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Abstract:  11 
BACKGROUND: The timely, rapid, and accurate near real-time observations are urgent to monitor 12 
the damage of corn armyworm, because the rapid expansion of armyworm would lead to severe yield 13 
losses. Therefore, the potential of machine learning algorithms for identifying the armyworm 14 
infected areas automatically and accurately by multispectral Unmanned Aerial Vehicle (UAV) 15 
dataset is explored in this study. And the study area is in Beicuizhuang Village, Langfang City, 16 
Hebei Province, which is the main corn-producing area in the North China Plain. 17 

RESULTS: Firstly, we identified the optimal combination of image features by Gini-importance and 18 
the comparation of four kinds of machine learning methods including Random Forest (RF), 19 
Multilayer Perceptron (MLP), Naive Bayes Classifier (NB) and Support Vector Machine (SVM) was 20 
done. And RF was proved to be the most potential with the highest Kappa and OA of 0.9709 and 21 
0.9850, respectively. Secondly, the armyworm infected areas and healthy corn areas were predicted 22 
by an optimized RF model in the UAV dataset, and the armyworm incidence levels were classified 23 
subsequently. Thirdly, the relationship between the spectral characteristics of different bands and 24 
pest incidence levels within the Sentinel-2 and UAV images were analyzed, and the B3 in UAV 25 
images and the B6 in Sentinel-2 image were less sensitive for armyworm incidence levels. So the 26 
Sentinel-2 image was used to monitor armyworm in two towns.  27 

CONCLUSIONS: The optimized dataset and RF model are effective and reliable, which can be 28 
used for identifying the corn damage by armyworm using UAV images accurately and 29 
automatically in field-scale. 30 
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 32 

1. Introduction 33 

The incidence of crop insect pests is increasing in China due to the frequent occurrence of 34 
extreme weather and the increase of insect pests’ resistance to insecticides in recent years1. Curtis et 35 
al. proven that crop pests will increase with global temperature. When average global surface 36 
temperature increases by 2°C, corn production will be reduced by 23% in China and 32%in the 37 
United States2. Armyworm (Mythimna separata Walker) is one of the most serious insect pests on 38 
cereal crops, resulting in great crop production loss every year3. Summer corn grows in hot rainy 39 
season, as the high temperature and humidity create a perfect environment for Armyworm to 40 
develop. The harm of armyworm to corn is huge, especially the second and third-generation larvae 41 
with the characteristics of rapid outbreak4. In 2012, the armyworm broke out in most corn planted 42 
areas of China, resulting in serious damage on corn production5.  43 
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The chemical pesticide is the primary method to control the armyworm presently. However, 44 
over usage of pesticides will pollute the environment, and pesticide residues do harm to soil and 45 
human health. Thus, it is of great significance to determine the occurrence area, severity and spread 46 
pattern of armyworm pest rapidly and timely, for controlling the pest infestation by employing 47 
precise spraying of pesticides in the field6. The traditional methods of monitoring armyworm are 48 
mainly depended on the field campaign. It is time-consuming and laborious, and the field campaign 49 
can be done only in finite sampling areas. Therefore, the laborious investigation method in the field 50 
campaign cannot meet the requirements of timely and rational pesticide usage7. Therefore, many 51 
studies explore the easy way to monitor the damage of armyworm pests. The armyworm mainly feeds 52 
on the corn leaves and ears, especially in the tasseling-filling stage, which results in plant dwarfing 53 
and corn canopy spectral signature changing. Considering these facts, remote sensing has emerged 54 
as a promising way to identify crop diseases and insect pests non-destructively, quickly, and 55 
automatically on a regional scale. 56 

Many studies8-10 have revealed the effectiveness of satellite images in monitoring crop diseases 57 
and insect pests. Unfortunately, the long revisit period, low spatial resolution, and the requirements 58 
for clear weather of satellite images hampered monitoring the armyworm damage because the 59 
armyworm would break out in a very short time11. Recently, unmanned aerial vehicles (UAV) with 60 
different carrying sensors act as a rapid and ongoing tool in precision agriculture. Many 61 
researches12-14 have made lots of effort on crop monitoring by UAV images. With the advances in 62 
flexible operation and high spatial, spectral, and temporal resolution, the UAV images can identify 63 
the damaged plants and monitor damaged severity accurately15. Dobbels and Lorenz16 used a UAV 64 
system to monitor soybean chlorosis caused by iron deficiency. They achieved better results than 65 
traditional ground-based visual assessments. Yue et al.17 extracted pest information from UAV 66 
images with an improved scale-invariant feature transform algorithm. Huang et al.18 explored the 67 
potential using a photochemical reflectance index for quantifying the yellow rust in wheat from 68 
airborne hyperspectral images. Due to the UAV can observe Stereo Image pairs, and the images can 69 
be used to produce digital surface models (DSM) through photogrammetry using image-based 70 
modeling (IBM) algorithm, which offers a cost-effective way to collect crop canopy structure 71 
information19. As a co-product of UAV optical imaging, the DSM can be used to classify crop planted 72 
area20, monitor crop growth condition21, identify crop disasters, and estimate crop yield. However, 73 
the potential of jointing the UAV spectral images, DSM features and spectral features to monitor the 74 
armyworm infestation has few studies yet. Therefore, we search the optimal combination of the UAV 75 
spectral images, DSM features and image features by Gini-importance for monitoring the damage of 76 
armyworm for summer corn in this study. 77 

