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Abstract 
 

Drug susceptibility testing of M. tuberculosis is rooted in a binary susceptible/resistant paradigm. 

Whilst there are considerable advantages in measuring the minimum inhibitory concentrations (MICs) 

of a panel of drugs for an isolate it is necessary to measure the epidemiological cutoff values 

(ECOFF/ECVs) to permit comparison with qualitative data. Here we present ECOFF/ECVs for 13 anti-

TB compounds, including bedaquiline and delamanid, derived from 20,637 clinical isolates collected 

by 14 laboratories based in 11 countries on five continents. Each isolate was incubated for 14 days on 

a dry 96-well broth microdilution plate and then read. Resistance to most of the drugs due to prior 

exposure is expected and the MIC distributions for many of the compounds are complex and 

therefore a phenotypically wild-type population could not be defined. Since a majority of samples also 

underwent genetic sequencing, we defined a genotypically wild-type population and measured the 

MIC of the 99th percentile by direct measurement and via fitting a Gaussian using interval regression. 

The proposed ECOFF/ECV values were then validated by comparing to the MIC distributions of high-

confidence genetic variants that confer resistance and to qualitative drug susceptibility tests obtained 

via Mycobacterial Growth Indicator Tube and the Microscopic-Observation Drug-Susceptibility assay. 

These ECOFF/ECV values will inform and encourage the more widespread adoption of broth 

microdilution – this is a cheap culture-based method that tests the susceptibility of 12-14 antibiotics on 

a single 96-well plate and so could help personalise the treatment of tuberculosis. 

 

 
1 Corresponding author: philip.fowler@ndm.ox.ac.uk. For a list of all members of the CRyPTIC 
Consortium and their affiliations please see the section at the end of this manuscript. 
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INTRODUCTION 
Mycobacterium tuberculosis kills more people worldwide than any other single pathogen, SARS-

CoV-2 excepted (1). Despite its impact on global health, antibiotic susceptibility testing (AST) for 
M. tuberculosis, has lagged behind other bacterial diseases due to its slow growth rate, difficulty 

in culturing and its low prevalence in high-income countries. The consequence is that most 

patients in the world receive empiric, or semi-empiric, treatment, which reduces the chance of 

treatment success and risks the amplification of resistance where too few effective drugs are 

prescribed.  
 

The dramatic reduction in genetic sequencing costs has enabled genetics-based AST where the 

genome of a pathogen is sequenced and then examined for known variants that confer 

resistance to specific antibiotics. M. tuberculosis is well-suited to this approach (2–10), and 

several public health bodies have adopted whole genome sequencing as their standard AST 
method (11). Although PCR platforms can deliver universal antibiotic susceptibility testing in its 

narrowly defined sense (12), genome sequencing is the only approach that can realistically 

deliver comprehensive AST in settings where phenotyping remains too expensive and too 

infrastructure dependent, and comprehensive AST is the only way to optimise treatment 

regimens and outcomes.  
 

The Comprehensive Research Prediction for Tuberculosis: an International Consortium 

(CRyPTIC) research project has collected 20,637 clinical M. tuberculosis samples from across 

the world. The primary aim of the project is to identify mutations in the M. tuberculosis genome 

that confer phenotypic resistance to a wide range of antibiotics. The CRyPTIC project measured 
minimum inhibitory concentrations (MIC) of each drug to permit quantitative analyses, 

associating mutations with MIC values with a view to using genome sequencing data to 

personalise drug regimens and doses. From the start the CRyPTIC project has taken a data-

driven approach whereby all analyses are algorithmic, hence the allocation of a sample to 

subgroup requires little or no expert, and hence subjective, intervention. This has the virtue of 
ensuring the results are reproducible. 

 

The most practical and affordable means of determining MICs at scale was to use a pre-

prepared 96-well 7H9 broth microdilution plate based on the Thermo Fischer Sensititre MYCOTB 

MIC plate (13–18), but including the new or repurposed antibiotics that feature in current WHO 
guidance (19). The CRyPTIC project designed a variant of the MYCOTB plate, called UKMYC5, 

that contains fourteen antibiotics, including bedaquiline, delamanid, clofazimine and linezolid but 

not pyrazinamide (Fig. 1A). Based on a multi-laboratory study that examined the inter- and intra-
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laboratory reproducibility of the UKMYC5 plate and determined the optimum reading methods 

and incubation period (17), CRyPTIC subsequently modified the design by removing para-

aminosalicylic acid and extending/changing the concentration of certain drugs, leading to the 13-
drug UKMYC6 plate (Fig. 1B).  

 

In this paper we propose epidemiological cut-off values (ECVs or ECOFFs) for the UKMYC 

series of plates to enable subsequent research on this dataset. The ECOFF is the highest MIC 

observed within a phenotypically wild-type population,  usually defined as the MIC which 
encompasses 99% of that population (20), and allows interpretation of an MIC value as 

‘susceptible or ‘resistant’ – crucial to the decision on whether to prescribe a drug. The standard 

approach requires uncensored MICs and assumes that the phenotypic wild-type population can 

be readily identified, either because the population has been minimally exposed to the drug, or 

because the MIC distribution is strongly bimodal. These conditions are not universally met in our 
dataset and we shall therefore identify a genotypically wild-type population from which we can 

either measure the ECOFF/ECV directly or via a Gaussian fitted using interval regression, a 

statistical technique that can fit to censored data. We have made Python code publicly available 

that enables anyone to reproduce most of the figures and tables in a web browser window (21). 

Although ECOFF/ECVs have been proposed for the MYCOTB microdilution plate using 385 
strains from South Africa (22), we are here able to draw upon a far larger and more 

geographically diverse M. tuberculosis dataset. 
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RESULTS 
AST was performed on 20,637 isolates to 13 anti-TB drugs using either the UKMYC6 (12,672, 

61%) or the UKMYC5 (7,965, 39%) plate design (Table 1, Fig. 1A & B).  These data were 
generated in fourteen CRyPTIC laboratories based in eleven countries on five continents (Fig. 

1C, Table S1). The isolates themselves were collected from 27 countries, with 19 countries 

contributing ten or more, and 15 countries contributing 100 or more isolates (Table S2). Due to 

differences between the laboratories, it was not possible to collect clinical outcome data for the 

samples. Quality control processes detected that one laboratory developed a problem inoculating 
the plates – these plates were removed – and that another laboratory never managed to 

inoculate successfully: all their plates were excluded. Excluded these left 17,054 plates.  

