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INTRODUCTION
Idiopathic pulmonary fibrosis (IPF) is the most common 
type of idiopathic interstitial pneumonia characterised by 
progressive lung fibrosis associated with a high mortality 
rate. IPF is diagnosed by a combination of clinical and 
radiological findings, which can obviate the need for a 

lung biopsy.1 To date, there is a lack of adequate prognos-
tication factors as patients with IPF display a significantly 
variable rate of disease progression.2 Currently, the agreed-
upon primary endpoint for clinical trials is the 12 month 
change in forced vital capacity (FVC)3; however, relying 
on FVC measurements for predicting patient outcome has 
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Objective To assess the prognostic performance of two 
quantitative CT (qCT) techniques in idiopathic pulmo-
nary fibrosis (IPF) compared to established clinical 
measures of disease severity (GAP index).
Methods: Retrospective analysis of high-resolution CT 
scans for 59 patients (age 70.5 ± 8.8 years) with two qCT 
methods. Computer-aided lung informatics for pathology 
evaluation and ratings based analysis classified the lung 
parenchyma into six different patterns: normal, ground 
glass, reticulation, hyperlucent, honeycombing and pulmo-
nary vessels. Filtration histogram-based texture analysis 
extracted texture features: mean intensity, standard devi-
ation (SD), entropy, mean of positive pixels (MPPs), skew-
ness and kurtosis at different spatial scale filters. Univariate 
Kaplan–Meier survival analysis assessed the different qCT 
parameters' performance to predict patient outcome and 
refine the standard GAP staging system. Multivariate cox 
regression analysis assessed the independence of the 
significant univariate predictors of patient outcome.

Results The predominant parenchymal lung pattern 
was reticulation (16.6% ± 13.9), with pulmonary vessel 
percentage being the most predictive of worse patient 
outcome (p = 0.009). Higher SD, entropy and MPP, in 
addition to lower skewness and kurtosis at fine texture 
scale (SSF2), were the most significant predictors of 
worse outcome (p < 0.001). Multivariate cox regression 
analysis demonstrated that SD (SSF2) was the only inde-
pendent predictor of survival (p < 0.001). Better patient 
outcome prediction was achieved after adding total 
vessel percentage and SD (SSF2) to the GAP staging 
system (p = 0.006).
Conclusion: Filtration-histogram texture analysis can 
be an independent predictor of patient mortality in IPF 
patients.
Advances in knowledge: qCT analysis can help in risk 
stratifying IPF patients in addition to clinical markers.
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several drawbacks. Serial measurements are required as the base-
line measurement change is more predictive of outcome.4–6 In 
addition, FVC measurements are subject to variability between 
visits even though a decline of 5–10% can be a predictor of 
poor prognosis.7,8 As such, there is an ongoing need for early 
disease outcome predictors to tailor patient management and for 
risk stratification purposes. High-resolution CT (HRCT) is the 
standard of choice for imaging IPF patients.9 However, there is 
no widely acceptable radiological biomarker of disease severity 
even though it was found that the extent of honeycombing and 
reticulation is an independent predictor of mortality.10 Previous 
studies, investigating the use of quantitative CT (qCT) to risk-
stratify IPF patients instead of visual scoring found interesting 
results and identified new parameters with the potential to serve 
as prognostic biomarkers.11,12 Several methods were proposed as 
a tool for qCT.13 Texture analysis with computer-aided classifica-
tion (computer-aided lung informatics for pathology evaluation 
and ratings, CALIPER) and histogram-based analysis are among 
the utilised methods.14,15 These software tools are based on 
different technical approaches, and both have shown important 
applications in various clinical settings and in different chronic 
lung diseases. This study aims to compare the prognostic and 
synergistic value of two different qCT methods in a well-selected 
cohort of IPF patients compared to standard clinical measures of 
disease severity.

