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A B S T R A C T   

Multimorbidity is a major factor contributing to increased mortality among people with severe mental illnesses 
(SMI). Previous studies either focus on estimating prevalence of a disease in a population without considering 
relationships between diseases or ignore heterogeneity of individual patients in examining disease progression by 
looking merely at aggregates across a whole cohort. Here, we present a temporal bipartite network model to 
jointly represent detailed information on both individual patients and diseases, which allows us to systematically 
characterize disease trajectories from both patient and disease centric perspectives. We apply this approach to a 
large set of longitudinal diagnostic records for patients with SMI collected through a data linkage between 
electronic health records from a large UK mental health hospital and English national hospital administrative 
database. We find that the resulting diagnosis networks show disassortative mixing by degree, suggesting that 
patients affected by a small number of diseases tend to suffer from prevalent diseases. Factors that determine the 
network structures include an individual’s age, gender and ethnicity. Our analysis on network evolution further 
shows that patients and diseases become more interconnected over the illness duration of SMI, which is largely 
driven by the process that patients with similar attributes tend to suffer from the same conditions. Our analytic 
approach provides a guide for future patient-centric research on multimorbidity trajectories and contributes to 
achieving precision medicine.   

1. Introduction 

Patients with severe mental illnesses (SMI), such as schizophrenia 
and bipolar affective disorder, have increased mortality rates compared 
to the general population, with a 10–20 year reduction in life expectancy 
[1–3]. Although deaths due to suicide and violence contribute to these 
excess mortality rates, a majority (approximately two-thirds) of pre
mature deaths in patients with SMI have been attributed to physical 
comorbidities, such as cardiovascular disease, smoking-related lung 
disease or type 2 diabetes [4,3]. In fact, multimorbidity, defined as co- 
occurrence of two or more health conditions, is common among pa
tients with SMI [3,5]. This makes these patients especially challenging 

and costly to manage, because (1) existing clinical guidelines largely 
focus on managing a single disease and rarely deal with multimorbidity 
[6,7] and (2) these patients are more likely to be vulnerable to the 
adverse consequences of transitions in care provision for different con
ditions [8]. Thus, increasing attention has focused on early detection 
and management of multimorbidity, particularly on physical health 
conditions, to improve health outcomes and reduce premature mortality 
for patients with SMI [9]. To effectively prevent and detect potential 
future diseases, a key prerequisite is a deep understanding of when and 
how different diseases occur and interact during an individual’s life 
course. 

Addressing this question requires longitudinal healthcare data for 
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patients with SMI and appropriate statistical methods for modeling 
temporal interactions of diseases, considering illness duration and other 
relevant risk factors such as age, sex and ethnicity [10–13]. Prior 
research on multimorbidity has focused on cross-sectional studies which 
examine prevalence of multimorbidity in populations sampled within 
various settings, e.g., different geo-locations, sources of data or periods 
of time [4,14–16,3,17–20]. There are only a few longitudinal studies 
which have aimed to understand how conditions appear across the 
lifespan of an individual with SMI [21], and this is partly because of lack 
of longitudinal healthcare data for this population. Among these studies, 
some used routine data collected from a local healthcare provider [4,3] 
or others were based on national administrative claims data [18,19]. 
Routine data are often reliable to identify likely cases [22] but may miss 
care information from other healthcare providers, which can lead to an 
incomplete observation of a patient’s medical history. In contrast, 
administrative datasets may contain a more comprehensive medical 
history for a patient but tend to under-record psychiatric diagnoses 
[23,22,24], which can lead to a biased sample. So far, there has been no 
large-scale studies which link both types of data sources to gain a more 
comprehensive understanding of disease profiles in patients with SMI. 
Although recent studies have estimated the impact of a disease on 
mortality in patients with SMI based on retrospective cohort data using 
regression analyses [25,5], these analytical methods are limited in their 
ability to capture correlations among diseases over time [26]. It there
fore remains unclear how different diseases interact with one another 
over the lifetime of a patient with SMI. 

Recent evidence has shown that network models provide a powerful 
means to characterize interactions among diseases [27–29] and explore 
temporal progression trajectories for complex conditions such as dia
betes and cardiovascular diseases [10,30,31,11,32]. These methods 
often represent patient-diagnosis data as a one-mode network, in which 
each node represents a disease and an edge links two nodes if two dis
eases have a strongly statistical correlation, such as co-occurrences 
[33,29,32] and sequential associations [10,11], which enables us to 
examine relationships of diseases/symptoms, e.g., disease progression 
paths, by measuring structural properties of these networks. Despite 
such advances, existing models are dominated by disease-centric ap
proaches, i.e., focusing on exploring the relationships of diseases at a 
population level and ignoring different attributes of individual patients. 
However, previous studies have shown that each individual patient may 
develop a distinct pathway in disease development [34] as a wide range 
of individuals’ attributes e.g. age, gender, ethnicity and the order of 
incidence, are important factors contributing to disease progression 
[35,30]. It is vital to take individual patients and their attributes into 
account when investigating the relationships between diseases. More
over, as we elaborate below, ignoring heterogeneity in individual pa
tients – by looking only at aggregates across a whole cohort – can lead to 
a misleading estimate of a disease relationship. 

In this study, we present an alternative approach, namely temporal 
bipartite networks, to characterize time-dependent multimorbidity 
profiles for patients with SMI based on a large set of linked longitudinal 
healthcare data. We leverage electronic health records (EHRs) from the 
South London and Maudsley (SLaM) National Health Service (NHS) 
Foundation Trust, one of the largest secondary mental health care pro
viders in the UK, to identify a large cohort of patients with SMI and link 
to Hospital Episode Statistics (HES) data [36], an English national 
hospital administrative database, to collect records of all admitted care 
of these patients across NHS hospitals in England. Based on this unique 
dataset, the main objective of this study is to achieve a systematic 
investigation of the changes in diagnoses among patients with SMI over 
time from both disease-centric and patient-centric perspectives using 
temporal bipartite networks. 

