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Abstract

An isotropic dynamical system is one that looks the same in every direction, i.e., if we imagine standing somewhere within
an isotropic system, we would not be able to differentiate between different lines of sight. Conversely, anisotropy is a measure
of the extent to which a system deviates from perfect isotropy, with larger values indicating greater discrepancies between the
structure of the system along its axes. Here, we derive the form of a generalised scalable (mechanically similar) discretized
field theoretic Lagrangian that allows for levels of anisotropy to be directly estimated via timeseries of arbitrary dimension-
ality. We generate synthetic data for both isotropic and anisotropic systems and, by using Bayesian model inversion and
reduction, show that we can discriminate between the two datasets — thereby demonstrating proof of principle. We then apply
this methodology to murine calcium imaging data collected in rest and task states, showing that anisotropy can be estimated
directly from different brain states and cortical regions in an empirical in vivo biological setting. We hope that this theoreti-
cal foundation, together with the methodology and publicly available MATLAB code, will provide an accessible way for
researchers to obtain new insight into the structural organization of neural systems in terms of how scalable neural regions
grow — both ontogenetically during the development of an individual organism, as well as phylogenetically across species.

Keywords Anisotropy - Neuroimaging - DCM - Data fitting - Lagrangian - Field theory

1 Introduction

Two of the main concepts upon which computational neuro-
science models are based are those of the ‘particle’ (Sears,
1964) and the ‘field’ (McMullin, 2002) — both terms that are
inherited from theoretical physics.
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1.1 Particle theoretic models

In the particle theoretic approach we treat every node
within a neural system as a zero-dimensional (point-like)
element — a so-called ‘particle’ that evolves in time. The
ways in which each one of these neural particles evolve
influences the rest of the connected system, such that col-
lectively, the particles form nodes of a dynamically evolv-
ing graph (Deco et al., 2008). Particle theoretic frame-
works yield experimental advantages for neuroimaging
modalities such as electroencephalography (EEG), in
which there are usually very few measurement locations.
Furthermore, particle theoretic frameworks have com-
putational and statistical advantages for neuroimaging
analyses due to associated dimensionality reduction — an
attribute that becomes increasingly important for large-
scale recordings of neural systems (Izhikevich & Edelman,
2008). However, this computational expediency comes at
the cost of losing the spatial information contained in a
continuum description.
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1.2 Field theoretic models

The field theoretic approach treats a neural system as a
continuous structure called a ‘field’ that is a function of
position, with position treated as a continuous variable.
A neural field can exist in 2D or 3D space: it is natural to
work in a two-dimensional space when modelling a single
cortical sheet or a three-dimensional space for a cross-
cortical volume (Breakspear, 2017). In this paper, we use
a model that is in essence a compromise between the par-
ticle and field models, by taking a continuous field and
discretizing it such that we only consider certain points in
space — which we henceforth refer to as a discretized field
theoretic model.

1.3 Isotropic vs. anisotropic systems

A system is said to be isotropic if it looks identical in every
direction. This means that if we imagine ourselves standing
somewhere within an isotropic structure, then we would see
precisely the same structure along all lines of sight. Con-
versely, anisotropy is a measure of the extent to which a
system deviates from perfect isotropy. For example, a sheet
of wood is anisotropic due to the preferential directionality
of the grain — which we can see by the fact that it is easier to
break the wood along the grain than it is to break it against
the grain. We present a discretized field theoretic model that
allows for the estimation of anisotropy in connected dynami-
cal systems of arbitrary dimensionality. We provide accom-
panying MATLAB code in a public repository that can be
readily used to measure levels of anisotropy on a node-wise
basis via timeseries measurements.

