


sizes of 10 frames. It is unclear if learned video compres-
sion methods outperform standards under their more ad-
vanced (and most widely used) encoding settings.

In this work we aim to bridge the gap between the data
adaptivity and scalability of learned compression methods
and the performance and off-the-shelf decoding support of-
fered by standard codec implementations. To this end,
our proposed deep perceptual preprocessor (DPP) simply
prepends any standard video codec at inference, without re-
quiring any bespoke encoder of decoder component. The
key aspect of our proposal is that it offers rate-aware per-
ceptual improvement by encapsulating both perceptual and
�delity losses, as well as a motion-based rate loss that en-
capsulates the effect of motion-compensated prediction and
entropy coding. In addition, our trained DPP models re-
quire a single pass over the input andall encodings with
different standards-based encoders atvarious bitrates and
resolutionscan be subsequently applied to the DPP output.
Experiments versus state-of-the-art AVC, AV1 and Versa-
tile Video Coding (VVC) [13] encoders show that DPP al-
lows for 11% average reduction in bitrate without requiring
changes in encoding, streaming, or video decoding.

We summarize our contributions as follows:

1. We propose a deep perceptual preprocessor (DPP) that
preprocesses the input content prior to passing it to any
standard video codec, such as AVC, AV1 or VVC.

2. We train the DPP in an end-to-end manner by virtual-
izing key components of a standard codec with differ-
entiable approximations. We balance between percep-
tion and distortion by using an array of no-reference
and reference based loss functions.

3. We test our models under the most stringent testing
conditions: multi-resolution, multi-QP, convex-hull
optimization per clip and high-performance AVC, AV1
and VVC presets used extensively by Net�ix, Face-
book, Intel in several benchmark papers [18, 20, 19].

Visual comparisons of encoder versus DPP+encoder out-
puts are shown in Fig.1 (left), illustrating the visual quality
improvement that can be achieved at the same bitrate. Fig.1
(right) illustrates how DPP is able to offer consistent bitrate
savings across three video coding standards of increasing
sophistication and complexity, while its runtime overhead
diminishes in comparison to the encoding runtime.

2. Related Work

2.1. Compression

Recent work in learned image [2, 3, 33, 38] or video
[23, 12, 10, 34] compression tends to replace the entirety of
a standard transform coding pipeline with neural networks.

That is, a neural network-based encoder learns to transform
an image or videox into a latent vectory . The latent vec-
tor is quantized, yielding a discrete valued representationŷ ,
upon which rate is minimized via differential entropy com-
putation:

R = Eŷ log2 p(ŷ ) (1)

Given that quantization and prior densityp(ŷ ) estima-
tion for entropy computation are non-differentiable opera-
tions [2, 38], these are instead represented with continu-
ous approximations. The reconstructed image or videox̂
can thus be generated from̂y with a neural-network based
decoder. The error between the reconstructed inputx̂ and
original inputx can be minimized via a distortion measure
� , such as mean squared error (MSE) or mean absolute er-
ror (MAE):

D = Ex ;x̂ �( x ; x̂ ) (2)

The encoder and decoder thus constitute an (variational) au-
toencoder framework [2, 3, 10, 15], and this framework is
trained end-to-end to jointly optimize rate and distortion
with loss L = D + �R , where� is the Lagrange mul-
tiplier that controls the rate-distortion tradeoff [29]. In the
case where the prior density model is fully factorized, statis-
tical dependencies between elements ofẑ can be modelled
with a (scale) hyperprior [3, 10]; however, any additional
encoding bits must be transmitted as side information.

Contrary to recent methods in learned compression, stan-
dard image or video codecs typically adopt orthogonal lin-
ear transforms to the frequency domain, where the data
is decorrelated and easier to compress. While the trans-
form coef�cients are not necessarily data adaptive and can
exhibit strong joint dependencies [35, 36], the parameters
are exposed and can be �nely tuned. While learned video
compression has shown some promise for high-bitrate low-
delay video compression [23, 2, 3, 12, 34], standard codecs
like AVC and HEVC surpass all current methods in learned
video compression in terms of standard metrics like SSIM
and VMAF when the former are used with all their ad-
vanced prediction and entropy coding tools enabled [11].
In addition, more advanced encoder designs of the AO-
Media AV1 [14] and MPEG/ITU-T Versatile Video Cod-
ing (VVC) standards [39] now include neural components
for optimized encoding tool selection [14]. Such standards
allow for decoders on CPU-based commodity devices like
tablets and mobile phones and there is no need for bespoke
encoder or decoder components that require joint optimiza-
tion, as in recent proposals [9, 1].