2. Material and methods 

In this retrospective cohort study, we analyzed a linked dataset be

tween secondary mental-health care data from the SLaM NHS Founda
tion Trust and longitudinal admitted-patient care data from the HES 
dataset. SLaM is one of the largest mental health trusts in the UK, 
providing a wide range of secondary mental health services for 1.3 
million residents in South London and specialist services for people 
across the UK. HES data contain details of all admitted patient care at 
NHS hospitals in England [36], and have been routinely collected by a 
national service since 1996 [37]. All data were collected through the 
Clinical Record Interactive Search (CRIS) system, a psychiatric case 
register which allows authorized researchers to explore fully de- 
identified EHRs in SLaM [38,39]. CRIS has been linked with the HES 
data for all patients who have used SLaM services, regardless of where 
they were living at the time of their hospital use [40]. Diagnoses in both 
CRIS and HES data were coded using 3/4-character codes from the In
ternational Classification of Diseases, 10th revision (ICD-10). This study 
has been approved by the CRIS Oversight Committee, under an ethical 
approval for secondary analysis of anonymized data from the Oxford 
Research Ethics Committee (reference 06/H0606/71+5) [41]. 

2.1. Study design and data collection 

A data-driven approach was used in this study to characterize disease 
trajectories for patients with SMI. Fig. 1 shows our study design and data 
flow. We first identified a cohort of patients who had a primary diag
nosis of SMI from April 1, 2008 to March 31, 2018 in CRIS, particularly 
focusing on two of the most common SMI: schizophrenia (with the ICD- 
10 code of “F20”) and bipolar disorder (“F31”) [42]. For each patient, 
we collected their (1) demographic information such as date of birth, 
gender and ethnicity, and (2) diagnostic information including the first 
diagnoses of SMI and dates of diagnoses. Second, we gathered all 
admitted-patient episodes from April 1, 1996 to March 31, 2018 for the 
cohort in the linked HES data. Each HES record comprises up to 20 
primary and secondary diagnoses, and dates of admission and discharge. 
We only included HES records with at least one valid diagnosis, and 
excluded non-disease diagnoses with an ICD-10 code in chapters XV- 
XXII [13]. For patients who were diagnosed with SMI in other NHS 
trusts before the diagnosis was recorded in SLaM, we identify their first 
SMI diagnosis and the diagnosis date by selecting the earliest SMI 
diagnosis across their CRIS and HES records. 

2.2. Temporal bipartite networks 

As shown in Fig. 1c, we represent patient-diagnosis data using tem
poral bipartite networks and characterize patients’ disease trajectories 
by measuring structural differences of these temporal networks. Given a 
collection of admission episodes C over a time period [0,T], a temporal 
bipartite network Gi at timestamp ti(i = 1, 2,…, n,0⩽ti⩽T) can be 
defined as: 

Definition 1. A temporal bipartite network Gi = (U,V,Ei) is a graph 
that consists of two disjoint sets of nodes, U and V, representing patients 
and diseases respectively, and a set of temporal edges Ei = {(u,v,w)|u ∈

U, v ∈ V, ∃(u, v, ti) ∈ C}, such that an un-directed edge (u, v) ∈ Ei in Gi 
links a patient node u and a disease node v if the patient was diagnosed 
with the disease at time ti, weighted by the frequency of such diagnoses 
w. 

In each network Gi, we represent patients’ characteristics by (1) 
encoding gender, ethnicity, the first SMI diagnosis and age at the first 
SMI diagnosis as attributes of patient nodes, and (2) encoding age when 
a patient was for the first time diagnosed with a disease as an attribute of 
an edge. Following previous studies [30,43,13], all ICD-10 codes were 
rounded to 3 characters as the first 3 characters capture the main 
category of a diagnosis. Unlike one-mode network models that merely 
capture relationships among a single type of nodes (e.g., diseases) 
[33,29,30,28,31,11,32], the proposed bipartite network models jointly 
represent information on both patients and diseases, as well as their 
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relationships, which provides a natural representation and preserves 
more information in patient-diagnosis data. 

2.3. Temporal network analyses 

We start our analyses of temporal networks from a lower temporal 
resolution and examine overall differences in patients’ diagnoses during 
hospital admissions before and after their first diagnoses of SMI. We split 
a patient’s admission episodes into pre- and post-SMI subsets based on 
the date when the patient was first diagnosed with SMI and the admis
sion dates of HES episodes. Patients’ diagnoses in each subset are then 
represented using a bipartite network. For clarity, the resulting pre-SMI 
and post-SMI networks are aggregated bipartite networks, defined as: 

Definition 2. An aggregated bipartite network Gi,j = (U,V,Ei,j) is a 
graph that includes all episodes and related temporal edges between 
nodes in period [ti,tj], where Ei,j = {(u,v,w)|u ∈ U,v ∈ V,∃(u,v,ti,tj) ∈ C}. 

We then extend the temporal resolution from a binary scale (i.e., pre- 
and post-SMI periods) to a multilevel scale (e.g., years to the first SMI 
diagnoses) to explore the process of network evolution in detail. For 
each episode, we calculate the number of years ti from the date that an 
episode was recorded to the date that a patient was first diagnosed with 
SMI, where pre-SMI episodes have a negative value of ti. Then, a 
sequence of temporal bipartite networks are created based on a snapshot 
of data at time period ti. Due to a small number of episodes in a single- 
year period, we use a sliding window to address the issues of data 
sparsity. Specifically, given a sequence of episodes over n periods {t1,…,

tn}, the snapshots of bipartite networks are defined as: 

Definition 3. Snapshots of bipartite networks are a sequence of graphs 
denoted by (Gt1 ,t1+Δt ,Gt2 ,t2+Δt ,…,Gti ,ti+Δt), where Gti ,ti+Δt is an aggregated 
bipartite network built based on the sequence of episodes in time win
dow [ti, ti +Δt] (where Δt is the size of each window, 1⩽i⩽n and ti +

Δt⩽tn). 