Here, we focus on isotropy as the main parameter of
interest, as this quantity is usually studied in neuroscience
in the context of diffusion tensor imaging (DTI). The latter
allows for structural integrity measures of axons, by quan-
tifying the extent to which water molecules diffuse along
the axons — i.e., anisotropically. Damage to white mat-
ter caused by e.g., traumatic brain injury (TBI) can cause
axonal tissue to rupture, resulting in water molecules leak-
ing more isotropically than in an intact axon. The measure
of isotropy we propose here, as opposed to DTI, can be
estimated directly from any region-specific neuroimaging
timeseries. This allows for us to implement the mathemati-
cal framework of Lagrangian field theory in the study of a
dynamically (as opposed to structurally) derived measure
of anisotropy. Furthermore, as we are embedding the isot-
ropy measure into a scalable mathematical framework, we
allow for an estimation of how similar (isotropic) or dis-
similar (anisotropic) the signals of neighbouring regions
are during the growth of neural systems.
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1.4 Inference of anisotropy

We estimate anisotropy in arbitrary neuronal timeseries,
together with hyperparameters that describe the variance
of states and parameters, by using Dynamic Expectation
Maximisation (DEM) (Friston et al., 2008) within the Sta-
tistical Parametric Mapping (SPM) software. This infer-
ence method uses generalised coordinates of motion within
a Laplace approximation routine of states and parameters
(multivariate Gaussians). In contrast with other inference
methods, DEM allows us to use four embedding dimen-
sions, which encompass smooth noise processes, unlike
e.g., traditional Kalman filters that employ martingale
assumptions (Roebroeck et al., 2009).

Specifically, DEM approximates the posterior of a
parameter quantifying anisotropy using three steps:

1) The D step uses variational Bayesian filtering as an
instantaneous gradient descent in a moving frame of
reference for state estimation in generalised coordinates;

2) The E step estimates the model parameter quantifying
anisotropy by using gradient ascent on the negative
variational free energy. The variational free energy (F)
combines both accuracy and complexity when scoring
models F = (logp(y|6,m)) — KL[q(0), p(0]m)| , where

< N

J

~
complexity

logp(y|6,m) is the log likelihood of the data y condi-
tioned upon model states, parameters and hyperparam-
eters 6, and model structure m. We seek a model that
provides an accurate and maximally simple explanation
for the data.

3) The M step repeats this process for the hyperparameters,
given by the precision components of random fluctua-
tions on the states and observation noise (Friston et al.,
2008).

accuracy

1.5 Overview

This paper comprises three sections.

In the first, we outline the theoretical foundations of
Lagrangian field theory and the form of a generalised scal-
able discretized equation of motion that can be used both
for forward generative models and for model inversion via
neural timeseries.

In the second section, we generate in silico data via
forward models of an isotropic and an anisotropic system.
We then use Bayesian model inversion and subsequent
Bayesian model reduction to show that we can correctly
discriminate between the isotropic and anisotropic systems
— thereby providing construct validation.
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In the third section, we use murine data collected in
both rest and task states to map levels of anisotropy across
different cortical regions directly via the in vivo timeseries.
These wide-field calcium imaging data were collected
across the left hemisphere of mouse cortex expressing
GCaMP6f in layer 2/3 excitatory neurons (Fagerholm
et al., 2021; Gallero-Salas et al., 2021; Gilad et al., 2018),
with cortical areas aligned to the Allen Mouse Common
Coordinate Framework (Mouse & Coordinate, 2016),

We suggest that the presented methodology could be
valuable in future large-scale studies of neural systems,
in which the quantification of region-wise anisotropy may
shed light on how neural systems grow both ontogenetically
within the lifespan of an individual animal, as well as phylo-
genetically across species (Buzsaki et al., 2013).

2 Methods

We will now cover the technical foundations of the approach,
starting with Lagrangian field theory and the principle of
stationary action. We then derive a generalised, scalable, dis-
cretized field theoretic Lagrangian and consider the empiri-
cal estimation of anisotropy under this formulation using
empirical (timeseries) data and Bayesian estimators.

