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Humans are highly proficient in learning about the environments in which they operate.
They form flexible spatial representations of their surroundings that can be leveraged
with ease during spatial foraging and navigation. To capture these abilities, we present
a deep Active Inference model of goal-directed behavior, and the accompanying belief
updating. Active Inference rests upon optimizing Bayesian beliefs to maximize model
evidence or marginal likelihood. Bayesian beliefs are probability distributions over the
causes of observable outcomes. These causes include an agent’s actions, which
enables one to treat planning as inference. We use simulations of a geocaching task
to elucidate the belief updating—that underwrites spatial foraging—and the associated
behavioral and neurophysiological responses. In a geocaching task, the aim is to find
hidden objects in the environment using spatial coordinates. Here, synthetic agents learn
about the environment via inference and learning (e.g., learning about the likelihoods
of outcomes given latent states) to reach a target location, and then forage locally to
discover the hidden object that offers clues for the next location.

Keywords: active inference, spatial foraging, uncertainty, goal-directed behavior, geocaching, navigation, free
energy principle

INTRODUCTION

Foraging is a type of goal-directed search process whereby (biological or synthetic) agents explore
a given space with the purpose of discovering resources of (sometimes) limited availability. This
search process is encountered in literature under various frameworks such as navigation (Montague
et al., 1995; Rutledge et al., 2009; Humphries and Prescott, 2010; Pearson et al., 2014; Constantino
and Daw, 2015; Kaplan and Friston, 2018), attention and visual salience (Itti and Koch, 2000;
Parkhurst et al., 2002), or semantic memory (Hills et al., 2012; Todd and Hills, 2020). Each of
these frameworks considers different components of complex multi-network and multi-function
behavior. Successful foraging in certain animals engages the prefrontal cortex (Jung et al., 1998),
decision making and reward circuits—such as the dorsal anterior cingulate cortex (Calhoun
and Hayden, 2015) and the basal ganglia—as well as hippocampal and para-hippocampal areas
involved in spatial navigation (Seamans et al., 1998; Kolling et al., 2012; Barry and Burgess, 2014),
and planning. The basic need for food—to maintain homeostasis—also played a major role in
the progressive evolution of cognitive structures (and functions) that would subsequently find a
place within the core of abstract thinking in humans and primates. Indeed, accounts of sentient
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behavior must consider not only the specific task-dependent
goal, but also uncertainty about the environment in which the
agent acts. Context-dependent behavior applies not only to the
physical space, but also to the abstract context of thoughts and
decision making.

Foraging is a fundamental skill for survival. The ability
to find food in the environment is conserved across species,
although this is expressed in different ways depending on
the specific species—and can take particularly abstract and
complex forms in humans. This species-dependent characteristic
of foraging becomes immediately evident if we consider the
sub-processes involved, most of which are usually attributed
to the prefrontal cortex in humans and primates (Rudebeck
and Izquierdo, 2021). These sub-processes include evaluation
(such as value-based decision making), prediction, and action
(such as learning about uncertainty, action selection, patch-
leaving problems, and matching) and social cognition (Rudebeck
and Izquierdo, 2021). In recent years, complementary work
in neuroscience (especially in the field of human and primate
decision making) and ethology has appealed to a more holistic
understanding of decision making in light of core (information)
foraging processes. Simultaneously, the evolution of foraging-
related structures across species becomes necessary for building
the decision-making skills observed in humans (Mobbs et al.,
2018). For the purpose of the current work, we focus on one
of these important aspects, namely on uncertainty reduction
via exploration. Uncertainty proved to have a non-trivial
role in foraging (Anselme and Güntürkün, 2019). Indeed,
higher level of uncertainty in foraging and goal-oriented tasks
boosts exploratory behavior and foraging motivation in both
animals and humans. This “boost” is reflected in an increased
dopaminergic response from the mid-brain, in particular the
nucleus accumbens (Le Heron et al., 2020).

The role of uncertainty in cognition has been investigated
under different assumptions and frameworks (Grupe and
Nitschke, 2013; Hasson, 2017; Peters et al., 2017; Mukherjee et al.,
2021; Walker et al., 2021). In learning processes, uncertainty has
a direct relationship with statistical and parametric learning, in
that the latter aims to find patterns of consistent associations
over separate experiences, while the modulation of the former
directly affects the latter via predictive processes (Hasson,
2017). When it comes to action, the effect of uncertainty
underwrites epistemic behavior (namely, information gathering).
Within active inference, uncertainty can arise at a number of
levels: from the ambiguity associated with imprecise (likelihood)
mappings from environmental states to sensory observations to
the uncertainty that accrues through (prior) probabilistic state
transitions (Parr and Friston, 2017).