Note that, to achieve more meaningful comparisons between tem
poral networks1, we excluded edges on a patient’s first SMI diagnosis in 
network construction and encoded a patient’s first SMI diagnosis as an 
attribute of the patient node. For example, if a patient was first diag
nosed with “F31” and then diagnosed with “F20” at a later stage, “F31” 
is used as an attribute of the patient node and all “F31” diagnoses of this 
patient are excluded in the post-SMI networks, while “F20” diagnoses 
are included in the post-SMI networks. Thus, a patient who only had a 
SMI diagnosis and did not have diagnoses on other diseases were not 
included in the network models. 

Also, for ease of presentation, we denote conditions that appear in 
pre-SMI periods as pre-existing conditions, those that do not appear in pre- 
SMI periods and only appear in the post-SMI periods as new conditions, 
and those that appear in both pre- and post-SMI periods as re-occurring 
conditions. Formally, given a patient node u,N1(u) denotes the set of u’s 
direct neighbors in the pre-SMI network (i.e., pre-existing conditions) 
and N2(u) denotes the set of u’s direct neighbors in the post-SMI 
network. Then, new conditions are identified as N2(u)⧹N1(u), re- 
occurring conditions are identified as N1(u) ∩ N2(u). The ratio of new 
conditions in all conditions is computed as: 

|N2(u)⧹N1(u)|
|N2(u) ∪ N1(u)|

. (1)  

Fig. 1. Study design and data flow. (a) Key variables from CRIS and HES databases used in data collection. (b) Flow chart of cohort selection for SMI patients and 
diagnosis code selection. (c) Network representations of patients’ diagnoses in pre-SMI and post-SMI periods. An un-directed edge links a patient node (denoted by a 
square) and a disease node (denoted by a circle) if the patient was diagnosed with the disease, weighted by the frequency of such diagnoses. 

1 Raw pre-SMI and post-SMI networks have highly distinct structures by 
definition, because there is no disease node on SMI in a pre-SMI network, while 
each patient node links a SMI node in post-SMI networks, leading to SMI nodes 
to be super hubs in post-SMI networks. This inherent difference makes pre- and 
post-SMI networks incomparable. 
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2.4. Measuring clustering tendency 

We measure nodes’ distances in temporal bipartite networks to 
examine clustering tendency of nodes over time. The distance can be 
quantified by the mean length of the shortest paths between node pairs 
in a network: ℓ = 1

N(N− 1)
∑

i∕=jdij, where N is the number of nodes in a 
network and dij is the shortest path length from node i to node j. The 
definition of ℓ however is problematic if a network is not connected 
[44]. In these cases, some node pairs have no connecting path and hence 
have infinite values of d, which leads to an infinite value of ℓ. To avoid 
this issue, we measure the mean of the reciprocal of d, known as the 
average efficiency of a network [45], which is computed as: E =

1
N(N− 1)

∑
i∕=j

1
dij

, where infinite values of dij have no contribution to the sum. 
The value of E is inversely proportional to the shortest distance ℓ, i.e., a 
higher value of efficiency indicates shorter distances between node pairs 
in a network. 

2.5. Detecting temporal graphlets 

The above methods on network evolution analysis have mainly relied 
on aggregating temporal information to a sequence of snapshots. These 
approaches however cannot fully capture temporal information in the 
data, e.g., the ordering of edges if the edges occur in the same snapshot. 
To better understand the process of network changes, we examine 
graphlets in temporal bipartite networks. Graphlet analysis is originally 
used to characterize fundamental topological patterns and uncover 
structural principles in static networks [48,47,49]. In static networks, 
graphlets are defined as small, connected, induced sub-graphs of a 
complex network; each graphlet describes a particular topology of in
teractions among nodes, serving as a building block in a network 
[50,46,51]. Extending to temporal networks, graphlets are often defined 
as small, connected, induced sub-graphs formed by a sequence of tem
poral edges that occur in a time window Δt [52]. Temporal graphlets 
capture not only the topological structure of a sub-graph, but also the 
temporal ordering of edges in the sub-graph, which provides an effective 
means for uncovering fine-grained patterns of network evolution. 
Formally, temporal graphlets in bipartite networks are defined as: 

Definition 4. An n-node, m-edge, Δt-temporal graphlet in a bipartite 

network G = (U,V, EΔt) is a sequence of m temporal edges, D = (u1, v1,

t1),…, (ui, vj, tm) within a time interval Δt, where ui ∈ U, vj ∈ V, t1 < t2 <

… < tm and tm − t1⩽Δt, such that the included static sub-graph from the 
edges is connected and has n nodes. 

For illustration, Fig. 2 shows examples of graphlets with up to 4 
nodes in static and temporal bipartite networks. 

As graphlet detection is computationally expensive and its compu
tational complexity grows substantially with increases in network and 
graphlet sizes (in terms of node and edge counts) [46,47,52], here we 
focus on examining temporal graphlets with 2 temporal edges. Also, 
since most existing algorithms for detecting temporal graphlets are 
developed in the context of one-mode networks [52,49], we adopt the 
algorithmic framework for one-mode networks from [52], given its high 
efficiency and widespread use [49], and modify its counting components 
to fit the definition of temporal graphlets in bipartite networks. We use 
this adjusted algorithm to compute the counts of 2-edge, Δ-temporal 
graphlets in the patient-diagnosis networks. All diagnoses that a patient 
had in our data, i.e., including patients’ first SMI diagnoses, were 
included in the graphlet analysis to avoid information loss in diagnosis 
sequences. 