METHODS AND MATERIALS
Patients
The study was approved by the ethics board [London-Harrow 
Research Ethics Committee (REC reference 06/Q0505/22)], and 
all patients provided written informed consent. A series of full 
inspiration HRCT scans (full inspiration volumetric 1 mm slices, 
peak voltage 120 kVp, tube current modulation range 30–140 
mA, B70 kernel) for 59 patients were selected from an original 
cohort of 113 patients prospectively recruited for comparison 
of fludeoxyglucose positron emission tomography (FDG PET), 
HRCT and pulmonary function tests (PFTs).16 From the original 
cohort, we filtered and included in the analysis, only the scans 
acquired on the same scanner (VCT PET/64, GE Healthcare, 
Chicago, IL), following the same image acquisition protocol and 
without breathing artefacts on the HRCT. As a result, out of the 
total cohort, 54 patients were excluded: 25 were scanned with an 
HRCT protocol with variable slice thickness or sequential gaps 
in the acquisition. 15 patients had no lung kernel reconstruc-
tion and the remaining 14 patients had breathing artefacts that 
impaired the quality of the scans and affected image analysis. The 
scans were analysed with two separate software packages util-
ising different qCT techniques, CALIPER (IMBIO Lung Texture 
AnalysisTM with CALIPER technology exclusively licensed 
from Mayo Clinic, Minneapolis) and filtration-histogram-based 
texture analysis (TexRAD, Feedback Medical Ltd, Cambridge). 
The CALIPER analysis was performed as previously described,16 
and an experienced radiographer checked the consistency of the 
images to be sure that the patterns seen at qCT corresponded to 
the abnormality seen on the CT images. The data set for patients 
included in our study was retrieved from the original cohort. 
Filtration-histogram-based texture analysis was performed by a 
radiologist with 6 years of experience in chest image analysis. IPF 

was diagnosed on radiological and clinical grounds after a multi-
disciplinary team (MDT) review, which included interstitial lung 
diseases (ILDs) trained radiologists, ILD respiratory physicians, 
specialist nurses, and a lung pathologist. All patients with symp-
toms of acute infection were excluded. The patients were catego-
rised according to the well-established GAP classification17 and 
the GAP stage was calculated in office during the initial visit and 
within 3 weeks from the HRCT. The GAP index ranges from 0 
to 8, which corresponds to the best and worst prognosis, respec-
tively. According to the GAP index, the patients were stratified 
into three stages (GAP stage I–III), which are identified as GAP 
stage I (GAP index 0–3), GAP stage II (GAP index 4, 5), and 
GAP stage III (GAP index 6–8).

Follow-up
The follow-up duration was from scanning to the date of death 
or 9 years, whichever occurred first. Patients were followed up by 
utilising patient charts, electronic databases, general practitioner 
records, or telephone interviews.

Quantitative CT texture (qCT-T) and pattern 
(qCT-P) analysis
DICOM images extracted from PACS were anonymised and 
transferred to the qCT-T analysis software. The CT images were 
viewed utilising the lung window (window: 1500, level: −600) 
and manual regions of interest (ROIs) were drawn covering the 
entire lung parenchyma, excluding large vessels and airways. 
The ROIs were drawn every 10 slices, equivalent to a thickness 
of 1 cm.

For each patient, heterogeneity within each ROI was evaluated 
using a filtration-histogram-based texture analysis technique as 
described previously.18 Filtration step comprised of extracting 
and enhancing image features of different sizes and intensity vari-
ation, corresponding to the spatial scale filter (SSF), which ranged 
from SSF = 2–4 mm, where SSF2 corresponded to fine texture 
scale, SSF3 corresponded to medium texture scale and SSF4 
corresponded to coarse texture scale. Following the filtration-
step, quantification of texture using statistical and histogram-
based parameters was undertaken at each derived image (SSF 
value) which comprised of the following: mean intensity [which 
reflects average brightness with filtration and mean lung attenu-
ation (MLA) without filtration at SSF0)]standard deviation (SD, 
which reflects the width of the histogram or dispersion from the 
average), entropy (which reflects irregularity), mean of positive 
pixels (MPPs, which reflects average brightness of only positive 
pixel values), kurtosis (which reflects sharpness of the histo-
gram distribution) and skewness (which reflects the asymmetry 
of the histogram distribution). Quantification of texture using 
the above metrics was also undertaken without filtration (SSF0, 
conventional CT image). For each patient, at each SSF value 
(0,2,3,4), a cumulative (volume) assessment of the texture results 
derived from multiple ROIs delineated across the multiple CT 
slices was computed.

