UCL Discovery
UCL home » Library Services » Electronic resources » UCL Discovery

Modelling, Analysis and Design of Optimised Electronic Circuits for Visible Light Communication Systems

Kassem, Amany Mohamed Gomaa Mohamed; (2022) Modelling, Analysis and Design of Optimised Electronic Circuits for Visible Light Communication Systems. Doctoral thesis (Ph.D), UCL (University College London). Green open access

[thumbnail of Kassem_10144774_Thesis_redacted.pdf]
Preview
Text
Kassem_10144774_Thesis_redacted.pdf

Download (11MB) | Preview

Abstract

This thesis explores new circuit design techniques and topologies to extend the bandwidth of visible light communication (VLC) transmitters and receivers, by ameliorating the bandwidth-limiting effects of commonly used optoelectronic devices. The thesis contains detailed literature review of transmitter and receiver designs, which inspired two directions of work. The first proposes new designs of optically lossless light emitting diode (LED) bandwidth extension technique that utilises a negative capacitance circuit to offset the diode’s bandwidth-limiting capacitance. The negative capacitance circuit was studied and verified through newly developed mathematical analysis, modelling and experimental demonstration. The bandwidth advantage of the proposed technique was demonstrated through measurements in conjunction with several colour LEDs, demonstrating up to 500% bandwidth extension with no loss of optical power. The second direction of work enhances the bandwidth of VLC receivers through new designs of ultra-low input impedance transimpedance amplifiers (TIAs), designed to be insensitive to the high photodiode capacitances (Cpd) of large area detectors. Moreover, the thesis proposes a new circuit, which modifies the traditional regulated cascode (RGC) circuit to enhance its bandwidth and gain. The modified RGC amplifier efficiently treats significant RGC inherent bandwidth limitations and is shown, through mathematical analysis, modelling and experimental measurements to extend the bandwidth further by up to 200%. The bandwidth advantage of such receivers was demonstrated in measurements, using several large area photodiodes of area up to 600 mm^2, resulting in a substantial bandwidth improvement of up to 1000%, relative to a standard 50 Ω termination. An inherent limitation of large area photodiodes, associated with internal resistive elements, was identified and ameliorated, through the design of negative resistance circuits. Altogether, this research resulted in a set of design methods and practical circuits, which will hopefully contribute to wider adoption of VLC systems and may be applied in areas beyond VLC.

Type: Thesis (Doctoral)
Qualification: Ph.D
Title: Modelling, Analysis and Design of Optimised Electronic Circuits for Visible Light Communication Systems
Open access status: An open access version is available from UCL Discovery
Language: English
Additional information: Copyright © The Author 2022. Original content in this thesis is licensed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) Licence (https://creativecommons.org/licenses/by-nc/4.0/). Any third-party copyright material present remains the property of its respective owner(s) and is licensed under its existing terms. Access may initially be restricted at the author’s request.
UCL classification: UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Engineering Science
UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Engineering Science > Dept of Electronic and Electrical Eng
UCL > Provost and Vice Provost Offices > UCL BEAMS
UCL
URI: https://discovery.ucl.ac.uk/id/eprint/10144774
Downloads since deposit
220Downloads
Download activity - last month
Download activity - last 12 months
Downloads by country - last 12 months

Archive Staff Only

View Item View Item