2.6. Significance tests on network properties 

To assess whether a network property, such as degree correlations, is 
significantly different from that expected by chance, we compare the 
empirical value of a network property in an original network against a 
null model [53]. The null model generates random networks by 
randomly shuffling of connections of the two parities in the original 
bipartite networks and preserving their degree sequences [54,55]. For 
example, given two edges A-X and B-Y, we get A-Y and B-Y by swapping 
the two edges. This comparison distinguishes features accounted for by 
the degree sequence from those that might reflect other factors. The 
statistical significance of a network property ϕ is assessed through a z- 
score: z =

ϕo − 〈ϕr〉
σ(ϕr)

, where ϕo is the empirical value of a network property 
measured from an original network, 〈ϕr〉 is the average value of the 
network property in random networks, and σ(ϕr) is the standard devi
ation in random networks. P-values of z-scores are calculated based on 
two-tailed tests. 

Fig. 2. Static and temporal graphlets in bipartite 
networks. (a) All 7 static graphlets with n = 2, 3,4 
nodes, where different node colors mark different 
automorphism orbits [46,47], i.e., nodes’ symmetry 
groups. For example, there is a single orbit in 
graphlet G6, as all 4 nodes are topologically iden
tical. In contrast, there are two orbits in G1, as the 
two circle nodes are topologically identical to each 
other but not to the square node. We here distin
guish nodes’ orbits merely based on their topologi
cal positions in a sub-graph, regardless of their 
types. (b) All temporal graphlets with m = 1, 2,3 
temporal edges, where an edge label marks the 
ordering of the edge and multiple appearances of 
the same edge are separated with commas. In 
practice, only a sequence of edges occurring within 
a time window Δt is considered. Different node 
colors denote different orbits. (c) All 4 temporal 
graphlets Di have the same structure as static 
graphlet G1.   

T. Wang et al.                                                                                                                                                                                                                                   



Journal of Biomedical Informatics 127 (2022) 104010

5

3. Results 

We identified a cohort of 7,728 patients with a primary diagnosis of 
schizophrenia or bipolar disorder, where 4,636 (60%) patients were first 
diagnosed with schizophrenia (“F20”) and the rest 3,092 patients were 
first diagnosed with bipolar (“F31”). The mean age when patients were 
first diagnosed with “F20” is 39.5 with a standard deviation (SD) of 16.7, 
and that diagnosed with “F31” is 39.4 (SD = 16). No significant differ
ence was found between two groups in their age distributions (P =

0.88). See supplemental information (SI) for descriptive statistics of 
patient demographics and admission episodes. Table 1 shows descrip
tive statistics of the pre- and post-SMI networks, as well as the network 
built on episodes across all periods. A general feature of these networks 
is sparse connections among nodes, i.e., a low likelihood that two nodes 
are connected by a single link, as indicated by the small values of den
sity. However, most nodes (more than 99.7%) in a network are con
nected in one giant component, meaning that almost any two nodes are 
reachable from one another through links. Next, we examine the pre- 
and post-SMI networks in detail to explore differences in patients’ di
agnoses during hospital admissions before and after SMI diagnoses. 

3.1. Disease-centric analysis 

We first analyze our results from a disease-centric preservative, 
particularly focusing on examining which diseases are often diagnosed 
before and after the first diagnosis of SMI, whether pre- and post-SMI 
diagnoses differ from each other, and which factors are associated 
with these differences. 

3.1.1. Time-dependent multimorbidity profiles 
As shown in Table 1, the average degree of patient nodes 〈kP〉 is 3.8 

and 7.39 in the pre- and post-SMI networks, i.e., a patient on average 
suffered from 3.8 and 7.39 conditions in pre- and post-SMI periods 
respectively. By further examining the degree distributions of patient 
nodes (see Fig. S3b in SI), we find that 45.4% (N = 3,235) and 63.7% 
(N = 4,534) patients have more than one disease (i.e., kp⩾2) in the pre- 
and post-SMI networks respectively. These results imply that most pa
tients with SMI experience multimorbidity, i.e., co-existence of two or 
more medical conditions [56,29]. However, a patient’s pre-SMI and 
post-SMI episodes can span across years (see Fig. S2e in SI) and people 
can have a variety of conditions at different stages of life. It may not be 
surprising that a patient node links to more than one disease node in 
these networks. To avoid over-estimates of multimorbidity due to long 
time periods covered in the networks, we conduct a sensitivity analysis 
by only including patients’ episodes within a relatively short time 
window before and after their SMI diagnoses respectively. We find that 
36.6% (N = 2,603) and 52.9% (N = 3,764) of patients have more than 
one health condition within a 5-year window before and after the date of 
the first SMI diagnosis respectively. 

Moreover, some patients may be diagnosed with other mental health 
conditions due to inaccurate diagnosis during the process of SMI diag
nosis rather than due to multimorbidity. For example, bipolar disorders 
are often mis-diagnosed and initially treated as some of their severe 
symptoms such as psychosis [57], which can lead to over-report of 

multimorbidity for patients with bipolar. To eliminate such effect, apart 
from excluding episodes outside the 5-year windows, we further exclude 
mental health diagnoses (identified by the ICD-10 codes starting with 
“F”) in building pre-SMI and post-SMI networks for another sensitivity 
check. We find that 23% (N = 1,640) and 38.6% (N = 2,744) of patients 
have more than one physical health condition within a 5-year window 
before and after the date of the first SMI diagnosis respectively (see SI for 
the detailed lists of the most common conditions and their incidence 
timing in our cohort). These results confirm that multimorbidity is 
common in patients with SMI. 