The assessment of qCT-P was undertaken using CALIPER 
analysis software as described previously.11 Briefly, each voxel 
from the HRCT data was categorised into patterns based on 
algorithmic identification. These patterns include, normal 
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parenchyma, hyperlucent, ground-glass opacification, honey-
combing, reticulation and pulmonary vessels. Percentages of 
each pattern were computed utilising the whole lung volume as 
a reference. The combination of reticulation, honeycombing and 
ground-glass opacification, labelled as total parenchymal lung 
damage, was used to measure the overall disease burden.

Statistical analysis
Univariate Kaplan–Meier (KM) survival analysis assessed the 
ability of qCT-T, qCT-P, PFT, GAP scores, modified GAP scores 
and patient demographics to predict overall patient survival 
(Log-rank test evaluated the difference in the survival curves) 
based on median value as the cut-off for each parameter.

Modified GAP scoring
The best univariate survival predictors for qCT-T and qCT-P 
features based on the KM survival analysis were selected to 
modify the traditional GAP index. These predictors were 
binarised (based on the median value as a cut-off from the 
KM survival analysis) with a score of 0 for good prognosis, 
1 for poor prognosis, and added to the existing GAP staging 
system. The two modified scores were GAP_qCT-T (GAP 
scores modified based on qCT-T) ranging from 0 to 9 and 
GAP_qCT-T_qCT-P (GAP scores modified based on qCT-T 
and qCT-P) ranging from 0 to 10. These two modified scores 
were further stratified into three stages as the following: the 
GAP_qCT-T stages were 0–3, 4–6 and 7–9, and the GAP_
qCT-T_qCT-P stages were 0–4, 5–7 and 8–10 for stages I, II, 
and III respectively.

Multivariate cox regression analysis (Stepwise Forward Wald) 
assessed the independence and interactions (combinations/
synergistic-value) of the significant univariate markers and 
provided the performance characteristics (hazard ratio, 95% 
confidence interval, p-value). Statistical analysis was carried 
out using SPSS (IBM Corp. Released 2019. IBM SPSS Statistics 
for Macintosh, v. 26.0: IBM Corp.) with a p < 0.05 considered 
significant.

RESULTS
59 patients (age 70.5 ± 8.8 years) underwent qCT-T and qCT-P 
analysis. Within the study sample, 49 (83.1%) patients were 
males. At baseline, the average GAP index was 4.4 ± 1.75 
(0–8); 17 patients (28.8%) were classified as GAP stage I, 24 
patients (40.6%) were classified as stage II, and the remaining 
17 patients (28.8%) were classified as stage III. One patient 
was excluded from the GAP analysis due to unobtainable PFT 
data. Values of FVC, forced expiratory volume in 1 s (FEV1), 
total lung capacity (TLC), carbon monoxide transfer coefficient 
(KCO), and the transfer factor for carbon monoxide (TLCO) 
are shown in Table 1. The mean ± SD follow-up period was 24.3 
± 22.3 months (range: 0–109.4); during this time, 30 (50.8%) 
patients died. The qCT-T and qCT-P analyses results are shown 
in Table  2; the predominant pattern was reticular lung, with 
an average percentage of 16.6±13.9% (0.3–74.5); on average, 
70.45±17.3% (19.2–94) of lung parenchyma was deemed 
normal.

Univariate Kaplan–Meier survival analysis
The KM survival analysis was performed for all the clinical 
variables (PFTs and GAP) and the imaging-derived biomarkers 
(qCT-T and qCT-P) summarised in Table 3 with survival curves 
for the most significant markers displayed in Figure 1.