 

Of these 12,362 also had their whole genome sequenced (Methods, Table 1), allowing us to infer 

species and lineage information using SNP-IT (23). All isolates belonged to the Mycobacterium 
tuberculosis complex (MBTC), with the majority (12,348, 99.9%) confirmed as M. tuberculosis 

(Table S3), of which the majority belonged to either Lineage 2 (35%) or 4 (50%, Table S4) with 

the expected geographic distribution (Table S5, Fig. S1) (24).  

 
Table 1. The number of isolates collected, split by the two microtitre plate designs used. An asterisk 
indicates that this is the average number of plates across all drugs. This table can be reproduced 
(21). 

 Total  UKMYC6 UKMYC5 

Isolates collected 20,637 12,672 7,965 

Readable plates 17,054 10,010 7,044 

Readable plates with images 15,138 9,272 5,866 

Readable plates with genetics 12,362 6,019 6,343 

Readable plates with genetics and images 10,938 5,552 5,386 

Readable plates with images and passing quality assurance  *11,801 *6,896 *4,904 

Readable plates with genetics, images and passing quality 
assurance  

*8,553 *4,027 *4,526 

Readable plates with genetic, images, passing quality assurance 
and genotypically wild-type 

*3,328 *1,606 *1,722 
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A previous study demonstrated that MICs measured by a single laboratory scientist after 14 days 

incubation of the UKMYC5 plate using either a Thermo Fisher Vizion instrument or a mirrored-

box were reproducible and accurate (17). As a further reproducibility check we pooled the MIC 
measurements of the H37Rv reference strain that were taken as part of our quality control 

process (Fig. S2, Table S6); the histograms for both UKMYC plates showed that the majority of 

MICs measured by the laboratory scientists for many, but not all, of the drugs lay within one 

doubling dilution of the mode.  Since the magnitude of MIC measurement error is anticipated to 

be much greater than the error in the genetic sequencing, we constructed an MIC quality 
assurance (QA) process to minimize the measurement error of the MICs (Fig. S3). This 

measured each MIC using up to three independent methods and only MICs where two of these 

Figure 1. The CRyPTIC consortium has collected 20,637 clinical tuberculosis samples 
worldwide. The layout and concentrations of the anti-TB drugs on the (A) UKMYC6 and (B) 
UKMYC5 microdilution 96-well plates. All concentrations are in mg/L and for clarity only the first 
and last concentration in each doubling series are given. The two unlabelled wells in the bottom 
right-hand corner contain no antibiotic and are therefore positive controls. Note that all doubling 
dilution series are based around 1 mg/L with the exception of isoniazid which is based around 0.1 

mg/L. (C) Fourteen laboratories from 11 countries collected data from 27 countries. Each country 
is coloured depending on the number of originating samples using a logarithmic scale. 
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methods concur are allowed into the final dataset. Overall, 77% of all MIC measurements passed 

the MIC QA process. 

 

The MIC histograms are different for different drugs 

As expected, the MIC histograms differ between drugs (Fig. 2, S5, S6); the MICs for some 
compounds form bimodal distributions (INH, KAN, AMI, RIF, RFB) and therefore conform to the 

classical binary paradigm whereby an isolate is either `resistant' or `susceptible'. CRyPTIC 

aimed for half the isolates collected to be multi-drug resistant (MDR) and the MIC histograms for 

isoniazid and rifampicin are consistent with this. Given this bias towards MDR in the dataset, one 

would expect appreciable resistance to ethambutol, ethionamide, both fluoroquinolones and both 
aminoglycosides. Both drugs belonging to the latter class indeed have a subset of isolates with 

very high MICs. The MIC histograms for the remaining compounds (EMB, ETH, MXF, LEV) are 

not bimodal hence it is unclear whether they can be adequately described by two log-normal 

distributions. Since the remaining drugs on the plates (BDQ, DLM, CFZ, LZD) have not yet been 

widely used, and for some countries were not even available to treat tuberculosis, one expects 
little resistance in the dataset and hence it is likely these MIC histograms are ‘phenotypically 

wild-type’ (pWT). All the MIC histograms are truncated/censored at either one or both ends, and 

some are severely truncated with the mode MIC occurring in the lowest dilution (AMI, RFB, 

DLM). Our large dataset allows us to use reproducible, algorithmic approaches for estimating the 

99th percentile of the wild-type population.  
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Figure 2. The MIC histograms for the 13 antibiotics on the UKMYC6 plate. Only MICs which have 
passed the quality assurance process described in the Methods are shown. ECOFFinder was used to 
fit a log-normal distribution to each histogram; this is drawn in blue and the resulting 99th percentile is 
labelled. ECOFFinder was unable to fit a log-normal to both rifampicin (RIF) and rifabutin (RFB). See 
Fig. S6 for the UKYMYC5 histograms and the Supplemental Information for the numerical data. The 
histograms can be reproduced online (21). 

Iteratively fitting a log-normal distribution  

ECOFFinder is a heuristic approach that attempts to iteratively fit a log-normal distribution to the 

MIC histogram and is recommended by both EUCAST (20, 25) and the CLSI. EUCAST advise 

that ECOFFinder should not be applied to truncated data, but we here we apply it to demonstrate 

how it performs for different levels of censored data. Distributions derived using ECOFFinder 
(Fig. 2, S6 & Table 2) describe our data well where the MIC histogram is minimally truncated 

(ETH, LZD, BDQ), however where the MIC histogram is heavily truncated (AMI, RFB, DLM) the 

resulting log-normal distribution does not fit the MIC histogram, and where the mode MIC is 
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resistant (RIF) it fails to perform a fit at all. In addition, since ECOFFinder requires a single 

consistent MIC distribution and our dataset is composed of two plate designs, two ECOFF/ECVs 

are returned for each drug. For many drugs these are very similar but for ethambutol and 
delamanid the estimates are almost a doubling dilution different.  

 

To overcome the problem that our MIC histograms are truncated we applied interval regression – 

an established statistical method for fitting normal distributions to truncated data (26, 27) which, 

unlike conventional maximum-likelihood algorithms, takes into account that observations are 
properly represented by intervals. The entire dataset containing measurements from both plate 

designs can then be considered simultaneously, resulting in a single pair of log-normal 

distributions that describe the MIC histograms on both plate designs (Fig. S7). The model fails to 

converge for kanamycin and ethambutol and for several drugs the second distribution has a 

variance much larger than the MIC range which is nonsensical (AMI, ETH, RFB, CFZ, LZD, 
DLM, BDQ), although for the new- and repurposed compounds this is understandable since we 

do not expect many resistant isolates. Where the two distributions describe the data reasonably 

well (INH, RIF, MXF, LEV), they are well-separated, as defined by the 99th percentile of the lower 

distribution (ECOFF/ECV) being smaller than the 1st percentile of the upper distribution (the non-

wild-type cut-off value, NCOFF), with the exception of isoniazid where NCOFF < ECOFF.  
 

