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Abstract 

Directed evolution has emerged as a powerful strategy to engineer various properties of 

proteins. Traditional methods to construct libraries such as error-prone PCR and DNA 

shuffling commonly produce large, relatively inefficient libraries. In the absence of a high-

throughput screening method, searching such libraries is time-consuming, laborious and 

costly. On the other hand, targeted mutagenesis guided by structure or sequence information 

has become a popular way to produce so-called smart libraries. With an increased ratio of 

advantageous to deleterious mutations, smart libraries increase the efficiency of directed 

evolution, provided that target site prediction is reliable. Mutation target site or hot spot 

prediction is critical to the quality of libraries and the performance of directed evolution. 

Appropriate selection of hot spots enables the generation of proteins with desired properties 

efficiently and rationally. Here, we give an overview of seven kinds of hot spots that are 

divided into two categories: sequence-based hot spots including CbD (conserved but 

different) sites and coevolving residues, and then 3D structure-based hot spots including 

active-site residues, access tunnel sites, flexible sites, distal sites coupled to active center, and 

interface sites. This review also covers the latest advances in computational tools for 

identifying these hot spots and many successful cases using them for enzyme engineering.  
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Natural evolution has generated a large number of proteins which can be harnessed for 

various applications in biotechnology and pharmaceutical science (Lane and Seelig, 2014). 

Protein engineering technology is frequently used to alter and improve proteins for specific 

applications. Directed evolution has emerged as a powerful strategy to engineer known 

properties and design or optimize proteins with functions not encountered in nature (Chen 

and Arnold, 2020). Traditional directed evolution consists of iterative cycles of library 

construction using random mutagenesis and high-throughput screening for specific features 

(Dalby, 2011). There are some potential drawbacks to this approach. In randomly mutated 

libraries, 60–70% of mutations are deleterious, 30–40% are neutral, and less than 5% of 

mutations give functional gains (Goldsmith and Tawfik, 2013). Traditional library construction 

procedures, such as error-prone PCR and DNA shuffling produce large, relatively inefficient 

libraries. In the absence of a high-throughput screening method, searching such libraries is 

time-consuming, laborious and costly (Yang et al., 2019).  

Over the last few decades, the number of protein structures has been gradually increasing. 

The overall number of PDB entries has grown from under 400 at the beginning of 1990 to over 

182,418 presently. AlphaFold2 greatly improved the accuracy of protein structure prediction, 

and the AlphaFold protein structure database is expanding with presently over 365,198 

predicted structures from more than 20 key organisms (Jumper et al., 2021, Tunyasuvunakool 

et al., 2021). However, our detailed understanding of the relationships between structure and 

function of proteins is still incomplete. We cannot even predict the effect of a single mutation 

in a single protein with confidence. Fortunately, our rudimentary understanding of structure-

function relationship of proteins has helped to make directed evolution easier.   
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Using protein structure or sequence information to guide targeted mutagenesis has become 

a popular method to produce so-called smart libraries  (Sebestova et al., 2014, Jochens and 

Bornscheuer, 2010). This strategy is less likely to disrupt the global protein fold and increases 

the probability of obtaining active mutants. Focusing on specific amino-acid locations 

minimizes the size of created libraries and hence improves directed evolution efficiency, 

assuming that the target site prediction is accurate (Sinha and Shukla, 2019). Such libraries 

can yield results that are comparable to several rounds of conventional directed evolution, 

while the strategies for constructing smart libraries in one enzyme can often be applied to 

other enzymes.  

A prerequisite for designing smart libraries is to select appropriate mutagenesis targets or hot 

spots. This review aims to discuss the commonly used techniques for defining hot spots, and 

how they are used for engineering enzymes more rationally. Based on the required structure 

information, we divide seven kinds of hot spots into two types: sequence based and structure 

based (Table 1). Guided by different hot spots, different enzyme properties can be 

engineered, and corresponding examples are provided.      

Table 1 Hot spots for constructing smart libraries. 

 Hot spots  Properties Comments Selected 
references 

Sequence-

based hot 

spots  

CbD  

sites a 

Stability Most commonly used 

rational design strategy when 

3D-structures are not 

available.  

(Gómez et al., 

2020, Sternke et 

al., 2019) 

  Activity  Assumes that homologous 

proteins with better activity 

exist. 

(Wu et al., 2014, 

Motoyama et 

al., 2020) 

  Enantioselectivity Assumes that homologous 

proteins with better 

enantioselectivity exist.  

(Godinho et al., 

2012, Wang et 

al., 2020a) 
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 Coevolving 

residues  

Stability Combinational coevolving-

site saturation mutagenesis 

(CCSA) approach has been 

developed.  

(Liu et al., 2021, 

Chang et al., 

2021) 

  Activity  Has the potential to 

modulate activity over a very 

large range. 

(Wang et al., 

2020b) 

Structure-

based hot 

spots 

Active-site 

residues 

Stability Rigidifying flexible active-site 

residues has been proven 

useful in enhancing kinetic 

stability.  

(Xie et al., 2014) 

  Activity and 

substrate 

specificity 

Well-explored strategy which 

has been proven useful in 

many cases.  

(Ranoux and 

Hanefeld, 2013, 

Hailes et al., 

2013) 

  Enantioselectivity Well-explored strategy. 

Importance of computation 

design has been showed 

recently in this area.   

(Wijma et al., 

2015, Zheng et 

al., 2021) 

 Access 

tunnel sites 

Stability Mutants with enhanced 

stability showed preference 

to appear at access tunnel 

sites.  

(Gihaz et al., 

2018, Stimple et 

al., 2020) 

  Activity  Useful for engineering 

enzymes with access tunnels.  

(Meng et al., 

2021, Bata et 

al., 2021) 

 Flexible 

sites 

Stability  Recently established 

strategy, consisting of two 

steps: identifying flexible 

sites then rigidifying them.    

(Zhu et al., 

2021, Liu et al., 

2018) 

  Activity  Still under exploration. Few 

successful cases have been 

reported.    

(Kazuyo et al., 

2014, Saavedra 

et al., 2018, 

Reetz and 

Carballeira, 

2007) 

 Distal sites 

coupled to 

active 

center 

Activity A strategy indicating the 

importance of dynamic 

correlations in enzyme 

engineering 

(Yu and Dalby, 

2018a, Yu and 

Dalby, 2018b) 

 Interface 

sites 

Stability  A useful approach to 

engineer multimeric 

enzymes.  

(Bosshart et al., 

2013, Basu and 

Sen, 2013) 
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a CbD sites: Positions that are conserved in the multiple sequence alignments but different 

in the sequence of the target protein.  

 

2. Sequence-based hot spots  

2.1 CbD (Conserved but Different) sites   

The advent of efficient low-cost sequencing technologies has resulted in a massive growth in 

the number of sequences available in key protein sequence databases like UniProt, which 

currently contains over 177 million sequences (Gligorijević et al., 2021). Based on the 

assumption that sequence similarity implies functional similarity, exploiting statistical amino 

acid frequencies from multiple sequence alignments (MSAs) has been widely used in protein 

engineering, especially in cases where the structural data is of limited accuracy, or where the 

mechanism of substrate recognition is not fully understood. One of the purposes carrying out 

MSAs is to identify the positions that are conserved in the pool of sequences but different in 

the target protein sequence. To better discuss the MSAs method used for protein 

engineering, we name these positions as CbD (conserved but different) sites (Figure 1). The 

WW domain is one of the smallest protein modules, found in a number of unrelated signalling 

and structural proteins, which mediates specific protein-protein interactions. If we consider 

the WW domain of zygote-specific protein 3 (ZYS3) from Chlamydomonas reinhardtii as the 

target, its CbD sites are the amino acids different from those in the consensus sequence, such 

as those at positions 1 to 6 shown (Figure 1) (Porebski and Buckle, 2016). Once CbD sites are 

identified, desired properties can be obtained through mutating original residues at CbD sites 

to the equivalent consensus residues. Two things normally need to be considered before 

applying MSAs to identify CbD sites for protein engineering: (i) whether homologous 

structures with desired properties exist for the target enzyme; (ii) whether the regions 



6 

 

determining those desired properties have been identified in the target protein. Comparing 

the sequence of the target enzyme with homologous structures with desired properties is a 

straightforward way to identify key sites for mutagenesis. When this condition is not met, and 

the local region controlling the desired properties is known, CbD sites can be easily identified 

by comparing sequences of that region among homologous structures. For example, the 

catalytic properties of enzymes are significantly controlled by the active-site region. Thus, 

when homologous enzymes with superior activity exist, hot spots for engineering activity 

could be identified by comparing the catalytic regions of two enzymes (Wu et al., 2014). Of 

course, MSAs are still very useful when the two key conditions are not met. With CbD sites as 

hot spots, numerous enzymes have been engineered to have improved properties, including 

stability, activity, and enantioselectivity (Sternke et al., 2019, Motoyama et al., 2020, Wang 

et al., 2020a, Sumbalova et al., 2018).  

 

Figure 1  Sequence alignment of 12 WW domains across several species and parent proteins. 
In the consensus, a ‘−’ is a gap, whilst a ‘+’ is an ambiguous position with no consensus. The 
most conserved residues are highlighted (Porebski and Buckle, 2016). Reprinted with 
permission, copyright 2016 Oxford University Press.  