Within this framework, two main kinds of uncertainty
have been considered. On one hand, epistemic uncertainty
can be related the temporal dynamics of the environment,
in terms of uncertain transitions across states—transitions
that could produce uncertainty reducing outcomes. On the
other hand, aleatoric uncertainty can also result from the
statistical mapping from hidden states to sensory observations,
in terms of ambiguity in the sensory signal (Hüllermeier
and Waegeman, 2021). Generally speaking, in uncertainty

quantification, epistemic uncertainty reflects what we don’t know
and is reducible, while aleatoric uncertainty can only be reduced
by sampling or measuring something more precisely. In our
computational work, both of these types of uncertainty are in
play. We will explain the theoretical basis of active inference
in the next section. However, it is immediately evident that
uncertainty plays a core role not only in action selection,
but also in the epistemic behavior that results in updates of
beliefs about external states of the world. We focus on the
specific role of uncertainty in spatial foraging to elucidate,
both theoretically and neurophysiologically, how goal-directed
epistemic behavior depends on the level of uncertainty about
internal representations of the state of the world—and the
planned exchange with that world.

For completeness, we note that the field of foraging studies
has benefited from a variety of approaches and disciplines, from
neuroscience of decision-making and economics (Hayden, 2018;
Mobbs et al., 2018) to computational neuroscience (Ward et al.,
2000; Gheorghe et al., 2001; Davidson and El Hady, 2019),
from ethology (Stephens, 2008) to social studies (Gabay and
Apps, 2020), with the substantial contribution of memory and
spatial navigation research (Gutiérrez and Cabrera, 2015; Kerster
et al., 2016; Nauta et al., 2020). For a thorough perspective
on the topic, please refer to relevant reviews (Hayden and
Walton, 2014; Hall-McMaster and Luyckx, 2019; Gabay and
Apps, 2020). Although each of these approaches has shaped an
ecologically valid and holistic understanding of foraging, the field
lacks a unifying framework that can bridge between conceptual
propositions and higher-scale (formal) theories and, crucially,
neurophysiological mechanisms. The active inference framework
is a promising candidate to achieve this. Not only does it provide
a first principles conceptual account of real-world behavior and
cognition, but it also features an accompanying neuronal process
theory. This allows us to simulate both real-world behavior and
the underlying neurophysiological mechanisms in a way that is
biologically plausible.

Here, we use a geocaching task to build a generative
model of foraging. With our model, we aim to show how
both epistemic (explorative) and reward-seeking (exploitative)
behaviors arise from the same generative model of the world.
We focus on one of the core aspects of foraging—uncertainty
reduction—as contextualizing spatial exploration and action
selection. We succeeded in reproducing a simplified naturalistic
behavior using a goal-directed task. Moreover, we report a set
of neurophysiological simulations, which confirm the biological
plausibility of the model and the role of dopamine in foraging
and uncertainty reduction, as shown in previous studies (Fiorillo
et al., 2003; Niv et al., 2005; Friston et al., 2014; Li et al.,
2016; Gershman, 2017; Jo et al., 2018; Le Heron et al., 2020).
Similarly to our proposal, recent work (Schwartenbeck et al.,
2019) developed a consistent active inference account of goal-
directed exploration, which provides complementary insights on
the pivotal role of exploration-exploitation balance in a T-maze
task with risk options. Here, we extend on this foundation
toward a generalization of the theory in foraging behavior in
the environment, where the binary decision-making choice is
substituted by multidirectional goal-directed navigation. As we
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will show, the same principles succeed in reproducing spatial
foraging behavior in an open environment.

In what follows, we summarize active inference with
its implicit minimization of variational and expected free
energy, offering a brief account of planning as inference
(Botvinick and Toussaint, 2012; Friston et al., 2017a).
We then describe the generative model used for numerical
analyses. The subsequent section presents a series of illustrative
simulations showcasing planning and foraging behavior, their
underlying belief updating, and prospective neurophysiological
correlates. In the final section, we review the numerical
experiments in light of current empirical findings in the spatial
foraging literature.