Remote sensing data are massive and high-dimensional big data. Therefore, efficient and 78 
automated approaches are critical to image analysis and interpretation22. The Random Forest (RF) is 79 
one of the popular supervised classification methods with an ensemble learning algorithm, which 80 
uses multiple decision trees to predict samplings23. Moreover, RF can produce the importance of all 81 
features in the classification, which helps reduce data dimension and improve efficiency24 . 82 
Consequently, RF has been used in pest damage monitoring by UAV images. Adelabu et al.25 used 83 
RF and Support Vector Machine classification algorithms to identify different levels of insect 84 
defoliation in an African savanna based on RapidEye imagery. Aparecido et al.26 developed a 85 
disease and pest warning system for coffee to predict the incidence of various diseases and insect 86 
pests using the RF Regressor and Artificial Neural Networks. In summary, the pixel-based RF 87 
method has attracted wide attention because it has good classification performance and processing 88 
speed for crop disaster classification. Therefore, we use the RF to monitor the armyworm damage of 89 
summer corn in this study based on the UAV dataset. 90 

In this study, the RF algorithm is used to identify armyworm damage levels of summer corn by 91 
pest incidence based on the UAV dataset. Moreover, the spectral characteristics of different pest 92 
incidences in Sentinel-2 images are analyzed for exploring the potential of the satellite images. The 93 
contributions of this paper lie in:  94 
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i) Identifying the important image features in the UAV dataset for identifying the armyworm 95 
pests that occurred in corn planted areas.  96 

ii) Exploring the potential of the RF model for monitoring the damage of armyworm pests of 97 
summer corn, compared with three kinds of machine learning algorithms including MLP, NB and 98 
SVM. 99 

iii) Classifying the armyworm infected areas and healthy corn area by optimized RF model in 100 
the UAV dataset. And the pest Levels are divided into five levels using Natural Breaks (Jenks) and 101 
weighted average. 102 

iv) Analyzing the relationship between the spectral characteristics of different bands and 103 
different pest incidence levels in Sentinel-2 and UAV images. Combining UAV classification results 104 
with Sentinel-2A images to monitor pest incidence levels in a large range. 105 

2. Materials and Methods 106 

2.1 Study area 107 
The study area was located in Beicuizhuang Village, Langfang City, Hebei Province, China, 108 

ranging from 116°44’E 39°21’N to 116°46’E 39°22’N, and covering an area of about 70 ha (Figure 1 109 
(a)). This area was in the central-eastern part of the North China Plain. And there were various crops 110 
were planted, including summer corn, soybean, peanut, apple trees, and other crops. This was a 111 
typical small-holding farming area with irrigation by pumping water, and the crop management 112 
(e.g., sowing, irrigation, fertilization and weeding) was varied. Conventionally, summer corn was 113 
sowed at the end of June and harvested at the beginning of October in the study area. There were 114 
some summer corn areas that were attacked seriously by armyworm in the middle of August 2019. 115 

For monitoring the damage of armyworm pests, the UAV imaging and field campaign were done 116 
simultaneously on 18 August, 2019. The collected UAV images (B2/ B3/ B1) and field data are shown 117 
in Figure1 (b). According to the health condition of corn leaves, there were 24 representative field 118 
plots that were collected for monitoring the damage of armyworm pests. And there were 5 samplings 119 
in each plot which were distributed in the four corners and center of each plot. The size of each 120 
sampling was 1m×1m. All measured samplings were located using Huace i80 real-time kinematic 121 
(RTK) GPS receiver (Huace Ltd., Shanghai, China). The corn planted area in the study area could be 122 
divided into two main groups through field campaign: (1) the summer corn planted area attacked by 123 
armyworm, (2) the healthy summer corn planted area. In Figure1 (c), the left of each group was UAV 124 
sub-images, and the right of each group was the field sample photos. Figure1 (c) showed that the 125 
summer corn leaves attacked by armyworm are smaller and thinner, and the healthy corn planted 126 
areas were more evenly distributed. Considering the significant influence of the sample quantity 127 
and quality on model training, there were 1740 samples of healthy corn planted area, 1763 samples 128 
of corn damaged area by armyworm were selected manually from UAV images according to the 129 
measured data in field campaign and visual interpretation, and each sample is a pixel of UAV 130 
image. 131 