2.2. Metrics

Performance of compression methods is typically eval-
uated by plotting rate-distortion curves. Rate is measured
in bits per pixel (bpp) or bits-per-second (bps) for video.
In recent work, distortion is typically evaluated in terms of









and single fully connected layer with 5 neurons. A soft-
max function maps the output to a distribution over human
ratings, or ACR distribution, ranging from from poor (1)
to excellent (5). To give the output layer access to multi-
scale and multi-semantic representations of the input, we
also global average pool intermediate layer activations and
concatenate the pooled activations over layers. The model is
thus trained to minimize the total variation distance between
predicted and reference human rating distributions. We note
that given that our perceptual model is trained on human-
rated RGB images, it is necessary in our perceptual prepro-
cessing framework to first convert the luminance frame p̂t
to RGB frame p̂RGB

t . We perform a transform from YUV
to RGB space by first concatenating p̂t with the lossless U
and V components of the RGB input, xRGB

t .

3.7. Loss Functions

Our overall objective is to train our preprocessing
F (xt; Θ) to perform perceptually-oriented rate-distortion
optimization on the decoded frame representations p̂t rel-
ative to the input video frames xt. Assuming the domain
shift between our virtual codec and standard video codec
is marginal, this should equate to optimizing the rate and
distortion of the decoded frames during deployment with
a standard video codec. To this end, we train the CNN
of the preprocessor end-to-end with the building blocks of
our DPP framework and a perceptual loss (LP), rate loss
(LR) and fidelity loss (LF) (as illustrated in Figure 2b).
The overall loss function for training the preprocessing can
thus be written as a weighted summation: L(xt, p̂t; Θ) =
γLP + λLR + LF, where γ and λ are the perceptual and
rate coefficients respectively. It is worth noting that con-
trary to neural encoders, where changing λ maps to a new
rate-distortion point, λ in this case shifts the entire rate-
distortion curve mapped over multiple QPs/CRFs - this be-
havior is illustrated in the ablation study on λ in the sup-
plementary. Given that we marginalize over QP, λ gives the
flexibility to explore the entire rate-distortion space.

Fidelity Loss, LF: In order to ensure a likeness be-
tween the input luminance frame xt and the perceptually
enhanced and rate constrained decoded frame representa-
tion p̂t, we train the preprocessing with a combination of
fidelity losses. As discussed by Zhao et al. [46], the L1 dis-
tance is good for preserving luminance, whereas multiscale
structural similarity (MS-SSIM) [41] is better at preserving
contrast in high frequency regions. Our fidelity loss can
thus be written as the summation:

LF(xt, p̂t; Θ) = Ext ,p̂t

[
αLL1(xt, p̂t; Θ)

+ β(1− LMS−SSIM(xt, p̂t; Θ)]
(6)

where LL1(xt, p̂t) = |xt − p̂t| and LMS−SSIM represents
the MS-SSIM function (as defined by Wang et al. [41]), and

α and β are hyperparameters which control the weighting
on structural versus luminance preservation.

Rate Loss, LR: The virtual codec rate loss LRs per DCT
sub-band s is defined on the divisively normalized trans-
form coefficients zt:

LRs (zt; Θ,Φ) = −Ezt

∑

n

(log2(p(zn,s,t; Φ(s))) (7)

where n runs over all spatial coordinates of each sub-band.
The final rate loss is simply the summation over all sub-
bands: LR =

∑S
s=1 LRs , where S = 16 for a 4 × 4 DCT.

The rate loss represents an approximation (upper bound) to
the actual rate required to encode the preprocessed frames.

Perceptual Loss, LP: We quantify perceptual quality
with our perceptual model P , which is pre-trained and
frozen during the DPP training. Essentially, we aim to
maximize the mean opinion scores (MOS) of our decoded
RGB frame representations p̂RGB

t , independent of the refer-
ence frame xRGB

t , but derived on the natural scene statistics
(NSS) learned from training the perceptual model on a cor-
pus of natural images. To this end, we minimize:

LP(p̂t; Θ) = −Ep̂t

5∑

i=1

i(P (p̂RGB
t )i) (8)

where the inner summation represents the predicted MOS
score, as the mean over the predicted ACR distributions.