ACTIVE INFERENCE BASICS

The basic notion underlying active inference is that biological
organisms are inference machines that minimize (variational)
free energy or, equivalently, maximize model evidence. This
can also be defined as minimizing uncertainty about the
environment (Friston et al., 2017a), or self-evidencing (Hohwy,
2016). Active inference rests on generative models of the
environment in the form of beliefs about contingencies in
the experienced world. Generative models can be thought of
as alternative hypotheses about the unobservable causes that
generate the agent’s observations. Each generative model is
specified as a joint probability distribution over policies (i.e.,
sequences of actions or plans), hidden states, and outcomes.
In brief, the agent uses sensory data (i.e., observations) to
update its beliefs about hidden (i.e., unobservable) states
and the most likely policies (i.e., sequences of actions) it
should pursue, a process known as inference. Furthermore,
active inference agents hold and optimize beliefs about their
behavior. They select actions from posterior beliefs about policies
(i.e., plans), which solicit new observations, in line with the
goal of fulfilling prior preferences and resolving uncertainty.
Perception and action are therefore optimized simultaneously:
perception involves optimizing posterior beliefs about hidden
states, whereas action involves the optimization of beliefs about
policies (i.e., planning). This inference rests upon beliefs about
model parameters encoding various contingencies that are
themselves optimized over time through learning. Typically,
inference proceeds moment to moment, while learning is a slower
process under the prior assumption that states of affairs change
more quickly than the context or contingency that is encoded
by parameters. Parametric learning entails the optimization of
beliefs about relationships implicit in the interaction between
different (latent) variables in the environment, where actions
are selected to resolve uncertainty about hidden states and
the parameters of a generative model. Epistemic foraging to
resolve uncertainty about latent states and parameters is often
described in terms of salience and novelty, respectively (Parr
and Friston, 2019; Schwartenbeck et al., 2019). Model parameters
can encode beliefs (usually as concentration parameters) about
likelihoods (of outcomes given hidden states), transitions
(among states), preferences (for outcomes), initial states, and

policies, typically designated by the matrices A, B, C, D,
and E, respectively.

The (variational) inference process in Active Inference can
therefore be seen as optimizing posterior beliefs about the causes
of sensorial experience for past, present, and future (latent)
states, based on observations, and contingent upon the pursuit
of specific policies (Friston et al., 2017a). In what follows,
we briefly outline inference, policy selection and learning in
terms of belief updating as a minimization of variational and
expected free energy.

First, we cast the process of inference as the minimization of
variational free energy—also known as an evidence bound (Winn
and Bishop, 2005)—with regards to the sufficient statistics of
an approximate posterior distribution over the hidden causes x
(representing hidden states s, and policies, π):

Q(x) = arg min
Q(x)

F ≈ P(x|õ) (1) Variational Free Energy

F = EQ[ln Q(x)− ln P(õ|x)− ln P(x)]

= EQ[ln Q(x)− ln P(x|õ)− ln P(õ)]

= DKL[Q(x)||P(x|õ)]︸ ︷︷ ︸
relativeentropy

− ln P(õ)︸ ︷︷ ︸
log evidence

= DKL[Q(x)||P(x)]︸ ︷︷ ︸
complexity

−EQ[ln P(õ|x)]︸ ︷︷ ︸
accuracy

Where õ = (o1, ..., ot) denotes observed outcomes up until
the current time. This equation can be thought of as perception.
It shows that minimizing variational free energy brings the
agent’s Bayesian beliefs close to the true posterior beliefs by
minimizing the relative entropy term (a term that is never less
than zero). This is equivalent to forming beliefs about hidden
states that provide an accurate but parsimonious—complexity
minimizing—explanation for observed outcomes. Complexity is
simply the difference between posterior and prior beliefs, i.e., the
degree to which one “changes one’s mind” when updating prior
to posterior beliefs.

Action and planning are usually expressed as selecting the
action from the most plausible set of actions (i.e., policies) that
has the least expected free energy:

π∗ = arg min
π
=

∑
τ

G(π, τ) (2) Expected Free Energy

G(π, τ) = EQ̃[ln Q(A, sτ|π)− ln P(A, sτ, oτ|õ, π)]

= EQ̃[ln Q(A)− ln Q(A|sτ, oτ, π)]︸ ︷︷ ︸
(Negative) novelty

+

EQ̃[ln Q(oτ|π)− ln Q(oτ|sτ, π)]︸ ︷︷ ︸
(Negative) salience

−EQ̃[ln P(oτ)]︸ ︷︷ ︸
Extrinsic value

Frontiers in Neuroscience | www.frontiersin.org 3 February 2022 | Volume 16 | Article 802396

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-16-802396 February 2, 2022 Time: 16:24 # 4