Defining a genotypically wild-type population 

Using these approaches we were not able to produce acceptable results when the MIC 
histogram is truncated and/or is not clearly bimodal. In the latter case it is probable that the 

overall MIC histogram is a convolution of several smaller, narrower distributions. Genetics offers 

a way to disentangle these sub-populations: one can predict genetically the susceptibility of 

strains to most, but not all, of the 13 anti-TB compounds of interest (6–8). Note that we were 

unable to use the newer and more comprehensive genetic catalogue released by the WHO since 
its derivation set included these samples (9, 10). We predicted the antibiogram for the first-line 

(INH, RIF, EMB and also PZA – see below) and second-line (AMI, KAN, LEV, MXF, ETH) 

compounds (Methods). No predictions were made for the other anti-TB compounds on the plate 

since the association between genetics and their resistance is poorly understood at present. 

 
We defined an isolate as being genotypically wild-type (gWT) if it is predicted to be susceptible to 

the four first-line compounds and not resistant to the second-line compounds (see ref (6) for the 

distinction). The laxer criterion for the second-line compounds allowed for the fact that our 

understanding for these drugs is less complete. Epidemiologically, it is the case that if an isolate 

is susceptible to all four first-line antibiotics, it is also likely to be susceptible to second-line 
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antibiotics (except perhaps for prior fluoroquinolone exposure or deeply rooted second-line 

resistance mutations). To contribute a laboratory had to have collected susceptible samples 

which had undergone whole genome sequencing and also had a high quality photograph taken 
of the UKMYC plate after 14 days incubation so we could run the QA process. As a result 

isolates from only nine CRyPTIC laboratories made up this dataset (Table S8) and the number of 

confirmed MICs varied between 2,594 and 4,078 by drug, with a mean of 3,263 (Table S9). 

Visually, the resulting MIC histograms are simpler and more likely to be adequately described by 

a single log-normal distribution (Fig. S8).  
 

Directly measuring the ECOFF/ECV from the gWT population 

Directly determining the MIC of the 99th percentile from the gWT wild-type population is an 
attractive option since it requires no further assumptions. This is not usually possible since 

typically either one cannot discern the wild-type population and/or there are an insufficient 

number of isolates. The large size of our dataset and the inclusion of genetic information enables 

us to directly measure the ECOFF/ECV (Fig. 3, S9). Our dataset is enriched for resistance, 

hence the proportion of resistant samples misclassified as susceptible due to sample 
mislabelling is likely to be of the order of a few percentage points, even after we have removed 

some putative mislabelled samples (Methods). This makes directly identifying the 99th percentile 

challenging, hence we shall also consider the 97.5th and 95th percentiles. 

 

All three percentiles for the MIC histograms of the gWT population are at most two doubling 
dilutions apart, except for levofloxacin (UKMYC5) and isoniazid (UKMYC6). The latter has an 

appreciable number of isolates that, despite being classified as gWT, have elevated MICs. These 

are likely due to some remaining samples that were mislabelled and illustrates the difficulty in 

using the 99th percentile to define an ECOFF/ECV due to its sensitivity to errors in the dataset, 

especially when the prevalence of resistance is high, as in the case for isoniazid in our dataset. 
We shall take forward the values for the 99th percentiles (Table 2) but will bear in mind that a 

high amount of variation may indicate strain mis-labelling. 
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Figure 3. Directly measuring the ECOFF/ECVs from the gWT population on the UKMYC6 plate. To 
illustrate the sensitivity to the precise percentile used in the definition, the 95th, 97.5th and 99th 
percentiles are all shown. The analysis and figure can be reproduced (21). 

 

Interval regression takes account of the truncated distributions 

To avoid the identification of the 99th percentile being disproportionately affected by a small 

number of mislabelled resistant samples one usually fits a log-normal distribution to the pWT 

(here gWT) population and then calculate from the resulting function the MIC of the 99th 

percentile. We cannot apply ECOFFinder here since its heuristic requires the presence of non-
susceptible isolates in the distribution so we instead simultaneously fit a single log-normal 

distribution using interval regression to the MIC histograms from both plate designs (Fig. 4, S10, 

Table 2). With the exceptions of isoniazid, rifabutin and delamanid, the resulting log-normal 

distributions describe the MIC histograms well, even when there is moderate truncation due to 

the plate design. The rifabutin MIC distribution is, however, extremely truncated, and hence there 
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are insufficient data to perform a fit - the concentration range for this drug should be lowered in 

future designs.  

 

 
Figure 4. Interval regression is able to fit a log-normal distribution to the MIC histograms of the 
genotypically wild-type isolates for all 13 drugs on the UKMYC6 plate. Data from both plate designs 
were considered simultaneously, hence the resulting distributions are those the algorithm considers to 
best describe both the UKMYC5 (Fig. S10) and UKMYC6 data sets. See the Supplemental 
Information for the numerical data. The data can be reproduced (21). 
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Table 2. The 99th percentiles of the wild-type population as determined by three different algorithmic 
approaches and the resulting proposed ECOFF/ECVs for the thirteen drugs on the UKMYC6/5 plates. 

Drug 
ECOFFfinder 

(mg/L) 
Direct measurement on 

the gWT (mg/L) 
Interval regression 

on gWT (mg/L) 

Proposed 
ECOFF/ 
ECVs 
(mg/L) 

  UKMYC6 UKMYC5 UKMYC6 UKMYC5 Both  

Isoniazid INH 0.06 - 1.6 0.1 0.25 0.1 

Rifampicin RIF - 0.08 0.5 0.25 0.52 0.5 

Ethambutol EMB 2.1 4.0 4 4 3.7 4 

Moxifloxacin MXF 0.74 0.75 1 2 1.4 1 

Levofloxacin LEV 0.63 0.72 1 4 1.3 1 

Kanamycin KAN 3.1 2.9 8 4 7.0 4 

Amikacin AMI 0.34 0.31 1 1 1.6 1 

Ethionamide ETH 3.1 3.0 4 4 4.0 4 

Rifabutin RFB - - 0.12 0.12 0.09 0.12 

Clofazimine CFZ 0.12 0.078 0.25 0.5 0.34 0.25 

Linezolid LZD 0.81 0.95 1 1 1.6 1 

Delamanid DLM 0.010 0.019   0.12 0.12 0.11 0.12 

Bedaquiline BDQ 0.11 0.11 0.25 0.25 0.20 0.25 

 