PFT
All the PFTs, with the exception of the TLC and KCO, were 
significant predictors of overall survival, with the FVC being the 
most significant (p = 0.006, Table 3, Figure 1).

qCT-texture analysis
Several filtration-histogram-based texture parameters predicted 
patient outcome (Table  3). Amongst the different texture filter 
scales, the fine texture scale (SSF2) was the best predictor of 
overall survival, where a higher SD, entropy and MPP, in addi-
tion to lower skewness and kurtosis, were associated with worse 
patient outcome (p < 0.001). SD at fine texture scale (SSF2) 
≥652.85 identified poor prognostic patients (median survival: 
17.5 months) from good prognostic patients (median survival: 
80.9 months) (p < 0.001, Figure 1).

qCT-pattern
Amongst the qCT-P parameters, the total pulmonary vessel 
percentage was the best predictor of patient survival (p = 0.009). 
Patients with a value of ≥3.87% had a median survival of 17.2 
months compared to >109.4 months in patients with a total 
pulmonary vessel of <3.87%.

Multivariate cox regression analysis
A multivariate cox regression analysis comprising of all the signif-
icant univariate predictors (PFT, qCT– lung patterns and qCT – 
texture features) of overall survival resulted in fine texture (SSF2) 
parameter quantified as SD being the only significant indepen-
dent predictor of overall survival (hazard ratio: 16.9, 95% confi-
dence interval: 3.6–79.6, p < 0.001, Table 4). Visual illustration 
of filtration-histogram and CALIPER-based qCT analysis for a 
patient with a poor prognosis is depicted in Figure 2.

Modified GAP scores
The KM survival analysis results of the traditional and 
modified GAP index after combining with the best qCT-T 

Table 1. PFTs obtained at baseline

PFTs (% Pred) Value
FVC 72 ± 17.8 (37–122)

FEV1 74.9 ± 37.6 (31.8–112)

TLC 73.8 ± 37.6 (55–91)

KCO 78.6 ± 31.1 (34–118)

TLCO 45.2 ± 13.6 (14–79)

GAP index 4.4 ± 1.75 (0–8)

FEV1, forced expiratory volume in 1 sec; FVC, forced vital capacity; 
KCO, carbon monoxide transfer coefficient; PFT, pulmonary function 
test; TLC, total lung capacity; TLCO, transfer factor of the lung for 
carbon monoxide.
Figures are expressed as mean ± standard deviation (range).
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parameter—SD at fine texture scale (GAP_qCT-T) and the 
best qCT-P parameter, total vessel percentage, (GAP_qCT-T_
qCT-P) are presented in Figure  3. The GAP index was not 
statistically significant in predicting patient outcome (p = 0.06). 
Both iterations of the modified GAP scores outperformed 
the traditional GAP system and allowed for better outcome 

prediction (GAP_qCT-T_qCT-P, p = 0.002, GAP_qCT-T, p = 
0.006). Using a median cut-off of ≥5, the GAP_qCT-T iden-
tified patients with poor prognosis with a median survival of 
22.6 months. The GAP_qCT-T_qCT-P score demonstrated a 
better prediction of outcome. Using a median cut-off value 
of ≥6, the GAP_qCT-T_qCT-P identified poor prognostic 

Table 2. Quantitative CT parameters (pattern and texture) derived from HRCT

Parameter Value
qCT - Lung-patterns

Normal parenchyma (%) 70.45 ± 17.3 (19.2–94)

Normal parenchyma (cm3) 2975.8 ± 1270.8 (400.9–5600)

Hyperlucent (%) 4.8 ± 7.11 (0.00006–26)

Ground-glass (%) 6.6 ± 8.6 (0.04–50.6)

Reticular (%) 16.6 ± 13.9 (0.3–74.5)

Honeycomb (%) 1.5 ± 1.9 (0–7.4)

Parenchymal damage (%) 24.8 ± 18.4 (0.8–80.8)

Vessels (%) 4 ± 1.8 (0.9–9.7)

Vessels (cm3) 148.5 ± 43 (67.1–241)

qCT - Texture-features

Without filtration Mean-Intensity −734 ± 72 [(−870) - (−475.5)]

SD 239.3 ± 35.4 (135.3–315.8)

Entropy 6.4 ± 0.2 (5.7–6.8)

MPP 112.3 ± 21.7 (21.3–174.4)

Skewness 1.9 ± 0.7 (0.5–4.2)