Neacsu et al. Synthetic Spatial Foraging

Where Q̃ = Q(oτ, sτ|π) = P(oτ|sτ)Q(sτ|π). The purpose of
this expression is to identify the best sequence of actions
(i.e., policy) and implicit action for the next time step. Note
that this kind of planning—based on expected free energy—
implies averaging the free energy expected following a policy
under the predicted outcomes. The expected log evidence
therefore becomes extrinsic value: the extent to which outcomes
conform to prior preferences. In economics, this term is known
as utility (Fishburn, 1970), and in behavioral psychology, it
corresponds to reward (Barto et al., 2013; Cox and Witten,
2019). Likewise, the expected relative entropy becomes the
information gain pertaining to unknown model parameters
(i.e., novelty) and unknown hidden states (i.e., salience). These
measures are sometimes referred to as intrinsic or epistemic
values and form the basis of artificial curiosity (Schmidhuber,
2006; Ngo et al., 2012; Schillaci et al., 2020). They quantify
the value of the evidence accumulated if agents were to
pursue a particular plan. Maximizing these intrinsic values
can be seen as a form of optimal information gain or active
learning (MacKay, 1992; Oudeyer and Baranes, 2008; Baranes
and Oudeyer, 2013), where curiosity resolves uncertainty about
states of the world and their contingencies—in accord with the
principles of optimum Bayesian experimental design (Lindley,
1956).

Whereas salience is associated with beliefs about the current
state of affairs in the world, and how they will unfold in the
future, novelty is the reducible (epistemic) uncertainty about the
probabilistic contingencies themselves, and the causal structure
they entail (i.e., the causal structure of the environment). In other
words, novelty affords the opportunity to resolve uncertainty
about what would happen if agents engaged in a specific
course of action (i.e., “what would happen if I did this”). An
alternative way of decomposing expected free energy is into
expected (in)accuracy and complexity—that can be understood
as ambiguity and risk; namely, the (aleatoric) uncertainty that
pertains to ambiguous outcomes and the risk that actions
will bring about outcomes that diverge from prior preferences.
This means that minimizing expected free energy resolves both
epistemic and aleatoric uncertainty.

Parametric learning optimizes the parameters of the
(generative) model. Active Inference agents with discrete state
space generative models usually have priors (e.g., A, B, etc.)
and hyper-priors (e.g., a, b, etc.) that encode beliefs about
model parameters (Friston et al., 2016). Given that parametric
beliefs (e.g., A) are defined as categorical distributions, an
appropriate hyper-prior encoding the mapping between relevant
couplings (e.g., state-outcome) is specified in terms of Dirichlet
concentration parameters. Given a state (s), the belief about the
probability of an outcome is:

P(o|s, A) = Cat(A)

P(A|a) = Dir(a)⇒

EP(A|a)

[
Aij

]
=

aij∑
k akj

EP(A|a)

[
ln Aij

]
= ψ(aij)−ψ

(∑
k akj

)
(3)

Where ψ is the digamma function. Agents then accrue
Dirichlet parameters during exposure to new observations,

permitting them to learn. Updates over these parameters involve
the accumulation of Dirichlet parameters that represent the
mapping from hidden states to the observed outcome (Friston
et al., 2016; Da Costa et al., 2020). For instance, updates to
the concentration parameters of the likelihood mapping are
expressed as:

a = a+
∑

τ

sτ ⊗ oτ (4)

Where a and a represent prior and posterior concentrations
parameters, respectively, and sτ denotes posterior expectations
about the hidden states.

Given that accumulating (Dirichlet) concentration parameters
(in this case over the likelihood matrix) is equivalent to the
type of change seen in activity or experience-dependent plasticity
(Brown et al., 2009; Friston et al., 2017a), it can be regarded as
a synaptic strengthening each time neurons encoding states and
observations (coupled by that synapse) are active simultaneously.
This formulation therefore provides a mathematical description
of Hebbian or associative plasticity.

In active inference, extrinsic (utility) and intrinsic (epistemic)
values are optimized in tandem, since policy selection is
underwritten by expected free energy, which in itself entails a
dual pursuit: maximizing utility and information gain (Friston
et al., 2017b). Normally, the behavior of Active Inference agents
is dominated by epistemic incentives until uncertainty about the
environment has been resolved. Thereafter, extrinsic incentives
take charge, giving rein to exploitative behavior. For a detailed
account of Active Inference and associated tenets, please see
Friston et al. (2016; 2017a,c; 2018), Da Costa et al. (2020), and
Smith et al. (2020). In the current work, we call upon these
intrinsic and extrinsic values to simulate information and goal
seeking behavior in a novel environment.

THE GENERATIVE MODEL AND BELIEF
PROPAGATION

In summary, generative models are joint probability distributions
over observed outcomes, latent causes, and sequences of actions
(i.e., policies), necessary to optimize beliefs and subsequent
behavior. The active side of the inference process corresponds
to inverting a generative model using observed outcomes (i.e.,
generating consequences from causes), and forming posterior
expectations about the hidden states (i.e., recovering causes from
consequences). Crucially, in active inference these expectations
include the most likely action, hence active inference. In this
section, we describe the specific generative model used to
simulate purposeful behavior and associated belief updating,
and the slower accrual of evidence (i.e., associative plasticity).
These distinct processes are emergent aspects of minimizing the
variational bound on (negative log) model evidence described
above. These processes have a reasonable degree of biological
plausibility, enabling us to simulate neuronal responses and
changes in synaptic efficacy during inference and learning,
respectively (Friston et al., 2017a,c).