Proposed ECOFF/ECV values 

We infer that direct measurement is the most reliable method since it makes the fewest 
assumptions. However for drugs where there is variation of more than a doubling dilution 

between the 95th, 97.5th and 99th percentiles, which may indicate the gWT population includes a 

small but unknown number of isolates with elevated MICs, we shall place greater weight on the 

result obtained by interval regression. When the MIC histogram is not heavily truncated, we shall 

also include the 99th percentile reported by ECOFFinder. Note that to convert an MIC that is 
reported as a real number into an ECOFF/ECV it should be rounded up to the next value in the 

doubling dilution series. All these data and the resulting ECOFF/ECV values are shown in Fig. 5 

& Table 2. 
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Figure 5. The 99th percentiles of the wild-type populations for the 13 drugs on the (A) UKMYC6 and 
(B) UKMYC5 plate designs as calculated by ECOFFinder, direct measurement and interval 
regression. The ECOFF/ECV values are drawn on each graph as a horizontal line. 
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The 99th percentile determined by direct measurement for isoniazid for the UKMYC6 dataset was 

discounted due to the large range of MICs spanned by the percentiles – this is most likely due to 

resistant samples mis-identified as susceptible due to laboratory mislabelling. INH has the 
highest prevalence of resistance in the dataset, hence would be affected most. Our starting point 

is therefore the corresponding value for the UKMYC5 dataset (0.1 mg/L). The ECOFFfinder 

results were ignored for INH since the gWT MIC histogram is truncated on both plate designs 

and hence the fits were poor. Visually the gWT MIC histograms (Fig. S8) do not appear to follow 

a log-normal distribution and consequently interval regression over-estimates the 99th percentile 
(Fig. 4, S10). The ECOFF/ECV of 0.1 mg/L for Isoniazid is therefore less well supported than the 

ECOFFs for the remaining drugs. 

 

Direct measurement of the 99th percentiles for rifampicin were 0.5 and 0.25 mg/L for the 

UKMYC6 and UKMYC5 datasets, respectively. Again, ECOFFinder was not used due to 
concerns about truncation. Visually the gWT MIC histogram appears more normal in character 

and the 99th percentile derived from the interval regression fit is 0.52 mg/L. Our proposed 

consensus ECOFF/ECV for rifampicin is hence 0.5 mg/L. Direct measurement produced a 

consistent value of 4 mg/L for ethambutol which is supported by interval regression and 

ECOFFinder for the UKMYC5 dataset (the concentration range on the UKMYC6 plate was more 
truncated). Both fluoroquinolones behaved similarly: direct measurement gave a value of 1 mg/L 

for the 99th percentile for both compounds for the UKMYC6 dataset, but 2 mg/L and 4 mg/L for 

the UKMYC5 dataset (MXF and LEV, respectively). These values for the latter dataset were very 

sensitive to the exact percentile used in the definition (Fig. S9), again suggesting that these gWT 
populations may contain a small number of mislabelled resistant samples. Both drugs have the 

same concentration range on both plate designs, are only moderately truncated and hence 

ECOFFinder would be expected to give reasonable results. These, along with the result of the 

interval regression (Fig. 5), result in an ECOFF/ECV of 1 mg/L for both fluoroquinolones. 

 
Direct measurement indicates the 99th percentile for kanamycin is 8 mg/L and 4 mg/L for the 

UKMYC6 and UKMYC5 datasets, respectively, whilst it produces the consistent value of 1 mg/L 

for amikacin. The MIC histogram of the latter is too truncated for ECOFFinder to function 

correctly and visually the log-normal fitted by interval regression appears to have over-estimated 

the 99th percentile as 1.6 mg/L, hence we propose and ECOFF/ECV for amikacin of 1 mg/L. The 
kanamycin MIC histograms are less truncated and interval regression better describes the gWT 

population; these data support an ECOFF/ECV of 4 mg/L for kanamycin. For ethionamide direct 

measurement produces a consistent value of 4 mg/L which is supported by interval regression 

and ECOFFinder. The MIC histogram of rifabutin is extremely truncated and hence only direct 
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measurement is likely to be effective; it estimates that 0.12 mg/L to be the 99th percentile for both 

datasets, which is therefore our ECOFF/ECV. 

 
Direct measurement yields consistent values of 0.25 mg/L and 1 mg/L for bedaquline and 

linezolid respectively, with each supported by both interval regression and ECOFFinder. Our 

ECOFF/ECV for delamanid is 0.12 mg/L since this is the direct measurement which is the same 

for both datasets and it is supported by interval regression. Lastly, direct measurement for 

clofazimine suggests the 99th percentiles are 0.25 mg/L and 0.5 mg/L for the UKMYC6 and 
UKMYC5 datasets, respectively. The latter has more variation and hence we propose its 

ECOFF/ECV is 0.25 mg/L. 

 

Comparison against genetic variants known to confer resistance 

Using the subset of the isolates with genetic information, we can examine our proposed 

ECOFF/ECVs by plotting the MIC histograms of several genetic variants that are widely 

accepted to confer resistance to key anti-TB drugs (Fig. 6 & S11). The rpoB S450L and katG 

S315T single nucleotide polymorphisms substantially increase the MICs of rifampicin and 
isoniazid, respectively, and the majority (96.9% & 99.5%) of isolates with these mutations had 

MICs greater than the ECOFF/ECV. The c-15t mutation in the promoter of the fabG1/inhA 

operon was associated with borderline (0.2 mg/L) isoniazid MICs unless present in combination 

with a katG S315T mutation (MIC >1.6 mg/L), as observed elsewhere (22, 28). It is likely that this 

promoter mutation, and others like it, are responsible for the small peak in the MIC histogram 
observed for isoniazid at 0.2 mg/L.  

 

Substituting isoleucine or valine at position 306 in the embB gene was associated with elevated 

ethambutol MICs, however, the increase in MIC is much less than observed for either of the 

rifampicin or isoniazid resistance-conferring mutations mentioned above, leading to only 58.3% 
and 39.6% of isolates containing these mutations, respectively, having an MIC above the 

ECOFF/ECV. This is expected since it is known that isolates containing these variants can have 

variable or discordant MGIT results (29). For both fluoroquinolones, the gyrA D94G mutation 

increases the MIC more than the gyrA A90V mutation (30), however for levofloxacin the wild-type 

and non wild-type populations appear slightly better separated with the result that for these 
mutations 90.0% & 90.7% of isolates lie above the ECOFF/ECV whilst for moxifloxacin the 

equivalent values are 87.0% & 58.2%. The majority of isolates (90.7% & 89.3%) with the a1401g 

mutation in the rrs gene have an MIC above the ECOFF/ECV for kanamycin and amikacin, 

respectively. Finally, whilst the c-15t mutation in the promoter of the fabG1/inhA operon 
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increases the MIC of ethionamide more than it does isoniazid, only 80.4% of isolates with this 

variant lie above the ECOFF/ECV. 

