.023) 0.128 (0.003)

39 Bucher -0.130 (0.004) -0.380 (0.004) 0.120 (0.004) 0.032 (0.001) 0.148 (0.004) 0.841 (0.012) 1.043 (0.023) 0.122 (0.003)

40 MAIC -0.015 (0.006) -0.393 (0.006) 0.362 (0.006) 0.038 (0.002) 0.157 (0.006) 0.950 (0.007) 0.990 (0.022) 0.195 (0.004)

40 STC -0.059 (0.007) -0.479 (0.007) 0.360 (0.007) 0.055 (0.002) 0.187 (0.007) 0.928 (0.008) 0.946 (0.021) 0.226 (0.005)

40 Bucher -0.126 (0.006) -0.519 (0.007) 0.266 (0.006) 0.057 (0.002) 0.189 (0.006) 0.900 (0.009) 0.992 (0.022) 0.202 (0.005)

41 MAIC 0.000 (0.004) -0.291 (0.005) 0.291 (0.004) 0.020 (0.001) 0.114 (0.004) 0.969 (0.005) 1.047 (0.023) 0.142 (0.003)

41 STC -0.045 (0.005) -0.360 (0.005) 0.270 (0.005) 0.027 (0.001) 0.129 (0.005) 0.947 (0.007) 1.021 (0.023) 0.157 (0.004)

41 Bucher -0.109 (0.005) -0.410 (0.005) 0.192 (0.005) 0.033 (0.001) 0.147 (0.005) 0.900 (0.009) 1.049 (0.023) 0.147 (0.003)

42 MAIC 0.006 (0.004) -0.233 (0.004) 0.244 (0.004) 0.014 (0.001) 0.096 (0.004) 0.946 (0.007) 1.012 (0.023) 0.120 (0.003)

42 STC -0.037 (0.004) -0.288 (0.004) 0.215 (0.004) 0.018 (0.001) 0.109 (0.004) 0.939 (0.008) 0.992 (0.022) 0.129 (0.003)

42 Bucher -0.103 (0.004) -0.347 (0.004) 0.142 (0.004) 0.026 (0.001) 0.131 (0.004) 0.875 (0.010) 1.001 (0.022) 0.125 (0.003)

43 MAIC 0.004 (0.006) -0.362 (0.006) 0.370 (0.006) 0.037 (0.002) 0.153 (0.006) 0.947 (0.007) 0.969 (0.022) 0.193 (0.004)

43 STC -0.114 (0.007) -0.529 (0.007) 0.301 (0.007) 0.060 (0.003) 0.192 (0.007) 0.904 (0.009) 0.975 (0.022) 0.217 (0.005)

43 Bucher -0.085 (0.006) -0.469 (0.006) 0.299 (0.006) 0.047 (0.002) 0.173 (0.006) 0.927 (0.008) 0.979 (0.022) 0.200 (0.004)

44 MAIC 0.008 (0.004) -0.275 (0.004) 0.292 (0.004) 0.019 (0.001) 0.111 (0.004) 0.954 (0.007) 1.042 (0.023) 0.139 (0.003)

44 STC -0.102 (0.005) -0.412 (0.005) 0.209 (0.005) 0.037 (0.002) 0.153 (0.005) 0.905 (0.009) 0.976 (0.022) 0.162 (0.004)

44 Bucher -0.081 (0.005) -0.376 (0.005) 0.214 (0.005) 0.028 (0.001) 0.133 (0.005) 0.927 (0.008) 1.027 (0.023) 0.147 (0.003)

45 MAIC 0.000 (0.004) -0.232 (0.004) 0.233 (0.004) 0.014 (0.001) 0.095 (0.004) 0.951 (0.007) 1.007 (0.023) 0.118 (0.003)

45 STC -0.101 (0.004) -0.349 (0.004) 0.146 (0.004) 0.027 (0.001) 0.132 (0.004) 0.861 (0.011) 0.987 (0.022) 0.128 (0.003)

45 Bucher -0.087 (0.004) -0.327 (0.004) 0.152 (0.004) 0.022 (0.001) 0.122 (0.004) 0.886 (0.010) 1.005 (0.022) 0.122 (0.003)

46 MAIC 0.006 (0.006) -0.374 (0.006) 0.386 (0.006) 0.040 (0.002) 0.160 (0.006) 0.951 (0.007) 0.974 (0.022) 0.199 (0.004)

46 STC 0.132 (0.007) -0.289 (0.007) 0.553 (0.007) 0.069 (0.003) 0.213 (0.007) 0.893 (0.010) 0.942 (0.021) 0.228 (0.005)

46 Bucher -0.182 (0.007) -0.576 (0.007) 0.213 (0.006) 0.076 (0.003) 0.223 (0.007) 0.844 (0.011) 0.971 (0.022) 0.207 (0.005)
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Table 3: Performance metrics for each method and simulation scenario. Monte Carlo standard errors
for each measure are presented in parentheses. ATE: average estimated marginal treatment
effect for A vs. B (is equal to the bias as the true effect is zero); LCI: average lower bound of
the 95 percent confidence interval; UCI: average upper bound of the 95 percent confidence
interval; MSE: mean square error; MAE: mean absolute error; Cover: coverage rate of the
95 percent confidence intervals; VR: variability ratio; ESE: empirical standard error; MAIC:
matching-adjusted indirect comparison; STC: simulated treatment comparison. (continued)

Scenario Method ATE LCI UCI MSE MAE Cover VR ESE

47 MAIC -0.006 (0.005) -0.299 (0.005) 0.287 (0.005) 0.021 (0.001) 0.118 (0.005) 0.960 (0.006) 1.021 (0.023) 0.147 (0.003)

47 STC 0.120 (0.005) -0.196 (0.005) 0.436 (0.005) 0.041 (0.002) 0.163 (0.005) 0.881 (0.010) 0.994 (0.022) 0.162 (0.004)

47 Bucher -0.193 (0.005) -0.497 (0.005) 0.110 (0.005) 0.061 (0.002) 0.210 (0.005) 0.761 (0.013) 1.012 (0.023) 0.153 (0.003)

48 MAIC -0.001 (0.004) -0.240 (0.004) 0.239 (0.004) 0.015 (0.001) 0.099 (0.004) 0.956 (0.006) 0.993 (0.022) 0.123 (0.003)

48 STC 0.126 (0.004) -0.126 (0.004) 0.379 (0.004) 0.033 (0.001) 0.150 (0.004) 0.827 (0.012) 0.978 (0.022) 0.132 (0.003)

48 Bucher -0.186 (0.004) -0.433 (0.004) 0.060 (0.004) 0.051 (0.002) 0.195 (0.004) 0.665 (0.015) 0.969 (0.022) 0.130 (0.003)

49 MAIC 0.005 (0.006) -0.364 (0.006) 0.375 (0.006) 0.034 (0.002) 0.146 (0.006) 0.955 (0.007) 1.027 (0.023) 0.184 (0.004)

49 STC 0.139 (0.007) -0.275 (0.007) 0.553 (0.007) 0.067 (0.003) 0.208 (0.007) 0.880 (0.010) 0.969 (0.022) 0.218 (0.005)

49 Bucher -0.156 (0.006) -0.544 (0.006) 0.232 (0.006) 0.062 (0.002) 0.201 (0.006) 0.895 (0.010) 1.026 (0.023) 0.193 (0.004)

50 MAIC 0.002 (0.005) -0.284 (0.005) 0.288 (0.005) 0.021 (0.001) 0.117 (0.005) 0.947 (0.007) 1.004 (0.022) 0.145 (0.003)

50 STC 0.135 (0.005) -0.176 (0.005) 0.446 (0.005) 0.045 (0.002) 0.172 (0.005) 0.856 (0.011) 0.966 (0.022) 0.164 (0.004)

50 Bucher -0.157 (0.005) -0.455 (0.005) 0.141 (0.005) 0.048 (0.002) 0.182 (0.005) 0.830 (0.012) 0.996 (0.022) 0.153 (0.003)

51 MAIC 0.007 (0.004) -0.227 (0.004) 0.242 (0.004) 0.013 (0.001) 0.090 (0.004) 0.962 (0.006) 1.062 (0.024) 0.113 (0.003)

51 STC 0.139 (0.004) -0.110 (0.004) 0.387 (0.004) 0.034 (0.001) 0.153 (0.004) 0.823 (0.012) 1.046 (0.023) 0.121 (0.003)

51 Bucher -0.150 (0.004) -0.392 (0.004) 0.092 (0.004) 0.036 (0.001) 0.161 (0.004) 0.787 (0.013) 1.060 (0.024) 0.117 (0.003)

52 MAIC 0.005 (0.006) -0.356 (0.006) 0.366 (0.006) 0.033 (0.001) 0.147 (0.006) 0.953 (0.007) 1.010 (0.023) 0.182 (0.004)

52 STC 0.111 (0.007) -0.300 (0.007) 0.522 (0.007) 0.064 (0.003) 0.202 (0.007) 0.896 (0.010) 0.925 (0.021) 0.226 (0.005)

52 Bucher -0.123 (0.006) -0.505 (0.006) 0.258 (0.006) 0.053 (0.002) 0.185 (0.006) 0.922 (0.008) 1.006 (0.023) 0.193 (0.004)

53 MAIC 0.002 (0.004) -0.278 (0.004) 0.282 (0.004) 0.019 (0.001) 0.109 (0.004) 0.951 (0.007) 1.026 (0.023) 0.139 (0.003)

53 STC 0.112 (0.005) -0.196 (0.005) 0.419 (0.005) 0.037 (0.002) 0.154 (0.005) 0.893 (0.010) 1.007 (0.023) 0.156 (0.003)

53 Bucher -0.127 (0.005) -0.421 (0.005) 0.167 (0.005) 0.038 (0.002) 0.158 (0.005) 0.866 (0.011) 1.020 (0.023) 0.147 (0.003)

54 MAIC 0.000 (0.004) -0.230 (0.004) 0.230 (0.003) 0.012 (0.001) 0.089 (0.004) 0.964 (0.006) 1.061 (0.024) 0.111 (0.002)

54 STC 0.119 (0.004) -0.126 (0.004) 0.365 (0.004) 0.029 (0.001) 0.138 (0.004) 0.860 (0.011) 1.041 (0.023) 0.120 (0.003)

54 Bucher -0.129 (0.004) -0.367 (0.004) 0.110 (0.004) 0.030 (0.001) 0.143 (0.004) 0.829 (0.012) 1.062 (0.024) 0.114 (0.003)

55 MAIC -0.010 (0.009) -0.524 (0.009) 0.505 (0.009) 0.077 (0.003) 0.224 (0.009) 0.941 (0.007) 0.948 (0.022) 0.277 (0.006)

55 STC -0.067 (0.009) -0.612 (0.010) 0.478 (0.009) 0.091 (0.004) 0.242 (0.009) 0.930 (0.008) 0.943 (0.021) 0.295 (0.007)

55 Bucher -0.172 (0.007) -0.590 (0.007) 0.247 (0.007) 0.077 (0.003) 0.222 (0.007) 0.878 (0.010) 0.977 (0.022) 0.218 (0.005)

56 MAIC -0.005 (0.006) -0.397 (0.006) 0.387 (0.006) 0.039 (0.002) 0.159 (0.006) 0.948 (0.007) 1.008 (0.023) 0.198 (0.004)

56 STC -0.041 (0.006) -0.438 (0.006) 0.356 (0.006) 0.042 (0.002) 0.164 (0.006) 0.949 (0.007) 1.004 (0.023) 0.202 (0.005)

56 Bucher -0.175 (0.005) -0.496 (0.005) 0.145 (0.005) 0.055 (0.002) 0.196 (0.005) 0.828 (0.012) 1.041 (0.023) 0.157 (0.004)

57 MAIC -0.006 (0.005) -0.310 (0.005) 0.299 (0.005) 0.024 (0.001) 0.123 (0.005) 0.954 (0.007) 1.003 (0.023) 0.155 (0.003)

57 STC -0.041 (0.005) -0.345 (0.005) 0.263 (0.005) 0.026 (0.001) 0.127 (0.005) 0.941 (0.007) 1.004 (0.022) 0.155 (0.003)

57 Bucher -0.174 (0.004) -0.433 (0.004) 0.084 (0.004) 0.048 (0.002) 0.186 (0.004) 0.742 (0.014) 1.006 (0.023) 0.131 (0.003)

58 MAIC -0.008 (0.008) -0.497 (0.009) 0.481 (0.008) 0.068 (0.003) 0.208 (0.008) 0.940 (0.008) 0.957 (0.022) 0.261 (0.006)

58 STC -0.116 (0.009) -0.649 (0.009) 0.417 (0.009) 0.094 (0.004) 0.244 (0.009) 0.929 (0.008) 0.960 (0.022) 0.283 (0.006)

58 Bucher -0.164 (0.006) -0.571 (0.007) 0.243 (0.006) 0.069 (0.003) 0.209 (0.006) 0.884 (0.010) 1.017 (0.023) 0.204 (0.005)

59 MAIC 0.000 (0.006) -0.370 (0.006) 0.370 (0.006) 0.036 (0.002) 0.150 (0.006) 0.948 (0.007) 0.999 (0.023) 0.189 (0.004)

59 STC -0.091 (0.006) -0.478 (0.007) 0.297 (0.006) 0.049 (0.002) 0.175 (0.006) 0.919 (0.009) 0.976 (0.022) 0.203 (0.005)

59 Bucher -0.154 (0.005) -0.465 (0.005) 0.157 (0.005) 0.050 (0.002) 0.183 (0.005) 0.839 (0.012) 0.976 (0.022) 0.163 (0.004)

60 MAIC 0.002 (0.005) -0.288 (0.005) 0.292 (0.005) 0.022 (0.001) 0.117 (0.005) 0.949 (0.007) 0.998 (0.022) 0.148 (0.003)

60 STC -0.086 (0.005) -0.383 (0.005) 0.212 (0.005) 0.031 (0.001) 0.141 (0.005) 0.907 (0.009) 0.986 (0.022) 0.154 (0.003)

60 Bucher -0.158 (0.004) -0.409 (0.004) 0.094 (0.004) 0.042 (0.002) 0.171 (0.004) 0.763 (0.013) 0.971 (0.022) 0.132 (0.003)

61 MAIC 0.000 (0.008) -0.464 (0.008) 0.463 (0.008) 0.064 (0.003) 0.201 (0.008) 0.926 (0.008) 0.936 (0.021) 0.253 (0.006)

61 STC -0.187 (0.009) -0.712 (0.009) 0.338 (0.009) 0.115 (0.005) 0.268 (0.009) 0.885 (0.010) 0.949 (0.021) 0.283 (0.006)

61 Bucher -0.143 (0.007) -0.538 (0.007) 0.253 (0.006) 0.064 (0.003) 0.202 (0.007) 0.893 (0.010) 0.968 (0.022) 0.209 (0.005)