When using Active Inference schemes, the principal challenge
lies in specifying a suitable generative model to capture the
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FIGURE 1 | Graphical depiction of the generative model and approximate posterior. This discrete-state space temporal model has one hidden state factor: location.
This factor generates outcomes in two outcome modalities: where and what (with two levels: reward or null). The likelihood A is a matrix whose elements are the
probability of an outcome under every combination of hidden states. B represents probabilistic transitions among hidden states. Prior preferences over outcome
modalities for each hidden state factor are denoted by C. The vector D specifies priors over initial states. Cat denotes a categorical probability distribution. Dir
denotes a Dirichlet distribution (the conjugate prior of the Cat distribution). An approximate posterior distribution is needed to invert the model in variational Bayes
(i.e., estimating hidden states and other variables that cause observable outcomes). This formulation uses a mean-field approximation for posterior beliefs at different
time points, for different policies and parameters. Bold variables represent expectations about hidden states (in italic). Transparent circles represent random
variables, and shaded circles denote observable outcomes. Squares denote model parameters and expected free energy.

behavior and cognition induced by the task or problem in
question, rather than devising a scheme for Bayesian optimal
behavior. Once the generative model has been specified,
model inversion (i.e., inference and learning) can use standard
belief updating schemes (e.g., spm_MDP_VB_X.m, available
in SPM12).1 The generative model we use in the following
simulations is a deep temporal model (Friston et al., 2017d) based
on a partially observable Markov decision process (POMDP).
Under these sorts of models, there are generally four types of
latent causes: hidden states (of the world) that generate observable
outcomes, policies (i.e., sequences of actions being pursued)
that specify transitions among the hidden states, precision
encoding confidence in beliefs about policies, and parameters
(e.g., likelihood).

The generative model is parameterized by a set of arrays (i.e.,
matrices and vectors): a likelihood matrix encoding probabilistic
mappings from (hidden) state factors to outcome modalities
(A), transition probabilities among the different hidden states
given particular actions (B), prior preferences over outcome
modalities for each hidden state factor (C), and finally, priors
over initial states (D). As mentioned above, these matrices are
parameterized with Dirichlet (concentration) parameters that
accumulate during experience: the amalgamation of a given
hidden state and outcome effectively adds a concentration
parameter (i.e., a count) to the appropriate element of the

1www.fil.ion.ucl.ac.uk/spm/software/download

likelihood mapping. Here, there are two outcome modalities: the
first (what) registers rewarding outcomes with two levels (reward
vs. null). The second modality reports the current location
in the space being explored (where). Outcomes are generated
from a single hidden state factor (location), corresponding to
locations in a 10×10 grid. Please see Figure 1 for a graphical
depiction of the generative model. There are 5 allowable
actions: up, down, left, right, and stay. These actions induce
5 transition matrices that play the role of empirical priors.
The outcomes reward: present and reward: null were assigned
a utility (i.e., relative log probability) of 3 and 0, respectively.
With these utility values, the synthetic agent would “prefer”
(i.e., expect) a reward: present outcome about 20 times more
than the reward: null outcome. The agent also prefers being
in proximity of the target location (i.e., reward: present). In
summary, we specified a minimal generative model necessary
to illustrate navigation and (epistemic) foraging in which the
causes of observable outcomes were locations in space. The
observations available to an agent comprised two sorts. The
first told it unambiguously where it was and the second
described what happens at each location, in terms of preferred
or non-preferred outcomes. The agent can move around this
space, taking one step at a time—knowing its location but
not necessarily knowing location-specific outcomes in the
reward modality.

B can be thought of as an empirical prior, since it depends
upon actions, which themselves are determined by policies π
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FIGURE 2 | Belief update and propagation. The left panel shows the equations that underlie (approximate Bayesian) inference and action selection. The differential
equations (middle left) can be construed as a gradient descent on (variational) free energy, and are defined in terms of prediction errors. Policy expectations are
computed by combining the two types of prediction error (state and outcome), via a softmax function (message 4). State PE quantifies the difference between
expected states for each policy (messages 1, 2, and 3), whereas outcome PE computes the difference between expected and predicted outcomes, and is weighted
by the expected outcomes to estimate the expected free energy (message 5). The right panel displays the message passing implied by the belief update equations
in the left panel. Neural populations are represented by the colored spheres, which are organized to reproduce recognized intrinsic connectivity for cortical areas.
Red and blue arrows are excitatory and inhibitory, respectively. Green arrows are modulatory. Red spheres indicate Bayesian model averages, pink spheres indicate
both types of PE. Cyan spheres represent expectations about hidden states and future outcomes for each policy. Connection strengths represent generative model
parameters.