Kurtosis 4.4 ± 4.0 (-0.5–23.3)

Fine-texture (SSF = 2 mm) Mean-Intensity −57.7 ± 21.8 [(−102.7) - (−16.6)]

SD 638.5 ± 80.8 (422.7–771.8)

Entropy 7.7 ± 0.2 (7.2–8)

MPP 494.4 ± 80 (274–630.5)

Skewness 0.9 ± 0.3 (0.3–1.6)

Kurtosis 4.6 ± 2.1 (1.8–11.4)

Medium-texture (SSF = 3 mm) Mean-Intensity −116 ± 28.5 [(−171) - (−55.7)]

SD 623.8 ± 64.4 (466.6–756.5)

Entropy 7.7 ± 0.16 (7.2–8.0)

MPP 472.8 ± 70 (270.3–603.9)

Skewness 0.8 ± 0.25 (0.3–1.4)

Kurtosis 4.0 ± 1.6 (1.6–7.7)

Coarse-texture (SSF = 4 mm) Mean-Intensity −179.2 ± 31 [(−236.6) - (−113.9)]

SD 618.5 ± 53.6 (501.8–739)

Entropy 7.7 ± 0.14 (7.3–8)

MPP 448.7 ± 64.4 (263.6–579.4)

Skewness 0.5 ± 0.24 [(−0.14) - (1.0)]

Kurtosis 3.0 ± 1.0 (1.2–5.4)

MPP, mean positive pixels; SD, standard deviation; SSF, spatial scale of the filter.
Values are expressed as mean ± standard deviation (range).

http://birpublications.org/bjr


5 of 11 birpublications.org/bjr Br J Radiol;95:20210957

BJRQuantitative CT techniques in Idiopathic Pulmonary Fibrosis

patients with a median survival of 17.53 months. For the two 
iterations of the modified GAP score, the median survival for 
the good prognostic patients (lower than the respective cut-off 
value) was not reached during the follow-up period. Based on 
the modified GAP scores, the patients were further stratified 

into low-, intermediate- and high-risk groups as discussed in 
the methods sections, and the results are presented in Table 5.

Table 3. Results of Kaplan–Meier survival analysis based on the median value as a cutoff to discriminate between good and poor 
prognostic groups

Parameter Cutoffa

Median survival (months)

p-value<Cut-off ≥Cutoff
Pulmonary function test (% Pred)