4. Experimental Results

4.1. Implementation Details

The perceptual model P is first trained on Koniq-10k no-
reference IQA dataset [22] using stochastic gradient descent
with momentum set to 0.9 and an initial learning rate of
1×10−3. The perceptual model is then frozen and the deep
preprocessing framework is trained on Vimeo-90k dataset
[42] in an end-to-end manner, under the open loop con-
figuration illustrated in Figure 2b and loss function as de-
fined in Section 3.7. Let us denote Conv(f, c, r) as con-
volutional layers, with f being the kernel size, c the num-
ber of channels and r the dilation rate. The preprocessing
architecture can thus be expressed as: Conv(3, 16, 1) →
Conv(3, 16, 1) → Conv(3, 16, 2) → Conv(3, 16, 4) →
Conv(3, 16, 8) → Conv(3, 16, 1)→ Conv(3, 1, 1). Each
convolutional layer is followed by a parametric ReLu acti-
vation function and we train on 224× 224 fixed crop sizes.
During training we alternate between our inter and intra pre-
diction blocks; we follow a standard encoding pipeline and
default to inter prediction only, switching to intra predic-
tion for 1 mini-batch every 100 training iterations (i.e. in
correspondence to 1 I-frame every 100 P or B frames). The
local search space size M is fixed at 24. The network is



(a) MS-SSIM (b) PSNR

Figure 3: Proposed DPP+H264 and DPP+H265 versus
DVC [23] on the �rst 100 frames of HEVC Class B se-
quences. Points are plotted up to 0.12 bits per pixel (bpp).

trained with Adam optimizer and learning rate is decayed
when metrics saturate on the validation dataset. Finally, we
follow Zhao et. al [46] and �x hyperparameters� and �
to 0.2 and 0.8 respectively. For the core hyperparameters
that control the rate-perception-distortion tradeoff,� and ,
we �x  to 0:01 and vary� 2 [0:001; 0:01]. We present an
ablation of these parameters in the supplementary material.

At deployment, we only retain the part of the preprocess-
ing that comprises the learned pixel-to-pixel mapping; the
virtual codec is replaced with a standard video codec, with
the decoded frame perceptually enhanced and at the same
or lower bitrate than achievable without any preprocess-
ing. Importantly, we achieved real-time performance for
full-HD video (1080p@50fps) on a single NVIDIA Tesla
T4 GPU by porting our trained models to OpenCV CUDA
primitives and fp16 arithmetic. For CPU execution, by port-
ing our models to OpenVINO and quantizing them to int8,
we achieved real time for 1080p@60fps on 12 cores of an
Intel Cascade Lake CPU with no detriment in visual quality.

4.2. Experimental Setup for BDRate Results

We present a detailed evaluation of different models us-
ing standard 1080p XIPH and CDVL sequences1. Our an-
chor encoders comprise AVC/H.264, AV1 and VVC, utiliz-
ing the libx264, aomenc and vvenc open implementations of
these standards. We deliberately focus on a very-highly op-
timized encoding setup that is known to outperform all neu-
ral or run-of-the-mill proprietary video encoders by a large
margin [17, 11, 39, 9]. Our aim is to examine if DPP can
push the envelope of what is achievable today under some
of the most-advanced encoding conditions used in practice.

Our x264/AVC encoding recipe is: veryslow preset, tune
SSIM and multiple CRF values per resolution. Our aomenc
AV1 recipe is: two-pass encoding, CPU=5, `tune SSIM' or
`tune VMAF' preprocessing options, and multiple target bi-

1XIPH source material: https://media.xiph.org/video/derf/ and CDVL
material: https://www.cdvl.org/. See supplementary results for more de-
tails on exact sequences used.

trates per resolution2. Our vvenc recipe used the slow preset
and multiple CRFs per resolution. All encodings were pro-
duced using GOP size of 150 frames (128 for VVC) and
for multiple resolutions, ranging from the 1080p original
resolution all the way to 144p by using FFmpeg Lanczos
downscaling. All lower resolutions are upscaled with FFm-
peg bicubic to 1080p prior to quality measurements [21].
All Bjontegaard delta-rates (BD-rates) [6] are produced by
�rst �nding the subset of monotonically-increasing bitrate-
quality points that are in the convex hull of the quality-
bitrate curve, and then using the Net�ix libvmaf reposi-
tory [21] to measure SSIM,VMAF NEG, VMAF and BD-
rates. The convex hull is computed over all resolutions,
CRFs/bitrates and multiple rate coef�cients� , such that, per
metric, we obtain a single RD-curve for both the codec and
our proposed DPP+codec. Full details of this convex hull
optimization, along with the utilized encoding recipes can
be found in the supplementary.