(i.e., it depends upon a random variable). Policies are a priori
more probable if they minimize expected free energy G, which
is contingent upon prior preferences about outcomes C, and
(aleatoric) uncertainty about outcomes under each state H
(please see Figure 2). Update equations (that allow agents
to minimize free energy) are derived from the generative
model, with consideration for neurobiological constraints. Briefly
speaking, expected hidden states are updated by means of
belief propagation. In active inference, this is achieved using
a gradient descent on (variational) free energy for each
hidden variable.

The ensuing solutions implement message passing from
representations of the past (forward = message 1), future
(backward = message 2), and observations (message 3) that
update posterior beliefs over latent (hidden) states, allowing for
both postdiction and prediction under each individual policy
(see Figure 2). As new outcomes emerge, more likelihood
messages contribute to the belief update, which makes for
more informed posteriors. This recurrent message passing
can be summarized as follows: the generative process (i.e.,
the environment) generates outcomes that update approximate
posteriors about policies (i.e., plans), which are themselves
contingent upon prior preferences and intrinsic value. The
policies determine the selected action, and selected actions
generate new outcomes.

To specify the gradient descent on (variational) free energy, we
substitute ln sπ,τ by vπ,τ, and introduce a state prediction error
(PE) variable επ,τ as described in Friston et al. (2017c):

sπππ,τττ=σσσ(vπππ,τττ)
v̇πππ,τττ=εεεπππ,τττ

εεεπππ,τττ=lnlnlnBπππ,τττ-1 · sπππ,τττ-1+lnlnlnBπππ,τττ · sπππ,τττ+1+
lnlnlnA · oτττ-lnlnlnsπππ,τττ

(5)

Which is formally equivalent to the differential equation in
Friston et al. (2017a):

v̇πππ,τττ=εεεπππ,τττ=-
∂∂∂Fπππ

∂∂∂sπππ,τττ
(6)

This basically says that we can understand neuronal dynamics
as performing a gradient descent on variational free energy, or—
more heuristically—minimizing various prediction errors.

Since this equation describes the rate of change of a log
expectation (i.e., softmax of log expectations), a neurobiologically
plausible interpretation is to associate the log expectations
with the depolarization of neuronal populations, and the
message passing itself (the softmax) with neuronal firing rates
(Friston et al., 2017a). Please see Figure 2 for the ensuing
belief update scheme. For an extensive description of belief
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update and their possible neurobiological mechanisms, please see
(Friston et al., 2017a).

SIMULATIONS AND RESULTS

Our numerical experiments focused on navigation and local
foraging, respectively. In the navigation simulations, the agent
sees a space comprising a 10 × 10 grid and navigates toward
preferred target locations (specified with prior preferences over
the location modality). For the foraging simulations, we zoom
into a local area (also a 10 × 10 grid), where the agent engages
in epistemic foraging to find a hidden object (i.e., rewarding
location). After finding this object, the agent is given a new
target location and the process repeats. The agent thus plans
its trajectory toward its target location, and then explores the
location to find hidden rewards. This object could be regarded
as the cue that specifies the next target location. After navigating
to the second target location, the agent again explores locally
to find the hidden object. This process could continue ad
infinitum. In this demonstration, both epistemic foraging and
goal directed behavior are evinced via the minimization of
(expected) free energy.

For the navigation phase, the agent starts at the entrance of
the grid. Prior preferences prompt the agent to seek out target
locations. Cues that directly inform the agent of its current
location can be thought of as exteroceptive, whereas the observed
outcomes (reward or null) can be thought of as interoceptive.
The policy depth (i.e., planning horizon) involves four steps—
that is, agents can evaluate distal (and possibly preferable)
outcomes in the future, which allows them to plan and pursue
the shortest trajectory toward the end goal (i.e., the first rewarding
location). In this simulation there were 10 moves in total, enough
to reach the target location using the shortest available path.
Synthetic agents were endowed with prior knowledge about the
environment—so that they were planning their trajectory in a
familiar environment.