To understand which are the most common comorbidities among 
patients with SMI, we group conditions by the ICD-10 chapters and 
examine the degree distributions of diseases in each chapter (Fig. 3a). 
We find that endocrine, respiratory, digestive and circulatory diseases 
are the most common comorbidities among these patients. Moreover, 
conditions in each chapter on average have a higher degree in the post- 
SMI network than in the pre-SMI network, suggesting increased preva
lence of conditions in post-SMI periods, particularly for nervous and 
endocrine diseases. For detailed lists of prevalent conditions in pre- and 
post-SMI periods, as well as analyses of multimorbidity profiles in pa
tients with different types of SMI, See SI. 

3.1.2. Multimorbidity progression 
Another finding in Table 1 is that the average degree of patient nodes 

〈kP〉 in the post-SMI network is higher than that in the pre-SMI network. 
This indicates that patients on average suffer from a larger number of 
conditions after their SMI diagnoses. To explore whether this increase of 
number of condition after SMI diagnoses is associated with normative 
ageing, we stratify patients by their age at the first diagnosis of SMI and 
examine the average degrees in each group of patients in Fig. 3b. We find 
that patients in all groups have an increased number of conditions in 
post-SMI periods, compared to pre-SMI periods. Compared to younger 
groups, patients diagnosed with SMI at an older age tend to suffer from a 
larger number of conditions in both pre- and post-SMI periods. More
over, we control for repeated observation for chronic diseases, as these 
diseases can first appear in a patient’s pre-SMI period and then be re- 
examined or re-treated and re-appear in post-SMI diagnoses, leading 
to the artificially inflated degrees of patient nodes in the post-SMI 
network. To this end, we calculate the ratio between the number of 
conditions that for the first time appear after a SMI diagnosis (i.e., new 
conditions) and the total number of conditions that a patient has. We find 
that the mean ratio is 0.57, with 95% confidence interval (CI) of 
(0.56–0.58), suggesting that patients with SMI have more than a half of 
conditions first appearing after their SMI diagnoses. To verify the 
robustness of this result, we further examine the mean ratios of new 
conditions among groups with different first SMI-diagnoses age in 
Fig. 3c. We find that the high ratios of new conditions in post-SMI pe
riods are widely observed across age groups and most groups have a 
mean ratio of new conditions higher than 0.5. By inspecting these new 
conditions across age groups, we find that mental health conditions, e.g., 
mental disorders due to use of tobacco (“F17”), are more prevalent in 
groups who were diagnosed with SMI at a younger age, while physical 
health conditions such as hypertension (“I10”) are more prevalent in 
groups with an older SMI-diagnosis age (Fig. S6, SI). 

Table 1 
Characteristics of networks, including numbers of nodes (#nodes), numbers of patient nodes (#patients), numbers of disease nodes (#disease), numbers of edges 
(#edges), average degrees of all nodes (〈k〉), average degrees of patient nodes (〈kP〉), average degrees of disease nodes (〈kD〉), density which is the ratio of the number of 
edges to the number of possible edges in a network given by #patients× #diseases, numbers of connected components (#Comps) and ratios of nodes in the giant/ 
largest connected component (%GCR).  

Time #Nodes #Patients #Diseases #Edges 〈k〉 〈kP〉 〈kD〉 Density #Comps %GCR  

Pre-SMI 5,680 4,928 752 18,750 6.6 3.8 24.93 5.06× 10− 3  9 99.72  

Post-SMI 6,332 5,535 797 40,931 12.93 7.39 51.36 9.28× 10− 3  5 99.86  

All 7,964 7,116 848 55,321 13.89 7.77 65.24 9.17× 10− 3  2 99.97   
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As people have an older chronological age in post-SMI periods than 
in pre-SMI periods, this raises another question whether the high in
cidences of new conditions in post-SMI periods are due to a normative 
ageing process or related to other complex processes associated with 
their SMI, such as adverse effects of anti-psychotic medication [58]. To 
explore this, we examine when these new conditions appear in post-SMI 
periods. We expect that most new conditions appear in later stages of 
post-SMI periods if the incidence of a new condition is more related to 
the normative ageing process. We find that most new conditions in post- 
SMI periods on average first appear in the first 5 years after an individual 
was first diagnosed with SMI (Fig. 3d). 

3.1.3. Factors associated with multimorbidity progression 
The above results reveal that patients often have a large number of 

new conditions in post-SMI periods. Analysis on the numbers of patients’ 
episodes on managing new and re-occurring conditions further shows 
that managing new diseases is dominating in post-SMI care (Fig. S5, SI). 
We next explore which characteristics of individuals are associated with 
the number of new diseases in post-SMI periods. However, the absolute 
numbers of new diseases are not comparable across individuals with 
different observation periods in our data (Fig. S2e, SI); those who are 
observed over short periods can have less data and display a small 
number of new conditions in their post-SMI periods. For a fair com
parison, here we use a normalized metric which measures the average 
number of new diseases per year from the date of first SMI diagnosis to 
March 31, 2018 (the date of administrative censoring) for alive patients 
and to the date of death for dead patients. We first examine associations 
between individuals’ demographics and the number of new diseases per 
year in post-SMI periods. Fig. 4a shows the numbers of new diseases per 
year in post-SMI periods over the age at SMI diagnoses, in which we also 
categorize new diseases into mental and physical health conditions to 
explore differences between types of diseases. We find that most new 
diseases in post-SMI episodes are physical health conditions, and mental 
health conditions account for a small proportion across different age 
groups. 