4.3. Comparison Against Neural Encoders

Before moving to our main results, we present a short
comparison against neural encoders, selecting the recently-
proposed DVC framework [23] as a representative candi-
date of the state-of-the-art. Such neural encoders have
been shown to outperform AVC and HEVC when the lat-
ter are using: no B slices, `veryfast' preset, low-latency
mode (which disables most advanced temporal prediction
tools), and very small GOP sizes of 10 or 12 frames. How-
ever, they are not able to approach the performance of these
hybrid encoders, or indeed that of our framework under
the state-of-the-art experimental setup of Section4.2. This
is evident in the example results of Fig.3, where DVC
is very substantially outperformed in terms of bitrate vs.
PSNR and MS-SSIM (the metrics used in their work) by
both DPP+AVC/H.264 and DPP+HEVC/H.265 under our
encoding recipe.

4.4. BDRate Results with H.264/AVC and AV1

The results of Fig. 4 and Table1 and Table2 show
that the average rate saving over VMAF,VMAF NEG and
SSIM for both H.264 and AV1 standards is just above
11%. As expected, our gains are higher on metrics that
are increasingly perception-oriented rather than distortion-
oriented: on VMAF, our framework offers 18% to 25% sav-
ing; onVMAF NEG, they are between 7% to 11% and on
SSIM they are 1% to 3%. This makes the average BD-rate
of all three metrics a reliable estimate of the bitrate sav-
ing that can be offered in practice, since this average is
in�uenced by performance in both distortion (SSIM) and
perception-oriented dimensions (VMAF andVMAF NEG).

2We note that preprocessing techniques such as `tune VMAF' and `tune
SSIM` operate in-loop, i.e., within a speci�c encoder. As such, our method
can offer gains on top of them.



Figure 4: Rate distortion curves for 16 XIPH sequences (top row) and 24 CDVL sequences (bottom row) on VMAF,
VMAF NEG and SSIM respectively. Curves are plotted for the codec and for our proposed DPP+codec. The corresponding
BD rates for our method are reported in Tables1 and2, respectively, for each dataset.

VMAF VMA G NEG SSIM

DPP+H264+tune ssim -18.57 -11.37 -2.93

DPP+AV1+tune ssim -22.03 -10.64 -2.45
DPP+AV1+tune vmaf -19.44 -7.98 -2.23

DPP+VVC -17.08 -4.71 -4.55

Table 1: BD rates on 16 XIPH sequences for DPP+
H264, DPP+AV1 (with perceptual settingstune ssim and
tune vmaf) and DPP+VVC. More negative=more saving.

4.5. BDRate Results with VVC

We report BD-rate savings for VVC in Table1 and Table
2. The average saving over all three metrics is 8.7%. The
fact that our framework offers consistent savings over vvenc
further illustrates the validity of DPP across encoders, en-
coding recipes, and convex-hull rate-distortion optimized
encoding [17], which is summarized in Fig.1 (right).

5. Conclusion

We propose deep perceptual preprocessing (DPP) as the
means of generating a perceptually-enhanced, rate-aware
representation of each input frame via a learnable prepro-
cessing framework. DPP models the building blocks of a
standard video encoder in order to optimize the proposed

VMAF VMA G NEG SSIM

DPP+H264+tune ssim -19.80 -11.41 -2.73

DPP+AV1+tune ssim -25.23 -11.41 -2.47
DPP+AV1+tune vmaf -24.96 -8.20 -1.20

DPP+VVC -18.56 -4.93 -2.54

Table 2: BD rates on 24 CDVL sequences for DPP+
H264, DPP+AV1 (with perceptual settingstune ssim and
tune vmaf) and DPP+VVC. More negative=more saving.

preprocessing for rate, distortion and perceptual quality in
an end-to-end differentiable manner. At inference, only the
preprocessor is deployed to carry out a single pass through
each frame prior to any standard encoder. Our frame-
work delivers consistent gains for three quality metrics with
different perception-distortion characteristics and for three
very different encoders used at their performance limits. It
is also easily deployable as it attains real time performance
on commodity hardware without requiring any changes in
encoding, streaming or video decoding at the client side.
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