2.2 Image collection and feature dataset construction 132 

2.2.1 UAV image collection 133 
The UAV images were collected between 10:50 and 11:25 AM, 18 August 2019, when it was 134 

sunny and windless. The Parrot Disco-Pro AG, a fixed-wing UAV system, was used to collect UAV 135 
images. This system carried an automated multispectral sensor (Parrot Sequoia camera), which was 136 
developed for agricultural applications. The multispectral bands include green, red, Red-edge and 137 
near-infrared (NIR), and the spectral characteristics of the UAV image collected using the Parrot 138 
Sequoia camera was shown in Table 1. The camera was connected to an irradiance sensor, which had 139 
the same spectral bands as the multispectral sensor that could record the light conditions. In this 140 
way, the image data was done radiometric calibration in real-time for illumination changing 141 
automatically. 142 
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Before the flight, the image of the calibration board was captured by the Parrot Sequoia camera 143 
for radiation correction (Figure 2). It was noted that the calibration board must face the sun to make 144 
no shadows covering the radiation calibration board. Figure 2 (a) – (d) are the green, red, Red-edge, 145 
and NIR bands captured for radiometric calibration. The height of flight above ground was 120 146 
meters. The longitudinal overlap and side overlap were all 80%, with the ground sample distance 147 
(GSD) being 0.135 m/pixel. The georeferencing was achieved by Global Positioning System (GPS) 148 
built into the Parrot Sequoia camera and five ground control points (GCPs) were provided by using 149 
a Huace i80 real-time kinematic (RTK) GPS receiver (Huace Ltd., Shanghai, China) with 2.0 cm of 150 
positioning accuracy. The UAV photos, the calibration photos, and GCPs were input into the 151 
Pix4Dmapper Pro 4.1 software. The image splicing and point cloud modeling were done using “Ag 152 
Multispectral” template automaticly27. And the spliced multispectral image with 3,315 × 5,176 153 
(Figure 1(b)) was generated with a spatial resolution of 0.135 m/pixel. 154 

2.2.2 Feature dataset construction 155 
The Normalized Difference Vegetation Index (NDVI) is the most commonly used remote sensing 156 

vegetation index, which is calculated from the reflectance measurements in the near infrared 157 
(790 nm) and red (660 nm) portion of the spectrum in UAV images28. The NDVI can be expressed by 158 
the following formula: 159 

NDVI = !!"#"!$%&
!!"##!$%&

                                 (1) 160 

where, 𝜌!"#  and 𝜌$%&  are the NIR band and red band respectively. For the green crops, the 161 
reflectance of red band is small and the reflectance of NIR band is big. So the NDVI approaches 1 162 
when the crops are dense, and the NDVI approaches 0 when the crops are small. Therefore, NDVI 163 
is used to depict if the corn leaves are attacked by armyworm. 164 

From the photos taken in the field campaign, it is observed that the leaves of the summer corn 165 
affected by armyworm are generally blade yellowing. The corn leaves waned by armyworm attack 166 
resulting in the low vegetation cover and spectral change. So, the Red-edge Normalized Vegetation 167 
Index (RENDVI) is calculated based on two bands including the red band and the Red-edge band. 168 

RENDVI = !#'"!$%&
!#'#!$%&

                             (2) 169 

where, 𝜌#' is the Red-edge band. Similar to the spectral index NDVI, RENDVI approaches 1 when 170 
the crops are dense and the NDVI approaches 0 when the crops are thin, which can be used to 171 
depict if the corn leaves are attacked by armyworm. 172 

Considering the height of the corn affected by armyworm is generally lower, the corn canopy 173 
DSM is built up to depicting the canopy height difference between corn plants attacked by 174 
armyworm and the healthy corn plants. The corn canopy DSM is generated with the spatial 175 
resolution of 0.131 m by Pix4Dmapper Pro 4.1 software. Therefore, the features of the UAV image 176 
are composed of four spectral bands (green, Red, Red-edge, and NIR), DSM, and the spectral index 177 
features including NDVI and RENDVI.0 178 

2.3 Machine learning classification methods for dentifying corn pests areas 179 

2.3.1 Multilayer Perceptron 180 
The most important feature of multilayer perceptron (MLP) is that it has multiple neuron 181 

layers, so it is also called deep neural network. The first layer is the input layer, the last layer is the 182 
output layer, and the middle layer is the hidden layers. The optimal number of hidden layers and 183 
output neurons can be determined according to the specific application29. Because this method has 184 
good generalization ability, it is popular in classifying the pest areas of planted corns. 185 

2.3.2 Naive Bayesian 186 
Naive Bayesian (NB) based on Bayesian theory is a widely used classification algorithm in 187 

machine learning and data mining, with the assumption that the variables predicted are the 188 
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Gaussian distributed and independent of each other. The classification is based on the conditional 189 
probability that each sample belongs to various classes30. Compared with other methods, the NB 190 
method is applicable with few or no input parameters, which is uncomplicated and cost-effective in 191 
dealing with classification problems. In this study, the NB method is selected and used to identify 192 
the armyworm areas of planted corns. 193 