FVC <71 17.2 - 0.006

FEV1 <77 22.6 80.9 0.030

TLCO <47 23.5 - 0.015

qCT – Lung-patterns

Total vessel (%) ≥3.87 - 17.2 0.009

Total Vessel (cm3) ≥142.41 - 22.6 0.034

Reticular (%) ≥13.92 80.9 17.2 0.013

Parenchymal damage (%) ≥20.90 80.9 22.6 0.014

qCT – Texture-features

Without filtration Mean-Intensity ≥−746.18 80.9 22.6 0.011

SD ≥245.58 80.9 17.2 <0.001

Entropy ≥6.45 80.9 17.5 <0.001

MPP ≥111.11 80.9 35.4 0.756

Skewness <1.89 17.5 80.9 <0.001

Kurtosis <3.65 17.5 - <0.001

Fine-texture (SSF = 2 mm) Mean-Intensity <−60.66 23.5 80.9 0.096

SD ≥652.85 80.9 17.5 <0.001

Entropy ≥7.68 80.9 17.2 <0.001

MPP ≥503.41 80.9 17.2 <0.001

Skewness <0.95 22.6 - 0.001

Kurtosis <4.41 17.5 80.9 <0.001

Medium-texture (SSF = 3 mm) Mean-Intensity <−115.08 23.5 80.9 0.096

SD ≥627.87 80.9 17.5 0.001

Entropy ≥7.67 80.9 17.5 <0.001

MPP ≥482.93 80.9 17.5 0.002

Skewness <0.72 17.5 - 0.003

Kurtosis <4.07 17.2 80.9 <0.001

Coarse-texture (SSF = 4 mm) Mean-Intensity <−178.17 23.5 80.9 0.113

SD ≥616.24 80.9 17.5 <0.001

Entropy ≥7.68 80.9 17.2 <0.001

MPP ≥459.97 80.9 22.6 0.003

Skewness <0.47 35.4 40.8 0.577

Kurtosis <3.12 17.5 80.9 0.001

FEV1, forced expiratory volume in 1 sec; FVC, forced vital capacity; MPP, mean positive pixels; SD, standard deviation; SSF, spatial scale of the 
filter; TLCO, transfer factor of the lung for carbon monoxide.
aDirection of the cut-off indicates a poor prognosis.
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DISCUSSION
Our study demonstrates that multiple qCT features can predict 
overall survival in IPF patients. qCT on its own or in combina-
tion with the GAP score can provide added value in the prognos-
tication of IPF patients (better predict patient outcome) when 
compared to the GAP score on its own. Several previous studies 
suggest that the extent of fibrosis assessed quantitatively on 
HRCT is a strong predictor of outcomes in IPF.15,19,20 Maldonado 
et al. in 2014 were amongst the first to evaluate an automated 
volumetric quantification tool for assessing specific parenchymal 
radiological features on HRCT. The authors demonstrated that 
percentage and total ILD changes were predictive of survival. 
Most recently, Jacob et al on a larger cohort of patients evalu-
ated CALIPER against mortality; by applying a multivariate 
analysis, independent predictors of mortality were vessel-related 
structure component and honeycombing.11,21,22 Our results 
are in agreement with the previously published literature high-
lighting the importance of vessels quantification as a prognostic 
tool, though this parameter was not an independent predictor of 
overall survival in our multivariate analysis. There is no obvious 
explanation for this discrepancy in our study compared to the 
previously published studies, but the difference in population or 
severity of disease and possible comorbidities, including older 
patients in our group, may have played a role. It is however also 
worth mentioning that what is referred to as pulmonary vessels 
by the computerised software represents the sum of pulmo-
nary veins and arteries but also may include and capture other 
connected tubular structures, i.e. adjoining regions of fibrosis or 
small collapsed distal bronchial structures. As computer tools 
evolve and supervised machine learning progresses, it will be 
interesting to see the impact and understand differences related 
to the assessment of separate components of vessel-related struc-
ture and its ability to improve the prognostication of IPF patients.

In texture analysis, statistical calculations, including histogram-
based summary statistics, are employed; Additionally, different 
types of image filtration can be performed to remove noise, 
enhance edges, and emphasise or extract certain features. Ulti-
mately, several parameters, including the mean, median, histo-
gram skew, and kurtosis of attenuation, have been shown to 
characterise texture features in IPF, reflect the extent of severity 
and correlate with visual scoring by experienced radiologists.15 

Different data extraction methods, from simple threshold 
measurements to texture metrics that capture morphology and 
regional heterogeneity, make the comparison among qCT-T 
studies difficult. To our knowledge, our study is the first to utilise 
a filtration-based histogram analysis technique in the analysis of 
IPF. However, it has been widely applied in a number of different 
oncological applications.23–25 Many previous studies explored 
using histogram analysis to correlate with physiological parame-
ters and outcome in idiopathic pulmonary fibrosis, showing that 
higher MLA, lower skewness and kurtosis were associated with 
poor pulmonary function.26–28 These parameters were also asso-
ciated with a worse outcome, as demonstrated by Ash et al and 
Best et al.29,30 Our study shows comparative results with higher 
MLA, lower skewness, and kurtosis from conventional images 
(without filtration) linked to worse disease outcomes. Our study 
also demonstrated the filtration step’s value, where at the different 
texture filter scales (fine, medium and coarse), higher SD, higher 
entropy, higher MPP, lower skewness, and lower kurtosis were 
associated with worse patient outcome. It is unclear why fine and 
medium texture scales were more significant than coarse texture 
parameters. We hypothesise that fine/medium texture scales are 
superior in capturing pathological lung patterns (i.e. honey-
combing and reticulation) compared to coarse texture, which 
may reflect larger structures. Further confirmation in larger 
prospective studies, where tissue/histology may be available, is 
needed to validate our preliminary findings.