 
 

 
Figure 6. The MICs of isolates containing genetic variants known to confer resistance to different 
drugs tend to lie above the ECOFF/ECV on the UKMYC6 plate. The number of isolates lying above 
and below the ECOFF/ECV is annotated. The dashed line indicates the margin of a proposed 
‘borderline’ category for isoniazid, ethambutol and ethionamide. The same analysis has been 
repeated on the UKMYC5 dataset (Fig. S11) and can be reproduced (21). 

A role for a Borderline category? 

The ECOFF/ECV merely defines an MIC below which the majority of the ‘wild-type’ isolates 
should lie. It does not necessarily follow that the majority of non wild-type isolates have an MIC 

above the ECOFF/ECV and therefore care needs to be taken when using an ECOFF/ECV to 

define susceptibility and resistance. Although for most drugs an MIC below or equal to the 

ECOFF/ECV can be categorised as ‘susceptible’ and those with MICs above the ECOFF/ECV 

are ‘resistant’, the MIC histograms of isoniazid, ethambutol and ethionamide are more complex. 
There is genetic evidence (Fig. 6) that this is due to a multitude of genetic variants, each with a 
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different effect on the MIC. We therefore propose a third category, ‘borderline’, for isoniazid, 

ethambutol and ethionamide (Fig. 6, Table 3). 

 
Table 3. The proposed ECOFF/ECV values and suggested borderline MICs for three compounds.  

Drug ECOFF/ECV 
(mg/L) 

Borderline 
(mg/L) 

Isoniazid INH 0.1 0.2, 0.4 

Rifampicin RIF 0.5 - 

Ethambutol EMB 4 4 

Moxifloxacin MXF 1 - 

Levofloxacin LEV 1 - 

Kanamycin KAN 4 - 

Amikacin AMI 1 - 

Ethionamide ETH 4 4 

Rifabutin RFB 0.12 - 

Clofazimine CFZ 0.25 - 

Linezolid LZD 1  

Delamanid DLM 0.12 - 

Bedaquiline BDQ 0.25 - 

 

Validation by comparison to MGIT and MODS results 

The resistance of a subset of isolates was independently tested to a range of compounds using 

either the Mycobacteria Growth Indicator Tube (MGIT) system or the microscopic-observation 
drug-susceptibility (MODS) assay (31). We can therefore validate our MIC-based categorisation 

by directly comparing between the binary (or ternary) phenotype derived from an MIC and the 

result from one of these well-established clinical microbiology methods (Fig. 7 & S12, Table 

S10).  

 
The agreement between MGIT and UKMYC is good, with a sensitivity of 93.4% and a specificity 

of 97.0% (Table S10). Since the borderline category lies above the ECOFF/ECV, it is interpreted 

as providing a way of discriminating between isolates with a moderately elevated MIC and those 

with a high MIC. For rifampicin, the agreement between MGIT and UKMYC is excellent with a 

sensitivity of 96.5% and a specificity of 96.6%. The borderline category for ethambutol provides a 
“buffer zone” since isolates with an MIC of 4 mg/L are only 70.4% resistant according to MGIT. 

Ignoring these isolates, the sensitivities and specificities are 91.4% and 91.9%, respectively, for 
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ethambutol. Since the ‘borderline’ category in this case lies below the ECOFF/ECV, these 

isolates would otherwise be classified as ‘susceptible’ but in reality have a mixed character. 

Hence not assigning a borderline category would result in the sensitivities and specificities 
becoming 72.8% and 92.5%, respectively.  

 

The aminoglycosides behave similarly to one another with sensitivities and specificities of 76.2% 

and 99.1% for kanamycin and 84.3% and 99.3% for amikacin, respectively. The ‘borderline’ 

category for ethionamide (MIC of 4 mg/L) are 79.4% resistant according to MGIT. Excluding 
these isolates, the sensitivity is 63.0% and 97.0%, respectively. Limited number of isolates were 

tested for moxifloxacin or levofloxacin resistance using MGIT (Fig. S12). Although large number 

of isolates were tested for clofazimine and linezolid resistance by MGIT (Fig. S12), the low 

prevalence of resistance ensures no useful conclusions can be drawn.

 
 

Figure 7. The binary (or ternary) classification derived from the MIC using the ECOFF/ECVs and 
MIC-based categorisation in Table 3 agrees well with MGIT results for the samples for (A) isoniazid, 
(B) rifampicin, (C) ethambutol, (D) kanamycin, (E) amkacin and (F) ethionamide. These data and 
figures can be reproduced (21). 
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A different set of samples were tested in parallel using the MODS assay (Fig. S13, Table S11). 

The sensitivities and specificities for isoniazid (n=1,888) and rifampicin (n=1,857) were 95.3% & 

98.9% and 95.1% & 99.2%, respectively. 
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DISCUSSION 
We have proposed epidemiological cut-offs (ECOFF/ECVs) for research-use for 13 different anti-

TB compounds for the UKMYC series of broth microdilution plates using an aggregated dataset 
of 20,637 tuberculosis samples collected worldwide by 14 CRyPTIC laboratories based in 11 

countries on five continents. The UKMYC6 plate design (Fig. 1B) not only contain the first-line 

drugs rifampicin, isoniazid and ethambutol, but also all of the Group A drugs, one of the two 

Group B compounds (clofazimine) and five of the seven Group C medicines recommended by 

the World Health Organisation for treating cases of multi-drug resistant tuberculosis (19). As 
such these plates offer near comprehensive phenotypic AST as well as a standardised, scalable 

phenotype that, once analysed with linked genomic data, will inform clinical decisions where 

routine diagnostics switch to genome sequencing.  

 

We caution that whilst the ECOFF/ECVs proposed herein have been derived using the largest 
collection of M. tuberculosis samples to date, the methods do not conform with those laid out by 

EUCAST. That said, our analyses illustrate that the EUCAST definition of an ECOFF/ECV as the 

99th percentile of the wild-type population (20) is difficult to apply in practice since firstly it is not 

always possible to define which isolates are phenotypically wild-type without engaging in a 

circular argument. We were able to avoid this here by defining a genotypically wild-type (gWT) 
population. The second problem is that using the 99th percentile to define the ECOFF/ECV 

places a very stringent upper limit on the total error rate which becomes harder to meet as the 

prevalence of resistance in any dataset increases. Despite our efforts, we see evidence that our 

gWT populations for some compounds contain >1% resistant isolates for some drugs which e.g. 

hampers the use of direct measurement. In contrast the CLSI have a less-stringent definition for 
the ECOFF/ECV which avoids this issue (32) but in turn can create inconsistencies between 

studies. As suggested elsewhere, using a lower percentile (e.g. 97.5th) could help (22).  