2.3.3 Support vector machine 194 
Support vector machine (SVM) classification via spatial features is a learning method based on 195 

statistical learning theory, which classifies the input sample features by solving the optimal 196 
hyperplane among many different classes31. The core of SVM is to solve the problem of dichotomy. 197 
For multi-classification problems, "one-to-many" classification method is usually adopted. For n 198 
classes, there are n hyperplanes that need to be solved. And there are n results will be produced 199 
after the prediction sample passes the discrimination of n optimal hyperplanes. And the optimal 200 
class will be produced finally. The SVM is a small sample learning method with good robustness, 201 
which is used to classify the pest areas of planted corns for the UAV dataset in this study. 202 

2.3.4 Random Forest classification 203 
Random forest classification algorithm is an integrated learning method based on the 204 

combination of multiple CART decision trees32. In order to divide the variable space completely, 205 
self-extraction of input samples and node random splitting techniques are used to construct multiple 206 
decision trees. The prediction results can be obtained through the majority voting strategy of the 207 
decision tree, and the error caused by a single parameter group can be avoided effectively. The RF 208 
can generate the importance of each dimension, which helps the feature selection and improve 209 
efficiency. Therefore, the RF algorithm can be adapted to classify the armyworm areas of planted 210 
corns for the UAV dataset.  211 

2.4 Feature selection for classifying corn pests areas 212 
The dimensions importance can be expressed with the Gini-importance33 for high-dimensional 213 

UAV dataset. The Gini index is used to measure the impurity (degree of uncertainty) of the sampling 214 
set, which is the probability that a random sample is misclassified. The Gini impurity of the initial set 215 
is as the following formula: 216 

𝐺𝑖𝑛𝑖(𝐾) = ∑ 𝑃(𝑘$) × 21 − 𝑃(𝑘$)5%
$&'                              (3)  217 

where, K = {ki; i = 1,2,3, …, n} is the collection of all classes, ki is the classes i, n is total number of 218 
classes. The 𝑃(𝑘𝑖) is the probability of the 𝑘( class. When the initial set is divided into multiple 219 
subsets, the Gini impurity is as the following formula: 220 

𝐺𝑖𝑛𝑖) = ∑ 𝑃(𝑥*) × 𝐺𝑖𝑛𝑖(𝑥*)+
*&'                            (4) 221 

where, xj = {j = 1,2,3, …, N} is the j-th set in the initial set, N is the total number of subsets. P(xj) is the 222 
probability of xj. Ginis is the Gini internal impurity of xj, which is the Gini-importance and is used to 223 
calculate the contribution of each feature. 224 

2.5 Accuracy assessment 225 
There are two measurements used to assess the classification performance for the armyworm 226 

pest infested corn planted area, including the overall accuracy (OA) and Kappa coefficient. These 227 
measurements are calculated from a confusion matrix34 of classification results. The confusion matrix 228 
includes TP (True Positive), FN (False Negative), FP (False Positive) and TN (Ture Negative). A 229 
5-fold cross-validation35 is used to evaluate the accuracy of the classification. All the selected 230 
samplings are divided into 5 groups randomly, including 4 groups used for training and 1 group 231 
used for testing. The configurations of hardware used in this study are Intel(R) Core (TM) i7-8700 232 
CPU 3.20 GHz, 32 G RAM.  233 

The OA indicates the proportion of correct pixels predicted, including pixels both healthy and 234 
attacked by insect pests. The OA can be as the following formula: 235 
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𝑂𝐴 = ,-#,.
,-#/.#/-#,.

                                 (5) 236 
where, TP and FN are the numbers of correct and wrong classifications of samples in the healthy 237 
corn category; FP and TN are the number of wrong and correct classifications of samples in the 238 
armyworm pest category.  239 

The Kappa coefficient is a statistical indicator of interrater reliability, which is calculated by the 240 
OA and the probability of random agreement. The Kappa coefficient can be as the following formula, 241 

𝐾𝑎𝑝𝑝𝑎 = 01"2%
'"2%

                                       (6)  242 

where, 𝑃3 is the probability of random agreement. The Kappa is an index to measure the spatial 243 
consistency of classification results, which reveals the spatial changes of classification results clearly. 244 
Then the 𝑃3 is as the following formula: 245 

𝑃3 =
(,-#/.)×(,-#/-)#(/-#/.)×(/.#,.)

,-#/.#/-#,.
	                          (7) 246 

3. Results and Analysis 247 

3.1 Optimize UAV dataset by Gini-importance and Random Forest method 248 
The RF method is used to classify the summer corn planted area infested by armyworm for the 249 

UAV dataset. The zoomed sub-plots of the UAV dataset including pest infested area and healthy 250 
area are as shown in Figure 3. Figure 3 (a1) - (g1) are the image features of armyworm pest infested 251 
corn planted area, (a2) – (g2) are the features images of healthy corn planted area with the image 252 
features of green band, red band, red-edge band, NIR band, DSM, NDVI and RENDVI, respectively. 253 
From Figure 3(a1) - (g1), it can be seen that the tone difference is obvious and the image features are 254 
more heterogenous and blurry for armyworm infested areas than healthy area, especially in (a1), (b1), 255 
(f1) and (g1). Comparatively, the tone difference is relatively small and homogeneity exists in 256 
healthy corn planted areas in Figure 3 (a2) - (g2). 257 