2.1 Lagrangian field theory

We remind the reader of the basic concepts underlying
Lagrangian field theory and the principle of stationary action
in Appendix I. In brief: we represent the state of a system
by a field which is a function of the 4D space—time position
r = (t,x,,z). The equations of motion that describe how
this field evolves in time are obtained by requiring that the
field ¢(r) renders the value of a quantity known as the action
S stationary:

S[(P(V)]=/ d*rL(r, @, 0p) (1)
Q

The integral in the definition of the action is over the
space—time domain Q encompassing all space from the ini-
tial time ¢, to the final time 1. The integrand, which is known
as the Lagrangian density L(r, @, 0¢), defines the system of
interest as a function of r, the values of the fields ¢ at r, and
their spatiotemporal derivatives dg at r.

2.2 Scale transformations

We define a scale transformation as a mapping from
arbitrary points in the 5-D space with axes labelled
(@.r) = (@,1,x,y,2) to scaled points (@, r,) = (4, A°r),
where A is an arbitrary scale factor and « is a constant. A

field configuration ¢ = @(7) is a 4-D surface in this 5-D
space, and the scale transformation takes points on that sur-
face to points on a new 4D surface, defining a new field
configuration. The value of the new field ¢, at the scaled
space—time point 7, = A%r is related to the value of the origi-
nal field ¢ at the unscaled point r via

@,(r,) = Ap(r) = @(A°r) = Ap(r) = @ (r) = (A1)
@)
It is convenient to allow different scaling exponents in
different space—time directions, so from now on A%r is to be
understood as shorthand for the vector (A%¢, A%x, A%y, A%z).
Taking partial derivatives of Eq. (2), we obtain:

@5, (r) =0, (@y(r)) = A%, (AP, 3)

where A!~% depends only on the u* component of the vector
of exponents a = (a,, &, a,, a_ ). From now on, we denote
the vector with components A!~% ¢ (A7) as M=20p(A~F).

2.3 Scaling the action

Using Egs. (1), (2) and (3), we see that the scaled action is
given by:

Aaftf
S|ey()] =/ dt// dxdydz(r, Ap(N"r), \'"*0(A~"r)),
Adit.
! allx,y,z

C))
We then change variables in Eq. (4), setting ' = A7%r
such that:

1,
NrXGIE /lzv"v/fdt////dxldy/dzlﬁ(/larl"1(/’(/)”117“0(”(/))
[l

allx,y,z
®)

where A2+% is the Jacobian that accounts for the change in
integration variables and ), a, = @, + @, + @, + a,. The
integrals are now over the same space—time region Q as in
the original un-scaled action in Eq. (1), which means that we
can re-write Eq. (5) using the same simple notation:

S[oy(r)] = A% / d*rL(2%r, Ap(r), A'~0e(r)) ()
Q

2.4 Scalable systems

The action S[¢(r)] is said to be scalable, or equivalently to
possess ‘mechanical similarity’ (Landau & Lifshitz, 1976)
if, for any choice of @(r), not just choices that make the
action stationary and therefore satisfy the Euler—Lagrange
equation of motion (see Appendix I), the following relation-
ship holds:
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Sl (] = 2'Sle(), 7)

where 7 is a constant. Note that a ‘scalable’ system should
not be confused with a ‘scale free’ system, which is one that
lacks a characteristic length scale, such as those studied in
the physics of phase transitions.

More explicitly, we can use Egs. (6) and (7) to express the
scalability condition as follows:

/ d*rL (A7, Ap(r), 21 0g(1) = 27Z. / AL, o), 00(r)
Q Q
®)

2.5 Generalised scalable Lagrangians

We can expand any analytic Lagrangian density L(¢p, d@) as
a power series:

— a b b, b, b,
E = z Ca,bt,bl,b),bz¢ (] ’(Dx '¢y - (pz ) (9)
bbb, b,

where Ca,b,,buby,bz is an expansion coefficient and the summa-
tions over the integers a, b,, b,, by, b_range from 0 to co. We
have assumed for the sake of simplicity that the Lagrangian
density has no explicit dependence on r. This is normally the
case when the system of interest is not driven by external
forces or other influences. We next use Eq. (9) to obtain