 

The CLSI recently proposed breakpoints for the MYCOTB plate (33). There are a few minor 

differences: our proposed ECOFF/ECV for rifampicin is one doubling dilution lower at 0.5 mg/L. 
The impact of this is difficult to assess due to the paucity of isolates with MICs of 0.5 and 1.0 

mg/L. For isoniazid, although it is not possible to make an exact comparison between the 

ECOFF/ECVs since the doubling dilution series used on the UKMYC plates and by the CLSI are 

different, the value proposed by CLSI (0.12 mg/L) is close the value proposed here (0.1 mg/L). 

The CLSI breakpoints for ethambutol exactly agree with the MIC-based classification adopted by 
CRyPTIC. Our ECOFF/ECVs are different to those of a recent MYCOTB study (22), however we 

note that the number of samples was modest (385) and originated from a single country. In 

addition, ECOFF/ECVs were determined using ECOFFinder, which given the truncated nature of 
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the MIC histograms for many of the drugs, is not now advised and may have biased some of the 

results. Our ECOFF/ECVs for rifampicin and isoniazid are, however, consistent with a recent 

recommendation made by the WHO, albeit for MGIT  
 

Critical concentrations for several of the drugs on the UKMYC plates (which are inoculated with 

7H9 growth media) exist for M. tuberculosis grown in other growth media, such as Löwenstein-

Jensen, 7H10 and 7H11, and also other AST methods, such as the BACTEC Mycobacterial 

Growth Indicator Tube 960 (34–36). Caution must, of course, be applied when comparing cut-
offs derived using fundamentally different growth media and AST methods.  

 

The ECOFF/ECVs for nine drugs proposed by a series of 7H10 agar studies all either agree or 

are one doubling dilution different to our proposed ECOFF/ECVs for the UKMYC plates (37–39). 

More recently, there has been a push to set breakpoints for the new compounds delamanid and 
bedqauline so that AST can be performed for these important drugs (40). An early MGIT study 

using 194 isolates proposed an ECOFF/ECV for delamanid of 0.125 mg/L (41), which is identical 

to our value. An ECOFF/ECV of 0.125 mg/L for bedaquiline on broth microdilution plates was 

proposed (42), however the 95th percentile of the wild-type population was used to define the 

ECOFF/ECV since CLSI guidelines were followed (32) and ECOFFinder was used despite the 
truncated nature of the MIC histograms. This value was supported by two subsequent studies, 

the first of which showed that that the sensitivity and specificity is maximised with a ECOFF/ECV 

of 0.12 mg/L compared to 0.25 mg/L (43). The second confirmed this value, however also stated 

that the 99th percentile of the wild-type population was 0.25 mg/L (44). This illustrates that the 
exact value can be difficult to pin down when different ECOFF/ECV definitions are used; 

hopefully the number and diversity of samples in our study will help resolve this important 

question. Lastly, the ECOFF/ECVs proposed here lie within the range of breakpoints 

recommended by the WHO for different growth media, with the exception of clofazimine for 

which the WHO recommends a cut-off of 1 mg/L in MGIT (35, 36). 
 

Deriving ECOFF/ECVs from MICs relies on several assumptions, foremost that applying a binary 

resistant/susceptible classification to a clinical infection is a reasonable and helpful way to 

proceed. That simplifying the description of the results of clinical microbiology investigations 

helps interpretation is not in doubt (45), however problems with reproducibility can arise 
depending on the character of the underlying MIC histogram. If the MIC histogram is ‘bimodal’ 

(i.e. has two narrow peaks separated by an interval greater than their individual variance) then 

placing the ECOFF/ECV between the peaks leads to a helpful and reproducible classification 

system (46). On the UKMYC series of plates, the only drugs that conform to this ideal are the 

rifamycins and the aminoglycosides; the other compounds either have more complex 
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distributions (INH, EMB, MXF, LEV, ETH) or resistance is not sufficiently prevalent for us to fully 

characterise their MIC distributions (CFZ, LZD, DLM, BDQ). 

 
There is a further implicit (weak) assumption that the ‘susceptible’ and ‘resistant’ subpopulations 

can each be described by a single MIC distribution, which is not necessarily true, as exemplified 

by the effect of the fabG1 promoter mutations on isonizaid (Fig. 6A) (28). In addition this 

assumption implies that different lineages behave similarly when exposed to an antibiotic, which 

is unlikely to be true (47). Finally, the wild-type distribution is usually assumed to be log-normal, 
however our data do not support this for all drugs (e.g. LEV, Fig 4) resulting in the log-normal 

distributions fitted by interval regression apparently over-estimating the 99th percentile. Should 

this turn out to be generally true, this would invalidate methods based on fitting such 

distributions, making direct measurement more appealing (25). 

 
One can deconstruct the error in determining an ECOFF/ECV using a microtitre plate into 

sample selection biases, data entry and labelling errors, inoculation and incubation error, 

measurement error, error in defining the wild-type population, uncertainties arising from censored 

data and error in fitting a curve to the resulting MIC histogram. In addition to the obvious benefits 

in collecting such a large and diverse dataset (Table 1, Fig 1, Table S2), we have been careful to 
minimize measurement error (Fig. S3) and have also used a principled method to attempt to 

remove some putative mislabelled samples (Methods). By defining a genotypically wild-type 

population and either applying interval regression to fit normal distributions (Fig. 4) or directly 

measuring the 99th percentile (Fig. 5), we have also minimized the final two sources of error. 
Despite these steps, further sources of error no doubt remain. Another key weakness of this 

study is the lack of pyrazinamide, which due to its preference for acidic conditions, is currently 

unable to be successfully incorporated onto broth microdilution plates, although there is hope 

that this could be rectified in future (48). 