62 MAIC -0.005 (0.006) -0.356 (0.006) 0.345 (0.006) 0.034 (0.001) 0.148 (0.006) 0.932 (0.008) 0.972 (0.022) 0.184 (0.004)

62 STC -0.178 (0.006) -0.559 (0.006) 0.202 (0.006) 0.072 (0.003) 0.215 (0.006) 0.848 (0.011) 0.965 (0.022) 0.201 (0.004)

62 Bucher -0.137 (0.005) -0.440 (0.005) 0.165 (0.005) 0.045 (0.002) 0.172 (0.005) 0.839 (0.012) 0.948 (0.021) 0.163 (0.004)

63 MAIC -0.007 (0.004) -0.283 (0.004) 0.270 (0.005) 0.020 (0.001) 0.113 (0.004) 0.952 (0.007) 0.998 (0.022) 0.141 (0.003)
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Table 3: Performance metrics for each method and simulation scenario. Monte Carlo standard errors
for each measure are presented in parentheses. ATE: average estimated marginal treatment
effect for A vs. B (is equal to the bias as the true effect is zero); LCI: average lower bound of
the 95 percent confidence interval; UCI: average upper bound of the 95 percent confidence
interval; MSE: mean square error; MAE: mean absolute error; Cover: coverage rate of the
95 percent confidence intervals; VR: variability ratio; ESE: empirical standard error; MAIC:
matching-adjusted indirect comparison; STC: simulated treatment comparison. (continued)

Scenario Method ATE LCI UCI MSE MAE Cover VR ESE

63 STC -0.170 (0.005) -0.462 (0.005) 0.121 (0.005) 0.052 (0.002) 0.187 (0.005) 0.794 (0.013) 0.986 (0.022) 0.151 (0.003)

63 Bucher -0.142 (0.004) -0.386 (0.004) 0.103 (0.004) 0.036 (0.001) 0.156 (0.004) 0.804 (0.013) 1.000 (0.022) 0.125 (0.003)

64 MAIC 0.008 (0.008) -0.484 (0.009) 0.501 (0.009) 0.072 (0.003) 0.210 (0.008) 0.924 (0.008) 0.939 (0.021) 0.268 (0.006)

64 STC 0.008 (0.009) -0.525 (0.009) 0.542 (0.009) 0.082 (0.004) 0.226 (0.009) 0.931 (0.008) 0.951 (0.021) 0.286 (0.006)

64 Bucher -0.270 (0.007) -0.680 (0.007) 0.139 (0.006) 0.118 (0.004) 0.289 (0.007) 0.742 (0.014) 0.990 (0.022) 0.211 (0.005)

65 MAIC -0.001 (0.006) -0.374 (0.006) 0.371 (0.006) 0.038 (0.002) 0.155 (0.006) 0.933 (0.008) 0.975 (0.022) 0.195 (0.004)

65 STC 0.000 (0.006) -0.387 (0.007) 0.387 (0.006) 0.041 (0.002) 0.162 (0.006) 0.941 (0.007) 0.969 (0.022) 0.204 (0.005)

65 Bucher -0.275 (0.005) -0.589 (0.005) 0.039 (0.005) 0.102 (0.003) 0.282 (0.005) 0.593 (0.016) 0.995 (0.022) 0.161 (0.004)

66 MAIC -0.003 (0.005) -0.297 (0.005) 0.291 (0.005) 0.024 (0.001) 0.123 (0.005) 0.937 (0.008) 0.970 (0.022) 0.155 (0.003)

66 STC 0.002 (0.005) -0.296 (0.005) 0.300 (0.005) 0.024 (0.001) 0.124 (0.005) 0.937 (0.008) 0.972 (0.022) 0.156 (0.003)

66 Bucher -0.286 (0.004) -0.539 (0.004) -0.032 (0.004) 0.099 (0.003) 0.287 (0.004) 0.414 (0.016) 0.974 (0.022) 0.133 (0.003)

67 MAIC -0.016 (0.008) -0.487 (0.008) 0.455 (0.008) 0.062 (0.003) 0.197 (0.008) 0.931 (0.008) 0.965 (0.022) 0.249 (0.006)

67 STC -0.047 (0.009) -0.572 (0.009) 0.478 (0.009) 0.077 (0.003) 0.222 (0.009) 0.952 (0.007) 0.978 (0.022) 0.274 (0.006)

67 Bucher -0.260 (0.006) -0.661 (0.007) 0.142 (0.006) 0.108 (0.004) 0.278 (0.006) 0.766 (0.013) 1.012 (0.023) 0.203 (0.005)

68 MAIC -0.005 (0.006) -0.363 (0.006) 0.353 (0.006) 0.034 (0.002) 0.147 (0.006) 0.956 (0.006) 0.995 (0.022) 0.183 (0.004)

68 STC -0.030 (0.006) -0.411 (0.006) 0.351 (0.006) 0.038 (0.002) 0.154 (0.006) 0.950 (0.007) 1.015 (0.023) 0.191 (0.004)

68 Bucher -0.258 (0.005) -0.566 (0.005) 0.049 (0.005) 0.090 (0.003) 0.265 (0.005) 0.622 (0.015) 1.024 (0.023) 0.153 (0.003)

69 MAIC 0.006 (0.004) -0.276 (0.004) 0.288 (0.004) 0.019 (0.001) 0.109 (0.004) 0.958 (0.006) 1.045 (0.023) 0.138 (0.003)

69 STC -0.015 (0.005) -0.307 (0.005) 0.277 (0.005) 0.022 (0.001) 0.118 (0.005) 0.956 (0.006) 1.016 (0.023) 0.147 (0.003)

69 Bucher -0.247 (0.004) -0.495 (0.004) 0.001 (0.004) 0.077 (0.002) 0.249 (0.004) 0.517 (0.016) 1.019 (0.023) 0.124 (0.003)

70 MAIC -0.009 (0.007) -0.458 (0.007) 0.440 (0.008) 0.054 (0.002) 0.186 (0.007) 0.943 (0.007) 0.983 (0.022) 0.233 (0.005)

70 STC -0.083 (0.009) -0.598 (0.009) 0.431 (0.008) 0.080 (0.004) 0.224 (0.009) 0.934 (0.008) 0.969 (0.022) 0.271 (0.006)

70 Bucher -0.216 (0.006) -0.607 (0.006) 0.176 (0.006) 0.086 (0.003) 0.244 (0.006) 0.825 (0.012) 1.008 (0.023) 0.198 (0.004)

71 MAIC 0.005 (0.006) -0.338 (0.006) 0.348 (0.006) 0.033 (0.001) 0.144 (0.006) 0.933 (0.008) 0.963 (0.022) 0.182 (0.004)

71 STC -0.065 (0.006) -0.440 (0.006) 0.309 (0.006) 0.041 (0.002) 0.164 (0.006) 0.935 (0.008) 0.994 (0.022) 0.192 (0.004)

71 Bucher -0.218 (0.005) -0.518 (0.005) 0.083 (0.005) 0.071 (0.002) 0.229 (0.005) 0.701 (0.014) 0.986 (0.022) 0.155 (0.003)

72 MAIC 0.008 (0.004) -0.264 (0.004) 0.279 (0.004) 0.019 (0.001) 0.111 (0.004) 0.952 (0.007) 1.002 (0.022) 0.138 (0.003)

72 STC -0.054 (0.005) -0.340 (0.005) 0.233 (0.005) 0.025 (0.001) 0.125 (0.005) 0.930 (0.008) 0.979 (0.022) 0.149 (0.003)

72 Bucher -0.210 (0.004) -0.453 (0.004) 0.032 (0.004) 0.060 (0.002) 0.214 (0.004) 0.606 (0.015) 0.977 (0.022) 0.127 (0.003)

73 MAIC 0.001 (0.008) -0.468 (0.008) 0.469 (0.008) 0.065 (0.003) 0.205 (0.008) 0.931 (0.008) 0.938 (0.021) 0.255 (0.006)

73 STC 0.108 (0.009) -0.417 (0.009) 0.632 (0.009) 0.094 (0.004) 0.246 (0.009) 0.910 (0.009) 0.933 (0.021) 0.287 (0.006)

73 Bucher -0.413 (0.006) -0.816 (0.007) -0.010 (0.006) 0.211 (0.006) 0.414 (0.006) 0.486 (0.016) 1.018 (0.023) 0.202 (0.005)

74 MAIC 0.018 (0.006) -0.339 (0.006) 0.376 (0.006) 0.031 (0.002) 0.140 (0.006) 0.954 (0.007) 1.035 (0.023) 0.176 (0.004)

74 STC 0.113 (0.006) -0.268 (0.006) 0.493 (0.006) 0.050 (0.002) 0.176 (0.006) 0.910 (0.009) 1.005 (0.023) 0.193 (0.004)

74 Bucher -0.399 (0.005) -0.708 (0.005) -0.091 (0.005) 0.184 (0.004) 0.400 (0.005) 0.276 (0.014) 0.993 (0.022) 0.158 (0.004)

75 MAIC 0.006 (0.004) -0.275 (0.004) 0.287 (0.004) 0.020 (0.001) 0.112 (0.004) 0.956 (0.006) 1.025 (0.023) 0.140 (0.003)

75 STC 0.105 (0.005) -0.187 (0.005) 0.398 (0.005) 0.033 (0.001) 0.148 (0.005) 0.898 (0.010) 1.010 (0.023) 0.148 (0.003)

75 Bucher -0.405 (0.004) -0.654 (0.004) -0.156 (0.004) 0.180 (0.003) 0.405 (0.004) 0.110 (0.010) 0.995 (0.022) 0.128 (0.003)

76 MAIC 0.011 (0.008) -0.444 (0.008) 0.466 (0.008) 0.059 (0.003) 0.193 (0.008) 0.936 (0.008) 0.955 (0.022) 0.243 (0.005)

76 STC 0.111 (0.009) -0.405 (0.009) 0.628 (0.009) 0.089 (0.004) 0.237 (0.009) 0.922 (0.008) 0.951 (0.021) 0.277 (0.006)

76 Bucher -0.364 (0.006) -0.760 (0.006) 0.033 (0.006) 0.172 (0.005) 0.369 (0.006) 0.564 (0.016) 1.013 (0.023) 0.200 (0.004)

77 MAIC 0.016 (0.005) -0.330 (0.006) 0.363 (0.005) 0.030 (0.001) 0.139 (0.005) 0.947 (0.007) 1.019 (0.023) 0.173 (0.004)

77 STC 0.119 (0.006) -0.257 (0.006) 0.495 (0.006) 0.051 (0.002) 0.182 (0.006) 0.904 (0.009) 0.996 (0.022) 0.192 (0.004)

77 Bucher -0.367 (0.005) -0.670 (0.005) -0.063 (0.005) 0.158 (0.004) 0.367 (0.005) 0.324 (0.015) 1.015 (0.023) 0.153 (0.003)

78 MAIC 0.013 (0.004) -0.261 (0.004) 0.287 (0.004) 0.019 (0.001) 0.109 (0.004) 0.951 (0.007) 1.023 (0.023) 0.137 (0.003)

78 STC 0.123 (0.005) -0.165 (0.005) 0.411 (0.005) 0.038 (0.002) 0.157 (0.005) 0.859 (0.011) 0.973 (0.022) 0.151 (0.003)

78 Bucher -0.367 (0.004) -0.612 (0.004) -0.122 (0.004) 0.150 (0.003) 0.367 (0.004) 0.158 (0.012) 1.002 (0.022) 0.125 (0.003)

79 MAIC 0.008 (0.007) -0.431 (0.007) 0.447 (0.007) 0.052 (0.002) 0.182 (0.007) 0.942 (0.007) 0.986 (0.022) 0.227 (0.005)

79 STC 0.110 (0.008) -0.400 (0.008) 0.620 (0.008) 0.081 (0.004) 0.226 (0.008) 0.926 (0.008) 0.992 (0.022) 0.263 (0.006)

79 Bucher -0.321 (0.006) -0.710 (0.006) 0.068 (0.006) 0.141 (0.004) 0.328 (0.006) 0.645 (0.015) 1.010 (0.023) 0.197 (0.004)
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Table 3: Performance metrics for each method and simulation scenario. Monte Carlo standard errors
for each measure are presented in parentheses. ATE: average estimated marginal treatment
effect for A vs. B (is equal to the bias as the true effect is zero); LCI: average lower bound of
the 95 percent confidence interval; UCI: average upper bound of the 95 percent confidence
interval; MSE: mean square error; MAE: mean absolute error; Cover: coverage rate of the
95 percent confidence intervals; VR: variability ratio; ESE: empirical standard error; MAIC:
matching-adjusted indirect comparison; STC: simulated treatment comparison. (continued)

Scenario Method ATE LCI UCI MSE MAE Cover VR ESE

80 MAIC 0.012 (0.005) -0.325 (0.005) 0.348 (0.005) 0.029 (0.001) 0.137 (0.005) 0.944 (0.007) 1.007 (0.023) 0.170 (0.004)

80 STC 0.113 (0.006) -0.257 (0.006) 0.483 (0.006) 0.050 (0.002) 0.177 (0.006) 0.901 (0.009) 0.979 (0.022) 0.193 (0.004)

80 Bucher -0.313 (0.005) -0.611 (0.005) -0.015 (0.005) 0.120 (0.003) 0.314 (0.005) 0.442 (0.016) 1.023 (0.023) 0.149 (0.003)

81 MAIC 0.003 (0.004) -0.264 (0.004) 0.270 (0.004) 0.018 (0.001) 0.108 (0.004) 0.961 (0.006) 1.023 (0.023) 0.133 (0.003)

81 STC 0.106 (0.004) -0.179 (0.004) 0.390 (0.005) 0.031 (0.001) 0.143 (0.004) 0.900 (0.009) 1.022 (0.023) 0.142 (0.003)

81 Bucher -0.324 (0.004) -0.564 (0.004) -0.083 (0.004) 0.120 (0.003) 0.324 (0.004) 0.245 (0.014) 1.012 (0.023) 0.121 (0.003)