2.1.1 Stability  
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When limited structure data were available, MSAs have been a useful method to guide the 

engineering of stability into enzymes. Amino acids that appear most frequently at a specific 

position among homologous structures tend to contribute more to the stability than other 

residues at the same position. Based on this assumption, the “consensus design” approach 

was first used by Steipe et al. to stabilize an antibody domain through substituting ten 

residues with consensus amino acids (Steipe et al., 1994). Following this study, many 

researchers have applied the “back to the consensus mutations” approach to engineer the 

stability of various enzymes such as glucose dehydrogenase (Vazquez-Figueroa et al., 2007), 

endoglucanase (Anbar et al., 2012), amylase (Ranjani et al., 2014), xylanase (Han et al., 2017), 

laccase (Gómez et al., 2020) and so forth. Consensus sequence design has been proved as a 

general strategy to create stable and biologically active proteins (Sternke et al., 2019). After 

designing and characterizing consensus sequences for six unrelated protein families, Sternke 

et al. found that consensus design showed high success rates in creating well-folded, 

hyperstable proteins and retaining their biological activities. More importantly, these 

consensus proteins showed higher stability than the naturally occurring sequences of their 

respective protein families, highlighting the utility of consensus sequence design. 

In addition, ancestral sequence reconstruction (ASR) has emerged as a useful methodology 

for engineering enzymes with enhanced stability, heterologous expression, activity, or unique 

activity profiles (Spence et al., 2021). Ancestral sequences are reconstructed by inferring a 

phylogenetic relationship between homologous sequences and applying a statistical model of 

amino acid substitution to calculate sequences at internal nodes of the phylogenetic tree (Hall, 

2006). ASR is different from other enzyme engineering methods as the new sequences are 

generated based upon probabilistic searches of non-conserved functional space, giving each 

generated sequence a high likelihood of being functional as long as an accurate multiple 
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sequence alignment input is provided (Thomas et al., 2019). Recently, to address the poor 

catalytic performance of the existing β-1,3-xylanase, its ancestor sequence named AncXyl09 

was reconstructed using an optimized ancestral sequence reconstruction strategy and the 

generated sequence showed an excellent thermostability with a half-life of 65.08 h at 50 oC 

(Zeng et al., 2021). 

2.1.2 Catalytic activity  

CbD sites have been used as hot spots to engineer the catalytic activity of enzymes as well. 

Paenibacillus barcinonensis esterase (EstA) converts tertiary alcohol esters with limited 

activity and enantioselectivity. However, its homologous enzymes, two large groups of 

esterases and lipases can convert tertiary alcohols efficiently. MSAs of 1343 sequences 

revealed that in the oxyanion hole, all these enzymes contain a highly conserved motif with 

the sequence of GGG(A), in addition to EstA whose third position is a serine. Thus, the mutant 

EstA-GGG was constructed. As expected, this mutant showed 26-fold faster conversion of 

tertiary alcohols than the wild type (Bassegoda et al., 2010). Additionally, Escherichia coli 

phytase (EcAppA) was engineered to have improved activity and thermostability guided by 

sequence alignment (Wu et al., 2014). EcAppA has two homologous structures, Citrobacter 

braakii (CbAppA) and Citrobacter amalonaticus (CaAppA), which have 60.6% and 57.1% 

protein sequence identity with EcAppA and show superior specific activity to EcAppA. The 

alignment of these three sequences revealed four EcAppA-unique residues around the 

phytate-binding pocket and a variable loop region. Mutating these hot spots to the consensus 

residues led to a variant showing a 17.5% increase in the specific activity. Threonine 

dehydrogenase (TDH) has also been engineered using the consensus design method to have 

unique enzymatic properties. Five artificial TDHs have been designed by full consensus 
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protein design (FCD) utilizing sequences selected from databases, and four of them were 

successfully expressed in soluble form, but with various catalytic properties (Motoyama et al., 

2020).  

2.1.3 Enantioselectivity  

Comparison of homologous sequences can also be applied as a guide for engineering the 

enantioselectivity of enzymes. In some circumstances, homologous enzymes showed 

different properties, and sequence comparison could be a method to engineer the enzymes 

to have a desired target property. Two carboxylesterases CesA and CesB from B. subtilis 168 

shared 60% sequence identity and showed very different enantioselectivity towards substrate 

1,2-O-isopropylideneglycerol (IPG). Sequence alignment was used to identify sites that might 

lead to the difference in enantioselectivity of these two enzymes, and it was found that most 

active site residues are conserved in both CesA and CesB, with the exception of positions 166 

and 182. These two residues in CesA were then identified as a target for site-directed or 

saturation mutagenesis to enhance its enantioselectivity. A CesA double mutant F166V/F182C 

was generated, which showed a 13-fold increased enantioselectivity and without significant 

activity loss compared to wild type (Godinho et al., 2012). An epoxide hydrolase from 

Phaseolus vulgaris (PvEH2) was also engineered to significantly increase enantioselectivity. A 

cap-loop of PvEH2 was speculated to be relevant to EH’s catalytic properties based on 

previous studies and was carried out for sequence alignment with four EHs including StEH, 

PvEH1, VrEH1 and VrEH2 from Solanum tuberosum, Phaseolus vulgaris and Vigna radiata, 

respectively. As a result, the differences of their cap-loops mainly focused on their non-

conserved middle segments (190EGMGSNLNTSMP201 in PvEH2), in which the residue 

composition and chain length clearly varied. By replacing this variable cap loop in PvEH2 with 
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the corresponding fragments in the homologous enzymes, four PvEH2 variants including 

Pv2St, Pv2Pv1, Pv2Vr1 and Pv2Vr2 were designed respectively.  Utilizing rac-1,2-epoxyhexane 

as the target substrate, hybrid enzyme Pv2St showed the highest E value with 11.5-fold 

improvement compared to PvEH2 (Wang et al., 2020a).   

2.2 Coevolving residues 

Multiple sequence alignments (MSAs) allow for identifying residues that are completely 

conserved, partially conserved, or non-conserved. Completely conserved residues are 

functionally important as they did not change through random meanderings of evolutionary 

change. Some other positions are conserved only within subfamilies, but are different 

between them, which play important roles in functional diversity of homologs. These 

positions are so-called the specificity determining positions/residues/sites (SDPs/SDRs/SDSs) 

or subfamily/family-specific positions (SSPs/FSPs) (Figure 2) (Suplatov et al., 2020, de Juan et 

al., 2013, Chagoyen et al., 2016). Such positions are helpful to understand how enzymes 

perform their natural functions, and can also be selected as hotspots for protein engineering 

experiments. In addition, in evolutionary processes, pairs of residues that are mutually 

proximate in the tertiary structure often coevolve to maintain their structure. For example, 

when one becomes larger, the other becomes smaller. And, when one becomes a positively 

charged residue, the other becomes a negatively charged residue. Such evolutionary 

couplings provide accurate information about residue pair contacts, important to protein 

three-dimensional structure prediction (Ovchinnikov et al., 2017, Anishchenko et al., 2017, 

Yang et al., 2020). In addition, these evolutionary couplings could also control the adaptation 

of proteins to natural environments through maintaining overall structural-functional 

integrity while fine-tuning the function of proteins, including catalytic activity, substrate 



11 

 

selectivity, and tolerance to unusual environmental conditions. These residues are called 

coevolving residues (Figure 2) (de Juan et al., 2013). Coevolving residues can be much more 

important to the stability and folding of proteins than other residues. Choosing coevolving 

residues as hot spots for protein engineering has the potential to introduce novel functions 

into proteins, or to create radical changes in stability. In recent years, much attention has 

been paid to develop tools for predicting coevolving residues (de Juan et al., 2013, Dickson 

and Gloor, 2014, Sumbalova et al., 2018) and several successful engineering examples taking 

coevolution into account have been reported.   

 

Figure 2 Coevolutionary features extracted from protein multiple sequence alignments. The 
three-dimensional structures of two interacting proteins (purple and yellow) are schematized 
as well as their MSAs and phylogenetic trees based on orthologous sequences from a number 
of organisms. Circles of different colours represent different species from which the protein 
sequences are derived. Intra-protein coevolving residues (light blue) are related to residue 
spatial proximity, whereas inter-protein coevolving residues (dark blue) reflect in many cases 
proximity between residues in different protein chains. Fully conserved positions (grey) tend 
to form a part of the protein core and are also in functional regions (such as protein 
interaction sites and catalytic sites). Specificity-determining positions (SDPs; purple) tend to 
be in functional sites conferring specificity. Reprinted with permission, copyright 2000 
Springer Nature BV. 

 

2.2.1 Activity 
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Coevolving residues provided an efficient strategy for engineering the catalytic activity of 

enzymes. The pullulanase from Bacillus naganoensis has been engineered to have improved 

catalytic activity by an evolutionary coupling saturation mutagenesis (ECSM) strategy. This 

strategy identified residues for saturation mutagenesis by calculating the covariance of 

residue pairs. Seven residue pairs were selected as evolutionary mutation hotspots, and none 

of these sites were located at or closed to the active sites. The best-performing quadruple 

mutant K631V/Q597K/D541I/D473E obtained after mutagenesis and screening showed a 3.0-

fold increase of kcat and 6.3-fold increase of kcat/Km relative to the WT enzyme, demonstrating 

that coevolutionary analysis can identify distal sites that affect enzyme activity (Wang et al., 

2020b). It has also been reported that enzyme activity could be modulated over a 100-fold 

range by mutating coevolving residues (McMurrough et al., 2014). McMurrough et al. 

identified a coevolving network consisting of two catalytic metal-binding residues (Asp and 

Glu) and two adjacent noncatalytic residues (Ala and Gly) in LAGLIDADG homing 

endonucleases (LHEs). Saturation mutagenesis was used to mutate two non-catalytic 

residues, while the metal-binding residues were held at either Glu or Asp.  Variants with the 

highest activity showed 3-fold decreased Km while variants with the lowest activity revealed 

a 65-fold decreased kcat.  Additionally, they concluded that variants with low activity could be 

rescued by compensatory mutations in relative coevolving network residues, and 

optimization of the coevolving network could be an important consideration in engineering 

catalytic activity of enzymes. In another study, coevolutionary sites were proven crucial in 

improving the efficiency and specificity in genome editing with the CRISPR/Cas9 system (Li et 

al., 2019). 