 
The debate about how to define and calculate ECOFF/ECVs will continue and new approaches 

will be suggested (49–52). However it evolves, larger and more geographically diverse 

tuberculosis datasets, such as presented here, will bring more confidence and rigour to the 

antibiotic susceptibility testing of clinical tuberculosis samples. We hope also, that as clinical 

microbiology transitions into a data-driven science, our proposed method of directly measuring 
the required percentile of the gWT population will gain traction due to its simplicity and 

reproducibility as the genetics of M. tuberculosis resistance becomes better understood and 

accepted. 
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Although the main objective of the CRyPTIC project is to map the genetic variations in the M. 

tuberculosis genome that confer resistance to many antibiotics, the sheer number of samples 

collected provides a body of evidence to support the use of 7H9 broth microdilution plates in 
clinical mycobacteriology. Applications potentially include antibiotic susceptibility testing for 

samples that are predicted to be MDR or XDR by the GeneXpert RIF/MDR assay system or 

surveying the prevalence of different patterns of resistance by region or country, allowing 

regional regimens to be designed and their impact monitored. Finally, even in settings which 

adopt genetics-based clinical microbiology (11), it would be prudent to maintain culture-based 
testing not only to identify new genetic variants as they arise but also to continuously monitor the 

performance of the genetic resistance catalogue which are likely to change over time as such 

catalogues are only likely partly causal. 

 

In future work the CRyPTIC project will apply the ECOFF/ECVs proposed here not only to further 
optimise a genetic catalogue for the first-line anti-TB compounds (6) but also to extend coverage 

to second-line, repurposed and new compounds, with the aim of covering as many of the drugs 

recommended by the WHO for treating MDR and XDR tuberculosis (19). Clearly the numerical 

data being collected by the consortium also lends itself to the development of a genetic 

catalogue for anti-TB compounds that can make quantitative predictions; such a catalogue would 
naturally take account of additivity, epistatis and non-linear effects. Finally, the tools and data-

driven approaches developed here could be applied to other pathogens, especially other 

mycobacteria. 
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METHODS 
Ethics review 

Approval for the CRyPTIC study was obtained by Taiwan Centers for Disease Control IRB No. 

106209, University of KwaZulu Natal Biomedical Research Ethics Committee (UKZN BREC) 

(reference BE022/13), University of Liverpool Central University Research Ethics Committees 

(reference 2286), Institutional Research Ethics Committee (IREC) of The Foundation for Medical 

Research, Mumbai (Ref nos. FMR/IEC/TB/01a/2015 and FMR/IEC/TB/01b/2015), Institutional 
Review Board of P.D. Hinduja Hospital and Medical Research Centre, Mumbai (Ref no. 915-15-

CR [MRC]), scientific committee of the Adolfo Lutz Institute (CTC-IAL 47-J / 2017) and in the 

Ethics Committee (CAAE: 81452517.1.0000.0059) and Ethics Committee review by Universidad 

Peruana Cayetano Heredia (Lima, Peru) and LSHTM (London, UK). No ethics approval was 

required for the remaining laboratories since at no time was any patient identifiable information 
shared with the consortium. 

 

Sample selection 

The CRyPTIC project aimed for around half the samples collected to be susceptible to the first-

line compounds with the remainder MDR/XDR. There was, however, large variation between the 

different participating laboratories. 

 

Incubation and inoculation protocol 

Each laboratory followed a standard operating protocol laid out by the CRyPTIC consortium, 

which was similar to that described previously (17).  Clinical samples were sub-cultured either 

using Lowenstein-Jensen tubes, 7H10 agar plates or MGIT tubes. The protocol specified that 

first a suspension at 0.5 McFarland standard in saline Tween with glass beads (Thermo Fisher, 
Scientific Inc., USA) from 20- to 25-day-old colonies. These were then diluted 100-fold by adding 

100 µl of suspension to 10 ml of enriched 7H9 broth (17). A semi-automated Sensititre 

Autoinoculator (Thermo Fisher, Scientific Inc., USA) was used to dispense 100 µl of inoculum 

(1.5 x 105 CFU/ml, with approximate range from 5 x 104 CFU/ml to 5 x 105 CFU/ml) into a well of 

a UKMYC5/6 microdilution plate. The plate was then sealed using transparent plastic provided 
by the manufacturer. The UKMYC5 and UKMYC6 microdilution plates were designed by the 

CRyPTIC consortium and manufactured by Thermo Fisher Inc., U.K. The drugs included and 

their concentrations are described in Fig. 1. Delamanid and bedaquiline pure substances were 

provided by Otsuka Pharmaceutical Co., Ltd. and Jannsen Pharmaceutica, respectively. The 

H37Rv ATCC 27294 was used to perform periodic quality control runs since it is susceptible to 
all the drugs on both plate designs. 
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Measurement of MICs after 14 days incubation 

In each laboratory a scientist read each plate after 14 days incubation using a Thermo Fisher 

Sensititre Vizion digital MIC viewing system, with results entered via a bespoke web portal 

(https://clires2.oucru.org). In those cases where this was not possible, spreadsheets were sent. 

A photograph was also taken using the Vizion system and also stored in CliRes2. Two 
laboratories used a mirrored-box to read the plates and one of these also took a photograph 

using a DSLR. A plate was marked as invalid if it did not have adequate bacterial growth in both 

positive control wells. A small subset of plates with poor growth at day 14 were incubated for a 

further week and then read again. 

 

Other AST measurements 

Where available, the results of standard AST tests conducted by the participating laboratory 

were also entered via the CliRes2 online portal, or in some cases shared via spreadsheet. The 

methods used were mainly either the Mycobacteria Growth Indicator Tube (MGIT) system or 
the microscopic-observation drug-susceptibility (MODS) assay (31). All MGIT tests used 

standard critical concentrations (CC) – for the moxifloxacin results only those with a CC of 0.5 

mg/L were included. 

 

Genetic sequencing and interpretation 

Sequencing arrangements differed slightly between each CRyPTIC participating laboratory. All 

sequencing was performed using Illumina machines and hence the input to our genetic 

sequencing pipelines was a matched pair of FASTQ files containing the short reads. Data 
integrity was ensured throughout by tracking the MD5SUM hashs of the FASTQ files. 

 

Human and HIV reads were removed from the raw sequence data as follows. Reads were 

mapped to the reference genome H37Rv, the human genome version GRC38, the HIV reference 

NC_001802.1, various other viral genomes (so that, if any reads mapped to HIV, no-one would 
only know that they mapped to some virus), and nasopharyngeal flora genomes from the human 

microbiome project, using BWA MEM. First, a read pair was kept if either read matched H37Rv, 

then removed if either read matched one of the other genomes, and finally kept if both reads 

were unmapped.  

 
Variants were initially called using SAMtools and Cortex, two variant callers with orthogonal 

strengths (samtools a high sensitivity SNP caller, and cortex a high specificity SNP and indel 

caller). These calls were then passed to the adjudication software minos, which produces a 
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graph representation of the reference genome plus conflicting calls from the two callsets, and 

then remaps reads to the graph to adjudicate statistically. This adjudication process, and the 

performance of the combined samtools/cortex callset, are documented (53). All of this process, 
including versions of samtools and cortex and the reference genomes for filtering) is 

encapsulated in Clockwork version 0.8.3 (54). 