In order to determine the importance of each image feature in the UAV dataset, 258 
Gini-importance (Eq. 4) is used to measure and calculate the importance of image features in this 259 
study. Moreover, the parameters of RF are default, and the importance and the evaluation measures 260 
take the mean value of ten times experiment. The importance order of the UAV dataset image 261 
features for the identification of armyworm infested area is that NDVI (0.2933) > RENDVI (0.2061) > 262 
B2-Red (0.1677) > B4-NIR (0.1461) > DSM (0.0885) > B1-Green (0.0672) > B3-Red-edge (0.0308), as 263 
shown in Figure 4. And Figure 4 revealed that the importance of all features is greater than 0.03 and 264 
the top three important features for the classification model are the NDVI, RENDVI and B2-Red. It is 265 
clear that the vegetation index features (NDVI and RENDVI) bring the greatest contribution to 266 
classification.  267 

With the same training samples, different features combinations are used to identify armyworm 268 
infested areas. The features in the UAV dataset are sorted by importance and the construction of 269 
each model in line with the importance of all features, and the performance of models is compared 270 
using the accuracy for selecting the optimal feature combination. The Kappa and OA are used to 271 
evaluate the performance of the different models quantitatively. And the experimental results are 272 
shown in Table 2. According to Table 2, the Model7 with all the features has the best quantitative 273 
evaluation results with Kappa and OA are 0.9709 and 0.9850, respectively. Compared to Model1 with 274 
a single image feature (RENDVI) only, the Model2, Model3, Model4, Model5, Model6 and Model 7 275 
improved 0.1860/0.0906, 0.1933/0.0993, 0.1925/0.0990, 0.2019/0.1037, 0.2072/0.1064 and 0.2098/0.1078 276 
in Kappa and OA, respectively. We also found that the model performance is constantly improved 277 
with the increase of features numbers. Compared with Model8 which only uses four features (Green, 278 
Red, Red-edge and NIR) and Model9 which uses five features (Green, Red, Red-edge, NIR and 279 
DSM), the Model7 improved 0.0301/0.0209 and 0.0195/0.0115 in Kappa/OA. This revealed that the 280 
joint of the DSM, NDVI and RENDVI could improve the performance of the classifier effectively. It 281 
is further proof that the features of the designed dataset in this study are reasonable and effective.  282 
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3.2 Comparison of performance for different machinelearning algorithms 283 
The performance of different machine learning methods is compared to verify the superiority of 284 

the RF. And there are three machine learning methods including MLP, NB and SVM are compared 285 
with RF. For all the methods in these experiments, this comparison is done using the same 286 
cross-validation method and the evaluation measures, which are 5-fold cross-validation and 287 
Kappa/OA, respectively. In addition, all training and testing datasets of the RF experiments (Model7) 288 
are used to the other three classification (MLP, NB and SVM) experiments for ensuring a fair 289 
comparison. The good model parameters of MLP, NB and SVM are selected according to experience, 290 
and the parameters of RF are default. For MLP classification method29, the initial learning the 291 
activation functions are 0.001 and “RELU”, there are 2 hidden layers with 100 neurons per hidden 292 
layer. For NB classification method30, there is only one major parameter, the prior probability, which 293 
is set as default without giving the prior probability. For SVM classification method31, the main 294 
parameters are as follows: the kernel type is radial basis function, gamma value is “auto” in the 295 
kernel function, and cost or slack parameter is 1.0. The quantitative evaluation results for different 296 
machine learning methods are shown in Table 3. 297 

According to Table 3, the classification performance of four machine learning methods is 298 
greater than 0.91/0.95 (Kappa/OA). Compared with MLP, NB and SVM, the RF method improved 299 
0.0513, 0.0308 and 0.0285 in Kappa, and improved 0.0258, 0.0213 and 0.0205 in OA, respectively. It 300 
revealed that the RF classifier had the highest accuracy in distinguishing healthy and armyworm 301 
pests on corn. At the same time, the superiority of the RF classifier is also proved. 302 

3.3 Mapping of armyworm infested area 303 
Based on the comparison of the performance of different methods, the RF method is more 304 

applicable to mapping armyworm areas. The parameters of the RF method (Model7) can be 305 
optimized by random search and grid search furtherly. Firstly, the random searching method is used 306 
to estimate roughly the range of parameters, the number of decision trees is (80, 100), the maximum 307 
depth of decision trees is (90, 120). Secondly, the grid search method is used to optimize the 308 
parameters furtherly, the search step is 1. Finally, the optimal combination of parameters is obtained, 309 
the number of decision trees is 91, the maximum depth of decision trees is 107. The Kappa and OA of 310 
retrained RF (Model 7) are 0.9735 and 0.9864 based on optimized parameters. The mapping of 311 
armyworm infested areas is done using optimized RF (Model 7) subsequently, and the results as 312 
shown in Figure 5. 313 