L(Ap, A1=0p):

_ at}, (I-a)b,
L(rp, 2 0p) = Z Cotoybb, . ? "9, (/’yb’ .
bbb, b,

(10)
For the action to be scalable, Eq. (8) tells us that Eq. (10)
must equal:

— - b b b, b,
pUa LN 2 Ca,ht,b b ,/,_(Pa(P KN R 11
abybyubyb. T 1

We conclude that the action is scalable if and only if
a+2(1—ocv)bv =n—2av (12)

for all choices of the integers a and b, at which C,;, , ;, . is

non-zero. If, for example, we consider possible contributions
to the Lagrangian with specific values of b, b,, b, and b,,
Eq. (12) tells us that Ca,bﬂbp,,ybz must be zero unless
a=n-7Y a,— Y (1 —a,)b,. The value of a is determined
by the values of b,, b,, by, b, and the summation over a is no
longer required. The generalised scalable discretized field

theoretic Lagrangian may therefore be written as follows:

~Db,~a,) b, o by b, b,
E — Z Cb,,bx,bv,bxqon-'—zv ((av )b, av)@ I(pX X(py )(pz 2
bbb, '

1:0x:0y

13)
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2.6 The anisotropic wave equation

Let us now design a special case of Eq. (13) in two spatial
dimensions. Having chosen to seta, = a, andn = a, + 2, we
construct a Lagrangian density with three non-zero terms. In
the first term, Copp, =L b, =2,andb, = b, =b, = 0;inthe
second term,C,, , ;, = —1 b, =2 andb, =b,=b_=0;and
finally, in the third term,C,, , =1, b, =2, and
b=b.=b,=0.
This yields the Lagrangian density:

L=¢" -0 - 0707 (14)

where the exponent f, which is by defined by f = a, — a,,
quantifies the degree of anisotropy, such that the system is
perfectly isotropic when f = 0 = a, = a,. To provide intui-
tion for the way in which the f parameter affects the system’s
dynamics, we run a series of forward models for a range of
values in Supplementary Fig. 1.

The corresponding equation of motion — the two-dimensional
Euler-Lagrange equation (see Appendix I) —is:

=0+ 970, + 0" 0} (15)

We can verify that if ¢(t, x, y) is a solution of this equation,
so is the scaled field @(t,x,y) = A@(A~%¢t, A=%x, A™%y) =
Ap(A=%1, A=%x, A=@+Py) (see Appendix II).

In the case of an isotropic system, when f =0, the
Euler-Lagrange equation becomes:

P =Pt Py (16)

We see that the Lagrangian density of Eq. (14) leads to
an equation of motion (15) that reduces to the wave Eq. (16)
in the case of an isotropic system. This makes it an intuitive
test case.

2.7 Spatial discretisation

For Eq. (15) to be used in the modelling of neural timeseries
we must first discretize the partial spatial derivatives. This
is necessary because we do not deal with spatially continu-
ous data in neuroimaging, but rather with data collected at
a discrete set of points. We therefore make the following
standard transformations:

1
¢y = 5@y + 1D = @0y = D)oy

= o(x+1,y) =20, y) + o(x — 1, y), @, a7

= @0,y + 1) —2¢(x,y) + @,y — 1),
where @(x, y) is the value of the field at the point (x, y) and,

e.g., p(x + 1,y)is the value of the field one ‘step’ in the posi-
tive x direction in the graph from the point (x, y).
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Applying the transformations to Eq. (15), we obtain:

P(x,y) =p(x+1,y) = 20(x,y) + (x — 1,y)
+ o, ) (@x,y + 1) — 20(x,y) + @(x,y — 1))

2
+ oty (@0 + D - gty = 1),

18)

which we split into two first-order differential equations by

defining a new variable to obtain the final form of the equa-

tions of motion used in all subsequent forward models and
Bayesian model inversions presented in this paper:

p=0
0(x,y) = p(x+ 1,y) = 2¢(x,y) + p(x — 1, y)
+o(x, ) (@, y + 1) = 20(x,y) + @(x,y — 1)) (19)

2
o,y (Aot + 1) - oy = 1)

We then use Eq. (19) as the equations of motion for sub-
sequent model inversion with the Statistical Parametric
Mapping (SPM) software. The associated observer equation
comprises the ¢ variables —i.e., we assume that the strength
of the field @(x, y) is what is being measured in the neural
timeseries at the (x, y) coordinate.