Apart from demographics, we also examine association between in
dividuals’ medical history and the number of new conditions in post-SMI 
periods. Fig. 4b shows the number of new disease per year in post-SMI 
periods over the number of pre-existing diseases in pre-SMI periods. 
We find that patients with more historical conditions tend to have more 
new diseases in post-SMI periods. Similar to the results in Fig. 4a, most of 
these new diseases are physical health conditions across different 
groups. These results together indicate that both individuals’ de
mographics and their medical history are associated with their health 
outcomes in post-SMI periods, particularly on the number of new 
physical health conditions. 

To further examine associations between a pre-SMI diagnosis A and a 
post-SMI diagnosis B, we calculate the ratio of the observed probability 
of finding patients with both A and B, i.e., P(A,B), to that expected by 
chance, i.e., P(A)P(B). By grouping diagnoses into the ICD-10 chapters, 
we find that diagnoses in pre-SMI episodes are not strongly associated 
with a diagnosis of mental health condition in post-SMI episodes, while 
the associations between pre- and post-SMI diagnoses on two different 
types of physical health conditions are generally higher than expected 
(Fig. 4c). This aligns with the above results that the number of pre- 
existing conditions in pre-SMI episodes is less associated with the 
number of new mental health conditions in post-SMI episodes but has a 
strongly positive association with the number of new physical health 
conditions (Fig. 4b). 

3.2. Patient-centric analysis 

So far, our analysis has been proceeded primarily from a disease- 
centric perspective, where individuals’ information has been largely 
aggregated to a group level. Next, we measure connectivity patterns in 
the patient-diagnosis networks to explore how different individuals 
connect to different diseases from a more patient-centric perspective. 

3.2.1. Interactions between patients and diseases 
We first explore whether nodes tend to connect to other nodes of 

Fig. 3. (a) Average degrees of disease nodes by the 
ICD-10 categories/chapters. (b) Average degrees of 
patient nodes by age at the first SMI diagnosis, 
where dashed lines plot correlations between age at 
SIM diagnosis and 〈kP〉 by a linear regression 
model. (c) Ratios of new diseases over age at SMI 
diagnosis, where the red horizontal marks the cut
off of 0.5. (d) Distribution of new conditions by the 
average number of years from the dates of patients’ 
first SMI diagnoses to the dates of their first diag
nosis of a condition. Error bars in all plots indicate 
95% CIs.   
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similar degree, i.e., assortative mixing [59], by measuring degree cor
relations between patient and disease nodes. To this end, we plot the 
average degree of direct neighbors of a node 〈knn〉 as a function of its 
degree k in Fig. 5, for patient nodes in pre- and post-SMI network 

respectively. For comparison, we also plot the same functions obtained 
from random networks generated by a null model. In both patient and 
disease nodes, the plots for the random networks are close to horizontal 
lines, indicating that there are no correlations between a node’s degree 

Fig. 4. (a) Numbers of new conditions per 
year in post-SMI periods over age at SMI. 
(b) Numbers of new conditions per year in 
post-SMI periods over number of pre- 
existing conditions in pre-SMI periods. 
Error bars indicate 95% CIs. (c) The ratio 
of the observed probability of finding pa
tients with a pre-SMI diagnosis A and a 
post-SMI diagnosis B to that expected if 
the occurrences of A and B were inde
pendent. All diagnoses are grouped by the 
ICD-10 chapter. A ratio larger than 1 im
plies that the associations of diagnoses 
between two chapters are stronger than 
expected. See SI for detailed lists of the 
prevalent conditions in pre- and post-SMI 
episodes.   

Fig. 5. Correlations between node degree k and average degree of neighbors 〈knn〉 in the bipartite networks and in their random counterparts. Dotted lines show the 
LOESS (Locally Estimated Scatterplot Smoothing) curves. The annotation marks the Kendall’s τ coefficient between k and 〈knn〉 in the real-world networks, as well as 
its z-score and p-value compared to those measured in 1,000 random networks. 
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and the average degree of its neighbors. In contrast, the plots in the real- 
world network show negative correlations, i.e., the average degree of 
neighbors of patient nodes decreases with the nodes’ degree. These re
sults suggest disassortative mixing patterns, i.e., low-degree nodes tend 
to connect to high-degree nodes. In other words, patients with a smaller 
number of conditions tend to suffer from prevalent diseases. Similar 
patterns are observed for disease nodes (SI). 

3.2.2. Diverse comorbidities in patients affected by prevalent conditions 
We next extend the correlation analysis from a node’s direct neigh

bors to its second-order neighbors N(N(v)), i.e., nodes with a distance of 
2 from a node v but excluding v, so as to explore whether a condition has 
many co-occurrence conditions (i.e., comorbidities) because the condi
tion affects many patients or because it particularly affects patients with 
many conditions (Fig. 6). If the former explanation applies, we expect a 
high correlation between the number of a disease node v’s second-order 
neighbors |N(N(v))| and v’s degree k(v); otherwise, we expect a high 
correlation between |N(N(v))| and the average degree of v’s direct 
neighbors 〈knn(v)〉. Fig. 7a plots the average number of second-order 
neighbors of a disease node 〈|N(N(k))|〉 as a function of its degree k. 
We find that 〈|N(N(k))|〉 has a strongly positive correlation with k in the 
post-SMI network (τ = 0.85). Significance tests based on null model 
show that these correlations are significantly different from random 
references (p < 0.001). In contrast, as shown in Fig. 7b, the correlation 
between 〈|N(N(k))|〉 and 〈knn〉 is relatively low (τ = 0.19) and not 
significantly different from random one (p = 0.556). These results 
suggest that a large number of co-occurrence conditions that a condition 
has is likely associated with a large number of patients affected by the 
condition, i.e., a high prevalence of the condition. This also indicates 
that individual patients with the same disease tend to have heteroge
neous disease processes. Similar results are found in the pre-SMI 
network (SI). 