2.2.2 Thermostability  
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Coevolving residues can also be used as hot spots to engineer the thermostability of enzymes 

(Strafford et al 2012). Wang et al. have improved the thermostability of alpha-amylase by a 

strategy called CCSA (combinational coevolving site-saturation mutagenesis) (Wang et al., 

2012). Six coevolving sites and 10 pairs of coevolutionary interactions were identified in α-

amylase firstly. Each pair of residues involved in evolutionary interactions was randomly 

mutated to construct a library. 10,010 clones from ten libraries were screened for improved 

thermostability. The best mutant showed 8 oC enhanced thermostability. Additionally, they 

found that deleterious effects caused by disadvantageous mutation could be compensated 

by the covariation at the other coevolving site. The thermostability of amine transaminase 

was also improved by evolutionary coupling saturation mutagenesis. The Mutual Information 

Server to Infer Coevolution (MISTIC) (Simonetti et al., 2013) was used to predict eight residues 

with strong interactions in the coevolution network as the mutation targets, and subsequent 

alanine screening and saturation mutagenesis identified several improved variants with the 

best mutant F115L/L118T showing 9.55-fold improvement in half-life compared to wild type  

(Zhu et al., 2019, Liu et al., 2021). 

Molecular dynamics (MD) simulations showed that these mutations reduced the overall 

flexibility of AT-ATA and this could have a stabilizing effect on the double mutant F115L/L118T 

(Liu et al., 2021). Using the adenylate kinase (ADK) family as a model system, Chang et al. 

improved the thermal stability of ADK by coevolution and sequence divergence analysis. The 

method identified a series of amino acid sites that were closely related to thermal stability. 

Single and double site mutants showed improved thermostability and better enzymatic 

activity at higher temperatures (Chang et al., 2021) . 

3. Structure-based hot spots  
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3.1 Active-site residues 

The active-site is the reaction centre which binds the substrates, eases the formation of the 

transition state, and then releases the products (Toscano et al., 2007). The active-site 

occupies nearly 10–20% of the volume of an enzyme and consists of amino acid residues that 

bind substrate and residues that catalyse a reaction of that substrate. For example, 

aminoglycoside-3'-phosphotransferase-IIa catalyses ATP-mediated phosphate transfer to 

chemically modify and inactivate aminoglycoside antibiotics such as kanamycin (Nurizzo et 

al., 2003). The residues including D159, E160, R211, D227, E230, E262, F264 involve binding 

substrate kanamycin and the catalytic residue D190 plays a role in the deprotonation of 3’ 

hydroxyl of kanamycin to allow for efficient attack on the γ-phosphate (Figure 3) (Nurizzo et 

al., 2003). To engineer novel enzymes, active-site residues are good starting points. Many 

enzymes have homologous structures, and these homologous enzymes use similar 

mechanisms to catalyse different reactions. It has been observed that a small change in the 

composition of active-site residues of homologous enzymes can contribute to their different 

activities. Such observations demonstrate that an inherent structural plasticity of the active 

site has the potential to give enzymes new functions. Chemical space in the active site of 

extant enzymes has not been fully explored by nature, which allows us to evolve active site 

residues to create novel enzymes. In recent years, numerous researchers have revealed that 

mutation of active-site residues often dramatically changes the properties of enzymes. Of 

course, most of the changes lead to deactivated mutants. However, sometimes, variants have 

improved or new catalytic activity (Chen and Arnold, 2020), broadened substrate scope 

(Hibbert et al., 2007), altered stereospecificity (Goldsmith et al., 2012), regioselectivity (Balke 

et al., 2017, Wang et al., 2017), enantioselectivity (Gao et al., 2018, Sandstrom et al., 2012), 

and even thermostability (Xie et al., 2014).  
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Figure 3 Surface representation of aminoglycoside-3'-phosphotransferase-IIa in complex with 
kanamycin (PDB ID 1ND4) (Nurizzo et al., 2003). Residues including D159, E160, R211, D227, 
E230, E262, F264 involved in binding substrate kanamycin (sticks) are shown in cyan. The 
catalytic residue D190 is shown in red, playing a role in removing a proton from O3’ hydroxyl 
of substrate prior to phosphoryl transfer.  

3.1.1 Activity and substrate specificity  

A major problem in applying enzymes as catalysts in organic chemistry is that only limited 

substrates can be accepted. Here, the process of engineering transketolase (TK) for accepting 

various substrates is used to illustrate how to apply active-site residues as hot spots in 

directed evolution. The wild type TK catalyses the reversible transfer of a C2-ketol unit from 

D-xylulose-5-phosphate to either D-ribose-5-phosphate or D-erythrose-4-phosphate, linking 

glycolysis to the pentose phosphate pathway  (Figure 4A) (Sprenger et al., 1995). Using active 

site residues as the hotspots, a semi-rational directed evolutionary strategy was applied to 

design E. coli TK to accept non-phosphorylated substrates. In 2007, TK was first designed to 

accept glycolaldehyde (GA) as a substrate by saturation mutagenesis of active site residues 

(Hibbert et al., 2007), which were selected in two ways: structurally defined sites and 

phylogenetic defined sites. Structurally defined sites were those within 4 Å of the docked 

substrate erythrose-4-phosphate. Natural phylogenetic diversity has also turned out to be 

useful in guiding directed evolution. Through phylogenetic analysis of 52 TK sequences from 
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bacteria, fungi, plants and trypanosomes, 10 different residues within 10 Å of the cofactor 

TPP were identified as phylogenetically diverse sites (Figure 4B). Finally, variants with 

improved activity against GA were obtained by screening saturation libraries. 

 

Figure 4 Engineering transketolase to expand substrate range with active sites as the mutation 
targets. A, Range of acceptor and donor substrates accepted with engineered E. coli 
transketolase. B, Phylogenetically defined sites (in magenta) and structurally defined sites (in 
green) in E. coli transketolase with cofactor TPP (PDB ID: 1QGD). Structurally defined sites 
were those within 4 Å of the docked substrate erythrose-4-phosphate. Phylogenetically 
diverse sites were identified within 10 Å of the cofactor TPP through phylogenetic analysis of 
52 TK sequences from bacteria, fungi, plants and trypanosomes. These defined sites were 
applied as the mutation targets to expand the range of substrates for the transketolase.  

 

To expand the range of acceptor substrates for TK, libraries constructed at the above active 

sites were further screened to identify TK mutants with better activity against the non-

hydroxylated aldehyde substrate, propionaldehyde (PA) (Hibbert et al., 2008). Thirteen 
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mutants with enhanced activity were eventually identified out of a randomised mutagenesis 

library targeted phylogenetic defined sites, with D469T showing the greatest improvement of 

4.9-fold relative to the wild type. By further modification of the active sites described above, 

TK variants were successfully screened for high activity against other non-natural substrates, 

including long aliphatic (Cazares et al. 2010), cyclic (Cazares et al. 2010), aromatic (Galman et 

al. 2010, Payongsri et al. 2012), heteroaromatic aldehyde substrates (Galman et al. 2010), 

polar aromatic aldehyde substrates (Panwajee Payongsria, 2015) and even novel donor 

substrates including pyruvate and keto-butyric acid (Figure 4A) (Yu et al., 2020). Recently, the 

activity of TK has been modified by the incorporation of unnatural amino acids (UAAs). With 

the variant S385Y/D469T/R520Q showing high activity towards unnatural substrate 3-FBA as 

the template, Y385 was further replaced with a series of phenylalanine derivatives to reduce 

aromatic ring electron density, including p-aminophenylalanine (pAMF), p-

cyanophenylalanine (pCNF) and p-nitrophenylalanine (pNTF) (Wilkinson and Dalby, 2021). 

The results showed that the pCNF variant simultaneously increased the activity and stability 

of TK against 3-hydroxybenzaldehyde (3-HBA).  

3.1.2 Enantioselectivity  

Enantioselectivity is a property that allows certain enzymes to be utilised to produce 

enantiomerically pure chemicals for industrial applications including for agrochemicals and 

pharmaceuticals (Yu et al., 2021). Since most enzymes do not have perfect enantioselectivity 

when transforming non-natural substrates, protein engineering is often applied to adjust the 

enantioselectivity (Otten et al., 2010). With active-site residues as hot spots, the 

enantioselectivity of various enzymes has been engineered, including for esterases, lipases, 

cytochrome P450s and so forth, through producing small high-quality libraries (Jochens and 
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Bornscheuer, 2010, Bartsch et al., 2008, Reetz, 2011, Wijma et al., 2015). Recently, the so-

called combinatorial active-site saturation test/iterative saturation mutagenesis (CAST/ISM) 

strategy has been used to engineer L-threonine aldolase (LTA) for improved Cβ 

stereoselectivity (Zheng et al., 2021) . LTA, a 5’-phosphate (PLP)-dependent enzyme, was used 

to catalyse the formation of β-hydroxy-α-amino acids with two chiral centres (Figure 5). This 

enzyme is strictly selective for Cα of β-hydroxy-α-amino acids but moderately selective for Cβ, 

limiting its wide use in stereospecific carbon-carbon bond synthesis. In this study, the 

CAST/ISM strategy was applied to build a small and smart library with the active sites as the 

mutation targets. At last, the RS1 variants containing the Y8H, Y31H, I143R and N305R 

mutations showed significant improvements in the diastereoselectivity of many other 

aromatic aldehydes and has the potential to be used industrially for the synthesis of high 

value β-hydroxy-α-amino acids. Compared to the traditional directed evolution method, this 

approach dramatically decreased the size of the library and achieved a similar outcome in 

terms of enzyme performance.   