For the local foraging simulations, the agent has additional
(i.e., epistemic) incentives in the form of uncertainty about
the location that contains the rewarding outcome. In this
context, agents explore the environment, initially motivated by
curiosity about the parameters of the model (here, the likelihood
matrices—see set of equations number 2). In other words, their
behavior was driven by the novelty of the environment; namely,
“what would happen if I went there?” To simulate exposure to this
local novel environment, the prior Dirichlet parameters of the
likelihood mapping (A)—encoding the mapping between hidden
states and “what” outcomes (i.e., reward or null outcomes)—
were set to a small value (i.e., 1/100). As a consequence,
the expected free energy G acquires a non-trivial novelty
term (Friston et al., 2017b). This phase of the simulations
illustrates how agents learn about their environment by means
of novelty-driven evidence accumulation. Technically, this entails
the updating of Dirichlet parameters (encoding hidden state—
outcome mappings) after 30 successive moves in the local
environment. Once locations are visited, they lose their novelty
(i.e., epistemic value), a process which endorses those policies

that visit unexplored ground. Preferences for particular outcomes
(i.e., reward and location) were formally the same as the
prior preferences used in the navigation simulations. We also
specified concentration parameters in the state transition matrix
to simulate an additional type of learning—comparable to that
of foraging in volatile environments—where (biological) agents
have some degree of uncertainty about where exactly they will
move to, based on where they have just foraged (and the
actions they pursued).

Collectively, these simulations mimic the circumstances
surrounding local foraging in geocaching, where agents freely
explore the environment to discover a hidden object. The
agent, however, maintains a dual imperative—to discover the
environment by satisfying its curiosity, and at the same time,
to realize prior preferences (i.e., of finding the object hidden in
the environment). In Figure 3, we depict results of exemplar
simulations for both types of simulations.

In active inference, as mentioned above, a softmax function
is applied to (precision-weighted) expected free energy in order
to optimize posterior beliefs about each policy. When new
observations are available, the precision parameter is updated:
the policy with the lowest (expected) free energy is more likely
if the associated precision parameter is high (c.f., an inverse
temperature parameter). The confidence that the inferred policy
will produce preferred outcomes or resolve uncertainty about
latent states is therefore represented by this precision parameter.
Dopaminergic activity in the mid brain is thought to encode
this type of precision (Schwartenbeck et al., 2014). Figure 4
illustrates representative simulated neural activity for the agent’s
last planning and movement sequence (i.e., 10 movements)
during the navigation simulations. In the current model, the
phasic bursts observed in simulated dopaminergic responses (see
Figure 4) indicate notable changes in precision at steps 1, 4, 6, and
8 (i.e., the 16th, 64th, 96th, and 128th iteration, respectively, in
terms of updates—since there are 16 iterations of gradient descent
per time-point). These suggest a change in confidence (i.e., the
agent resolves uncertainty) about what policies to pursue, by
eliminating other possible trajectories. In this scenario, at the first
step, the agent eliminated the possibility of going right instead of
up, an action that could equally have allowed it to reach the target
using the minimum number of steps. At the 8th movement, the
agent becomes confident about fulfilling its target location, and
spends steps 9 and 10 within the rewarding state. This example
shows how belief updating and decision making can be unpacked
in terms of uncertainty and precision.

Firing rates indicate changes in beliefs over time about the
state for each time-point. The fourth panel of Figure 4 depicts
predicted local field potentials (depolarization), showing the rate
of change in simulated firing rates for all (1,100) hidden state
units (colored lines). This panel shows that visiting different
locations evokes responses in different neuronal populations, and
of variable degrees. Finally, the right panel displays neuronal
responses associated with the where state beliefs before and
after filtering at 4 Hz (dotted and solid line, respectively).
These are superimposed upon a time-frequency decomposition
of the averaged local field potential (over all simulated neurons).
These show fluctuations in local field potentials at a theta
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FIGURE 3 | Navigation and local foraging behavioral results. (A) The agent plans and executes its (shortest available) trajectory toward the first target location, driven
by prior preferences. The purple dot indicates the starting location. The agent has learned the likelihood mappings, which can be interpreted as having—and making
use of—a map to reach the target location. (B) When the target location is reached, the agent explores the local area to find a hidden object, as it learns and
discovers its environment. Here, the agent starts with a uniform distribution about the likelihood mappings, and has additional uncertainty pertaining to the transition
matrix (i.e., uncertainty about where the agent finds itself given where it was previously and the action it has taken). This process involves a dual pursuit: discovering
the environment and fulfilling a desire to find the hidden object. (C,D) After finding the hidden object, the agent receives a new target location and the process
repeats (possibly ad infinitum).

rhythm that are phase-locked to induced responses over a
wide range of frequencies (including gamma frequencies—
not shown). This reproduces the characteristic theta-gamma
coupling found in empirical studies of foraging and navigation
in small animal studies (Bragin et al., 1995; Lisman and Redish,
2009; Buzsaki and Moser, 2013).