According to Figure 5, the pink areas are armyworm infested areas, and the green areas are 314 
healthy corn planted areas. A, B, C and D are the measured field plots in field campaigns where 315 
armyworm occurs seriously. The armyworm infestation occurs in the southwest of field plot A, the 316 
top center of field plot B, and nearly the whole of field plot C and D mainly. In addition, the 317 
reliability of the classification results is verified by field survey points. Four representative field 318 
survey photos are shown at four measured points from (p1) to (p4). The (p1) and (p2) are located in 319 
plots A and B, which are in the area with serious armyworm pests. It can be seen from the photos that 320 
most of the corn leaves are affected by armyworm, and the leaves are relatively few and small, 321 
resulting in the serious changes in corn canopy and morphology. On the other hand, (p3) and (p4) 322 
are in the healthy area, which is consistent with the obtained field survey photos. 323 

3.4 Mapping of pest incidence level 324 
To determine the severity of armyworm pests, and give some hints for pesticide spraying, the 325 

pest incidence level mapping is done. The NDVI can describe the vegetation growing condition, 326 
and the Gini-importance of NDVI features in Section 3.1 is the most prominent to UAV image 327 
classification. Natural Breaks (Jenks) method can best group similar values and maximize the 328 
differences between classes36, which is a good method for grade classification. According to corn 329 
damage scales37, the armyworm pest areas (the pink areas) in Figure 5 are divided into four levels 330 
based on NDVI value using Natural Breaks (Jenks). The levels include Level 1(0.23<=NDVI<=0.522, 331 
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little damage), Level 2(0.12<=NDVI<0.23, medium damage), Level 3(0.01<=NDVI<0.12, heavy 332 
damage) and Level 4(-0.22<=NDVI<0.01, very heavy damage), and healthy corn is Level 0(No 333 
damage). The result of pest incidence levels is shown in Figure 6(a), the green area is Level 0, and 334 
the red area indicates the most serious pest incidence (Level 4). 335 

Infesting levels of insect pests can be extended to 10m × 10 m grid. First, assign values 0, 1, 2, 3, 336 
and 4 to Level 0, Level 1, Level 2, Level 3, and Level 4 in Figure 6(a). Then, the mean value of pixels 337 
in 10m × 10m grid is calculated as the grid value. The method Natural Breaks (Jenks) is used to 338 
classify damaged corn of the grids. The levels include Level 0[0, 0.172), Level 1[0.172, 0.58), Level 339 
2[0.58, 1.21), Level 3[1.21, 2.04) and Level 4[2.04, 4]. The result of pest levels based on grids is shown 340 
in Figure 6(b). 341 

It can be found that the red areas are the largest in A, B, C and D field plots, indicating the 342 
highest pest levels, which is consistent with field observations and Figure 5. In terms of pest level, 343 
plots A and B, C and D are adjacent to each other, and the infested areas are connected. In the early 344 
stage of the pest incidence, the farmers in field plots A, B, C, and D did not find out the armyworm 345 
infection timely and did not take appropriate management for preventing the pest from spreading. 346 
This could be the reason for the local armyworm outbreak in the cornfield. Furthermore, we also 347 
found that the height of weeds is higher than the corn plants in damaged corn plots, and result in a 348 
humid and airless environment, which might also be one of the important reasons for the outbreak 349 
of armyworm. 350 

3.5 Spectral reasoning for mapping of pest incidence level 351 
The Sentinel-2 image38 has more abundant spectral information than the UAV image, which is 352 

likely to be beneficial for pest monitoring. The spectral characteristics of different pest levels are 353 
analyzed for the Sentinel-2 image and the UAV images. For unifying the analyzing unit of spectral 354 
difference, the obtained Sentinel-2 image on 18 August 2019 in the study area is reconstructed with 355 
super resolution using SupReME39, and each band is unified to 10m spatial resolution. After that, 356 
the spectral characteristics of Sentinel-2 image before and after super resolution reconstruction are 357 
analyzed, mainly in the building and corn planted area, which is as shown in Figure 7. In Figure 7, 358 
the orange line (predictive value) is the reflectance spectral curve after SupReME reconstruction, the 359 
red line (truth value) is the reflectance spectral curve of Sentinel -2. Figure 7 (a) is the spectral 360 
contrast of corn planted area, (b) is spectral contrast of buildings, the RMSE (Root Mean Square 361 
Error) are 0.00169 (a) and 0.008085 (b), respectively. The RMSE is close to zero, and the spectrum is 362 
basically unchanged.  363 