82 MAIC 0.006 (0.008) -0.461 (0.008) 0.473 (0.007) 0.057 (0.003) 0.192 (0.008) 0.948 (0.007) 0.997 (0.022) 0.239 (0.005)

82 STC -0.070 (0.008) -0.583 (0.009) 0.442 (0.008) 0.077 (0.004) 0.218 (0.008) 0.937 (0.008) 0.973 (0.022) 0.268 (0.006)

82 Bucher -0.163 (0.007) -0.581 (0.007) 0.254 (0.006) 0.071 (0.003) 0.214 (0.007) 0.888 (0.010) 1.011 (0.023) 0.210 (0.005)

83 MAIC 0.001 (0.006) -0.352 (0.006) 0.354 (0.006) 0.035 (0.002) 0.150 (0.006) 0.945 (0.007) 0.958 (0.022) 0.188 (0.004)

83 STC -0.063 (0.006) -0.437 (0.006) 0.311 (0.006) 0.043 (0.002) 0.166 (0.006) 0.936 (0.008) 0.968 (0.022) 0.197 (0.004)

83 Bucher -0.158 (0.005) -0.477 (0.005) 0.161 (0.005) 0.054 (0.002) 0.191 (0.005) 0.836 (0.012) 0.959 (0.021) 0.170 (0.004)

84 MAIC -0.005 (0.004) -0.285 (0.004) 0.276 (0.004) 0.020 (0.001) 0.111 (0.004) 0.948 (0.007) 1.013 (0.023) 0.141 (0.003)

84 STC -0.066 (0.005) -0.356 (0.005) 0.225 (0.005) 0.026 (0.001) 0.130 (0.005) 0.932 (0.008) 1.005 (0.022) 0.147 (0.003)

84 Bucher -0.159 (0.004) -0.417 (0.004) 0.098 (0.004) 0.043 (0.002) 0.175 (0.004) 0.781 (0.013) 0.990 (0.022) 0.133 (0.003)

85 MAIC 0.004 (0.007) -0.434 (0.007) 0.443 (0.007) 0.050 (0.003) 0.175 (0.007) 0.951 (0.007) 1.000 (0.023) 0.224 (0.005)

85 STC -0.158 (0.008) -0.658 (0.009) 0.343 (0.008) 0.094 (0.004) 0.244 (0.008) 0.901 (0.009) 0.969 (0.022) 0.264 (0.006)

85 Bucher -0.132 (0.007) -0.537 (0.007) 0.274 (0.006) 0.061 (0.003) 0.197 (0.007) 0.918 (0.009) 0.989 (0.022) 0.209 (0.005)

86 MAIC 0.007 (0.005) -0.328 (0.005) 0.342 (0.005) 0.027 (0.001) 0.132 (0.005) 0.951 (0.007) 1.035 (0.023) 0.165 (0.004)

86 STC -0.145 (0.006) -0.510 (0.006) 0.221 (0.006) 0.055 (0.002) 0.188 (0.006) 0.880 (0.010) 1.006 (0.023) 0.186 (0.004)

86 Bucher -0.138 (0.005) -0.448 (0.005) 0.173 (0.005) 0.043 (0.002) 0.169 (0.005) 0.869 (0.011) 1.025 (0.023) 0.154 (0.003)

87 MAIC 0.006 (0.004) -0.261 (0.004) 0.273 (0.004) 0.017 (0.001) 0.104 (0.004) 0.957 (0.006) 1.046 (0.023) 0.130 (0.003)

87 STC -0.137 (0.004) -0.420 (0.004) 0.147 (0.004) 0.038 (0.001) 0.162 (0.004) 0.849 (0.011) 1.033 (0.023) 0.140 (0.003)

87 Bucher -0.136 (0.004) -0.386 (0.004) 0.115 (0.004) 0.033 (0.001) 0.152 (0.004) 0.828 (0.012) 1.044 (0.023) 0.123 (0.003)

88 MAIC 0.019 (0.007) -0.397 (0.007) 0.435 (0.007) 0.049 (0.002) 0.179 (0.007) 0.942 (0.007) 0.965 (0.022) 0.220 (0.005)

88 STC -0.250 (0.008) -0.741 (0.008) 0.242 (0.008) 0.129 (0.005) 0.292 (0.008) 0.826 (0.012) 0.972 (0.022) 0.258 (0.006)

88 Bucher -0.104 (0.007) -0.499 (0.007) 0.291 (0.007) 0.056 (0.003) 0.188 (0.007) 0.918 (0.009) 0.945 (0.021) 0.213 (0.005)

89 MAIC -0.001 (0.005) -0.322 (0.005) 0.320 (0.005) 0.027 (0.001) 0.128 (0.005) 0.938 (0.008) 1.005 (0.023) 0.163 (0.004)

89 STC -0.245 (0.006) -0.605 (0.006) 0.115 (0.006) 0.095 (0.003) 0.261 (0.006) 0.747 (0.014) 0.989 (0.022) 0.186 (0.004)

89 Bucher -0.112 (0.005) -0.414 (0.005) 0.191 (0.005) 0.038 (0.002) 0.157 (0.005) 0.884 (0.010) 0.975 (0.022) 0.158 (0.004)

90 MAIC 0.003 (0.004) -0.254 (0.004) 0.260 (0.004) 0.017 (0.001) 0.106 (0.004) 0.949 (0.007) 0.995 (0.022) 0.132 (0.003)

90 STC -0.240 (0.004) -0.518 (0.004) 0.039 (0.004) 0.077 (0.002) 0.244 (0.004) 0.603 (0.015) 1.029 (0.023) 0.138 (0.003)

90 Bucher -0.111 (0.004) -0.356 (0.004) 0.133 (0.004) 0.028 (0.001) 0.136 (0.004) 0.850 (0.011) 0.994 (0.022) 0.126 (0.003)

91 MAIC -0.002 (0.007) -0.450 (0.008) 0.447 (0.007) 0.055 (0.003) 0.187 (0.007) 0.938 (0.008) 0.978 (0.022) 0.234 (0.005)

91 STC -0.007 (0.008) -0.506 (0.009) 0.493 (0.008) 0.071 (0.003) 0.213 (0.008) 0.945 (0.007) 0.958 (0.022) 0.266 (0.006)

91 Bucher -0.247 (0.007) -0.658 (0.007) 0.163 (0.006) 0.105 (0.004) 0.272 (0.007) 0.790 (0.013) 0.996 (0.022) 0.210 (0.005)

92 MAIC -0.005 (0.006) -0.347 (0.006) 0.337 (0.005) 0.030 (0.001) 0.138 (0.006) 0.946 (0.007) 1.001 (0.022) 0.174 (0.004)

92 STC -0.007 (0.006) -0.374 (0.006) 0.359 (0.006) 0.037 (0.002) 0.153 (0.006) 0.941 (0.007) 0.976 (0.022) 0.192 (0.004)

92 Bucher -0.256 (0.005) -0.571 (0.005) 0.058 (0.005) 0.092 (0.003) 0.262 (0.005) 0.648 (0.015) 0.984 (0.022) 0.163 (0.004)

93 MAIC -0.002 (0.004) -0.274 (0.004) 0.270 (0.004) 0.018 (0.001) 0.107 (0.004) 0.959 (0.006) 1.024 (0.023) 0.136 (0.003)

93 STC -0.004 (0.005) -0.289 (0.005) 0.281 (0.005) 0.021 (0.001) 0.114 (0.005) 0.953 (0.007) 1.011 (0.023) 0.144 (0.003)

93 Bucher -0.258 (0.004) -0.512 (0.004) -0.004 (0.004) 0.083 (0.002) 0.261 (0.004) 0.469 (0.016) 1.016 (0.023) 0.128 (0.003)

94 MAIC 0.003 (0.007) -0.428 (0.007) 0.434 (0.007) 0.051 (0.002) 0.180 (0.007) 0.942 (0.007) 0.974 (0.022) 0.226 (0.005)

94 STC -0.043 (0.008) -0.536 (0.009) 0.451 (0.008) 0.072 (0.004) 0.211 (0.008) 0.932 (0.008) 0.949 (0.021) 0.265 (0.006)

94 Bucher -0.218 (0.007) -0.620 (0.007) 0.184 (0.006) 0.091 (0.004) 0.249 (0.007) 0.823 (0.012) 0.981 (0.022) 0.209 (0.005)

95 MAIC 0.005 (0.005) -0.324 (0.006) 0.333 (0.005) 0.030 (0.001) 0.138 (0.005) 0.949 (0.007) 0.970 (0.022) 0.173 (0.004)

95 STC -0.039 (0.006) -0.399 (0.006) 0.321 (0.006) 0.038 (0.002) 0.153 (0.006) 0.937 (0.008) 0.964 (0.022) 0.191 (0.004)

95 Bucher -0.213 (0.005) -0.521 (0.005) 0.094 (0.005) 0.071 (0.002) 0.226 (0.005) 0.710 (0.014) 0.985 (0.022) 0.159 (0.004)

96 MAIC -0.003 (0.004) -0.266 (0.004) 0.261 (0.004) 0.016 (0.001) 0.103 (0.004) 0.962 (0.006) 1.049 (0.023) 0.128 (0.003)
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Table 3: Performance metrics for each method and simulation scenario. Monte Carlo standard errors
for each measure are presented in parentheses. ATE: average estimated marginal treatment
effect for A vs. B (is equal to the bias as the true effect is zero); LCI: average lower bound of
the 95 percent confidence interval; UCI: average upper bound of the 95 percent confidence
interval; MSE: mean square error; MAE: mean absolute error; Cover: coverage rate of the
95 percent confidence intervals; VR: variability ratio; ESE: empirical standard error; MAIC:
matching-adjusted indirect comparison; STC: simulated treatment comparison. (continued)

Scenario Method ATE LCI UCI MSE MAE Cover VR ESE

96 STC -0.047 (0.004) -0.327 (0.004) 0.233 (0.004) 0.022 (0.001) 0.118 (0.004) 0.935 (0.008) 1.012 (0.023) 0.141 (0.003)

96 Bucher -0.222 (0.004) -0.471 (0.004) 0.026 (0.004) 0.065 (0.002) 0.225 (0.004) 0.587 (0.016) 1.023 (0.023) 0.124 (0.003)

97 MAIC -0.008 (0.007) -0.423 (0.007) 0.406 (0.007) 0.048 (0.002) 0.172 (0.007) 0.928 (0.008) 0.967 (0.022) 0.219 (0.005)

97 STC -0.121 (0.008) -0.608 (0.008) 0.367 (0.008) 0.076 (0.004) 0.220 (0.008) 0.931 (0.008) 1.000 (0.022) 0.249 (0.006)

97 Bucher -0.183 (0.006) -0.576 (0.007) 0.211 (0.006) 0.075 (0.003) 0.222 (0.006) 0.847 (0.011) 0.980 (0.022) 0.205 (0.005)

98 MAIC 0.015 (0.005) -0.305 (0.005) 0.335 (0.005) 0.027 (0.001) 0.133 (0.005) 0.953 (0.007) 0.994 (0.022) 0.164 (0.004)

98 STC -0.088 (0.006) -0.443 (0.006) 0.268 (0.006) 0.042 (0.002) 0.162 (0.006) 0.925 (0.008) 0.980 (0.022) 0.185 (0.004)

98 Bucher -0.174 (0.005) -0.476 (0.005) 0.127 (0.005) 0.054 (0.002) 0.194 (0.005) 0.811 (0.012) 0.992 (0.022) 0.155 (0.003)

99 MAIC 0.006 (0.004) -0.250 (0.004) 0.262 (0.004) 0.017 (0.001) 0.105 (0.004) 0.960 (0.006) 0.997 (0.022) 0.131 (0.003)

99 STC -0.105 (0.004) -0.380 (0.004) 0.171 (0.004) 0.030 (0.001) 0.140 (0.004) 0.882 (0.010) 1.014 (0.023) 0.138 (0.003)

99 Bucher -0.173 (0.004) -0.416 (0.004) 0.071 (0.004) 0.044 (0.001) 0.180 (0.004) 0.713 (0.014) 1.032 (0.023) 0.120 (0.003)

100 MAIC -0.012 (0.007) -0.445 (0.007) 0.422 (0.007) 0.047 (0.002) 0.171 (0.007) 0.951 (0.007) 1.023 (0.023) 0.216 (0.005)

100 STC 0.108 (0.008) -0.385 (0.008) 0.600 (0.008) 0.074 (0.003) 0.214 (0.008) 0.922 (0.008) 1.007 (0.023) 0.250 (0.006)

100 Bucher -0.373 (0.006) -0.778 (0.006) 0.033 (0.006) 0.176 (0.005) 0.376 (0.006) 0.576 (0.016) 1.072 (0.024) 0.193 (0.004)

101 MAIC 0.004 (0.005) -0.326 (0.005) 0.335 (0.005) 0.029 (0.001) 0.136 (0.005) 0.943 (0.007) 0.992 (0.022) 0.170 (0.004)

101 STC 0.133 (0.006) -0.227 (0.006) 0.494 (0.006) 0.055 (0.002) 0.188 (0.006) 0.869 (0.011) 0.958 (0.021) 0.192 (0.004)

101 Bucher -0.366 (0.005) -0.676 (0.005) -0.056 (0.005) 0.159 (0.004) 0.367 (0.005) 0.367 (0.015) 1.007 (0.023) 0.157 (0.004)

102 MAIC 0.008 (0.004) -0.257 (0.004) 0.272 (0.004) 0.016 (0.001) 0.102 (0.004) 0.965 (0.006) 1.058 (0.024) 0.128 (0.003)

102 STC 0.133 (0.005) -0.147 (0.005) 0.414 (0.005) 0.038 (0.001) 0.160 (0.005) 0.838 (0.012) 1.003 (0.022) 0.143 (0.003)

102 Bucher -0.366 (0.004) -0.617 (0.004) -0.116 (0.004) 0.149 (0.003) 0.366 (0.004) 0.176 (0.012) 1.033 (0.023) 0.124 (0.003)

103 MAIC 0.005 (0.007) -0.414 (0.007) 0.425 (0.007) 0.045 (0.002) 0.168 (0.007) 0.948 (0.007) 1.004 (0.023) 0.213 (0.005)

103 STC 0.134 (0.008) -0.352 (0.008) 0.621 (0.008) 0.085 (0.004) 0.230 (0.008) 0.896 (0.010) 0.960 (0.022) 0.259 (0.006)

103 Bucher -0.315 (0.006) -0.714 (0.006) 0.084 (0.006) 0.139 (0.004) 0.327 (0.006) 0.653 (0.015) 1.022 (0.023) 0.199 (0.004)

104 MAIC 0.002 (0.005) -0.320 (0.005) 0.324 (0.005) 0.027 (0.001) 0.131 (0.005) 0.954 (0.007) 1.003 (0.022) 0.164 (0.004)