Equation (19) is the basis of the MATLAB code made
available for the use with forward generative models, as well
as with Bayesian model inversion of timeseries of arbitrary
dimensionality from any neuroimaging modality.

2.8 Synthetic data

We consider a 2D grid of size 3 X 3 pixels, where each of
the nine pixels is given different initial conditions and sub-
sequently allowed to evolve according to the equation of
motion in Eq. (19). We run two forward models: a) one
isotropic case in which § = 0; and b) one anisotropic case
in which g # 0. Having created these synthetic data with a
prior of f = 0, we then perform Bayesian model inversion
using Dynamic Expectation Maximization (DEM) (Friston
et al., 2008) to infer the latent states and estimate both the
p parameter, as well as the hyperparameters — the compo-
nents of precision of random fluctuations on the observation
noise and states. Model inversion for any discrete system
can be performed on a node-by-node basis, by considering
the ways in which the dynamics evolve in the immediate
neighbourhood of the node under consideration. When this
model is equipped with fluctuations one can use standard
(Variational Laplace) Bayesian model inversion procedures
to estimate the exponents for any given timeseries. We then
set the prior for the free parameter f to zero and use DEM
to obtain a posterior estimate for # from both the synthetic
isotropic and anisotropic data. Following model inversion,
we use Bayesian model reduction (Friston et al., 2015; Rosa
et al., 2012) to test the evidence for a perfectly isotropic

system in which f = 0 by setting the prior variances of f to
zero. We are therefore able to test whether we can correctly
identify the ground truth isotropic data (created with f = 0)
with a higher evidence for the reduced model and conversely
whether we can correctly identify the ground truth aniso-
tropic data (created with g # 0) with a higher evidence for
the full model.

2.9 Empirical data

All animal experiments were carried out according to the
guidelines of the Veterinary Office of Switzerland following
approval by the Cantonal Veterinary Office in Ziirich. All
murine calcium imaging data were collected as previously
reported (Fagerholm et al., 2021; Gallero-Salas et al., 2021;
Gilad et al., 2018). As with the synthetic data, we perform
Bayesian model inversion to obtain posterior estimates for
the f parameter quantifying the extent to which the time
series for each pixel deviate from isotropy at f§ = 0. We
perform this model inversion once for every second pixel
(n = 6651) within each trial (n = 10), mouse (n = 3) and
condition (n = 2, task and rest). Following model inversion,
we average the posteriors for the f parameter across trials
to obtain results per mouse and condition and then aver-
age these posteriors once more across mice. We then filter
these averaged images with 2-D Gaussian moving average
smoothing kernels with a semi-width window of 7 pixels.