The Sentinel-2 image with 10m spatial resolution and UAV images with a resolution of 0.135m 364 
are used to analyze the spectral characteristics of different pest levels. There are 600 sampling 365 
points and 250 sampling points are selected based on Figure 6(a) and Figure 6(b) respectively to 366 
calculate the mean values of each band of UAV and Sentinel-2 images. The statistical results as 367 
shown in Figure 8. The X-axis are band numbers and the Y-axis is spectral reflectance, different 368 
colors indicate different levels of pests. In Figure 8(a), with the pest level declines, the spectral 369 
reflectance of B1, B2, B3, B4, B5, B11 and B12 decreases, the spectral reflectance of B7, B8 and B8A 370 
increases. The spectral reflectance of B9 can distinguish between healthy and unhealthy corn areas, 371 
B6 is not clear. In Figure 8(b), B1 and B2 reveal that the spectral reflectance decreases with the pest 372 
level declines. B4 can distinguish between healthy corn and damaged corn. B3 is similar to B6 in the 373 
Sentinel-2 image, the relationship between reflectivity and pest level is not very clear. Sentinel-2 374 
and UAV images have similar characteristics in different pest levels in corresponding wavelength 375 
bands. 376 

4. Discussions 377 

The corn area damaged by armyworm resulted in the changing of corn canopy spectral 378 
reflectance since the changed morphological and chemical characteristics of leaves40. In Figure 8(b), 379 
the bands involved in the vegetation index calculation are sensitive to the armyworm pest infestation, 380 
the NDVI and RENDVI features bring the greatest contribution to the classification. The height of 381 
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corn plants infested by armyworm is lower than healthy plants, which brings the DSM is also 382 
sensitive to the pest infestation of summer corn. It shows that the addition of vegetation index and 383 
DSM is beneficial to accurate classification. 384 

As is known, the red-edge band (B5, B6 and B7 of Sentinel-2 and B3 of UAV) was one of the 385 
most sensitive bands to vegetation diseases41. In Figure 8 (a), with the change of corn armyworm 386 
incidence levels, the spectral characteristics of the red-edge bands change as well. With the decrease 387 
of corn armyworm incidence, the reflectance of B5 decreases, and the reflectance of B7 increases. The 388 
B6 of Sentinel-2 and the B3 of UAV are between B5 and B7, and the spectral intervals were only 389 
about 40 nm, which makes the sensitivity of the band (B6 of Sentinel-2 or the B3 of UAV) to the pest 390 
change lower than other bands42. B1, B2, B3 and B4 of Sentinel-2 and the B1 and B2 of UAV were the 391 
visible spectrum band where the leaves could rely on various pigments (i.e., chlorophyll, 392 
carotenoids) to absorb this energy. with corn canopy pigment decrease, visible light absorption 393 
decreases, which resulted in the increase of visible reflectance. B7, B8, B8A and B9 of Sentinel-2 and 394 
the B4 of UAV were the near-infrared bands and were related closely to the cell structure. The 395 
canopy reflectance was lower than healthy corn, indicating that the armyworm had seriously 396 
damaged the cell structure of the corn. Moreover, B11 and B12 were related to the water content of 397 
vegetation. In the area damaged by armyworm, the leaves of the plants gradually withered and the 398 
water content decreased, which led to the increase in spectral reflectance compared with normal 399 
vegetation. 400 

The result of Figure 7 and Figure 8 revealed the performance of abundant spectral information 401 
of Sentinel-2 image had a great advantage in monitoring the damage of armyworm in the regional 402 
area. The Towns (An ci) in the UAV flight area and adjacent towns (Yong qing) are used as 403 
experimental areas (Figure 9(a)), the obtained Sentinel-2 images (18 August 2019) after SupReME 404 
reconstruction were attempted to classify pest levels. There are selected 250 sampling points based 405 
on Figure 6(b), and the training dataset and test dataset are divided into 7:3 for the RF model. The 406 
classification results as shown in Figure 9(b), the OA of train and validation are 0.76 and 0.69. 407 
Different colors correspond to different pest levels, the ‘Level 5’ in legend was the non-corn area. 408 
The non-corn area was obtained by Google Earth Engine platform classification using RF based on 409 
Sentinel-2 image (18 August 2019), which overall validation accuracy is 0.92. Figure 9(c) is the 410 
sub-image of Figure 9 (b), and the black box is the UAV flight area. The UAV flight area in Figure 411 
9(c) was consistent with the classification results (Figure 6(b)) of UAV basically, which revealed the 412 
effectiveness of classifying armyworm levels based on Sentinel-2 images. The areas of Level 3 and 413 
Level 4 were very small and the proportion of insect pest areas was low, indicating that the planted 414 
corns were generally healthy. The damaged levels by armyworm are classified from Sentinel-2 415 
images, which could provide data support for pesticide spraying and pest prevention in a large 416 
area. 417 

5. Conclusions 418 

The armyworm is one of the most serious insect pests of corn. We proposed a method to 419 
monitor the damaged scale by pest in summer corn based on UAV images. The conclusions can be 420 
drawn as follows. 421 

(1) The importance of image features in the UAV dataset is determined by Gini-importance. 422 
The importance of images features is sorted as NDVI (0.2933) > RENDVI (0.2061) > B2-Red (0.1677) > 423 
B4-NIR (0.1461) > DSM (0.0885) > B1-Green (0.0672) > B3-Red-edge (0.0308). The NDVI is the most 424 
sensitive, while the B3 of UAV has the lowest sensitivity to armyworm pests.  425 