 

Figure 5 The reversible aldol reaction catalyzed by LTA. The β-hydroxy-α-amino acid with two 
chiral centers (Cα and Cβ) is produced, and LTA is more selective for Cα than Cβ. The CAST/ISM 
strategy was applied to improve its diastereoselectivity. The active sites were selected as the 
mutation targets to build a small and smart library, and mutations were obtained with 
significant improvements in the diastereoselectivity towards many aromatic aldehydes.  

3.2 Access tunnel sites 
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As we discussed in section 3.1, the active-site residues are critical for enzyme engineering. In 

some enzymes, such as chymotrypsin, active sites are relatively surface exposed, while in 

others, such as dehydrogenases, the active sites are often deeply buried in the core of the 

protein (Gora et al., 2013).  For enzymes with buried active sites, potential substrates must 

pass through the body of the protein to access the active sites. Active sites inside the protein 

core are often connected with the protein surface by one or more access tunnels (Kingsley 

and Lill, 2015). Structurally, buried active sites accessed by tunnels enhance the complexity 

of the ligand binding process. To address how tunnels influence the enzyme activity, reaction 

mechanism, specificity, and stereoselectivity, the “keyhole-lock-key” model, different from 

the traditional “lock and key” model, has been proposed (Figure 6A) (Kokkonen et al., 2019). 

In this model, an active site is represented by a lock, an access tunnel is represented by a 

keyhole and a substrate is represented by key. For enzymes with buried active sites, the 

recognition of substrate is seen as a two-step process (i) migration of substrate through access 

tunnel and subsequently (ii) substrate binding in the active site. By deconstructing substrate 

recognition in this way, it is known that before complementarity between substrate and 

active site, there must be a complementarity between the substrates and the access tunnel. 

The tunnel itself is hence also responsible for the substrate specificity, and this has been 

observed in many enzymes such as haloalkane dehalogenases (Kokkonen et al., 2021), 

aldehyde-deformylating oxygenase (Bao et al., 2016), cytochrome P450s (Cojocaru et al., 

2007), and fructosyl peptide oxidase (Rigoldi et al., 2020). Theoretically, it is possible to 

modify enzyme properties by altering the substrate access tunnels. Substitutions in these 

access tunnel sites do not disrupt the active-site architecture and have the potential to 

generate high yields of functional variants. 
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In many studies, the replacement of residues located at access tunnels has provided 

impressive improvements in valuable enzyme properties including reaction mechanism 

(Biedermannova et al., 2012), resistance to substrate inhibition (Kokkonen et al., 2021) , 

activity (Brouk et al., 2010, Panizza et al., 2015, Jung et al., 2018, Marques et al., 2017b, Kong 

et al., 2014, Luan et al., 2015), substrate specificity (Bao et al., 2016, Kaushik et al., 2018), 

stability (Koudelakova et al., 2013) and enantioselectivity (Liskova et al., 2017). Enzyme 

tunnels could also be the potential targets for designing new biocatalysts, materials or drugs 

(Jurcik et al., 2018, Marques et al., 2017a) .  

 

Figure 6 Access tunnel sites of enzymes. A, Keyhole-lock-key model for enzymatic catalysis. 
Two-step process composed of a passage of substrate (key) via the tunnel (keyhole) and 
molecular recognition in the active site (lock). B, The two substrate tunnels of haloalkane 
dehalogenase (Kokkonen et al., 2019). Reprinted with permission, copyright 2019 Elsevier. 

3.2.1 Activity  

The most pronounced example of improving activity by modifying enzyme tunnels has been 

the process of engineering the haloalkane dehalogenase DhaA (Figure 6B). DhaA cleaves 

carbon-halogen bonds by a hydrolytic mechanism to yield the corresponding alcohol, a 

proton, and a halide, and has potential applications in various fields. DhaA was firstly evolved 

to have improved activity to convert a toxic, non-natural compound 1,2,3-trichloropropane 
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(TCP) to the less toxic 2,3-dichloropropan-1-ol (DCP) (Pavlova et al., 2009). In the study, three 

residues located in the access tunnel were chosen as hot spots for saturation mutagenesis. 

After screening around 5000 clones, 51 positive clones and 25 unique sequences with 

enhanced activity were obtained. The best DhaA mutant showed 26-fold higher catalytic 

activity than wild type. After this study, the same group found that introducing bulky amino 

acids into the substrate channel can also increase enzyme activity (Marques et al., 2017b). 

Pavlova et al. obtained a variant containing five mutations (I135F/C176Y/V245F/L246I/Y273F) 

through targeted evolution of a molecular channel of haloalkane dehalogenase, which 

increased the activity against the novel substrate TCP by 32-fold. Tertiary structural analysis 

indicated that the large volume of amino acids in substrate channel were fundamental for 

positioning of substrate TCP in the reactive conformations and increasing the productive 

binding of substrate in the enzyme.  

Recently, a study showed that the substrate preference of cytochrome P450Bsβ from Bacillus 

subtilis could be modulated by tunnel engineering strategies.  P450Bsβ showed low 

decarboxylase activity towards long-chain fatty acids, and enlarging the access tunnel in the 

variants F79A and F173V gave a 15.2-fold and a 3.9-fold increase in conversion of palmitic 

acid and pentadecanoic acid, respectively (Meng et al., 2021). In addition, by engineering the 

substrate access tunnel, an (R)-aminomutase was converted to a highly selective (S)-ammonia 

lyase (Bata et al., 2021). Furthermore, it has been shown that the geometry of the tunnels 

may have different effects on the binding and catalysis of different ligands. The design of 

enzyme tunnels must take into account not only geometry, kinetics and physicochemical 

properties but also how mutations may affect key steps in the catalytic cycle (Kaushik et al., 

2018). 
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3.2.2 Stability 

The DhaA was also engineered to have improved stability by modifying the access tunnel sites 

(Koudelakova et al., 2013). The stability of DhaA was engineered through error-prone PCR, 

and it was found that the structural stabilization of highly stable variants essentially came 

from four mutations, T148L, G171Q, A172V, and C176F in the access tunnel and their effects 

were additive. The variant DhaA80 containing only these four mutations exhibited 4000-fold 

higher kinetic stability in 40 vol.% DMSO and 17 oC enhanced melting temperature relative to 

wild type. However, a stability-activity trade-off was observed with the activity towards 1,2-

dibromoethane having been reduced by two orders of magnitude in the DhaA80 variant. 

Recently, this issue has been addressed by fine-tuning access tunnel sites (Liskova et al., 

2015). In this study, libraries were constructed with two access tunnel sites V172, F176 as 

targets. After screening 236 colonies in these two libraries, the hit with the greatest 

improvement in activity relative to the template was obtained, F176G. The catalytic activity 

of this mutant towards 1,2-dibromoethane was 32-times higher than that of DhaA80, and its 

melting temperature was only 4 oC lower. Access tunnels have shown a huge potential as hot 

spots to improve stability and even balance the activity and stability of enzymes (Stimple et 

al., 2020). Access tunnel sites have also been applied as mutation targets to engineer 

thermostability or resistance to organic solvent for enzymes including for lipase (Gihaz et al., 

2018), and esterase (Singh et al., 2017).  A detailed discussion about the enzyme properties 

modified by engineering access tunnels can be found in the review article from Damborsky et 

al (Kokkonen et al., 2019).  

3.3 Flexible sites  
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Flexibility is an important structural property determining protein functions such as protein-

protein interactions, ligand binding, allosteric regulation and signal transduction. 

Conformational changes are also frequently observed as part of enzyme mechanisms, and 

protein motions are hence critical for enzymatic function (Nestl and Hauer, 2014). On the 

other hand, highly flexible regions are often located on the surface loops as showed by the 

flexibility analysis of Calf-1 domain of integrin αIIbβ3 which mediates platelet aggregation and 

thrombus formation (Figure 7). The flexible regions have a relatively low number of contacts 

with other amino acids and large thermal fluctuation of flexible regions might expose the 

hydrophobic core of protein to water penetration, triggering protein unfolding. The 

assumption that rigidity is the prerequisite for high thermostability has been supported by 

studies that compare flexibility in mesophilic and thermophilic proteins (Paredes et al., 2011, 

Mamonova et al., 2013, Reetz et al., 2006). Although the relationship between flexibility, 

activity and stability is complex, flexible sites can be chosen as hot spots for guiding protein 

engineering of different properties.   
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Figure 7 Comparison of the protein flexibility of Calf-1 through different metrics. 3D 
structures of Calf-1 domain represented through (A) B-factor values, (B) RMSF values, and 
(C) Neq values. Local structure is ranked from rigid (thin blue line, a value of 0.0) to flexible 
(thick red line, a value of 4.0). Residues with completed missing atoms are in grey in the B-
factor cartoon (A). D, The Calf-1 amino acid sequence is placed in regard to its secondary 
structures assignment and to protein flexibility according to the B-factor, the RMSF or the 
Neq values. Blue, green, yellow, orange and red colours scale the structure from rigid to 
flexible (Goguet et al., 2017).  Reprinted with permission, copyright 2017 Springer Nature. 