3 Results

We show the ways in which the synthetic timeseries evolve
for the isotropic (Fig. 1A) and anisotropic (Fig. 1B) cases.
Each of the regions in the 3 X 3 synthetic data is given a
different initial value and rate of change ranging between
~ 1 and 2, to initialize dynamics in the absence of external
inputs. Exact values of model parameters, boundary con-
ditions, and initial values are listed in the publicly avail-
able code. Following model inversion and reduction, we
then demonstrate proof of principle by showing that there
is higher evidence for the ground truth isotropic data having
been created with the isotropic model (Fig. 1C) and con-
versely for the ground truth anisotropic data having been
created with the anisotropic model (Fig. 1D). The results in
Figs. 1C and D remain when initial conditions and observa-
tion noise are varied by ~ 10%, as commented in the publicly
available code. Finally, we show the different degrees of ani-
sotropy in the murine calcium imaging data in rest and task
states (Fig. 1E), together with averaged signals (Fig. 1F).
Note that the negative posterior § values in Fig. 1E are a
result of the specific choice of model parameters, observa-
tion noise, and initial conditions used.
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Fig. 1 Synthetic and experimental data. A Synthetic data generated
using the isotropic model in Eq. (19) with f = 0. The colours of the
wavefronts correspond to pixels in the grid inset top right. The x and
y axes show the amplitudes of the wavefronts multiplied by cos(time)
and sin(time), respectively. B Synthetic data generated using the ani-
sotropic model in Eq. (19) with f = —3. The colours of the wave-
fronts correspond to pixels in the grid inset top right. The x and y
axes show the amplitudes of the wavefronts multiplied by cos(time)
and sin(time), respectively. C Approximate lower bound log model
evidence given by the free energy F following Bayesian model
reduction for isotropic i and anisotropic a models using the isotropic
ground-truth data. Corresponding probabilities p derived from the
log evidence are shown in the inset on the right. D Approximate
lower bound log model evidence given by the free energy F follow-
ing Bayesian model reduction for isotropic i and anisotropic a models
using the anisotropic ground-truth data. Corresponding probabilities
p derived from the log evidence are shown in the inset on the left. E)
Left hemisphere of calcium imaging data collected in three mice (first
three rows) in rest (left column) and task (right column) states. The
final fourth row shows average values across the three mice. The col-
our bars indicate the value of the B exponent ranging from isotropic i
to increasingly anisotropic a pixels. F Timecourses of normalized sig-
nal intensity z averaged across all pixels, with the layout correspond-
ing to that in E i.e., for each of the three mice (first three rows) across
the two states (columns), together with signals averaged across mice
(last row)

Overall, there is a marked variability in the degrees of
anisotropy across mice and states. On the other hand, the
secondary motor cortices show consistently high degrees
of anisotropy across mice and states. The generation
(Fig. 1A and B) and inversion (Figure C and D) of the
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synthetic data can be fully reproduced with the accom-
panying MATLAB code and the murine calcium imag-
ing data in Fig. 1E and F are made available in a public
repository.

4 Discussion

We present a theoretical framework, together with a prac-
tical numerical analysis, designed for the estimation of
anisotropy in arbitrary timeseries from any connected
dynamical system. The basis for this framework rests
upon classical Lagrangian field theory applied to scalable
(mechanically similar) dynamical systems. Scalability
entails a situation whereby a system continues to obey the
same equation of motion as it changes size. In other words,
a dynamical system that grows or shrinks will begin pro-
ducing states that are different from those of the original
(unscaled) system. However, in systems possessing the
property of scalability, the new states in the scaled system
will still be described by the same equation of motion used
to describe the original (unscaled) system.

It stands to reason that the dynamical evolution of the
signals propagating in neural systems possess some form
of scalability, given that evolutionary processes add new
neuroanatomy to existing structures i.e., the same basic
architecture extends itself whist maintaining information
processing capabilities (Douglas & Martin, 1991; Hilgetag
et al., 2000; Markov et al., 2013). Similarly, a neural struc-
ture changes scale during development, whilst allowing for
information processing to remain intact. It is therefore of
interest to develop tools that allow for the analysis of scal-
able systems. We therefore pose the following question:
given that neural systems possess some form of scalability,
what are the consequences thereof and what further ques-
tions present themselves? It is in this spirit that we present
a formalism that applies to any scalable dynamical system
that is sufficiently general to accommodate the evolution
of any (driven or non-driven) system in any number of
spatial dimensions.

With reference to the murine calcium imaging results,
we note the following three main results: a) there is a high
variability in anisotropy across mice and states, which may
be due to the low number of trials and/or to the fact that
anisotropy values may vary from trial to trial depending
on neural activity; b) there is no clear difference in anisot-
ropy across rest/task states; and c) there are consistently
high levels of anisotropy in the secondary motor cortex
(Mos) across mice and states, which may reflect the non-
homogeneous nature of local networks.