104 STC 0.135 (0.006) -0.221 (0.006) 0.491 (0.006) 0.051 (0.002) 0.181 (0.006) 0.888 (0.010) 1.004 (0.022) 0.181 (0.004)

104 Bucher -0.314 (0.005) -0.620 (0.005) -0.009 (0.005) 0.122 (0.003) 0.316 (0.005) 0.472 (0.016) 1.019 (0.023) 0.153 (0.003)

105 MAIC 0.001 (0.004) -0.257 (0.004) 0.259 (0.004) 0.017 (0.001) 0.106 (0.004) 0.958 (0.006) 1.005 (0.022) 0.131 (0.003)

105 STC 0.133 (0.005) -0.143 (0.004) 0.409 (0.005) 0.038 (0.001) 0.160 (0.005) 0.836 (0.012) 0.986 (0.022) 0.143 (0.003)

105 Bucher -0.321 (0.004) -0.568 (0.004) -0.075 (0.004) 0.119 (0.003) 0.322 (0.004) 0.276 (0.014) 0.986 (0.022) 0.128 (0.003)

106 MAIC -0.009 (0.007) -0.418 (0.007) 0.400 (0.007) 0.045 (0.002) 0.169 (0.007) 0.938 (0.008) 0.979 (0.022) 0.213 (0.005)

106 STC 0.111 (0.008) -0.372 (0.008) 0.594 (0.008) 0.076 (0.003) 0.220 (0.008) 0.921 (0.009) 0.976 (0.022) 0.252 (0.006)

106 Bucher -0.262 (0.006) -0.654 (0.006) 0.130 (0.006) 0.108 (0.004) 0.279 (0.006) 0.753 (0.014) 1.009 (0.023) 0.198 (0.004)

107 MAIC -0.001 (0.005) -0.317 (0.005) 0.314 (0.005) 0.025 (0.001) 0.127 (0.005) 0.953 (0.007) 1.016 (0.023) 0.159 (0.004)

107 STC 0.124 (0.006) -0.229 (0.006) 0.478 (0.006) 0.050 (0.002) 0.179 (0.006) 0.887 (0.010) 0.971 (0.022) 0.186 (0.004)

107 Bucher -0.263 (0.005) -0.563 (0.005) 0.037 (0.005) 0.091 (0.003) 0.268 (0.005) 0.613 (0.015) 1.034 (0.023) 0.148 (0.003)

108 MAIC 0.009 (0.004) -0.245 (0.004) 0.262 (0.004) 0.016 (0.001) 0.100 (0.004) 0.953 (0.007) 1.031 (0.023) 0.126 (0.003)

108 STC 0.124 (0.004) -0.149 (0.004) 0.397 (0.004) 0.034 (0.001) 0.149 (0.004) 0.860 (0.011) 1.016 (0.023) 0.137 (0.003)

108 Bucher -0.251 (0.004) -0.493 (0.004) -0.008 (0.004) 0.077 (0.002) 0.252 (0.004) 0.482 (0.016) 1.034 (0.023) 0.120 (0.003)

109 MAIC -0.040 (0.014) -0.751 (0.015) 0.672 (0.014) 0.189 (0.009) 0.344 (0.014) 0.895 (0.010) 0.839 (0.020) 0.433 (0.010)

109 STC -0.068 (0.012) -0.758 (0.012) 0.621 (0.012) 0.144 (0.007) 0.300 (0.012) 0.933 (0.008) 0.940 (0.021) 0.374 (0.008)

109 Bucher -0.265 (0.007) -0.695 (0.007) 0.164 (0.007) 0.118 (0.004) 0.285 (0.007) 0.788 (0.013) 1.008 (0.023) 0.217 (0.005)

110 MAIC -0.011 (0.010) -0.552 (0.010) 0.531 (0.010) 0.095 (0.004) 0.248 (0.010) 0.916 (0.009) 0.899 (0.021) 0.307 (0.007)

110 STC -0.034 (0.008) -0.525 (0.008) 0.456 (0.008) 0.066 (0.003) 0.208 (0.008) 0.954 (0.007) 0.981 (0.022) 0.255 (0.006)

110 Bucher -0.262 (0.005) -0.589 (0.005) 0.065 (0.005) 0.095 (0.003) 0.269 (0.005) 0.657 (0.015) 1.025 (0.023) 0.163 (0.004)

111 MAIC 0.000 (0.007) -0.415 (0.007) 0.414 (0.007) 0.050 (0.002) 0.181 (0.007) 0.937 (0.008) 0.946 (0.021) 0.224 (0.005)

111 STC -0.027 (0.006) -0.391 (0.006) 0.336 (0.006) 0.035 (0.002) 0.149 (0.006) 0.938 (0.008) 0.999 (0.022) 0.186 (0.004)

111 Bucher -0.254 (0.004) -0.516 (0.004) 0.009 (0.004) 0.083 (0.002) 0.257 (0.004) 0.533 (0.016) 0.992 (0.022) 0.135 (0.003)

112 MAIC -0.019 (0.012) -0.682 (0.013) 0.645 (0.013) 0.152 (0.007) 0.310 (0.012) 0.910 (0.009) 0.870 (0.020) 0.389 (0.009)

112 STC -0.084 (0.011) -0.764 (0.012) 0.596 (0.011) 0.134 (0.006) 0.294 (0.011) 0.953 (0.007) 0.974 (0.022) 0.356 (0.008)

112 Bucher -0.236 (0.007) -0.656 (0.007) 0.183 (0.007) 0.102 (0.004) 0.265 (0.007) 0.802 (0.013) 0.991 (0.022) 0.216 (0.005)
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Table 3: Performance metrics for each method and simulation scenario. Monte Carlo standard errors
for each measure are presented in parentheses. ATE: average estimated marginal treatment
effect for A vs. B (is equal to the bias as the true effect is zero); LCI: average lower bound of
the 95 percent confidence interval; UCI: average upper bound of the 95 percent confidence
interval; MSE: mean square error; MAE: mean absolute error; Cover: coverage rate of the
95 percent confidence intervals; VR: variability ratio; ESE: empirical standard error; MAIC:
matching-adjusted indirect comparison; STC: simulated treatment comparison. (continued)

Scenario Method ATE LCI UCI MSE MAE Cover VR ESE

113 MAIC -0.010 (0.009) -0.516 (0.009) 0.496 (0.009) 0.077 (0.003) 0.223 (0.009) 0.921 (0.009) 0.928 (0.021) 0.278 (0.006)

113 STC -0.089 (0.008) -0.571 (0.008) 0.392 (0.008) 0.067 (0.003) 0.205 (0.008) 0.934 (0.008) 1.012 (0.023) 0.243 (0.005)

113 Bucher -0.231 (0.005) -0.550 (0.005) 0.089 (0.005) 0.079 (0.003) 0.240 (0.005) 0.723 (0.014) 1.017 (0.023) 0.160 (0.004)

114 MAIC -0.005 (0.007) -0.398 (0.007) 0.387 (0.007) 0.044 (0.002) 0.166 (0.007) 0.923 (0.008) 0.955 (0.022) 0.209 (0.005)

114 STC -0.084 (0.006) -0.441 (0.006) 0.273 (0.006) 0.041 (0.002) 0.162 (0.006) 0.922 (0.008) 0.984 (0.022) 0.185 (0.004)

114 Bucher -0.237 (0.004) -0.493 (0.004) 0.020 (0.004) 0.073 (0.002) 0.240 (0.004) 0.542 (0.016) 1.009 (0.023) 0.130 (0.003)

115 MAIC -0.012 (0.012) -0.633 (0.012) 0.609 (0.013) 0.139 (0.007) 0.296 (0.012) 0.906 (0.009) 0.849 (0.020) 0.373 (0.008)

115 STC -0.183 (0.011) -0.852 (0.012) 0.486 (0.011) 0.159 (0.007) 0.319 (0.011) 0.924 (0.008) 0.962 (0.022) 0.355 (0.008)

115 Bucher -0.209 (0.007) -0.617 (0.007) 0.200 (0.006) 0.088 (0.003) 0.244 (0.007) 0.840 (0.012) 0.990 (0.022) 0.211 (0.005)

116 MAIC 0.004 (0.008) -0.474 (0.008) 0.482 (0.009) 0.068 (0.003) 0.212 (0.008) 0.928 (0.008) 0.936 (0.021) 0.261 (0.006)

116 STC -0.156 (0.008) -0.630 (0.008) 0.317 (0.008) 0.087 (0.004) 0.240 (0.008) 0.899 (0.010) 0.969 (0.022) 0.249 (0.006)

116 Bucher -0.195 (0.005) -0.506 (0.005) 0.116 (0.005) 0.061 (0.002) 0.207 (0.005) 0.785 (0.013) 1.047 (0.023) 0.152 (0.003)

117 MAIC 0.002 (0.006) -0.371 (0.006) 0.376 (0.007) 0.040 (0.002) 0.162 (0.006) 0.943 (0.007) 0.957 (0.022) 0.199 (0.004)

117 STC -0.166 (0.006) -0.518 (0.006) 0.186 (0.006) 0.061 (0.002) 0.202 (0.006) 0.843 (0.012) 0.974 (0.022) 0.184 (0.004)

117 Bucher -0.203 (0.004) -0.453 (0.004) 0.047 (0.004) 0.057 (0.002) 0.209 (0.004) 0.634 (0.015) 1.007 (0.023) 0.127 (0.003)

118 MAIC -0.009 (0.012) -0.681 (0.013) 0.663 (0.013) 0.147 (0.007) 0.306 (0.012) 0.916 (0.009) 0.893 (0.021) 0.384 (0.009)

118 STC 0.000 (0.011) -0.679 (0.011) 0.679 (0.011) 0.124 (0.006) 0.282 (0.011) 0.950 (0.007) 0.985 (0.022) 0.352 (0.008)

118 Bucher -0.410 (0.007) -0.833 (0.007) 0.014 (0.006) 0.213 (0.006) 0.412 (0.007) 0.532 (0.016) 1.014 (0.023) 0.213 (0.005)

119 MAIC -0.006 (0.009) -0.518 (0.009) 0.506 (0.010) 0.082 (0.004) 0.231 (0.009) 0.924 (0.008) 0.913 (0.021) 0.286 (0.006)

119 STC 0.008 (0.008) -0.472 (0.008) 0.489 (0.008) 0.063 (0.003) 0.201 (0.008) 0.949 (0.007) 0.976 (0.022) 0.251 (0.006)

119 Bucher -0.416 (0.005) -0.739 (0.005) -0.094 (0.005) 0.201 (0.005) 0.417 (0.005) 0.299 (0.014) 0.990 (0.022) 0.166 (0.004)

120 MAIC -0.008 (0.007) -0.406 (0.007) 0.390 (0.007) 0.044 (0.002) 0.165 (0.007) 0.936 (0.008) 0.965 (0.022) 0.211 (0.005)

120 STC 0.004 (0.006) -0.354 (0.006) 0.361 (0.006) 0.033 (0.002) 0.144 (0.006) 0.945 (0.007) 0.999 (0.022) 0.183 (0.004)

120 Bucher -0.427 (0.004) -0.686 (0.004) -0.168 (0.004) 0.200 (0.004) 0.427 (0.004) 0.091 (0.009) 0.987 (0.022) 0.134 (0.003)

121 MAIC -0.017 (0.012) -0.660 (0.013) 0.626 (0.012) 0.142 (0.006) 0.303 (0.012) 0.904 (0.009) 0.870 (0.020) 0.377 (0.008)

121 STC -0.049 (0.012) -0.722 (0.012) 0.624 (0.012) 0.142 (0.007) 0.299 (0.012) 0.925 (0.008) 0.917 (0.021) 0.374 (0.008)

121 Bucher -0.390 (0.007) -0.807 (0.007) 0.026 (0.007) 0.199 (0.006) 0.395 (0.007) 0.541 (0.016) 0.983 (0.022) 0.216 (0.005)

122 MAIC 0.007 (0.009) -0.481 (0.009) 0.496 (0.009) 0.072 (0.003) 0.214 (0.009) 0.918 (0.009) 0.926 (0.021) 0.269 (0.006)

122 STC -0.021 (0.008) -0.497 (0.008) 0.454 (0.008) 0.060 (0.003) 0.195 (0.008) 0.944 (0.007) 0.993 (0.022) 0.244 (0.005)

122 Bucher -0.374 (0.005) -0.690 (0.005) -0.058 (0.005) 0.166 (0.004) 0.375 (0.005) 0.363 (0.015) 1.003 (0.022) 0.161 (0.004)

123 MAIC 0.008 (0.006) -0.375 (0.006) 0.390 (0.007) 0.040 (0.002) 0.161 (0.006) 0.941 (0.007) 0.977 (0.022) 0.200 (0.004)

123 STC -0.016 (0.006) -0.369 (0.006) 0.337 (0.006) 0.032 (0.001) 0.142 (0.006) 0.955 (0.007) 1.015 (0.023) 0.178 (0.004)

123 Bucher -0.386 (0.004) -0.640 (0.004) -0.133 (0.004) 0.167 (0.003) 0.387 (0.004) 0.151 (0.011) 0.981 (0.022) 0.132 (0.003)

124 MAIC 0.000 (0.011) -0.604 (0.012) 0.603 (0.012) 0.124 (0.006) 0.281 (0.011) 0.902 (0.009) 0.873 (0.020) 0.353 (0.008)

124 STC -0.065 (0.011) -0.725 (0.011) 0.595 (0.011) 0.119 (0.005) 0.278 (0.011) 0.948 (0.007) 0.992 (0.022) 0.339 (0.008)

124 Bucher -0.324 (0.007) -0.731 (0.007) 0.082 (0.006) 0.149 (0.005) 0.335 (0.007) 0.669 (0.015) 0.995 (0.022) 0.209 (0.005)

125 MAIC -0.006 (0.008) -0.470 (0.008) 0.457 (0.009) 0.065 (0.003) 0.203 (0.008) 0.931 (0.008) 0.930 (0.021) 0.254 (0.006)

125 STC -0.069 (0.008) -0.538 (0.008) 0.400 (0.008) 0.064 (0.003) 0.201 (0.008) 0.933 (0.008) 0.982 (0.022) 0.244 (0.005)

125 Bucher -0.330 (0.005) -0.640 (0.005) -0.020 (0.005) 0.135 (0.004) 0.332 (0.005) 0.460 (0.016) 0.980 (0.022) 0.161 (0.004)

126 MAIC 0.003 (0.006) -0.365 (0.006) 0.370 (0.006) 0.037 (0.002) 0.153 (0.006) 0.942 (0.007) 0.979 (0.022) 0.192 (0.004)