3.3.1 Stability  

B-factor is commonly used to represent the flexibility and the iterative saturation 

mutagenesis on the basis of B-factor (B-FIT approach) has been a greatly useful strategy to 

improve the thermal stability of proteins(Blum et al., 2012, Reetz et al., 2006). In addition to 

the use of B-factors, root mean square fluctuations (RMSF) and equivalent number of protein 

blocks (Neq) calculated in MD simulations could be used to represent protein flexibility (Figure 

7). The detailed discussion about computational tools to predict protein flexibility is provided 
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in the section 4.5. Hydrogen–deuterium exchange mass spectrometry can also be used to 

experimentally investigate the flexibility.   

There are also many other methods available for rigidifying flexible sites such as structure-

guided consensus mutagenesis, the introduction of prolines or disulfide bridges, or the 

addition of salt bridges, which have been reviewed previously (Yu and Huang, 2014). Two 

parallel strategies have been applied to identify mutation candidates within the flexible loops 

of Escherichia coli transketolase (Yu et al., 2017). The first was a ‘back to consensus mutations’ 

approach, and the second was computational design based on ∆∆G calculations in Rosetta. 

After an experimental characterization, three single-mutant variants I189H, A282P, D143K 

were found to be more thermostable than wild-type TK.  Additionally, thermostable enzymes 

usually have deletions of exposed loop regions found in their mesophilic homologs, as it 

reduces the flexibility and, therefore, inherent entropy in the protein structure. Thus, deleting 

or shortening dynamic loops could be one way to enhance the thermostability of mesophilic 

proteins. Residues 78-90 in porcine trypsin were predicted by molecular dynamic simulations, 

FlexPred and FoldUnfold, to be a highly flexible region. By truncating this region, the variant 

D9 exhibited higher thermal stability, with a 5 °C increase in Topt, a 5.8 °C increase in T 10
50 and 

a 4.5 °C increase in Tm compared to the wild type (Liu et al., 2018). Fang et al. have improved 

the thermostability of bacterial laccase Lac 15 by deleting the residues step by step (Fang et 

al., 2014). From the crystal structure of Lac15-His6, they noticed that a few regions, including 

the C-terminal His-tag, are invisible in the electron density map, indicating high flexibility of 

these areas. When residues (323-332) were deleted from Lac 15, a variant Lac15D was 

obtained which exhibited significantly improved thermostability and extraordinary solubility. 

The strategy of rigidifying flexible sites has also been applied to many other enzymes including 
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chondroitinase ABC (Kheirollahi et al., 2017), esterase (Zhu et al., 2021), artificial 

metalloenzymes (Obrecht et al., 2021) and so forth.  

3.3.2 Function   

Although flexible regions have shown a promising role in guiding the evolution of enzyme 

stability, it is still difficult to engineer functional properties taking flexibility into account. Due 

to the so-called activity–stability trade-off, modifying them risks a negative correlation 

between enzyme stability and activity. Several studies attempted to explore the possibility of 

applying flexibility modulation as a means to enhance enzyme activity. Young Je Yoo’s group 

attempted to enhance the activity of xylanase from Bacillus circulans (Kazuyo et al., 2014). 

Hinge regions between moving subunits were firstly identified using the computational tool 

PiSQRD. Then, in the hinge regions, four target residues including Val131, Arg132, Asn141, 

and Ala142 were mutated to several amino acids with different flexibility. In the results, it was 

observed that mutants with increased rigidity showed increased catalytic activity while 

mutants with decreased rigidity showed decreased catalytic activity (Kazuyo et al., 2014, Hong 

et al., 2014).  

The investigation of the relationship between structural dynamics and enzyme catalysis is of 

increasing interest. In another study, MSA and MD simulations were performed for cellulase 

Cel5A from Bacillus agaradherans. Three specific positions were selected based on the 

analysis of hydrogen bond patterns between residues within the active site. After site-

directed mutagenesis, Cel5A variants showed a concomitant increase in the catalytic activity 

at low temperatures and a decrease in activation energy and activation enthalpy, similar to 

cold-active enzymes, indicating that disrupting a hydrogen bond network in the vicinity of the 

active site increases local flexibility (Saavedra et al., 2018).  



27 

 

The impact of enzyme flexibility on catalytic efficiency has also been shown in cytochrome 

P450. A cytochrome P450 variant M.aqRLT showed strongly improved substrate binding and 

catalytic efficiency, and the MD simulations revealed the tunnel modifications caused greatly 

reduced flexibility of the two loop regions (Rapp et al., 2021). Recently, both the insertion-

deletion mutagenesis and anisotropic network model highlighted the importance of the 

conformational flexibility of a loop-helix fragment of Renilla luciferases RLuc8 for ligand 

binding. And, transplanting this dynamic fragment from RLuc8 to AncHLD-Rluc, a thermostable 

ancestral protein catalysing both dehalogenase and luciferase reactions, to yield an enzyme 

AncFT with 7000-fold improved catalytic efficiency (Schenkmayerova et al., 2021). Hence, 

what becomes very clear is that protein flexibility is very crucial to enzyme catalysis, 

promiscuity and evolution but understanding how to tune flexible sites to change enzyme 

functions remains challenging (Pabis et al., 2018). 

3.4 Distal sites coupled to active center 

Allostery describes the binding affinity of a ligand or substrate that is changed by binding 

another ligand far from the active site. Nature uses the principle of minimum perturbation 

and maximum response to change the dynamics of functional key sites through allostery, 

rather than obtaining new and large effect mutations. An increasing number of studies 

indicated that small perturbations at the distal coupling site can lead to changes in a series of 

functional active sites (Figure 8A). Enzymes obtained through directed evolution have also 

produced many cases where distal mutations in regions previously thought not to affect 

function are actually functionally relevant. Some mutations have improved thermal stability 

and protein expression, and others have increased catalytic efficiency by regulating the 

conformational space or affecting the dynamics of the active site (Modi and Ozkan, 2018, 
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Khersonsky et al., 2010, Yang and Lai, 2016, Taylor et al., 2015). Hence, the distal sites coupled 

to an active center could be potential hot spots to engineer functional properties of enzymes 

(Figure 8A). 

The critical allosteric interactions in various systems can be identified by DCI (dynamic 

coupling index) scores (Modi and Ozkan, 2018). TEM-1 is an evolved enzyme of β-lactamase 

which inactivates antibiotics by hydrolyzing β-lactams. It was shown that most mutations of 

TEM-1 leading to resistance were located distal to the catalytic site, and their DCI scores 

indicated a higher coupling to the active sites (Figure 8B)(Modi and Ozkan, 2018). The distal 

antibiotic-resistant mutations also remotely altered the flexibility of the active site. Due to 

their strong dynamic coupling to the active sites, these mutations created a series of changes 

in the interaction network, resulting in changes in the flexibility profile of regions that play a 

key role in function.   

 

Figure 8 The distal sites important to enzymes functions. A, distal hot spots coupled to active 
center. B, Functional mutations distal from the TEM-1 active sites. Reprinted with permission, 
copyright 2018 Molecular Diversity Preservation International.  

 

Recently, we have counteracted the stability-activity trade-off observed in the Escherichia coli 

transketolase 3M variant, also a common problem in directed evolution, by making mutations 
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targeted to the distal sites with strong dynamics correlations with the active center (Yu and 

Dalby, 2018b). A clear activity-stability trade-off was found in the 3M variants, and the MD 

simulations revealed increased flexibility in several interconnected active-site regions that 

also form part of the dimer interface. Mutating the newly flexible active-site residues to 

regain stability risked losing the new activity. In earlier work, it was shown that mutations 

influenced the dynamics of their local environment, but also in some cases the dynamics of 

regions distant in the structure (Yu and Dalby, 2018a). Hence, six variants were constructed 

in the regions outside of the active sites, whose dynamics were correlated with the newly 

flexible active sites. The best variant had a 10.8-fold improved half-life at 55 °C, and increased 

the Tm and Tagg by 3 °C and 4.3 °C, respectively. The variants even increased the activity, by up 

to threefold. This study highlights how protein engineering strategies could be potentially 

improved by considering long-range dynamics. 

3.5 Interface sites 

Interface sites of a multimeric enzyme have been chosen as hot spots for engineering the 

thermostability of enzymes (Bosshart et al., 2013).  For a multimeric enzyme, denaturation 

typically starts with a loss of integrity of the quaternary structure and is followed by an 

irreversible denaturation step (Rogers and Bommarius, 2010, Peterson et al., 2007). It was 

reasoned that mutagenesis targeting non-conserved residues of the interface could 

strengthen the inter-subunit interaction and protect proteins from disintegration.  

Bosshart et al. tested this hypothesis using D-tagatose 3-epimerase of P. cichorii (PcDTE) as 

an example (Bosshart et al., 2013). The software PDBePISA (Krissinel and Henrick, 2007) was 

applied to identify the residues involved in interface formation in the crystal structure of 

PcDTE (Figure 9). They discarded the high consensus residues in the interface and randomly 
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mutated 31 remaining sites using site-saturation mutagenesis.  At least one improved variant 

from each of nine of the 31 libraries was achieved. ISM was subsequently applied to 

accumulate beneficial mutations.  Finally, after a limited screening (<4000 clones), a mutant 

was produced which showed 21.4 oC enhanced thermostability, and comparable substrate 

specificity and selectivity relative to wild type.  