We construct a methodology that is set within the
Bayesian model inversion scheme of Dynamic Causal
Modelling (DCM). This means that, by using the



Journal of Computational Neuroscience

timeseries measured from any (e.g., neuroimaging)
modality, we obtain posterior estimates of spatial stretch
factors — one for each spatial dimension. The discrepancy
between these stretch factors then directly provides an
estimate of the anisotropy at every voxel in the neuroim-
aging data. We thus obtain an intuitive understanding of
what these measures mean by imagining ourselves stand-
ing at a certain node in a neural system. If the system is
isotropic then, as we look in every direction — up-down,
left—right, and back-forward, we will see no difference
in the ways in which the signals evolve in time in these
different directions. On the other hand, if the system is
anisotropic then we will see a difference in our lines of
sight along the different axes — and the greater this dif-
ference becomes the greater the degree of anisotropy. We
demonstrate proof of principle by generating synthetic
data using a special case of the generalised Lagrangian
that reduces to the wave equation in the limit of the per-
fectly isotropic case. Using Bayesian model inversion and
reduction, we show that we can correctly identify which
of the two models (anisotropic and isotropic) were used
to generate each dataset, thus showing the discriminatory
ability of the proposed methodology.

It should be noted that, in addition to the Lagrangian
framework presented here, the Martin—Siggia—Rose—
DeDominicis—Janssen (MSRDJ) is an alternative formalism
that allows for stochastic differential equations (e.g., the Lan-
gevin equation) to be solved probabilistically (Martin et al.,
1973). In contrast to our methodology, in which we exam-
ine a single solution of a stochastic differential equation, the
MSRDJ framework encompasses a probability distribution
of possible solutions and the ways in which they evolve in
time (Chow & Buice, 2015). Furthermore, it should be noted
that whereas resting-state brain dynamics are usually mod-
elled by equilibrium fluctuations about a steady-state (i.e., a
stable point attractor), here we employ a limit-cycle model.
The choice of which type of model (e.g., fixed point vs. limit
cycle) will naturally depend on the nature of the system under
consideration.

An empirically determined estimation of anisotropy could
be informative in imaging neuroscience, as it facilitates a
direct empirical measurement of how sub-structures within
the brain grow (under the assumption of scalability). This
provides a new way of assessing the ways in which anat-
omy changes across both an evolutionary timeline, as well
as across the lifespan of an individual organism. It is our
hope that the theory, methodology, and accompanying tools
will allow for these kinds of questions to be addressed by
researchers and that these will lead to a clearer understand-
ing of the spatial dependencies, growth, and development of
neural systems.

Appendix|

The classical real scalar field of interest in this work depends
on position and time, and it turns out to be convenient to
treat it as a function of the four-dimensional Cartesian vector

r=(t,x,,2), (20

where ¢ is time, and x,y,z are spatial length, width, and
height coordinates, respectively. Individual components of
the vector r are written Ty with u any element of the set
{t,x,y,z}. The field @ is a function of r:

@ = o). 21

The vector dg of partial derivatives of ¢ at r is given by
09 = (0,0,0,0,0,0,0,9) (22)

and its components are written d,, ¢ or, more simply, ¢,,.
The central quantity in Lagrangian field theory is the
Lagrangian density,£, which is a function of r, @, dg:

L= L(r,p,0p) (23)

Note that we have not yet assumed any relationship
between the values of r, @ and 0@; the Lagrangian density can
be evaluated for any choices of the 9 real numbers required to
specify the scalar field ¢ and the two four-component vectors
r,andd,¢.