3.2.3. Patients with similar attributes connect to the same diseases 
In a similar way, we examine correlations of characteristics between 

a patient node and its second-order neighbors to explore whether pa
tients with similar characteristics tend to have the same conditions. 
Fig. 8 plots the average age at SMI diagnosis of a patient node’s second- 
order neighbors as a function of the node’s SMI-diagnosis age. The 
average age at SMI diagnosis of second-order neighbors of a patient node 
grows almost linearly with the age at SMI diagnosis of the node in both 
pre-SMI and post-SMI periods. These positive correlations are signifi
cantly higher than expected by chance (p < 0.001), suggesting that pa
tients diagnosed with SMI at a similar age tend to suffer from the same 
conditions. Moreover, by measuring modularity [60] in the projected 
one-mode networks, we find that patients with the same gender and 
ethnicity tend to suffer from the same conditions as well (see Table S6, 
SI). These results suggest that patient nodes with similar attributes tend 

to cluster by connecting to the same disease nodes. 

3.3. Analysis of network evolution 

The above results show that patient and disease nodes with similar 
attributes tend to cluster in the bipartite networks. However, it is un
clear when nodes start to cluster and which process (e.g., disease pro
gression or other mechanisms) drive the clustering of nodes. Next, we 
explore these in detail by exploiting the high temporal resolution in 
diagnosis data. 

3.3.1. Trend of distances 
We first examine nodes’ clustering trends by measuring their dis

tances in the bipartite networks over time. We build temporal bipartite 
networks based on patients’ episodes within sliding time windows and 
measure nodes’ distances of these networks by the average efficiency 
[45]. Fig. 9a shows the average efficiencies of nodes in the temporal 
bipartite networks, in which a sliding window of 5-year length is used. 
As shown by the red line in Fig. 9a, the average efficiencies of nodes 
increase over time, although the increase is less substantial after the first 
diagnoses of SMI. This indicates that overall the distances of nodes are 
decreasing and nodes are integrated over time. 

As patients may have more hospital visits at an older age and existing 
conditions that often require treatment and monitoring tend to be 
recorded in recent episodes, one might wonder whether a larger number 
of diagnoses at a later stage account for the decreased distances. One 
approach to answer this is to compare the empirical trend with the ef
ficiencies in random networks that have the same degrees as the original 
networks, i.e., control for the number of diagnoses that a patient had at 
each stage. The blue line in Fig. 9a shows the average efficiencies in 
random networks, which serve as references. The ratio between the 
empirical efficiencies and the reference values is increasing, which 
suggests that more complex processes, rather than more diagnoses 
recorded at a later stage alone, are responsible for the decreased dis
tances in the patient-diagnosis networks. 

3.3.2. Processes driving evolution 
One might wonder whether the complex processes leading to the 

decreased distances are (a) disease progression [30,28,31,11], i.e., a 
patient with some existing conditions tends to suffer from another 
condition, or (b) selection effects [61], i.e., some patients tend to be 
diagnosed with the same conditions due to common characteristics such 
as demographic and genetic attributes. To approach this, we examine 
the efficiencies of patient nodes and disease nodes respectively. We 
expect that the efficiencies of disease nodes are much higher than ex
pected by chance if disease progression explains the decreased distances, 
while we expect that the efficiencies of patient nodes are higher if se
lection effects matter (see Fig. 10). 

We find that the empirical values of efficiencies among disease nodes 
are close to those expected in random networks (Fig. 9b). In contrast, the 
average efficiencies of patient nodes in the real-world networks are 
rising over time and increasingly higher than random ones (Fig. 9c). 
These results indicate that patients in our cohort tend to be diagnosed 
with the same conditions, showing a stronger contribution than disease 
progression to the shortened distances of nodes in the patient-diagnosis 
networks. This aligns with our finding that patients with similar attri
butes tend to suffer from the same conditions in Fig. 8. Similar results 
were observed when using different lengths of sliding windows, e.g., 10 
years. Moreover, to control for the fact that some conditions may have 
long-term impacts on people’s wellbeing and lead to other comorbidities 
after years, beyond the time windows used above, we repeated the 
above analyses based on cumulative temporal networks, i.e., a temporal 
network at time ti aggregates all episodes that were recorded at t <= ti. 
Again, the results were not altered. 

Fig. 6. Illustration of correlations between node degree and the number of 
second-order neighbors, where a circle denotes a disease and a square denotes a 
patient. Disease node v has 3 second-order neighbors in both (a) and (b), but 
through different processes: (a) v affects many patients who have a few other 
conditions, and (b) v affects a single patient who has many other conditions. 
Different processes can shape different intervention strategies: a group-based 
intervention is needed if a condition affects a large number of patients, while 
an individual based intervention should be given if a condition particularly 
affects certain patients with a specific medical history. 
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3.3.3. Dynamic graphlets 
To further capture the temporal ordering of edges and better un

derstand the clustering processes, we examine graphlets in temporal 
bipartite networks. We expect that graphlet D2 is more frequent than D3 
if the clustering in the patient-diagnosis network is more driven by 
disease progress, while D3 is more frequent if the clustering is driven by 
selection effects (Fig. 2b). Fig. 11 shows the fractions of all 2-edge 
temporal graphlets in a 5-year window. We find that D3 is the most 
dominating graphlet in all episodes, with 337 M occurrences accounting 
for 95.3% of all 2-edge temporal graphlets, much more than D1 and D2. 
As all patients in our cohort had a SMI diagnosis, it may not be surprising 
that D3 is common in the temporal graphlets. To eliminate the effect of 
data selection, we also examine the temporal graphlets in pre-SMI epi
sodes which do not contain a SMI diagnosis. We find that D3 accounts for 

Fig. 7. (a) Correlations between node 
degree k and the average number of 
second-order neighbors 〈|N(N(k))|〉 in 
the post-SMI network. (b) Correlations 
between the average degree of neigh
bors 〈knn(k)〉 and average number of 
second-order neighbors 〈|N(N(k))|〉 in 
the post-SMI network. Dotted lines 
show LOESS curves. The annotation 
shows the Kendall’s τ coefficient be
tween two variables in the real-world 
networks, as well as its z-score and p- 
value compared to those in 1,000 
random networks.   