(2) The RF model has the best performance for the classification of the armyworm pest and 426 
healthy corn compared to different machine learning methods (MLP, NB and SVM). The 427 
parameters of the RF can be optimized by random search and grid search furtherly, which are used 428 
to retrain the model. The classification results of the UAV dataset are predicted subsequently. 429 

(3) The spectral characteristics of sentinel-2 and UAV images with different pest levels are 430 
analyzed. With the pest level declines, the spectral reflectance of B1 and B2 decreases, B3 is not very 431 
clear, B4 can distinguish healthy corn and damaged corn in UAV images. With the pest level 432 
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increases, the spectral reflectance of B1-B5 and B11-B12 increased, B7, B8 and B8A decreased, B6 433 
and B9 have no clear characteristics in the Sentinel-2 image. Furthermore, the classification of pest 434 
levels based on Sentinel-2 image using the RF model has achieved good results. 435 

Due to the small geographical coverage of UAV images, the experimental area is small and 436 
restricted relatively. In the future, we will expand the research to explore the armyworm infestation 437 
of other similar crops (e.g., wheat and rice) and monitor the damage of pests on a larger scale. Then, 438 
coupling the crop growth models (e.g., WOFOST, DSSAT) or radiation transfer models (e.g., 439 
PROSAIL, DART) with machine learning techniques will be tried, which maybe have potential in 440 
estimating the damage of armyworm pests. Furthermore, the multi-temporal UAV images and 441 
satellite images can be combined tentatively to detect insect pests in the field dynamically, which can 442 
support more informed farming decisions. 443 
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Tables 559 

Table 1. The spectral characteristics of the Parrot Sequoia sensor. 560 
Band Central wavelength (nm) Bandwidth(nm) 

B1- Green 550 40 
B2- Red 660 40 

B3- Red-edge 735 10 
B4-NIR 790 40 

Table2. Random Forest model performance over features 561 
Model B1 B2 B3 B4 DSM NDVI RENDVI OA Kappa 
Model1 - - - - - - + 0.8772 0.7611 
Model2 - - - - - + + 0.9678 0.9471 
Model3 - + - - - + + 0.9765 0.9544 
Model4 - + - + - + + 0.9762 0.9536 
Model5 - + - + + + + 0.9809 0.9630 
Model6 + + - + + + + 0.9836 0.9683 
Model7 + + + + + + + 0.9850 0.9709 
Model8 + + + + - - - 0.9641 0.9408 
Model9 + + + + + - - 0.9735 0.9514 

Notes: “+“ represents the added modeling features.  “-“ represents the removed modeling feature. 

Table 3. Quantitative evaluation results different method 562 
Method MLP NB SVM RF 
Kappa 0.9196 0.9401 0.9424 0.9709 

OA 0.9592 0.9637 0.9645 0.9850 
 

 563 

Figures 564 

 565 
Figure 1. The location of study area (a). (b) UAV multispectral image (R (B2, red band)/G (B3, Red-edge 566 
band)/B (B1, green band)) and the spatial distribution of the field collection points and the GCPs. (c) The 567 
image pairs with UAV sub-image (R (B2, red band)/G (B3, Red-edge band)/B (B1, green band)) and 568 
corresponding photos taken in field campaign. 569 



 2 of 16 

 

 570 

 571 
Figure 2. The fixed-wing UAV (left) and the captured images of calibration board with four spectral bands 572 
(right). 573 

 574 

 575 
Figure 3. Visualization of image features for armyworm infested area (a1-g1) and healthy corn 576 
planted area (a2-g2).  577 
 578 

 579 
Figure 4. The Gini-importance of the image features. 580 
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 581 

Figure 5. Mapping result of corn planted area infested by armyworm pest by optimized RF model. 582 
The mark A, B, C and D are the investigated field plots with heavy armyworm pest. The photos of 583 
(p1) and (p2) are taken in the area infested by armyworm, and the photos of (p3) and (p4) are taken in 584 
the healthy corn planted area. 585 

 586 

 587 
(a) 588 

 589 
(b) 590 

Figure 6. Armyworm pest incidence levels of corn planted area. (a) Infesting levels of insect pests 591 
based on UAV images. (b) Infesting levels resulting from (a) using statistical results of 10m × 10m 592 
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grid. The mark A, B, C and D are the investigated cornfield plots with serious armyworm pest 593 
infested area. 594 
 595 

 596 
Figure 7. Spectral changes of corn planted area (a) and buildings (b) before and after SupReME 597 
reconstruction.  598 

 599 

 600 
Figure 8. Spectral characteristics of different pest levels in Sentinel-2 image (a) and UAV image (b). 601 

 602 

 603 
Figure 9. Classification of armyworm pests based on Sentinel-2 image. (a) is sentinel-2 true color map. (b) 604 
Classification result of armyworm pest levels. (c) sub-image of (b). 605 