Given a particular choice of field ‘trajectory’ @(r), the
standard definition of the action as a functional of ¢@(7) is:

Slp(r)] = / d*rL(r, p,09) (24)
Q

A trajectory in this context consists of the values of the
field @(r) = @(t,x,y,z) at all spatial points (x,y, z) and all
times ¢ between a chosen initial time #; and a chosen final
time #;. The four-dimensional integration volume €2 coin-
cides with the region in which the trajectory is defined. Note
that we are now assuming that the field @ and its derivatives
¢, are functions of r, so ¢ and dg are now related to each
other. We are also assuming that ¢ and ¢, tend to zero as
the spatial distance d = /x2 + y2 + z2 from the origin tends
to infinity.

The principle of stationary action tells us that the evo-
lution of ¢(r) between the initial and final times, 7; and 7,
renders the action stationary with respect to all variations

dp(r) = d8¢(1,x,y,2) (25)

that vanish when7 = t;and 1 = 7.
Using Eq. (24), we evaluate the variation of the action
as follows:
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5s=/ d4r<£5¢+£5%> =/ d4r<%5(p+ ﬂa,xa@)
Q il o, Q op e,

_ i (oL oL Y
_/gd r<0<ﬂ6¢+0“<6%6¢> a"<0(p,,>6w>’
(26)

where we are using the Einstein summation convention
according to which terms in which the same suffix appears
twice are automatically summed over all four values of that
suffix. We next convert the middle term on the second line to
a surface integral by using the 4-D version of the divergence
theorem to obtain:

68 = / d4r<% -0 <£>>6(p + / iﬁ(pdS ,
o \dp "\dg, 000, "
27
where 0Q is the surface of the 4-D volume Q and dS, is an
element of the 3-D surface of Q. If the field decays to zero
rapidly enough as the spatial distance from the origin tends

to infinity, and remembering that 6¢ = 0 when ¢ = ¢; and
=1, the surface integral vanishes, and we obtain:

oL oL
58 = d4r<——a <—>>6 =0 2
/g dp '\ dg, ¢ (28)

Since 6 ¢ is arbitrary except for the constraint that it van-
ishes at the surface d€2, the principle of stationary action
(68 = 0) implies that the fields evolve according to the
Euler—Lagrange equation:

oL oL
Z_5 () =o,
Rt @

or more explicitly:

oL _ 9 (L) _9 (oL _o (oL _o(aL)_,
dp Ot \ 9 ox \ 0, oy \ 0o, dz\dp,)

(30)

Appendix i

To show that the scaled field g, = Agp( 4~%t, 4~%x, A-(5:+)y )

is also a solution of Eq. (15), we differentiate ¢, twice with
respect to time:

L) e
= e 31
or? or? D)

as well as twice with respect to the x coordinate:

0%, 0%
— = pe 32
0x2 0x2 (32)

and twice with respect to the y coordinate:

@ Springer

2
s — ,11—2(%—+ﬂ)02_(p

P 02 (33)
We then take raise @, to the power of 24:
@ = 3 (34)

which, together with Eq. (33), means that:

02(p 02(0 02(p
262 Fs _ 128 )1-2a4p) (267 P 1-2a, 267 ¥ 35
S 0 o (35

We then differentiate @, once with respect to the y coor-
dinate and take the square:

s 2
( aa(l;s ) — ;2(1~(a,+p)) <2_(5> (36)

which, together with Eq. (34), means that:

B! <%>2 = pA20-1 2(1=(a9) 201 <3_(P>2

ay dy
do 2
— gl-2a. 261 29
B @ PR

(37

Therefore, by using Eqs. (31), (35) and (37) with the
original equation of motion in Eq. (15):

e e 0 o0, \
2017 Ps _ 220 s 4 22 % 4 g1 29
o 2 T g TRy

(38)
where the j2a.—1factor cancels, leaving the form of the origi-
nal equation of motion in Eq. (15):

o, e,  ,,0% o0, \’
_"s__ 'S + p__Ts + 2p—-1 Z*Fs 39
37 52 T P Be; (39)

We have therefore shown that if (¢, x, y) is a solution of
Eq. (15), so is the scaled field

@y(t,%,Y) = AQ(A™%t, A7%x, A7%y) = Ag (A7, A™%x, A= FPy)
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