126 STC -0.066 (0.006) -0.414 (0.006) 0.283 (0.006) 0.036 (0.002) 0.152 (0.006) 0.935 (0.008) 0.999 (0.022) 0.178 (0.004)

126 Bucher -0.330 (0.004) -0.578 (0.004) -0.081 (0.004) 0.124 (0.003) 0.330 (0.004) 0.258 (0.014) 1.013 (0.023) 0.125 (0.003)

127 MAIC 0.021 (0.012) -0.618 (0.012) 0.661 (0.012) 0.135 (0.006) 0.296 (0.012) 0.899 (0.010) 0.890 (0.021) 0.367 (0.008)

127 STC 0.109 (0.011) -0.560 (0.011) 0.779 (0.011) 0.134 (0.006) 0.294 (0.011) 0.932 (0.008) 0.979 (0.022) 0.349 (0.008)

127 Bucher -0.623 (0.007) -1.042 (0.007) -0.204 (0.006) 0.432 (0.009) 0.623 (0.007) 0.146 (0.011) 1.017 (0.023) 0.210 (0.005)

128 MAIC 0.003 (0.008) -0.484 (0.008) 0.491 (0.009) 0.071 (0.003) 0.213 (0.008) 0.921 (0.009) 0.934 (0.021) 0.266 (0.006)

128 STC 0.102 (0.008) -0.374 (0.008) 0.577 (0.008) 0.068 (0.003) 0.208 (0.008) 0.928 (0.008) 1.013 (0.023) 0.239 (0.005)

128 Bucher -0.627 (0.005) -0.946 (0.005) -0.308 (0.005) 0.418 (0.006) 0.627 (0.005) 0.018 (0.004) 1.031 (0.023) 0.158 (0.004)

129 MAIC 0.003 (0.006) -0.376 (0.006) 0.383 (0.006) 0.038 (0.002) 0.153 (0.006) 0.948 (0.007) 0.997 (0.023) 0.194 (0.004)
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Table 3: Performance metrics for each method and simulation scenario. Monte Carlo standard errors
for each measure are presented in parentheses. ATE: average estimated marginal treatment
effect for A vs. B (is equal to the bias as the true effect is zero); LCI: average lower bound of
the 95 percent confidence interval; UCI: average upper bound of the 95 percent confidence
interval; MSE: mean square error; MAE: mean absolute error; Cover: coverage rate of the
95 percent confidence intervals; VR: variability ratio; ESE: empirical standard error; MAIC:
matching-adjusted indirect comparison; STC: simulated treatment comparison. (continued)

Scenario Method ATE LCI UCI MSE MAE Cover VR ESE

129 STC 0.100 (0.006) -0.252 (0.006) 0.453 (0.006) 0.041 (0.002) 0.160 (0.006) 0.918 (0.009) 1.029 (0.023) 0.175 (0.004)

129 Bucher -0.616 (0.004) -0.871 (0.004) -0.361 (0.004) 0.396 (0.005) 0.616 (0.004) 0.002 (0.001) 1.014 (0.023) 0.128 (0.003)

130 MAIC 0.018 (0.011) -0.603 (0.012) 0.640 (0.012) 0.131 (0.006) 0.287 (0.011) 0.904 (0.009) 0.878 (0.020) 0.361 (0.008)

130 STC 0.138 (0.011) -0.526 (0.011) 0.803 (0.011) 0.145 (0.007) 0.301 (0.011) 0.920 (0.009) 0.954 (0.021) 0.355 (0.008)

130 Bucher -0.560 (0.007) -0.973 (0.007) -0.146 (0.007) 0.359 (0.008) 0.560 (0.007) 0.245 (0.014) 0.985 (0.022) 0.214 (0.005)

131 MAIC 0.017 (0.008) -0.452 (0.008) 0.487 (0.009) 0.069 (0.003) 0.210 (0.008) 0.921 (0.009) 0.914 (0.021) 0.262 (0.006)

131 STC 0.116 (0.008) -0.354 (0.008) 0.586 (0.008) 0.075 (0.004) 0.217 (0.008) 0.915 (0.009) 0.964 (0.022) 0.249 (0.006)

131 Bucher -0.556 (0.005) -0.870 (0.005) -0.242 (0.005) 0.335 (0.006) 0.556 (0.005) 0.057 (0.007) 1.002 (0.022) 0.160 (0.004)

132 MAIC 0.017 (0.006) -0.349 (0.006) 0.383 (0.006) 0.039 (0.002) 0.162 (0.006) 0.937 (0.008) 0.943 (0.021) 0.198 (0.004)

132 STC 0.118 (0.006) -0.230 (0.006) 0.466 (0.006) 0.048 (0.002) 0.178 (0.006) 0.883 (0.010) 0.954 (0.021) 0.186 (0.004)

132 Bucher -0.557 (0.004) -0.808 (0.004) -0.306 (0.004) 0.327 (0.005) 0.557 (0.004) 0.006 (0.002) 0.995 (0.022) 0.129 (0.003)

133 MAIC 0.016 (0.011) -0.572 (0.011) 0.604 (0.011) 0.118 (0.005) 0.277 (0.011) 0.897 (0.010) 0.874 (0.020) 0.343 (0.008)

133 STC 0.116 (0.011) -0.541 (0.011) 0.772 (0.011) 0.131 (0.006) 0.289 (0.011) 0.936 (0.008) 0.977 (0.022) 0.343 (0.008)

133 Bucher -0.477 (0.007) -0.883 (0.007) -0.072 (0.007) 0.274 (0.007) 0.479 (0.007) 0.375 (0.015) 0.965 (0.022) 0.214 (0.005)

134 MAIC 0.026 (0.008) -0.432 (0.008) 0.484 (0.008) 0.061 (0.003) 0.199 (0.008) 0.929 (0.008) 0.954 (0.022) 0.245 (0.005)

134 STC 0.109 (0.008) -0.357 (0.008) 0.574 (0.008) 0.071 (0.003) 0.213 (0.008) 0.912 (0.009) 0.976 (0.022) 0.243 (0.005)

134 Bucher -0.475 (0.005) -0.784 (0.005) -0.167 (0.005) 0.250 (0.005) 0.476 (0.005) 0.139 (0.011) 1.013 (0.023) 0.155 (0.003)

135 MAIC 0.025 (0.006) -0.333 (0.006) 0.382 (0.006) 0.034 (0.002) 0.146 (0.006) 0.946 (0.007) 1.003 (0.023) 0.182 (0.004)

135 STC 0.112 (0.005) -0.232 (0.005) 0.457 (0.005) 0.041 (0.002) 0.161 (0.005) 0.910 (0.009) 1.041 (0.023) 0.169 (0.004)

135 Bucher -0.478 (0.004) -0.725 (0.004) -0.231 (0.004) 0.244 (0.004) 0.478 (0.004) 0.031 (0.005) 1.022 (0.023) 0.123 (0.003)

136 MAIC -0.013 (0.010) -0.603 (0.011) 0.577 (0.011) 0.108 (0.005) 0.261 (0.010) 0.917 (0.009) 0.916 (0.021) 0.329 (0.007)

136 STC -0.084 (0.011) -0.708 (0.011) 0.540 (0.011) 0.122 (0.006) 0.277 (0.011) 0.931 (0.008) 0.936 (0.021) 0.340 (0.008)

136 Bucher -0.244 (0.007) -0.671 (0.007) 0.183 (0.007) 0.109 (0.004) 0.276 (0.007) 0.815 (0.012) 0.984 (0.022) 0.222 (0.005)

137 MAIC -0.018 (0.007) -0.467 (0.008) 0.431 (0.008) 0.056 (0.003) 0.187 (0.007) 0.933 (0.008) 0.971 (0.022) 0.236 (0.005)

137 STC -0.077 (0.007) -0.524 (0.007) 0.369 (0.007) 0.059 (0.003) 0.190 (0.007) 0.934 (0.008) 0.992 (0.022) 0.230 (0.005)

137 Bucher -0.244 (0.005) -0.569 (0.005) 0.082 (0.005) 0.087 (0.003) 0.253 (0.005) 0.703 (0.014) 0.998 (0.022) 0.166 (0.004)

138 MAIC 0.011 (0.006) -0.337 (0.006) 0.359 (0.006) 0.033 (0.001) 0.145 (0.006) 0.941 (0.007) 0.981 (0.022) 0.181 (0.004)

138 STC -0.049 (0.005) -0.386 (0.005) 0.288 (0.005) 0.032 (0.001) 0.141 (0.005) 0.933 (0.008) 1.005 (0.023) 0.171 (0.004)

138 Bucher -0.230 (0.004) -0.492 (0.004) 0.032 (0.004) 0.070 (0.002) 0.235 (0.004) 0.613 (0.015) 1.019 (0.023) 0.131 (0.003)

139 MAIC -0.012 (0.010) -0.558 (0.010) 0.534 (0.010) 0.094 (0.004) 0.245 (0.010) 0.921 (0.009) 0.909 (0.021) 0.306 (0.007)

139 STC -0.152 (0.010) -0.766 (0.010) 0.461 (0.010) 0.120 (0.005) 0.277 (0.010) 0.928 (0.008) 1.008 (0.023) 0.311 (0.007)

139 Bucher -0.216 (0.006) -0.633 (0.007) 0.201 (0.006) 0.089 (0.003) 0.245 (0.006) 0.849 (0.011) 1.038 (0.023) 0.205 (0.005)

140 MAIC -0.009 (0.007) -0.428 (0.007) 0.410 (0.007) 0.051 (0.002) 0.180 (0.007) 0.934 (0.008) 0.949 (0.021) 0.225 (0.005)

140 STC -0.137 (0.007) -0.577 (0.007) 0.303 (0.007) 0.068 (0.003) 0.207 (0.007) 0.915 (0.009) 1.016 (0.023) 0.221 (0.005)

140 Bucher -0.215 (0.005) -0.533 (0.005) 0.103 (0.005) 0.071 (0.002) 0.228 (0.005) 0.758 (0.014) 1.025 (0.023) 0.158 (0.004)

141 MAIC -0.009 (0.005) -0.339 (0.005) 0.320 (0.005) 0.027 (0.001) 0.130 (0.005) 0.949 (0.007) 1.032 (0.023) 0.163 (0.004)

141 STC -0.140 (0.005) -0.470 (0.005) 0.190 (0.005) 0.047 (0.002) 0.177 (0.005) 0.873 (0.011) 1.017 (0.023) 0.165 (0.004)

141 Bucher -0.211 (0.004) -0.466 (0.004) 0.044 (0.004) 0.061 (0.002) 0.216 (0.004) 0.640 (0.015) 1.020 (0.023) 0.128 (0.003)

142 MAIC -0.022 (0.009) -0.541 (0.009) 0.497 (0.010) 0.081 (0.004) 0.228 (0.009) 0.922 (0.008) 0.929 (0.021) 0.285 (0.006)

142 STC -0.268 (0.010) -0.877 (0.010) 0.341 (0.010) 0.172 (0.007) 0.335 (0.010) 0.860 (0.011) 0.981 (0.022) 0.317 (0.007)

142 Bucher -0.175 (0.006) -0.584 (0.006) 0.235 (0.006) 0.070 (0.003) 0.213 (0.006) 0.890 (0.010) 1.052 (0.024) 0.198 (0.004)

143 MAIC -0.013 (0.007) -0.416 (0.007) 0.389 (0.007) 0.049 (0.002) 0.177 (0.007) 0.912 (0.009) 0.929 (0.021) 0.221 (0.005)

143 STC -0.245 (0.007) -0.680 (0.007) 0.190 (0.007) 0.113 (0.004) 0.280 (0.007) 0.796 (0.013) 0.967 (0.022) 0.229 (0.005)

143 Bucher -0.175 (0.005) -0.486 (0.005) 0.137 (0.005) 0.056 (0.002) 0.196 (0.005) 0.803 (0.013) 0.997 (0.022) 0.159 (0.004)

144 MAIC 0.001 (0.005) -0.318 (0.005) 0.320 (0.005) 0.027 (0.001) 0.133 (0.005) 0.944 (0.007) 0.984 (0.022) 0.165 (0.004)

144 STC -0.236 (0.005) -0.562 (0.005) 0.089 (0.005) 0.084 (0.003) 0.249 (0.005) 0.676 (0.015) 0.983 (0.022) 0.169 (0.004)

144 Bucher -0.177 (0.004) -0.427 (0.004) 0.073 (0.004) 0.048 (0.002) 0.187 (0.004) 0.714 (0.014) 0.992 (0.022) 0.129 (0.003)

145 MAIC 0.017 (0.010) -0.549 (0.010) 0.583 (0.010) 0.101 (0.005) 0.253 (0.010) 0.911 (0.009) 0.910 (0.021) 0.317 (0.007)

145 STC 0.011 (0.010) -0.605 (0.011) 0.627 (0.010) 0.108 (0.005) 0.262 (0.010) 0.937 (0.008) 0.955 (0.021) 0.329 (0.007)

145 Bucher -0.380 (0.007) -0.803 (0.007) 0.044 (0.007) 0.192 (0.006) 0.384 (0.007) 0.585 (0.016) 0.986 (0.022) 0.219 (0.005)
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Table 3: Performance metrics for each method and simulation scenario. Monte Carlo standard errors
for each measure are presented in parentheses. ATE: average estimated marginal treatment
effect for A vs. B (is equal to the bias as the true effect is zero); LCI: average lower bound of
the 95 percent confidence interval; UCI: average upper bound of the 95 percent confidence
interval; MSE: mean square error; MAE: mean absolute error; Cover: coverage rate of the
95 percent confidence intervals; VR: variability ratio; ESE: empirical standard error; MAIC:
matching-adjusted indirect comparison; STC: simulated treatment comparison. (continued)

Scenario Method ATE LCI UCI MSE MAE Cover VR ESE

146 MAIC -0.008 (0.007) -0.439 (0.007) 0.423 (0.007) 0.052 (0.002) 0.181 (0.007) 0.937 (0.008) 0.960 (0.022) 0.229 (0.005)

146 STC -0.003 (0.007) -0.443 (0.007) 0.437 (0.007) 0.053 (0.002) 0.183 (0.007) 0.947 (0.007) 0.978 (0.022) 0.229 (0.005)

146 Bucher -0.385 (0.005) -0.707 (0.005) -0.062 (0.005) 0.174 (0.004) 0.385 (0.005) 0.347 (0.015) 1.013 (0.023) 0.162 (0.004)

147 MAIC 0.001 (0.005) -0.336 (0.005) 0.338 (0.006) 0.030 (0.001) 0.139 (0.005) 0.940 (0.008) 0.993 (0.022) 0.173 (0.004)