Amongst the different filter scales, the fine texture scale demon-
strated the most significant difference between good and poor 
prognostic groups for the above texture metrics. qCT-based 
filtration-histogram texture analysis was the best univariate 
and independent predictor of overall survival. Adding the most 
significant texture marker (SD at fine texture scale) to the GAP 
score improved patient outcome prediction. However, a better 
patient outcome prediction was achieved after adding the best 
marker from each of the two qCT techniques, SD at fine texture 
scale and total vessel percentage, to the GAP staging system.

The UK National Institute for Health & Care Excellence 
current guidelines recommends antifibrotic treatment, with 
nintedanib or pirfenidone, for patients with an FVC between 50 
and 80%.31,32 Having additional biomarkers to predict disease 

Figure 1. Kaplan–Meier survival analysis plots based on the median cut-off for the best predictors of survival from pulmonary 
function tests in addition to quantitative CT parameters (pattern and texture) as per Table 3. Forced vital capacity (a), total vessel 
percentage (b) and standard deviation quantified at fine texture scale, SSF2 (c) are presented. SSF, spatial scale filter.
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severity, particularly in patients with an FVC>80%, will provide 
additional prognostic implication that could facilitate the deci-
sion to initiate therapy earlier.33 Based on our data, as shown in 
Table  5, we were able to reclassify many patients. Both modi-
fied GAP scores reclassified patients from high risk to lower risk 
categories. Additionally, adding the SD at fine texture scale and 
total vessel percentage reclassified more patients into the low-
risk category despite their impaired lung function (FVC<80% 
predicted).

We recognise our study has some limitations, including the 
limited number of patients in our cohort, lack of long follow-up 

examinations, absence of correlation with visual CT and low-
dose HRCT used for the analysis. Despite this, only patients 
scanned on the same scanner following the same imaging 
protocol were included in the analysis to keep the CT image 
acquisition parameters consistent. This may explain the partly 
diverse results in our study compared to others. It is notable that 
the lack of comparative studies in an IPF setting and the different 
methodology of texture-based algorithms, single slice vs volu-
metric measurements, low dose vs standard dose and slice thick-
ness used can affect the reproducibility and routine application 
of these techniques in the clinical settings. We acknowledge this 
point as a potential issue, however, standardisation of protocols 

Table 4. Summary of multivariate cox regression analysis model comprising of the most significant univariate predictors of survival 
amongst pulmonary function test, QCT-lung patterns and QCT-texture features

Parameter included in the model HR 95% CI p-value
QCT-texture-feature
Fine-texture (SSF = 2 mm), SD

16.9 3.6–79.6 <0.001

Parameters not included in the model Score p-value

Pulmonary function test

FVC 0.622 0.430

FEV1 0.287 0.592

TLCO 0.036 0.851

QCT-lung patterns

Total vessel (%) 0.014 0.907

Total vessel (cm3) 0.622 0.430

Reticular (%) 2.816 0.093

Parenchymal damage (%) 0.677 0.411

QCT-texture-features

Without filtration Mean–intensity 0.351 0.554

 �  SD 0.174 0.676

 �  Entropy 0.076 0.783

 �  Skewness 0.093 0.760

 �  Kurtosis 0.114 0.736

Fine-texture (SSF = 2 mm) Entropy 0.008 0.930

 �  MPP 0.001 0.979

 �  Skewness 0.901 0.342

 �  Kurtosis 0.093 0.760

Medium-texture (SSF = 3 mm) SD 0.077 0.782

 �  Entropy 0.044 0.835

 �  MPP 0.084 0.773

 �  Skewness 1.471 0.225

 �  Kurtosis 0.505 0.477

Coarse-texture (SSF = 4 mm) SD 0.046 0.830

 �  Entropy 0.046 0.830

 �  MPP 7.578 0.006

 �  Kurtosis 0.299 0.584

FEV1, forced expiratory volume in 1 s; HR, hazard ratio; MPP, mean positive pixels; SD, standard deviation; SSF, spatial scale of the filter; TLCO, 
transfer factor of the lung for carbon monoxide.
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across centres are becoming more and more frequent and tech-
nical improvements including faster scanners, will mitigate the 
problem related, respectively to different technical parameters 
and breathing artefacts.34–36