 

Samples were excluded from the dataset if they had either more than 100,000 unfiltered 

samtools variant calls (a weak filter applied to detect samples contaminated with the wrong 
species) or an average read coverage of 15 or less when mapped to reads covering the H37Rv 

reference. The samples that pass these criteria and have paired phenotype data are named the 

GPI (geno-pheno intersection). Variant calls were removed if they overlapped a set of masked 

positions as previously defined (55). This mask consists of 324,971 positions from the H37Rv 

reference with self-blast matches, and can be found here: https://github.com/iqbal-lab-
org/cryptic_tb_callable_mask/commit/43ec21319209b23f648f32e4868bdf07cf09f2a0. 

 

Version 3 of the H37Rv strain (NC_000962.3) was used as the TB reference genome 

throughout. The resulting VCF files were then transferred to the CRyPTIC data warehouse where 

they were interpreted. 
 

Genetic resistance catalogue 

A hybrid TB genetic resistance catalogue was constructed by merging two published catalogues, 
the first more recent catalogue contained rows for the four first-line drugs (INH, RIF, EMB, PZA) 

(6). The second also contained rows for MXF, LEV, STM, OFX, AMI, KAN, CAP, ETH, LZD, 

CFZ, DLM, BDQ, RFB, PTO, PAS (8). Since each catalogue was constructed with respect to 

version 2 of the H37Rv M. tuberculosis reference genome, they were first translated to version 3 

of the reference. These catalogues are freely available to download (56) and use a standard 
grammar, GARC, that is both machine- and human-readable. To avoid putting as few 

assumptions into downstream code as possible, default rules are included that e.g. specify that 

non-synonymous amino acid mutations that match no other row have an unknown effect. The 

hybrid catalogue was constructed by taking the rows for the first-line compounds from the first 

catalogue and rows for all other drugs from the second. This catalogue, called CRyPTICv1.31, is 
freely available for download (56) and is also provided in the attendant repository (21). 

 

Genetic analysis 

Each sample VCF was compared to a reference genome object using the Python gumpy module 

(57), thereby creating a table of genetic variants (both single nucleotide polymorphisms, SNPs, 
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and insertions/deletions). Both the individual SNPs were stored and also their aggregated effect 

on any coding region of gene encoding a protein sequence. An intergenic region of up to 100 

bases upstream of the start codon was assumed to be the promoter sequence and hence was 
associated with the gene. This list of variants was then parsed by a second bespoke Python 

module, piezo, that reads the hybrid catalogue and understands the GARC grammar and so 

returns a resistant, susceptible or unknown prediction for each drug in the catalogue (58). The 

species and, if M. tuberculosis, lineage of all samples was determined by SNP-IT (23). 

 

Data warehousing 

With the exception of the compressed FASTQ files, all data (VCFs, images, MIC metadata, 

genetic variants and catalogue predictions) were aggregated and stored in a hierarchical file 
system using the Python datreant 1.0.2 module (59) which allowed for data discovery, tagging 

and filtering. Updates were performed by inhouse Python scripts. Plate metadata was 

downloaded from CliRes2 using the zeep Python SOAP client. 

 

Quality assurance of minimum inhibitory concentration readings 

Central to our quality assurance (QA) process is the photograph taken of the plate after 14 days 

of incubation using the Vizion instrument by the laboratory scientist. Images were deduplicated 

by checking the MD5SUM was unique. The remaining images were first read by bespoke 

software, AMyGDA (60, 61), which detects the locations of the wells and, by measuring the 
growth in each well, estimates an MIC for all drugs. For 54.7% of all measurements the MICs 

measured by the laboratory scientist and AMyGDA were identical (Fig. S4, S5A) and therefore 

passed the quality control process. 

 

Images of the 45.3% of cases where these two methods disagreed were uploaded to a Citizen 
Science project, hosted by the Zooniverse platform, called BashTheBug (62). Each image was 

classified by at least 11 different volunteers and the median reading was taken to be the 

consensus. In 38.1% of the images sent (17.3% of the total) the consensus MIC agreed with the 

MIC measured by the laboratory scientist using the Vizion instrument. Visual inspection of a 

random subset (Fig. S5B) suggested that these were mostly cases where AMyGDA incorrectly 
estimated the MIC, usually because the growth was too small to be programmatically detected. 

For a smaller proportion (12.0% of the images completed by BashTheBug, 5.4% of the total – 

Fig. S3), the BashTheBug consensus agreed with the MIC measured by AMyGDA. Visual 

inspection of a random subset (Fig. S5C) indicated that, for the most part, these were errors 
made by the laboratory scientist. An error rate of 5.4% for a subjective laboratory-based 

measurement is reasonable and catching and correcting these errors is the main goal of this 
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quality control process. Overall, therefore, we have a high degree of confidence in 77.4% of the 

MIC measurements since two or more independent methods concur on the value. Finally, in 

22.6% of cases all three methods gave a different answer (Fig. S5D); these are excluded from 
further analysis. All these proportions are averaged over all drugs; there is significant variation 

between drugs (Table S7 & S8).  

 

Putative mislabelled samples 

Some 44 samples were assumed to be mislabelled samples as defined by being genotypically 

wild-type but having both an INH MIC ≥1.6 mg/L and an RIF MIC ≥4 mg/L. This corresponds to 

0.8% of the dataset which is likely an underestimate. All 44 samples were removed. 

 

ECOFFinder 

A version of ECOFFinder (ECOFFinderXL2011forMac.xlxs) that worked on Microsoft Excel 

running on Apple Mac computers was provided by Dr Claudio Köser (25). 

 

Interval regression 

The intreg function in STATA version v15.1 (Stata Corp.) was used.  

 

Data analysis and graphs 

All data analysis, with the exception of the interval regressions and ECOFFinder, were performed 

using Python 3.8 in conjunction with Pandas 1.2.1 (63), numpy 1.19.5 (64). Graphs were plotted 

using matplotlib 3.3.4 (65) and GeoPandas 0.8.2. 
 

Reproducibility 

The raw data (photographs of 96-well plates, genetic variant call files) along with a series of data 
tables related by a schema can be downloaded from the European Bioinformatics Institute at 

http://ftp.ebi.ac.uk/pub/databases/cryptic/. In addition, one can reproduce nearly all the tables 

and figures, along with the Supplemental Data, in a browser window (i.e. no installation required) 

using Python code we have made publicly available (21). 
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