147 STC -0.003 (0.005) -0.333 (0.005) 0.328 (0.005) 0.027 (0.001) 0.132 (0.005) 0.958 (0.006) 1.023 (0.023) 0.165 (0.004)

147 Bucher -0.392 (0.004) -0.651 (0.004) -0.133 (0.004) 0.170 (0.003) 0.392 (0.004) 0.141 (0.011) 1.028 (0.023) 0.129 (0.003)

148 MAIC 0.001 (0.010) -0.534 (0.010) 0.536 (0.010) 0.091 (0.004) 0.238 (0.010) 0.909 (0.009) 0.906 (0.021) 0.301 (0.007)

148 STC -0.057 (0.010) -0.664 (0.011) 0.550 (0.010) 0.108 (0.005) 0.260 (0.010) 0.936 (0.008) 0.957 (0.022) 0.323 (0.007)

148 Bucher -0.332 (0.007) -0.748 (0.007) 0.084 (0.007) 0.159 (0.005) 0.342 (0.007) 0.644 (0.015) 0.962 (0.022) 0.221 (0.005)

149 MAIC -0.003 (0.007) -0.417 (0.007) 0.410 (0.007) 0.049 (0.002) 0.178 (0.007) 0.930 (0.008) 0.952 (0.022) 0.222 (0.005)

149 STC -0.046 (0.007) -0.481 (0.007) 0.389 (0.007) 0.054 (0.002) 0.183 (0.007) 0.934 (0.008) 0.977 (0.022) 0.227 (0.005)

149 Bucher -0.337 (0.005) -0.653 (0.005) -0.021 (0.005) 0.139 (0.004) 0.338 (0.005) 0.441 (0.016) 1.009 (0.023) 0.160 (0.004)

150 MAIC 0.002 (0.005) -0.324 (0.005) 0.327 (0.006) 0.029 (0.001) 0.135 (0.005) 0.933 (0.008) 0.975 (0.022) 0.170 (0.004)

150 STC -0.043 (0.005) -0.369 (0.005) 0.283 (0.005) 0.031 (0.001) 0.137 (0.005) 0.933 (0.008) 0.980 (0.022) 0.170 (0.004)

150 Bucher -0.331 (0.004) -0.584 (0.004) -0.077 (0.004) 0.126 (0.003) 0.331 (0.004) 0.264 (0.014) 0.999 (0.022) 0.130 (0.003)

151 MAIC -0.004 (0.009) -0.520 (0.009) 0.512 (0.010) 0.087 (0.004) 0.236 (0.009) 0.893 (0.010) 0.893 (0.020) 0.295 (0.007)

151 STC -0.105 (0.010) -0.709 (0.010) 0.500 (0.010) 0.114 (0.005) 0.267 (0.010) 0.916 (0.009) 0.961 (0.022) 0.321 (0.007)

151 Bucher -0.266 (0.007) -0.674 (0.007) 0.143 (0.006) 0.113 (0.004) 0.283 (0.007) 0.759 (0.014) 1.007 (0.023) 0.207 (0.005)

152 MAIC -0.010 (0.007) -0.413 (0.007) 0.393 (0.007) 0.043 (0.002) 0.168 (0.007) 0.941 (0.007) 0.989 (0.022) 0.208 (0.005)

152 STC -0.105 (0.007) -0.536 (0.007) 0.326 (0.007) 0.059 (0.002) 0.195 (0.007) 0.931 (0.008) 1.004 (0.023) 0.219 (0.005)

152 Bucher -0.278 (0.005) -0.589 (0.005) 0.033 (0.005) 0.101 (0.003) 0.280 (0.005) 0.599 (0.015) 1.017 (0.023) 0.156 (0.003)

153 MAIC 0.007 (0.005) -0.310 (0.005) 0.323 (0.006) 0.029 (0.001) 0.136 (0.005) 0.926 (0.008) 0.955 (0.021) 0.169 (0.004)

153 STC -0.095 (0.005) -0.417 (0.005) 0.228 (0.005) 0.037 (0.002) 0.152 (0.005) 0.900 (0.009) 0.986 (0.022) 0.167 (0.004)

153 Bucher -0.265 (0.004) -0.515 (0.004) -0.016 (0.004) 0.086 (0.002) 0.267 (0.004) 0.458 (0.016) 1.017 (0.023) 0.125 (0.003)

154 MAIC 0.018 (0.010) -0.530 (0.010) 0.566 (0.010) 0.093 (0.005) 0.239 (0.010) 0.921 (0.009) 0.916 (0.021) 0.305 (0.007)

154 STC 0.136 (0.010) -0.471 (0.010) 0.742 (0.011) 0.125 (0.006) 0.278 (0.010) 0.912 (0.009) 0.949 (0.021) 0.326 (0.007)

154 Bucher -0.565 (0.007) -0.986 (0.007) -0.145 (0.006) 0.365 (0.008) 0.566 (0.007) 0.226 (0.013) 1.009 (0.023) 0.213 (0.005)

155 MAIC 0.005 (0.007) -0.414 (0.007) 0.424 (0.007) 0.045 (0.002) 0.170 (0.007) 0.943 (0.007) 1.005 (0.023) 0.213 (0.005)

155 STC 0.118 (0.007) -0.316 (0.007) 0.552 (0.007) 0.061 (0.003) 0.198 (0.007) 0.914 (0.009) 1.024 (0.023) 0.216 (0.005)

155 Bucher -0.566 (0.005) -0.886 (0.005) -0.247 (0.005) 0.345 (0.006) 0.566 (0.005) 0.059 (0.007) 1.040 (0.023) 0.157 (0.004)

156 MAIC 0.005 (0.005) -0.322 (0.005) 0.331 (0.005) 0.028 (0.001) 0.133 (0.005) 0.936 (0.008) 0.999 (0.022) 0.167 (0.004)

156 STC 0.131 (0.005) -0.195 (0.005) 0.457 (0.005) 0.046 (0.002) 0.171 (0.005) 0.866 (0.011) 0.987 (0.022) 0.169 (0.004)

156 Bucher -0.562 (0.004) -0.818 (0.004) -0.306 (0.004) 0.333 (0.005) 0.562 (0.004) 0.014 (0.004) 0.997 (0.022) 0.131 (0.003)

157 MAIC 0.011 (0.009) -0.509 (0.009) 0.532 (0.009) 0.081 (0.004) 0.228 (0.009) 0.927 (0.008) 0.932 (0.021) 0.285 (0.006)

157 STC 0.138 (0.010) -0.460 (0.010) 0.736 (0.010) 0.121 (0.006) 0.278 (0.010) 0.923 (0.008) 0.957 (0.022) 0.319 (0.007)

157 Bucher -0.477 (0.007) -0.890 (0.007) -0.063 (0.006) 0.272 (0.007) 0.478 (0.007) 0.396 (0.015) 0.998 (0.022) 0.211 (0.005)

158 MAIC 0.010 (0.007) -0.395 (0.007) 0.415 (0.007) 0.050 (0.002) 0.179 (0.007) 0.917 (0.009) 0.929 (0.021) 0.223 (0.005)

158 STC 0.126 (0.007) -0.303 (0.007) 0.556 (0.007) 0.065 (0.003) 0.206 (0.007) 0.908 (0.009) 0.987 (0.022) 0.222 (0.005)

158 Bucher -0.471 (0.005) -0.786 (0.005) -0.157 (0.005) 0.249 (0.005) 0.471 (0.005) 0.153 (0.011) 0.985 (0.022) 0.163 (0.004)

159 MAIC 0.009 (0.005) -0.310 (0.005) 0.327 (0.005) 0.026 (0.001) 0.132 (0.005) 0.953 (0.007) 1.008 (0.023) 0.161 (0.004)

159 STC 0.141 (0.005) -0.182 (0.005) 0.463 (0.005) 0.047 (0.002) 0.176 (0.005) 0.850 (0.011) 0.991 (0.022) 0.166 (0.004)

159 Bucher -0.470 (0.004) -0.722 (0.004) -0.218 (0.004) 0.236 (0.004) 0.470 (0.004) 0.043 (0.006) 1.034 (0.023) 0.124 (0.003)

160 MAIC 0.024 (0.009) -0.491 (0.009) 0.538 (0.009) 0.080 (0.003) 0.228 (0.009) 0.913 (0.009) 0.931 (0.021) 0.282 (0.006)

160 STC 0.124 (0.010) -0.479 (0.010) 0.727 (0.010) 0.113 (0.005) 0.268 (0.010) 0.924 (0.008) 0.984 (0.022) 0.313 (0.007)

160 Bucher -0.380 (0.007) -0.788 (0.007) 0.028 (0.006) 0.188 (0.005) 0.386 (0.007) 0.550 (0.016) 1.001 (0.022) 0.208 (0.005)

161 MAIC 0.001 (0.007) -0.398 (0.007) 0.400 (0.007) 0.044 (0.002) 0.169 (0.007) 0.936 (0.008) 0.971 (0.022) 0.210 (0.005)

161 STC 0.122 (0.007) -0.307 (0.007) 0.551 (0.007) 0.064 (0.003) 0.200 (0.007) 0.908 (0.009) 0.991 (0.022) 0.221 (0.005)

161 Bucher -0.388 (0.005) -0.699 (0.005) -0.077 (0.005) 0.177 (0.004) 0.389 (0.005) 0.312 (0.015) 0.980 (0.022) 0.162 (0.004)

162 MAIC 0.012 (0.005) -0.302 (0.005) 0.325 (0.005) 0.023 (0.001) 0.123 (0.005) 0.952 (0.007) 1.047 (0.024) 0.153 (0.003)
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Table 3: Performance metrics for each method and simulation scenario. Monte Carlo standard errors
for each measure are presented in parentheses. ATE: average estimated marginal treatment
effect for A vs. B (is equal to the bias as the true effect is zero); LCI: average lower bound of
the 95 percent confidence interval; UCI: average upper bound of the 95 percent confidence
interval; MSE: mean square error; MAE: mean absolute error; Cover: coverage rate of the
95 percent confidence intervals; VR: variability ratio; ESE: empirical standard error; MAIC:
matching-adjusted indirect comparison; STC: simulated treatment comparison. (continued)

Scenario Method ATE LCI UCI MSE MAE Cover VR ESE

162 STC 0.122 (0.005) -0.199 (0.005) 0.442 (0.005) 0.038 (0.002) 0.157 (0.005) 0.901 (0.009) 1.075 (0.024) 0.152 (0.003)

162 Bucher -0.379 (0.004) -0.628 (0.004) -0.130 (0.004) 0.159 (0.003) 0.379 (0.004) 0.147 (0.011) 1.020 (0.023) 0.124 (0.003)
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I M P U TAT I O N M A R G I N A L I Z AT I O N

In the simulation study in Chapter 5, we set N∗ = 1000 for multiple imputation margin-

alization and adopted the same allocation ratio of the AC trial. Nevertheless, it is not

clear what the sample size of each hypothetical trial should be. We now explore vary-

ing N∗ under the simulation scenario with N = 400 and poor overlap, such that N∗ ∈
{200, 400, 600, 800, 1000, 1200, 1400, 1600, 1800, 2000}, while keeping the treatment allocation

ratio as that of the original AC trial. Table 4 presents a summary of performance metrics for

multiple imputation marginalization under different values of N∗. Monte Carlo standard errors

for each performance measure are presented in parentheses. The percentage of simulation

replicates that produce negative variance estimates for the marginal A vs. C treatment effect

are also reported. There are hardly any changes to the bias, variability ratio and coverage

rates when increasing the synthesis size above its original value of N∗ = 1000. The lack of

sensitivity to further increases of N∗ suggests that any potential performance gains do not

offset the computational cost of the change. Conversely, there is less stability with smaller

syntheses. Variance estimates seem to underestimate variability, coverage rates are more

conservative, and there is some risk of negative variance estimates (N∗ = 200).

In multiple imputation marginalization, the inferential framework in the analysis stage depends

on reasonably large values of N∗ — the posterior distributions used for pooling (Equations

28, 29 and 30) have been derived under certain normality assumptions, where the size of the

synthetic datasets is relevant. Therefore, one would expect better inferences with higher values

of N∗.

Synthesis size, N∗ Bias Variability ratio Coverage rate % V̂(∆̂(2)
10 ) < 0

200 -0.034 (0.010) 0.919 (0.015) 0.927 (0.006) 0.5
400 -0.018 (0.009) 0.962 (0.015) 0.943 (0.005) 0
600 -0.016 (0.009) 0.962 (0.015) 0.942 (0.005) 0
800 -0.015 (0.009) 0.977 (0.016) 0.945 (0.005) 0
1000 -0.014 (0.009) 0.981 (0.016) 0.949 (0.005) 0
1200 -0.013 (0.009) 0.984 (0.016) 0.950 (0.005) 0
1400 -0.013 (0.009) 0.983 (0.016) 0.950 (0.005) 0
1600 -0.011 (0.009) 0.984 (0.016) 0.952 (0.005) 0
1800 -0.012 (0.009) 0.988 (0.016) 0.951 (0.005) 0
2000 -0.011 (0.009) 0.985 (0.016) 0.950 (0.005) 0

Table 4: Simulation results for multiple imputation marginalization varying the synthesis size N∗.
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Example R code implementing MAIC, the conventional version of STC and the Bucher method

on a simulated example is provided in this appendix. The code and data are available

at https://github.com/remiroazocar/population_adjustment_simstudy in the Example

subdirectory. Full code for the simulation study in Chapter 3 is available in the online repository.

The simulation study and the provided example use survival outcomes, with a Cox proportional

hazards regression as the outcome model of interest in the analysis.