Furthermore, previous oncological studies have demonstrated 
good reproducibility for filtration-histogram-based texture anal-
ysis using multicentre clinical validation,23,37 robustness to vari-
ation in image acquisition parameters38,39 and good inter- and 

Figure 2. CALIPER and filtration-histogram based texture analysis for a poor prognostic patient. Conventional axial CT slice with 
manually contoured ROIs across the whole lung (a) provides a visual representation of the disease extent. Filtered texture map at 
fine texture scale (SSF2) is shown (b) where the red and blue spots correspond to positive and negative filtered texture pixel val-
ues, respectively. Histogram analysis at the fine texture scale (SSF2) depicts the distribution of the filtered pixel intensity (c). Note 
the fine-filtered texture quantifiers – SD, entropy, MPP are elevated, whereas skewness and kurtosis are of low values. Selected 
axial CT slice with superimposed CALIPER lung pattern analysis for the same patient (d). CALIPER, computer-aided lung infor-
matics for pathology evaluation and ratings; MPP, mean of positive pixel; SD, standard deviation; SSF, spatial scale filter.

Figure 3. Kaplan–Meier survival analysis plots based on the median cut-off for best predictors of survival based on GAP and 
modified GAP scores; (a) represents the GAP index alone, (b) represents the modified GAP index after the addition of the best 
qCT-texture after filtration (standard deviation quantified at fine texture scale, SSF2) and (c) represents the modified GAP index 
after the addition of the best qCT-texture after filtration (standard deviation quantified at fine texture scale, SSF2) and best qCT-
pattern (total vessel percentage). Both iterations of the modified GAP scores outperformed the GAP index alone and allowed for 
a better outcome prediction. qCT, quantitative CT; SSF, spatial scale filter.
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intraoperator repeatability (good intraclass correlation from 
test–retest technique). Employing a volumetric qCT technique 
for the whole lung assessment, using the CALIPER pattern and 
filtration-histogram-based texture analysis, enabled us to capture 
parenchymal heterogeneity across the whole lung, which is key in 
the quantification of a diffuse disease condition like IPF. Future 
technical improvements of new software and more advanced 
machine learning techniques will create further exciting oppor-
tunities for prognostication and longitudinal studies. On the 
same note, we would like to highlight that this was a pilot, 
exploratory study, the results of which need to be validated in the 
future in a larger external/independent cohort. In this pilot study 
in the absence of an external, independent validation cohort, for 
KM survival analysis we used median value as a cut-off which 
results in equal proportion of patients above and below the cut-
off. Median value as a cut-off is unbiased compared to other 
approaches to determine cut-off, e.g. receiver operating char-
acteristics or lowest log-rank test p-value which introduce bias 
when employed in the same cohort.

Finally, we acknowledge the limitations of the GAP index to 
predict patient outcome; we trust that more integrative and 
evidence-based methods can provide a better understanding at 
baseline and follow-up for these patients.40,41

CONCLUSION
We have shown that qCT-P and qCT-T represent important 
IPF assessment tools, with the latter performing slightly better 
for survival prediction. Many other important clinical questions 
require an answer, including which patients to treat, when to 
start and stop treatment and who will primarily benefit from 

treatment. Further larger studies are needed, but it is becoming 
more apparent that quantitative CT has the potential to help 
clinicians in finding the right answers.
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Table 5. Distribution of patients (expressed as n) according to the risk category as defined by GAP index, texture (fine texture 
quantified as standard deviation) and pattern (total vessel percentage) quantitative CT parameters (qCT-T, qCT-P) with their 
corresponding median survival (expressed in months)

Scoring system

Low risk Intermediate risk High risk

Patients (n) Survival Patients (n) Survival Patients (n) Survival
GAP 17 - 24 36.2 17 17.2

GAP+qCT T 14 - 31 35.4 13 11.9

GAP+qCT-T+qCT P 23 - 23 35.4 12 11.2
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