 

 

Figure 9 Localization of strictly conserved interface amino acid residues and those affording 
more thermostable PcDTE variants. A, PcDTE dimer with chain A in surface representation 
and chain B (dark gray) shown in cartoon representation, the C-terminal 6xHis-tag is marked. 
B, Chains A/B with all 10 strictly conserved interface residues shown as sticks. C, Chains A/B 
with the nine interface sites that afforded an improved mutant during the initial stability 
screening, highlighted as spheres. The coloring of each residue corresponds to its degree of 
conservation in 10 % increments. Reprinted with permission, copyright 2013 WILEY - VCH 
VERLAG GMBH & CO. KGAA.  
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In addition to random mutagenesis, site-directed mutagenesis could also be used to 

strengthen interactions between subunits. Numerous studies have shown the importance of 

salt bridges at interfaces in dominating stability of multimeric proteins (De Jesus et al., 2014, 

Letai and Fuchs, 1995). Based on this understanding, Basu et al. designed proteins with 

enhanced thermostability by introducing ion pairs at interface sites (Basu and Sen, 2013). 

They firstly identified several polar or charged residues on the protein surface which have 

weak interactions with other residues, then replaced the side-chains of suitable interface 

residues to introduce electronic interactions between monomers. Applying this strategy, they 

successfully improved the thermostability of both a homo-dimeric protein and a hetero-

dimeric protein (Basu and Sen, 2013). Similarly to salt bridges, disulfide bonds are also 

important interactions for maintaining protein structure. With interface sites as hot spots, 

Zhao et al. stabilized a single-chain fragment variable by adding an interdomain disulfide bond 

(Zhao et al., 2010, Zhang et al., 2018, Hong et al., 2017, Meng et al., 2020)  

4. Computational tools to identify hot spots 

Recent computational technological advances have greatly facilitated the identification of the 

hot spots mentioned above. Our goal here is not to review all the methods used to predict 

hot spots, and instead only those commonly used in the successful enzyme engineering cases 

will be introduced (Table 2). Some of the tools have been reviewed before (Marques et al., 

2021, Planas-Iglesias et al., 2021). In addition to the computational technology, some more 

general methods might be used for identification of hot spots. For example, if no structure or 

homologous sequence information is available and the first step in protein design can be 

random mutagenesis and screening to experimentally identify hot spots, which can 

subsequently be investigated by saturation mutagenesis.  
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Table 2 Computational tools to identify hot spots 

Hot spots  Name Web  References 

CbD  

sites  

Muscle https://www.ebi.ac.uk/Tools

/msa/muscle/  

(Edgar, 2004) 

 ClustalW https://www.genome.jp/tool

s-bin/clustalw 

(Larkin et al., 2007) 

 T-coffee http://www.tcoffee.org/ (Notredame et al., 2000) 

 EVcoupling https://evcouplings.org/ (Hopf et al., 2019) 

 Hot-Spot Wizard 

3.0 

http://loschmidt.chemi.muni.

cz/hotspotwizard. 

(Sumbalova et al., 2018) 

Coevolving 

residues 

CCMpred https://github.com/soedingla

b/ccmpred 

(Seemayer et al., 2014) 

 InterMap3D  https://services.healthtech.d

tu.dk/service.php?InterMap3

D-1.3 

(Gouveia-Oliveira et al., 

2009) 

 BIS2Analyzer http://www.lcqb.upmc.fr/BIS

2Analyzer/ 

(Oteri et al., 2017) 

 SDPpred http://bioinf.fbb.msu.ru/SDP

pred/ 

(Kalinina et al., 2004) 

 SDPsite http://bioinf.fbb.msu.ru/SDP

site/ 

(Kalinina et al., 2009) 

Active-site 

residues 

CRpred http://biomine.cs.vcu.edu/da

tasets/CRpred/CRpred.html  

(Zhang et al., 2008) 

 ConSurf  https://consurf.tau.ac.il/ (Ashkenazy et al., 2010) 

 DISCERN http://phylogenomics.berkel

ey.edu/software 

(Sankararaman et al., 

2010) 

Access 

tunnel sites 

CAVER https://loschmidt.chemi.mun

i.cz/caverweb/ 

(Stourac et al., 2019 

 MOLEonline https://mole.upol.cz/ (Pravda et al., 2018) 

Flexible 

sites 

B-FITTER https://www.kofo.mpg.de/en

/research/biocatalysis   

(Blum et al., 2012) 

 WHAT IF  https://swift.cmbi.umcn.nl/s

ervers/html/index.html    

(Vriend, 1990) 

Distal sites 

coupled to 

active 

center 

AlloPred https://github.com/jgreener6

4/allopred 

(Greener and Sternberg, 

2015) 

 PARS http://bioinf.uab.cat/pars. (Panjkovich and Daura, 

2014) 

 DynOmics ENM http://enm.pitt.edu/ (Li et al., 2017) 

 CORRSITE http://www.pkumdl.cn:8000

/cavityplus/index.php 

(Xu et al., 2018) 
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 AllosMod https://modbase.compbio.uc

sf.edu/allosmod/ 

(Weinkam et al., 2012) 

 PASSer https://passer.smu.edu/ (Tian et al., 2021) 

 Allosite http://mdl.shsmu.edu.cn/AS

T 

(Huang et al., 2013) 

Interface 

sites 

PredUs 2.0  https://honiglab.c2b2.colum

bia.edu/PredUs/index_omeg

a.html  

(Hwang et al., 2016) 

 InterProSurf http://curie.utmb.edu/ (Negi et al., 2007) 

 iFraG http://sbi.imim.es/web/index

.php/research/servers/iFrag 

(Garcia-Garcia et al., 

2017)  

 PDBePisa https://www.ebi.ac.uk/msd-

srv/prot_int/cgi-bin/piserver 

(Krissinel and Henrick, 

2007) 

 MolSurfer https://molsurfer.h-

its.org/index.html 

(Gabdoulline et al., 2003) 

 SPPIDER http://sppider.cchmc.org/ (Porollo and Meller, 

2007) 

 

4.1 CdD sites  

Obtaining the consensus sequence is the key step in identifying the CbD sites. To prepare a 

starting MSA for determining the consensus sequence, a sequence set of a query protein need 

to be collected firstly. The easiest way to obtain the sequence set is from databases including 

Pfam (El-Gebali et al., 2019), InterPro (Mitchell et al., 2019), SMART (Letunic and Bork, 2018) 

which contain MSAs for a vast number of protein families. Another option is to build an MSA 

using homolog search and alignment tools such as HMMER (Finn et al., 2011) and PSI-BLAST 

(Altschul et al., 1997). The second step is to curate the sequence set to create an alignment 

of diverse yet nonredundant sequences by removing sequences that share high identity or 

are too long or too short. The MSA programs including MAFFT  (Katoh et al., 2019), ClustalW 

(Larkin et al., 2007), MUSCLE (Edgar, 2004) and T-Coffee (Notredame et al., 2000) are then 

used to generate MSA before calculating the residue frequencies at each position to generate 

consensus sequence. Python scripts for cleaning and curating MSAs, calculating residue 

http://sbi.imim.es/web/index.php/research/servers/iFrag
http://sbi.imim.es/web/index.php/research/servers/iFrag
https://www.ebi.ac.uk/msd-srv/prot_int/cgi-bin/piserver
https://www.ebi.ac.uk/msd-srv/prot_int/cgi-bin/piserver
https://molsurfer.h-its.org/index.html
https://molsurfer.h-its.org/index.html
http://sppider.cchmc.org/
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frequencies from MSAs and determining the consensus sequences can be found on Github at 

github.com/msternke/protein-consensus-sequence (Sternke et al., 2020). The above 

methods have been used to generate consensus sequences of six protein families including 

N-terminal domain of ribosomal protein L9, the SH3 domain, the SH2 domain, dihydrofolate 

reductase, adenylate kinase and phosphoglycerate kinase. All six consensus proteins adopt 

cooperatively folded structures in solution, and four of them showed increased 

thermodynamic stability over naturally occurring homologs (Sternke et al., 2019). In addition, 

tools including EVcoupling, Gremlin and Hot-Spot Wizard 3.0 are able to take a single 

sequence as input, from which they automatically find a set of homologous sequences, 

construct a multiple alignment, generate the consensus sequence (Hopf et al., 2019, 

Sumbalova et al., 2018, Kamisetty et al., 2013). However, a manually curated dataset will most 

often be of better quality than the automatically generated one, thus improving the quality 

of the predictions. 