DISCUSSION

Learning about the environment is fundamental for human
and animal behavior alike. In particular, foraging requires
the interaction of several processes to maintain homeostasis,
on which survival depends. Recent advances in both the
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FIGURE 4 | Simulated electrophysiological responses for a representative sequence of moves. The left panel shows the agent’s trajectory, followed by (synthetic)
dopamine responses, firing rates, local field potentials and time-frequency responses. Please see main text for more details.

neuroscience and ethology of foraging have emphasized the need
for a holistic, ecologically valid approach. Although different
disciplines contribute to the extensive body of work of foraging,
in and across different species, the field lacks an integrative
account. In this work, we address two key components of the
complex process of foraging: uncertainty reduction and action
selection. Our computational account of foraging succeeds in
reproducing real-world behavior, and at the same time accounts
for its neurophysiological correlates. The setup of our model, in
its simplicity, tries to be ecologically valid and to account for
the sequential nature of foraging; especially the accumulation of
knowledge during epistemic foraging. Each outcome is indeed
not only a partial goal of the task (a partial reward, if we will),
but also the cue for the next outcome. In a similar way, when
we explore the environment, we rarely have one-shot rewards
but progressive cues that guide us closer and closer to the final
location (for instance, an animal would first find a trace of its
prey, the precise location of the prey, and so on, until it finally
secures the final goal—and has to start again for the next meal).

Our results reproduce two levels of foraging behavior:
goal-directed navigation (in the global environment) and
epistemically-driven exploration (locally). In the first case, the
goal is to follow a trajectory, given preferences for a target
location. In the second this preference seeking motivation is
contextualized by explorative or epistemic imperatives. Note that
because the epistemic and preference parts of expected free
energy are expressed as log probabilities, the policies selected
can be viewed as reflecting the product of the probabilities per
se. In other words, epistemic policies will be rejected if they
have a very small probability of securing a preferred outcome.
A very small probability of a preferred outcome corresponds
to an aversive or surprising outcome, which means that prior
preferences constrain the epistemic affordances of any behavior
(under active inference).

Our simulations illustrate the effect of uncertainty on behavior
and neuronal activity. This is particularly relevant in the second
part of our simulations (local foraging). The degree of explorative
behavior is modulated by the level of uncertainty about the
state of the world. When uncertainty is high, action selection is
built upon the explorative imperative of reducing uncertainty.
The more the agent becomes confident about its surroundings
(i.e., the more uncertainty is reduced), the more action selection

is guided by exploitative behavior, when extrinsic gain is
predominant, and less by exploration. Uncertainty reduction
has, thus, a direct effect on action selection. As proposed in
previous work, dopamine is responsible for encoding uncertainty
over policies or decisions. In other words, the kind of beliefs—
whose precision is modulated by dopamine—are beliefs about
policies (sequences of actions, resulting in action selection). At
a synaptic level, the modulation of precision could be thought
of as neuromodulation or synaptic gain control (Parr and
Friston, 2017). The firing rate of dopamine in the mid brain
is nicely reproduced in our electrophysiological simulations. As
expected, the agent becomes more and more confident about its
predictions, which is reflected in a progressive increase in rates of
beliefs updating and reduction of uncertainty.

The current work has some clear limitations. Although it
succeeds in reproducing biologically plausible and real-world
oriented foraging behavior, it does not account for several
sub-processes involved in foraging. We prioritized clarity over
complexity, and we did not develop our work with the purpose
of including aspects of spatial navigation (such as the navigation
system of hippocampal and para-hippocampal areas), patch-
leaving problems, matching and social cognition. Another
limitation of our work is the assumption that the model is
given the target location as a fully formed prior preference. This
could be interpreted as “information passing” of cues between
individuals of the same group. However, a more extensive
account of foraging would have to address how these prior
location preferences were inferred or learned.

Although restricted in its focus, our model offers a
preliminary account of foraging, both in terms of behavioral
and neurophysiological responses. Future work could aim to
extend this approach to include the missing elements of foraging.
Active inference is indeed equipped to account for many aspects
of sentient behavior, social behavior included. A successful
extension of the model could also reproduce and investigate the
neurophysiological role of other neurotransmitters in foraging.
For example, the role of norepinephrine in setting the precision
of state transitions—or the role of cholinergic neurotransmission
in setting the precision of sensory or likelihood mappings
(Doya, 2002, 2008; Parr and Friston, 2017). Moreover, active
inference offers a promising approach to close the gap not
only between behavior and neurophysiology, but also between
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foraging mechanisms across different species. Developmental
and comparative neuroscience could benefit from in silico,
evidence-informed modulation of model parameters to test
different hypotheses about how foraging evolved over time—
from simple living beings to more advanced primates and
humans. This work offers one step toward a holistic conceptual
and mechanistic understanding of foraging via a geocaching task
in the active inference framework.
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