M AT C H I N G - A D J U S T E D I N D I R E C T C O M PA R I S O N

library("survival") # required for weighted Cox regression

AC.IPD <- read.csv("Example/AC_IPD.csv") # load AC patient-level data

BC.ALD <- read.csv("Example/BC_ALD.csv") # load BC aggregate-level data

N <- nrow(AC.IPD) # number of subjects in AC

X.EM <- AC.IPD[,c("X1","X2")] # AC effect modifiers

bar.X.EM.BC <- BC.ALD[,c("mean_X1", "mean_X2")] # BC effect modifier means

K.EM <- ncol(X.EM) # number of effect modifiers

# center the AC effect modifiers on the BC means

for (k in 1:K.EM) {

X.EM[,k] <- X.EM[,k] - bar.X.EM.BC[,k]

}

# objective function to be minimized for weight estimation

Q <- function(alpha, X.EM) {

return(sum(exp(X.EM %*% alpha)))

}

alpha <- rep(1,K.EM) # arbitrary starting point for the optimiser

# objective function minimized using BFGS

Q.min <- optim(fn=Q, X.EM=as.matrix(X.EM), par=alpha, method="BFGS")

hat.alpha <- Q.min$par # finite solution is the logistic regression parameters

log.hat.w <- rep(0, N)

for (k in 1:K.EM) {

log.hat.w <- log.hat.w + hat.alpha[k]*X.EM[,k]

}

hat.w <- exp(log.hat.w) # estimated weights

aess <- sum(hat.w)^2/sum(hat.w^2) # approximate effective sample size
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# fit weighted Cox proportional hazards model using robust=TRUE for robust variance

outcome.fit <- coxph(Surv(time, status)~trt, robust=TRUE, weights=hat.w,data=AC.IPD

)

# fitted treatment coefficient is relative effect for A vs. C

hat.Delta.AC <- summary(outcome.fit)$coef[1]

hat.var.Delta.AC <- vcov(outcome.fit)[[1]] # estimated variance for A vs. C

hat.Delta.BC <- with(BC.ALD, logHR_B) # B vs. C

hat.var.Delta.BC <- with(BC.ALD, var_logHR_B)

hat.Delta.AB <- hat.Delta.AC - hat.Delta.BC # A vs. B

hat.var.Delta.AB <- hat.var.Delta.AC + hat.var.Delta.BC

# construct Wald-type normal distribution-based confidence interval

uci.Delta.AB <- hat.Delta.AB + qnorm(0.975)*sqrt(hat.var.Delta.AB)

lci.Delta.AB <- hat.Delta.AB + qnorm(0.025)*sqrt(hat.var.Delta.AB)

C O N V E N T I O N A L S I M U L AT E D T R E AT M E N T C O M PA R I S O N

library("survival") # required for standard Cox regression

AC.IPD <- read.csv("Example/AC_IPD.csv") # load AC patient-level data

BC.ALD <- read.csv("Example/BC_ALD.csv") # load BC aggregate-level data

# fit regression of outcome on the baseline characteristics and treatment

# effect modifiers are centered at the mean BC values

# purely prognostic variables are included but not centered

outcome.fit <- coxph(Surv(time, status)~X3+X4+trt*I(X1-BC.ALD$mean_X1)+trt*I(X2-BC.

ALD$mean_X2),

data=AC.IPD)

# estimated treatment coefficient is relative effect for A vs. C

hat.Delta.AC <- coef(outcome.fit)["trt"]

hat.var.Delta.AC <- vcov(outcome.fit)["trt", "trt"] # estimated variance for A vs.

C

hat.Delta.BC <- with(BC.ALD, logHR_B) # B vs. C

hat.var.Delta.BC <- with(BC.ALD, var_logHR_B)

hat.Delta.AB <- hat.Delta.AC - hat.Delta.BC # A vs. B

hat.var.Delta.AB <- hat.var.Delta.AC + hat.var.Delta.BC

# construct Wald-type normal distribution-based confidence interval

uci.Delta.AB <- hat.Delta.AB + qnorm(0.975)*sqrt(hat.var.Delta.AB)

lci.Delta.AB <- hat.Delta.AB + qnorm(0.025)*sqrt(hat.var.Delta.AB)



S U P P L E M E N TA RY A P P E N D I X E : C H A P T E R 3 E X A M P L E C O D E 167

B U C H E R M E T H O D

library("survival") # required for standard Cox regression

AC.IPD <- read.csv("Example/AC_IPD.csv") # load AC patient-level data

BC.ALD <- read.csv("Example/BC_ALD.csv") # load BC aggregate-level data

# simple regression of outcome on treatment

outcome.fit <- coxph(Surv(time, status)~trt, data=AC.IPD)

# fitted treatment coefficient is relative effect for A vs. C

hat.Delta.AC <- coef(outcome.fit)["trt"]

hat.var.Delta.AC <- vcov(outcome.fit)["trt", "trt"] # estimated variance for A vs.

C

hat.Delta.BC <- with(BC.ALD, logHR_B) # B vs. C

hat.var.Delta.BC <- with(BC.ALD, var_logHR_B)

hat.Delta.AB <- hat.Delta.AC - hat.Delta.BC # A vs. B

hat.var.Delta.AB <- hat.var.Delta.AC + hat.var.Delta.BC

# construct Wald-type normal distribution-based confidence interval

uci.Delta.AB <- hat.Delta.AB + qnorm(0.975)*sqrt(hat.var.Delta.AB)

lci.Delta.AB <- hat.Delta.AB + qnorm(0.025)*sqrt(hat.var.Delta.AB)
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Example R code implementing MAIC, the conventional STC, maximum-likelihood paramet-

ric G-computation, Bayesian parametric G-computation and MIM on a simulated dataset is

provided below. The code and data are available at https://github.com/remiroazocar/

marginalized_indirect_comparisons_simstudy in the Example subdirectory. Full code for

implementing the simulation study in Chapter 5 is available in the online repository.

The simulation study and the provided example use binary outcomes and a logistic regression

outcome model. Nevertheless, all methods are general-purpose frameworks that, under a

generalized linear modeling formulation, can be easily adapted to different outcome models,

outcome types, and scalar measures of treatment effect. The code below can be altered by

changing the link function in the outcome model. For instance: (1) for a normal linear regression,

by setting family=gaussian in the arguments to the glm (or stanglm) function, such that the

link is the identity function (for the weighted outcome model, in the case of MAIC, and for the

first- and second-stage regressions, in the case of MIM); (2) for a Gamma regression, set

family=Gamma, and, for parametric G-computation, transform the predicted marginal outcome

means to the linear predictor scale using the “negative inverse” link (g(µ) = −µ−1, for outcome

mean µ); (3) for a Poisson regression, set family=poisson, and, for parametric G-computation,

transform the marginal outcome means to the linear predictor scale using the log link (g(µ) =
ln(µ)); and (4) for an inverse Gaussian regression, set family=inverse.gaussian, and, for

parametric G-computation, transform the marginal outcome means to the linear predictor scale

using the “inverse squared” link (g(µ) = µ−2).

At the end of this appendix, I provide R code implementing maximum-likelihood parametric

G-computation on a simulated example with survival outcomes and Cox regression as the

outcome model.
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M AT C H I N G - A D J U S T E D I N D I R E C T C O M PA R I S O N

library("boot") # for non-parametric bootstrap

AC.IPD <- read.csv("Example/AC_IPD.csv") # load AC patient-level data

BC.ALD <- read.csv("Example/BC_ALD.csv") # load BC aggregate-level data

set.seed(555) # set seed for reproducibility

# objective function to be minimized for standard method of moments

Q <- function(alpha, X.EM) {

return(sum(exp(X.EM %*% alpha)))

}

# function to be bootstrapped

maic.boot <- function(data, indices) {

dat <- data[indices,] # AC bootstrap sample

N <- nrow(dat) # number of subjects in sample

x.EM <- dat[,c("X1","X2")] # AC effect modifiers

# BC effect modifier means, assumed fixed

theta <- BC.ALD[c("mean.X1", "mean.X2")]

K.EM <- ncol(x.EM) # number of effect modifiers

# center the AC effect modifiers on the BC means

x.EM$X1 <- x.EM$X1 - theta$mean.X1

x.EM$X2 <- x.EM$X2 - theta$mean.X2

# MAIC weight estimation using method of moments

alpha <- rep(1,K.EM) # arbitrary starting point for the optimizer

# objective function minimized using BFGS

Q.min <- optim(fn=Q, X.EM=as.matrix(x.EM), par=alpha, method="BFGS")

# finite solution is the logistic regression parameters

hat.alpha <- Q.min$par

log.hat.w <- rep(0, N)

for (k in 1:K.EM) {

log.hat.w <- log.hat.w + hat.alpha[k]*x.EM[,k]

}

hat.w <- exp(log.hat.w) # estimated weights

# fit weighted logistic regression model using glm

outcome.fit <- glm(y~trt, family="quasibinomial", weights=hat.w,

data=dat)

# fitted treatment coefficient is marginal effect for A vs. C

hat.Delta.AC <- coef(outcome.fit)["trt"]

return(hat.Delta.AC)

}

# non-parametric bootstrap with 1000 resamples

boot.object <- boot::boot(data=AC.IPD, statistic=maic.boot, R=1000)
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# bootstrap mean of marginal A vs. C treatment effect estimate

hat.Delta.AC <- mean(boot.object$t)

# bootstrap variance of A vs. C treatment effect estimate

hat.var.Delta.AC <- var(boot.object$t)

# B vs. C marginal treatment effect from reported event counts

hat.Delta.BC <- with(BC.ALD, log(y.B.sum*(N.C-y.C.sum)/

(y.C.sum*(N.B-y.B.sum))))

# B vs. C marginal effect variance using the delta method

hat.var.Delta.BC <- with(BC.ALD, 1/y.C.sum+1/(N.C-y.C.sum)+

1/y.B.sum+1/(N.B-y.B.sum))

hat.Delta.AB <- hat.Delta.AC - hat.Delta.BC # A vs. B

hat.var.Delta.AB <- hat.var.Delta.AC + hat.var.Delta.BC

# construct Wald-type normal distribution-based confidence interval

uci.Delta.AB <- hat.Delta.AB + qnorm(0.975)*sqrt(hat.var.Delta.AB)

lci.Delta.AB <- hat.Delta.AB + qnorm(0.025)*sqrt(hat.var.Delta.AB)

C O N V E N T I O N A L S I M U L AT E D T R E AT M E N T C O M PA R I S O N

AC.IPD <- read.csv("Example/AC_IPD.csv") # load AC patient-level data

BC.ALD <- read.csv("Example/BC_ALD.csv") # load BC aggregate-level data

# fit regression model of outcome on treatment and covariates

# IPD effect modifiers centered at the mean BC values

# purely prognostic variables are included but not centered

outcome.model <- glm(y~X3+X4+trt*I(X1-BC.ALD$mean.X1)+

trt*I(X2-BC.ALD$mean.X2),

data=AC.IPD, family=binomial)

# fitted treatment coefficient is relative A vs. C conditional effect

hat.Delta.AC <- coef(outcome.model)["trt"]

# estimated variance for A vs. C from model fit

hat.var.Delta.AC <- vcov(outcome.model)["trt", "trt"]

# B vs. C marginal treatment effect estimated from reported event counts

hat.Delta.BC <- with(BC.ALD, log(y.B.sum*(N.C-y.C.sum)/

(y.C.sum*(N.B-y.B.sum))))

# B vs. C marginal treatment effect variance using the delta method

hat.var.Delta.BC <- with(BC.ALD, 1/y.C.sum+1/(N.C-y.C.sum)+

1/y.B.sum+1/(N.B-y.B.sum))

hat.Delta.AB <- hat.Delta.AC - hat.Delta.BC # A vs. B

hat.var.Delta.AB <- hat.var.Delta.AC + hat.var.Delta.BC

# construct Wald-type normal distribution-based confidence interval

uci.Delta.AB <- hat.Delta.AB + qnorm(0.975)*sqrt(hat.var.Delta.AB)

lci.Delta.AB <- hat.Delta.AB + qnorm(0.025)*sqrt(hat.var.Delta.AB)
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M A X I M U M - L I K E L I H O O D PA R A M E T R I C G - C O M P U TAT I O N

library("copula") # for simulating BC covariates from Gaussian copula

library("boot") # for non-parametric bootstrap

AC.IPD <- read.csv("Example/AC_IPD.csv") # load AC patient-level data

BC.ALD <- read.csv("Example/BC_ALD.csv") # load BC aggregate-level data

set.seed(555) # set seed for reproducibility

# matrix of pairwise correlations between IPD covariates

rho <- cor(AC.IPD[,c("X1","X2","X3","X4")])

# covariate simulation for BC trial using copula package

cop <- normalCopula(param=c(rho[1,2],rho[1,3],rho[1,4],rho[2,3],

rho[2,4],rho[3,4]),

dim=4, dispstr="un") # AC IPD pairwise correlations

# sample covariates from approximate joint distribution using copula

mvd <- mvdc(copula=cop, margins=c("norm", "norm", # Gaussian marginals

"norm", "norm"),

# BC covariate means and standard deviations

paramMargins=list(list(mean=BC.ALD$mean.X1, sd=BC.ALD$sd.X1),

list(mean=BC.ALD$mean.X2, sd=BC.ALD$sd.X2),

list(mean=BC.ALD$mean.X3, sd=BC.ALD$sd.X3),

list(mean=BC.ALD$mean.X4, sd=BC.ALD$sd.X4)))

# simulated BC pseudo-population of size 1000

x_star <- as.data.frame(rMvdc(1000, mvd))

colnames(x_star) <- c("X1", "X2", "X3", "X4")

# this function will be bootstrapped

gcomp.ml <- function(data, indices) {

dat = data[indices,]

# outcome logistic regression fitted to IPD using maximum likelihood

outcome.model <- glm(y~X3+X4+trt*X1+trt*X2, data=dat, family=binomial)

# counterfactual datasets

data.trtA <- data.trtC <- x_star

# intervene on treatment while keeping set covariates fixed

data.trtA$trt <- 1 # dataset where everyone receives treatment A

data.trtC$trt <- 0 # dataset where all observations receive C

# predict counterfactual event probs, conditional on treatment/covariates

hat.mu.A.i <- predict(outcome.model, type="response", newdata=data.trtA)

hat.mu.C.i <- predict(outcome.model, type="response", newdata=data.trtC)

hat.mu.A <- mean(hat.mu.A.i) # (marginal) mean probability prediction under A

hat.mu.C <- mean(hat.mu.C.i) # (marginal) mean probability prediction under C

# marginal A vs. C log-odds ratio (mean difference in expected log-odds)

# estimated by transforming from probability to linear predictor scale

hat.Delta.AC <- log(hat.mu.A/(1-hat.mu.A)) - log(hat.mu.C/(1-hat.mu.C))

# hat.Delta.AC <- qlogis(hat.mu.A) - qlogis(hat.mu.C)
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return(hat.Delta.AC)

}

# non-parametric bootstrap with 1000 resamples

boot.object <- boot::boot(data=AC.IPD, statistic=gcomp.ml, R=1000)

# bootstrap mean of marginal A vs. C treatment effect estimate

hat.Delta.AC <- mean(boot.object$t)

# bootstrap variance of A vs. C treatment effect estimate

hat.var.Delta.AC <- var(boot.object$t)

# marginal log-odds ratio for B vs. C from reported event counts

hat.Delta.BC <- with(BC.ALD,log(y.B.sum*(N.C-y.C.sum)/

(y.C.sum*(N.B-y.B.sum))))