4.2 Coevolving residues  

Coevolving residues are identified also by utilizing MSA to compute couplings between pairs 

of positions in a protein sequence. Since statistical dependency between amino acid positions 

may arise either from direct or indirect correlates residues, these methods are commonly 

classified into two categories:  methods that consider all covarying interactions as 

independent between each other, and direct coupling methods that deconvolute the 

covariation signal in order to infer only direct interactions (Colell et al., 2018). Directed 

coupling analysis (DCA) (http://dca.rice.edu/portal/dca) method was developed to estimate 

direct inter-residue contacts, which is widely applied to predict structural proximity such as 

both AlphaFold and RaptorX relying on the inter-residue contacts predicted by CCMpred, a 
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DCA-based approach (Morcos et al., 2011, Ju et al., 2021). By contrast, statistical coupling 

anslysis (SCA) introduced by Lockless and Ranganathan in 1999 is a way to infer energetic 

interactions within a protein from a statistical analysis of MSA (Lockless and Ranganathan, 

1999). DCA and SCA produced different results by analysis of same MSAs, which was due to 

differences in the algorithmic approaches: SCA uses clustering to identify larger groups of 

coevolving sites (sectors), whereas DCA uses maximum-entropy modeling to extract pairs of 

directly coupled residues (Morcos et al., 2011). SCA has been previously used to identify 

evolutionarily correlated networks of residues that included the active-site residues for 

transketolase. Screening of libraries targeted to one of these networks led to the R520Q 

mutation that stabilized the transketolase variant D469T sufficiently to restore soluble 

expression(Strafford et al., 2012). In addition, the methods such as InterMap3D are based on 

mutual information (MI), a statistical measure of the codependency between two random 

variables, for detecting coevolving residues (Gouveia-Oliveira et al., 2009). The MI and SCA 

might not always correspond to residue proximity, but is useful in allosteric pathway 

prediction, which has been applied to engineer the thermostability of an apha-amylase (Wang 

et al., 2012). MISTIC2 is a server that allows to calculate coevolving residues with both DCA 

and MI methods, specifically three DCA approaches including mean field DCA, pseudo-

likehood maximization DCA, multivariate gaussian modelling DCA and a corrected mutual 

information approach (Colell et al., 2018). MI can also be applied to the prediction of SDPs by 

calculating MSA into subgroups. Tools like SDPpred and SDPsite combine MI with subsequent 

statistical significance, enabling simple and effective prediction of SDPs (Kalinina et al., 2004, 

Kalinina et al., 2009). In addition, with the input of manually curated MSAs or MSAs from 

databases such as Pfam (El-Gebali et al., 2019) and HMMER (Finn et al., 2011), several tools 

including CoeViz 2.0 (Baker and Porollo, 2016), BIS2Analyzer (Oteri et al., 2017) and CAPS 2.0 
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(Fares and Travers, 2006) can detect groups of amino acids that evolve together. And, in 

addition to the consensus sequence, the webservers including EVcoupling (Hopf et al., 2019), 

Gremlin (Kamisetty et al., 2013) and Hot-Spot Wizard 3.0 (Sumbalova et al., 2018) are able to 

automatically identify the coevolving residues with the input of a single sequence. EVcoupling 

server can also be used to predict mutation effect and predict protein structure, which has 

recently been used to develop a machine learning-assisted directed evolution method and 

engineer activity of a Bacillus naganoensis pullulanase (Wittmann et al., 2021, Wang et al., 

2020b). 

4.3 Active-site residues 

The enzyme 3D structure with a substrate bound provides accurate identification of active-

site residues. However, experimental studies to predict active sites are cumbersome and 

time-consuming. In the past decade, many sequence or structure-based methods have been 

developed to predict enzyme active-site residues. Purely sequence-based approaches use 

phylogenetic information, relying on the idea that functional sites are conserved during 

evolution, and hence the computational tools to predict consensus sequence are useful to 

identify active-site residues (Aubailly and Piazza, 2015). CRpred 

(http://biomine.cs.vcu.edu/datasets/CRpred/CRpred.html) is a widely used sequence-based 

method that uses several sequence features including residue type, hydrophobicity, and PSI-

BLAST profiles in a support vector machine (SVM) to predict residues to be catalytic residues 

or not (Zhang et al., 2008). Another method, ConSurf (https://consurf.tau.ac.il/) identifies 

functionally important regions in proteins by estimating the degree of conservation of the 

amino acid sites among their close sequence homologues (Ashkenazy et al., 2010). The 

ConSurf webserver has been used to guide the activity engineering of prodigiosin ligase PigC  

https://consurf.tau.ac.il/
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to exclude those residues from mutagenesis that showed high conservation scores as they 

are likely to be essential for enzymatic function (Brands et al., 2021). With the availability of 

tertiary structures, methods were developed by using structure similarity searches with pre-

calculated active site structural template library, such as CATSID which enables rapid searches 

for structural matches to a user-specified catalytic site among all PDB structures (Kirshner et 

al., 2013). Many other methods combine sequence and structural features to improve 

prediction accuracy. For example, DISCERN (http://phylogenomics.berkeley.edu/software) 

uses statistical models based on phylogenomic conservation score of sequence and several 

structural features including B-factors and solvent accessibility to predict catalytic residues 

(Sankararaman et al., 2010). PREvaIL is an integrative approach for inferring catalytic residues 

using sequence, structural, and network features in a random forest machine-learning 

framework (Song et al., 2018). In addition, to pinpoint the specific amino acids modulating 

binding of substrates, molecular docking tools such as AutoDock (Morris et al., 2009), 

AutoDock Vina (Trott and Olson, 2010), Glide (Friesner et al., 2004), and Gold (Verdonk et al., 

2003) could be used. Since their performance is largely influenced by the type of ligand being 

docked and the target system, it is worthwhile to select a tool that shows high success rates 

with molecules similar to those of interest (Ebert and Pelletier, 2017). 

4.4 Access tunnel sites  

Since the software tools for the determination of protein tunnels have been reviewed by 

Brezovsky et al. in 2018 (Brezovsky et al., 2018), Kingsley and Lill in 2015 (Kingsley and Lill, 

2015), and Damborsky et al. in 2019 (Kokkonen et al., 2019), we give only a brief overview of 

the tools used in recent enzyme engineering cases. CAVER Analyst 2.0 (Jurcik et al., 2018) has 

been used for engineering xylanase activity (Lu et al., 2019), and CAVER 3.0 (Chovancova et 
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al., 2012) has been applied to engineer haloalkane dehalogenase activity and carotenoid 

cleavage dioxygenase substrate scope (Kaushik et al., 2018, Liang et al., 2021). CAVER 3.0 is a 

software tool widely used for the identification and characterization of transport pathways in 

both static macromolecular structures and large ensembles of protein conformations 

(Heinemann et al., 2021). It implements algorithms for the calculation and clustering of 

pathways and hence enables calculating detailed characteristics and statistics of the time 

evolution of individual pathways with a trajectory from a MD simulation as the input, which 

is critical to find occasionally closed tunnels. CAVER Analyst 2.0 (Jurcik et al., 2018) enables 

visualization of access tunnels computed by the CAVER 3.0 algorithms, which also provides an 

intuitive graphic user interface for setting up the calculation and interactive exploration of 

identified tunnels and their characteristics. CAVER software was also available for easy-to-use 

as a web server CABER Web 1.0 (Stourac et al., 2019). MOLEonline is another interactive, web-

based application for the detection and characterization of access tunnels within protein 

structures (Pravda et al., 2018), which was recently used for engineering cytochrome P450 

and phenylalanine ammonia-lyases substrate preference (Meng et al., 2021, Bata et al., 2021). 

Both CAVER and MOLE detect tunnels based on the Voronoi diagram representation of a 

protein structure alone and offer high-quality results in short calculation time. 

Another time-demanding method for in silico analyses of ligand transport is based on use of 

MD simulations which simulate small ligands passing through channel and provide highly 

robust and accurate results. Since timescale of ligand (un)binding is very long, the MD 

simulations often employ various enhanced sampling approaches such as Random 

Accelerated Molecular Dynamics (Kokh et al., 2018), Steered Molecular Dynamics (Chen, 2015, 

Do et al., 2018, Skovstrup et al., 2012), Umbrella Sampling (Zhang and Voth, 2011), Adaptive 
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Sampling (Marques et al., 2018) and Metadynamics (Zhang and Voth, 2011, Furini and 

Domene, 2016). 

4.5 Flexible sites  

B-Factors and MD simulations are two commonly used methods to identify flexible sites (Yu 

and Huang, 2014, Sun et al., 2019). The average B-factors for a residue can be calculated by 

averaging the B-values of each atom in the amino acid with programs including B-FITTER 

(Blum et al., 2012) (https://www.kofo.mpg.de/en/research/biocatalysis) and WHAT IF Web 

server (Vriend, 1990) (https://swift.cmbi.umcn.nl/servers/html/index.html). However, it is 

important to note that the flexibility of proteins in solution may be qualitatively different from 

that in crystals. MD simulations is a more powerful technique to study the flexibility of 

proteins. It provides an accurate representation of protein flexibility under similar 

physiological environments. RMSF values in the MD simulations were used to represent 

flexibility of the protein, which measure mean amplitude of each atom motions relative to a 

mean reference position during MD trajectory. The equivalent number of protein blocks, Neq 

value, is also an indicator of protein flexibility (Figure 7). Protein blocks (PBs) are a structural 

alphabet composed of 16 local prototypes representing β-strand N-caps, β-strand C-caps, 

coils, α-helix N-caps, α-helix C-caps and so forth (Joseph et al., 2010). Each residue can be 

assigned a PB type and PB assignments are done for each residue over every snapshot 

extracted from MD simulations. Neq is a statistical measurement that represents the average 

number of PBs for a residue at a given position in the MD simulations  (Goguet et al., 2017, 

de Brevern et al., 2000).   MD simulations can be carried out in packages such as GROMACS 

(Van Der Spoel et al., 2005), AMBER (Case et al., 2005), NAMD (Phillips et al., 2005) or 

CHARMM (Brooks et al., 2009).  
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4.6 Distal sites coupled to active centers  

The methods to predict distal sites coupled to active centers are related to investigating 

allostery. Several of such tools have been reviewed before (Guarnera and Berezovsky, 2016, 

Schueler-Furman and Wodak, 2016, Greener and Sternberg, 2018, Sheik Amamuddy et al., 

2020). Generally, the methods could be classified as sequence-based and structure-based. 

Based on the assumption that allosteric communication paths are under evolutionary 

pressure, the computational tools such as InterMap3D and SCA for predicting coevolving 

residues based on MSAs could also be used to predict allostery signalling (Schueler-Furman 

and Wodak, 2016). The key characteristic of the allosteric site is its ability to couple to the 

intrinsic dynamics of protein, which, in turn, underlies communication with relevant 

functional sites through coherent collective motions. Hence, as the standard computational 

tool for dynamics analysis, MD simulations are frequently used for the search of allosteric 

binding sites.  

The dynamical cross-correlation matrix (DCCM) measured by the analysis of simulation 

trajectories could be used to determine the potential allosteric sites showing dynamics 

correlations (Yu and Dalby, 2020). Perturbation response scanning (PRS) is also a popular 

MD method for allosteric prediction, which examines the response of the structure to 

random perturbations caused by systematically applying a series of uniformly distributed 

forces at specific positions (Atilgan and Atilgan, 2009). PRS has been successfully applied to 

predict the allosteric hotspot residues of the TEM-1 β-lactamase (Modi and Ozkan, 2018), 

chaperone Hsp70 (Penkler et al., 2017) and two PDZ domain proteins (Gerek and Ozkan, 

2011). In addition, AllosMod (https://modbase.compbio.ucsf.edu/allosmod/) has been 

developed by combining MD simulations and energy landscape construction which can 



41 

 

sample the conformational transitions sufficiently well to accurately link microscopic 

motions to macroscopic allosteric phenomena (Weinkam et al., 2012). However, since 

conformational changes that cause allostery are often large enough to occur on timescales 

of microseconds or milliseconds, it is too computationally expensive to use MD simulations 

to predict allosteric sites.  

Normal model analysis (NMA) methods based on assumption of harmonic motion around an 

energy minimum provide another faster tool for allostery analysis. AlloPred (Greener and 

Sternberg, 2015) (https://github.com/jgreener64/allopred) is available as web server which 

calculates the normal modes of a protein, then holds the springs in the region of a potential 

allosteric site rigid and measures the effect of this perturbation at the active site. The 

DynOmics ENM server (Li et al., 2017) (http://enm.pitt.edu/) finds hinge residues that control 

the two slowest normal modes of a protein, and hence is able to influence its dynamics. 

CORRSITE (Xu et al., 2018) (http://www.pkumdl.cn:8000/cavityplus/index.php) identifies 

potential allosteric sites based on motion correlation between ligand-binding sites and 

corresponding orthosteric sites. These methods are expected to reveal the perturbations to 

vibrations, but other factors contributing to the allostery such as local unfolding are not 

taken into account. Several machine learning methods such as PASSer 

(https://passer.smu.edu/) have been developed for prediction allosteric sites (Tian et al., 

2021). Allosite (Huang et al., 2013)(http://mdl.shsmu.edu.cn/AST) is a method for predicting 

allosteric sites using support vector machine (SVM) based on topological and 

physiochemical pocket features. Chen et al. used random forest (RF) to construct a 

predictive model to classify protein cavities into three categories: allosteric, regular or 

orthosteric (Chen et al., 2016).  

http://enm.pitt.edu/
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4.7 Interface sites  

Many different approaches have been developed to predict protein interface sites. Methods 

might use intrinsic features of the sequence or the structure, evolutionary relationships or 

use an existing complex as a reference template. Sequence-based interface predictors such 

as iFraG (http://sbi.imim.es/web/index.php/research/servers/iFrag) use only sequence 

features to detect interfaces, useful for the proteins without structure information available, 

but typically have lower accuracies than methods incorporating evolutionary and structural 

information (Garcia-Garcia et al., 2017). Structure-based methods such as PDBePisa (Krissinel 

and Henrick, 2007) (https://www.ebi.ac.uk/msd-srv/prot_int/cgi-bin/piserver), MolSurfer 

(Gabdoulline et al., 2003) (https://molsurfer.h-its.org/index.html), SPPIDER (Porollo and 

Meller, 2007) (http://sppider.cchmc.org/) make use of the different structural features 

including secondary structure, solvent-accessible surface area, geometric shape of the 

protein surface and crystallographic B-factor. As discussed in the section of 3.5, PDBePISA was 

successfully applied to predict residues involved in interface formation and provided the 

mutation targets for thermostability engineering (Bosshart et al., 2013). In addition, the 

InterProSurf (Negi et al., 2007) web server (http://curie.utmb.edu/) predicts a list of amino 

acid residues based on their accessible surface area and propensities most likely to be 

responsible for protein interaction, which has been applied to Bacillus anthracis toxin and 

measles virus hemagglutinin proteins to identify interface regions (Negi et al., 2007). The 

machine learning-based techniques such as  partial least squares (PLS) regression, SVM and 

random forest have also been combined with sequence or  structure information to act as the 

predictors of interface sites including PAIRpred (Minhas et al., 2014), Protein IntErface 

Recognition (PIER) (Kufareva et al., 2007), PredUs 2.0 

(https://honiglab.c2b2.columbia.edu/PredUs/index_omega.html) (Zhang et al., 2011) and 

http://curie.utmb.edu/
https://honiglab.c2b2.columbia.edu/PredUs/index_omega.html
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the predictor based on 3D Zernike descriptors (Daberdaku and Ferrari, 2018). Since these 

predictors make use of many distinct quality measures, different training and testing data sets, 

it is hard to have a fair comparison between them and the detailed discussion has been 

reviewed before (Esmaielbeiki et al., 2016). Recently, the proteome-wide amino acid 

coevolution analysis and deep-learning–based structure modelling have been used to 

systematically build accurate models of core eukaryotic protein complexes (Humphreys et al., 

2021). This enabled a large-scale screen of protein-protein interactions and the accurate 

identification of interface sites of many protein complexes.  

Table 3 Guide for choosing suitable hot spots 

 Activity  Enantioselectivity  Stability 

Sequence CbD sitesa 
Coevolving residues 

CbD sites CbD sites 
Coevolving residues 

3D structure  Active-site residues 
Access tunnel sites 
Distal sites coupled 
to active center 

Active-site residues Flexible sites 
Interface sites 
Access tunnel sites 
Distal sites coupled 
to active center 

aCbD sites: Positions that are conserved in the multiple sequence alignments but different in 

the sequence of the target protein. 

5. Conclusion  

The dream of all protein engineers is to predict a single amino acid sequence that would work 

with desired functions. However, it is far from being reached due to our incomplete 

understanding of the relationship between the function and structure of proteins. In order to 

make extant enzymes applicable to wider fields, the evolutionary strategy of trial and error is 

an inevitable choice (Goldsmith and Tawfik, 2013). The current challenge is to decrease the 

exploration of sequence space from an impractical number of all possible sequence (20n, n 

being the number of amino acids) to a controllable number of mutants. Targeted mutagenesis 
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is an effective approach to narrow the sequence space and increase the efficiency of directed 

evolution by constructing smart libraries. We have reviewed recent studies applying seven 

kinds of hot spots as mutagenesis targets for engineering various properties of enzymes. 

These spots can be divided into two types based on whether crystal structures are available 

or not: sequence-based hot spots and 3D structure-based hot spots. Choosing hot spots 

should be based on the desired property and available structure information (Table 3). If one 

wants to enhance thermostability and the 3D structure is available, flexible sites and interface 

sites are good choices since these sites are far away from catalytic sites. During the process 

of identifying hot spots, consensus information from MSAs is also very useful. On the one 

hand, conserved residues are not often suitable for mutation, whereas CbD sites are good 

targets for engineering thermostability. After identifying the hot spots, saturation 

mutagenesis was commonly applied to construct mutation libraries. However, some enzymes 

are not amenable to high-throughput screening. In this case, site-directed mutagenesis can 

be used to introduce salt bridges or disulfide bonds to stabilize flexible sites or interface sites.  

It is important to note that these hot spots only provide potential mutation targets. Other 

criteria might be needed to shrink the scope of mutation sites in the real situation. For 

example, many enzymes have multiple tunnels connecting their active sites with the 

surrounding solvent and each tunnel has different number of amino acids (Kokkonen et al., 

2019). To identify the specific mutation sites in a tunnel for modifying the substrate 

preference, other criteria are needed to be set, such as location in a bottleneck area or initial 

part of the tunnel, location in a loop area not completely conserved in the homologous 

families (Meng et al., 2021, Bata et al., 2021). Flexible sites are great hot spots for engineering 

thermostability. Except identifying the most flexible sites as the mutation target, the flexible 
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regions could be located initially, and then sequence statistics used to pinpoint the mutation 

positions and substitution types (Yu et al., 2015, Yu et al., 2017). 

When analysing structural data to identify hot spots, literature is an important means to 

acquire information about the previous mutagenesis attempts of the target enzyme. Using 

information from previous studies, Bornscheuer et al.  identified three hot spots of 

Pseudomonas fluorescens esterase (PFE I) and then generated a mutant with 15-fold 

improved enantioselectivity (Nobili et al., 2015).  Additionally, with the recent breakthrough 

of deep learning in protein three-dimensional structure prediction (Jumper et al., 2021, Senior 

et al., 2020, Baek et al., 2021), our understanding of protein structure-function relationships 

will be greatly improved, and new hot spots for engineering enzymes are expected to be 

shown up in the near future.  
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