# variance of B vs. C using delta method

hat.var.Delta.BC <- with(BC.ALD,1/y.C.sum+1/(N.C-y.C.sum)+

1/y.B.sum+1/(N.B-y.B.sum))

# marginal treatment effect for A vs. B

hat.Delta.AB <- hat.Delta.AC - hat.Delta.BC

# variance for A vs. B

hat.var.Delta.AB <- hat.var.Delta.AC + hat.var.Delta.BC

# construct Wald-type normal distribution-based confidence interval

uci.Delta.AB <- hat.Delta.AB + qnorm(0.975)*sqrt(hat.var.Delta.AB)

lci.Delta.AB <- hat.Delta.AB + qnorm(0.025)*sqrt(hat.var.Delta.AB)

B AY E S I A N PA R A M E T R I C G - C O M P U TAT I O N

library("copula") # for simulating BC covariates from Gaussian copula

# for outcome regression and drawing outcomes from posterior predictive dist.

library("rstanarm")

AC.IPD <- read.csv("Example/AC_IPD.csv") # load AC patient-level data

BC.ALD <- read.csv("Example/BC_ALD.csv") # load BC aggregate-level data

set.seed(555) # set seed for reproducibility

# matrix of pairwise correlations between IPD covariates

rho <- cor(AC.IPD[,c("X1","X2","X3","X4")])

# covariate simulation for BC trial using copula package

cop <- normalCopula(param=c(rho[1,2],rho[1,3],rho[1,4],rho[2,3],

rho[2,4],rho[3,4]),

dim=4, dispstr="un") # AC IPD pairwise correlations

# sample covariates from approximate joint distribution using copula

mvd <- mvdc(copula=cop, margins=c("norm", "norm", # Gaussian marginals

"norm", "norm"),

# BC covariate means and standard deviations

paramMargins=list(list(mean=BC.ALD$mean.X1, sd=BC.ALD$sd.X1),

list(mean=BC.ALD$mean.X2, sd=BC.ALD$sd.X2),
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list(mean=BC.ALD$mean.X3, sd=BC.ALD$sd.X3),

list(mean=BC.ALD$mean.X4, sd=BC.ALD$sd.X4)))

# simulated BC pseudo-population of size 1000

x_star <- as.data.frame(rMvdc(1000, mvd))

colnames(x_star) <- c("X1", "X2", "X3", "X4")

# outcome logistic regression fitted to IPD using MCMC (Stan)

outcome.model <- stan_glm(y~X3+X4+trt*X1+trt*X2, data=AC.IPD,

family=binomial, algorithm="sampling",

iter=4000, warmup=2000, chains=2)

# counterfactual datasets

data.trtA <- data.trtC <- x_star

# intervene on treatment while keeping set covariates fixed

data.trtA$trt <- 1 # dataset where everyone receives treatment A

data.trtC$trt <- 0 # dataset where all observations receive C

# draw binary responses from posterior predictive distribution

# matrix of posterior predictive draws under A

y.star.A <- posterior_predict(outcome.model, newdata=data.trtA)

# matrix of posterior predictive draws under C

y.star.C <- posterior_predict(outcome.model, newdata=data.trtC)

# compute marginal log-odds ratio for A vs. C for each MCMC sample

# by transforming from probability to linear predictor scale

hat.delta.AC <- qlogis(rowMeans(y.star.A)) - qlogis(rowMeans(y.star.C))

hat.Delta.AC <- mean(hat.delta.AC) # average over samples

hat.var.Delta.AC <- var(hat.delta.AC) # sample variance

# B vs. C from reported aggregate event counts in contingency table

hat.Delta.BC <- with(BC.ALD, log(y.B.sum*(N.C-y.C.sum)/

(y.C.sum*(N.B-y.B.sum))))

# B vs. C variance using the delta method

hat.var.Delta.BC <- with(BC.ALD, 1/y.C.sum+1/(N.C-y.C.sum)+

1/y.B.sum+1/(N.B-y.B.sum))

# marginal treatment effect for A vs. B

hat.Delta.AB <- hat.Delta.AC - hat.Delta.BC

# A vs. B variance

hat.var.Delta.AB <- hat.var.Delta.AC + hat.var.Delta.BC

# construct Wald-type normal distribution-based confidence interval

uci.Delta.AB <- hat.Delta.AB + qnorm(0.975)*sqrt(hat.var.Delta.AB)

lci.Delta.AB <- hat.Delta.AB + qnorm(0.025)*sqrt(hat.var.Delta.AB)

M U LT I P L E I M P U TAT I O N M A R G I N A L I Z AT I O N

library("copula") # for simulating BC covariates from Gaussian copula

library("rstanarm") # for MCMC posterior sampling in data synthesis stage

AC.IPD <- read.csv("Example/AC_IPD.csv") # load AC patient-level data

BC.ALD <- read.csv("Example/BC_ALD.csv") # load BC aggregate-level data
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set.seed(555) # set seed for reproducibility

# hyper-parameter settings

M <- 1000 # number of syntheses used in analysis stage

N_star <- 1000 # size of syntheses or simulated BC pseudo-populations

alloc <- 2/3 # 2:1 A:C allocation ratio in synthesis

# MCMC info

n.chains <- 2 # number of Markov chains for MCMC

warmup <- 2000 # discarded warmup/burn-in iterations per chain

iters <- 4000 # total iterations per chain (including warmup)

## SYNTHESIS STAGE (as per Bayesian G-computation) ##

# matrix of pairwise correlations between IPD covariates

rho <- cor(AC.IPD[,c("X1","X2","X3","X4")])

# covariate simulation for BC trial using copula package

cop <- normalCopula(param=c(rho[1,2],rho[1,3],rho[1,4],rho[2,3],

rho[2,4],rho[3,4]),

dim=4, dispstr="un") # AC IPD pairwise correlations

# sample covariates from approximate joint distribution using copula

mvd <- mvdc(copula=cop, margins=c("norm", "norm", # Gaussian marginals

"norm", "norm"),

# BC covariate means and standard deviations

paramMargins=list(list(mean=BC.ALD$mean.X1, sd=BC.ALD$sd.X1),

list(mean=BC.ALD$mean.X2, sd=BC.ALD$sd.X2),

list(mean=BC.ALD$mean.X3, sd=BC.ALD$sd.X3),

list(mean=BC.ALD$mean.X4, sd=BC.ALD$sd.X4)))

# simulated BC pseudo-population of size N_star

x_star <- as.data.frame(rMvdc(N_star, mvd))

colnames(x_star) <- c("X1", "X2", "X3", "X4")

# first-stage logistic regression fitted to IPD using MCMC (Stan)

outcome.model <- stan_glm(y~X3+X4+trt*X1+trt*X2,

data=AC.IPD, family=binomial,

algorithm="sampling", iter=iters,

warmup=warmup, chains=n.chains,

# thin to use M independent samples in analysis

thin=(n.chains*(iters-warmup))/M)

# tratment assignment in synthesis

N_active <- round(N_star*alloc) # number of patients in synthesis under A

N_control <- N_star - N_active # number of patients in synthesis under C

trt_star <- c(rep(1,N_active), rep(0,N_control))

x_star$trt <- trt_star

# draw binary outcomes from posterior predictive distribution

y_star <- posterior_predict(outcome.model, newdata=x_star)

## ANALYSIS stage ##

# second-stage regression (marginal structural model) on each synthesis
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reg2.fits <- lapply(1:M, function(m) glm(y_star[m,]~trt_star,

family=binomial))

# treatment coefficient is marginal effect for A vs. C in m-th synthesis

hats_delta_AC <- unlist(lapply(reg2.fits,

function(fit) coef(fit)["trt_star"][[1]]))

# point estimates of variance for A vs. C

hats_v <- unlist(lapply(reg2.fits,

function(fit) vcov(fit)["trt_star", "trt_star"]))

# quantities originally defined by Rubin (1987) for multiple imputation

bar_delta_AC <- mean(hats_delta_AC) # average of point estimates

bar_v <- mean(hats_v) # within variance (average of point estimates of variance)

# between variance (sample variance of point estimates)

b <- var(hats_delta_AC)

# pooling + indirect comparison (combining rules)

# average of point estimates is the marginal effect for A vs. C

hat.Delta.AC <- bar_delta_AC

# variance combining rule for A vs. C

hat.var.Delta.AC <- (1+(1/M))*b-bar_v

# B vs. C from reported aggregate event counts in contingency table

hat.Delta.BC <- with(BC.ALD, log(y.B.sum*(N.C-y.C.sum)/

(y.C.sum*(N.B-y.B.sum))))

# B vs. C variance using the delta method

hat.var.Delta.BC <- with(BC.ALD, 1/y.C.sum+1/(N.C-y.C.sum)+

1/y.B.sum+1/(N.B-y.B.sum))

# marginal treatment effect for A vs. B

hat.Delta.AB <- hat.Delta.AC - hat.Delta.BC

# A vs. B variance

hat.var.Delta.AB <- hat.var.Delta.AC + hat.var.Delta.BC

# construct Wald-type normal distribution-based confidence interval

uci.Delta.AB <- hat.Delta.AB + qnorm(0.975)*sqrt(hat.var.Delta.AB)

lci.Delta.AB <- hat.Delta.AB + qnorm(0.025)*sqrt(hat.var.Delta.AB)

C OX R E G R E S S I O N : M A X I M U M - L I K E L I H O O D PA R A M E T R I C G - C O M P U TAT I O N

Below, I provide example R code implementing parametric G-computation with survival out-

comes and Cox regression as the outcome model. We use maximum-likelihood estimation

to fit the multivariable Cox regression, then predicting the outcomes on the BC population.

Variance estimation for the marginal A vs. C treatment effect is performed by resampling via

the ordinary non-parametric bootstrap with replacement.

Parametric Bayesian G-computation would follow a similar approach, and would involve

drawing the marginal survival probabilities under each treatment from their posterior predictive

distribution. Implementing Bayesian parametric G-computation in the Cox regression scenario

is a research priority.

library("survival") # to fit Cox proportional hazards regression
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library("copula") # for simulating BC covariates from Gaussian copula

library("boot") # for non-parametric bootstrap

AC.IPD <- read.csv("Example/Survival/AC_IPD_survival.csv") # load AC patient-level

data

BC.ALD <- read.csv("Example/Survival/BC_ALD_survival.csv") # load BC aggregate-

level data

set.seed(555) # set seed for reproducibility

# matrix of pairwise correlations between IPD covariates

rho <- cor(AC.IPD[,c("X1","X2","X3","X4")])

# covariate simulation for BC trial using copula package

cop <- normalCopula(param=c(rho[1,2],rho[1,3],rho[1,4],rho[2,3],

rho[2,4],rho[3,4]),

dim=4, dispstr="un") # AC IPD pairwise correlations

# sample covariates from approximate joint distribution using copula

mvd <- mvdc(copula=cop, margins=c("norm", "norm", # Gaussian marginals

"norm", "norm"),

# BC covariate means and standard deviations

paramMargins=list(list(mean=BC.ALD$mean.X1, sd=BC.ALD$sd.X1),

list(mean=BC.ALD$mean.X2, sd=BC.ALD$sd.X2),

list(mean=BC.ALD$mean.X3, sd=BC.ALD$sd.X3),

list(mean=BC.ALD$mean.X4, sd=BC.ALD$sd.X4)))

# simulated BC pseudo-population of size 1000

x_star <- as.data.frame(rMvdc(1000, mvd))

colnames(x_star) <- c("X1", "X2", "X3", "X4")

# function to be resampled by non-parametric bootstrap

gcomp.ml <- function(data, indices) {

dat = data[indices,]

# outcome Cox regression model fitted to IPD using maximum likelihood

outcome.model <- coxph(Surv(time, status)~trt*X1+trt*X2+X3+X4, data=dat)

# event time selected for unit 50 (random selection)

unit.time <- 50

# estimated cumulative baseline hazard

hat.H0 <- basehaz(outcome.model)[unit.time,1]

# counterfactual datasets (two hypothetical worlds)

data.trtA <- data.trtC <- x_star

# intervene on treatment while keeping set covariates fixed

data.trtA$trt <- 1 # dataset where everyone receives treatment A

data.trtC$trt <- 0 # dataset where all observations receive C

# linear predictor where everyone receives treatment A

LP.A <- with(outcome.model, x_star$X1*(coefficients["X1"] + coefficients["trt:X1

"]) +

x_star$X2*(coefficients["X2"] + coefficients["trt:X2"]) +

x_star$X3*coefficients["X3"] + x_star$X4*coefficients["X4"] +
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coefficients["trt"])

# linear predictor where all observations receive treatment C

LP.C <- with(outcome.model, x_star$X1*coefficients["X1"] + x_star$X2*coefficients

["X2"] +

x_star$X3*coefficients["X3"] + x_star$X4*coefficients["X4"])

# predict individual survival probabilities, conditional on treatment/covariates

hat.S.A.i <- exp(-hat.H0)^exp(LP.A)

hat.S.C.i <- exp(-hat.H0)^exp(LP.C)

# mean survival probability prediction under each treatment

hat.P.A <- mean(hat.S.A.i)

hat.P.C <- mean(hat.S.C.i)

# estimate marginal A vs. B log hazard ratio (mean difference in expected log

hazard)

# by transforming from survival probability to linear predictor scale

hat.Delta.AC <- log(-log(hat.P.A)) - log(-log(hat.P.C))

return(hat.Delta.AC)

}

# non-parametric bootstrap with 1000 resamples (ignore warnings)

boot.object <- boot::boot(data=AC.IPD, statistic=gcomp.ml, R=1000)

# bootstrap mean of marginal A vs. C treatment effect estimate

hat.Delta.AC <- mean(boot.object$t)

# bootstrap variance of A vs. C treatment effect estimate

hat.var.Delta.AC <- var(boot.object$t)

# marginal log hazard ratio for B vs. C reported in BC article

hat.Delta.BC <- BC.ALD$logHR_B

# variance of B vs. C in aggregate outcomes in published article

hat.var.Delta.BC <- BC.ALD$var_logHR_B

# marginal treatment effect for A vs. B

hat.Delta.AB <- hat.Delta.AC - hat.Delta.BC

# variance for A vs. B

hat.var.Delta.AB <- hat.var.Delta.AC + hat.var.Delta.BC

# construct Wald-type normal distribution-based confidence interval

uci.Delta.AB <- hat.Delta.AB + qnorm(0.975)*sqrt(hat.var.Delta.AB)

lci.Delta.AB <- hat.Delta.AB + qnorm(0.025)*sqrt(hat.var.Delta.AB)
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