Fig. 8. Correlations of age at SIM with peers’ age at SMI in the bipartite networks and in their random counterparts. Dotted lines show LOESS curves. The annotation 
shows the Kendall’s τ coefficient between two variables in the real-world networks, as well as its z-score and p-value compared to those in 1,000 random networks. 

Fig. 9. Average efficiencies of nodes 
in bipartite networks and in their 
random counterparts over time, where 
a sliding window of 5 years is used 
here. Error bars show 95% CIs of the 
average efficiencies in random net
works and the x-axes show the mean 
value of two boundaries of a sliding 
window, i.e., ti + Δt/2. Each inset 
shows the ratios between the empirical 
and random average efficiencies over 
time, and the red horizontal line marks 
the point where the empirical average 
efficiency is equal to random one. For 

each temporal bipartite network, 1,000 random networks are generated by randomly shuffling connections between patient and disease nodes while preserving their 
degree sequences.   

Fig. 10. Clustering of nodes in bipartite networks, where a square denotes a 
patient and a circle denotes a disease. Adding a link between u and v results in 
the decreased distances of nodes in both (a) and (b), but through two distinct 
processes: a patient who has existing conditions tends to suffer from a new 
condition in (a), while a new patient tends to suffer from the same condition as 
other patients in (b). Although the two different clustering processes decrease 
the same amount of overall distances of all nodes in the networks, the distance 
of disease nodes (i.e., circles) decreases more substantially in (a) and the dis
tance of patient nodes (i.e., squares) decreases more substantially in (b). 
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the majority of temporal graphlets (86.4%) in pre-SMI episodes as well, 
although the fractions of D1 and D2 are relatively higher than those in all 
episodes and post-SMI episodes (Fig. 11). Robustness checks with 
different lengths of a time window (e.g., 1 year) produced similar re
sults. These results confirm our previous results in the distance analysis, 
i.e., the clustering of patients and diseases is largely driven by the fact 
that patients with similar attributes tend to be diagnosed with the same 
conditions. 

4. Discussion 

In this paper, we have systematically examined multimorbidity 
patterns among patients with SMI (schizophrenia and bipolar disorder) 
based on a large set of linked patient data that comprises comprehensive 
SMI diagnoses of patients in South London and longitudinal data on their 
admissions to NHS hospitals, By representing patients’ diagnoses in 
admissions using temporal bipartite network models, we have charac
terized multimorbidity profiles of patients with SMI, measured changes 
of multimorbidity before and after their first SMI diagnoses, identified 
associations between these changes and patients’ characteristics, and 
quantified interactions between patients and diseases. Moreover, our 
analysis on the evolution of network structures over time sheds light on 
the multimorbidity processes among these patients over their illness 
duration of SMI. 

While comparisons to other studies are difficult due to heterogeneity 
in study designs, condition definitions and populations [62], our results 
align with previous cross-sectional studies on multimorbidity among 
patients with SMI [5,14,21]. We find that 63.7% of patients in our 
cohort have more than 2 different health conditions (including SMI) in 
secondary care after their first SMI diagnoses. This aligns with previous 
studies where multimorbidity was found to be prevalent among people 
with SMI in primary care [18,4]. Among comorbidities of patients with 
SMI, we find that the most common physical health conditions are 
endocrine, respiratory, digestive and circulatory diseases. This is highly 
consistent with a Danish nationwide cohort study where respiratory, 
digestive, and cardiovascular diseases were found to have the strongest 
associations with mortality among patients with schizophrenia [5], and 
multiple meta analyses on physical comorbidities across patients with 
mental disorders [16]. Also, our results show that tobacco use or 
smoking is one of the most common unhealthy lifestyle behaviors after 
patients experience SMI, particularly among younger groups. Similar 
findings have been reported in other studies [15,14,16]. Moreover, we 
find that older patients tend to suffer from a larger number of conditions, 
in line with prior evidence that the prevalence of multimorbidity 
generally increases with age [20,7,21]. 

Although recent studies have exploited longitudinal data to under
stand multimorbidity among people with SMI, these studies have largely 

focused on measuring an overall trend in the prevalence of multi
morbidity over chronological time or age rather than illness duration of 
SMI [18]. This study presents a complementary analysis that explores 
developmental trajectories of multimorbidity over the illness duration of 
SMI, which reveals several new findings. First, we find that on average 
57% of conditions affecting patients with SMI first appear after being 
diagnosed with SMI. These new conditions often appear in the first years 
after a SMI diagnosis, suggesting that the normative ageing process 
alone is not responsible for the high incidences of new conditions in 
post-SMI periods. Further research is needed to understand whether the 
relationship between SMI and new conditions is because SMI contributes 
to the development of these conditions, or because more frequent hos
pital visits for treatment or examination in post-SMI periods lead to a 
better documentation of these conditions [3,18]. Second, we find that 
patients who are diagnosed with SMI at an older age and those who have 
a larger number of pre-existing conditions in pre-SMI periods tend to 
suffer from a larger number of new conditions in post-SMI periods, 
particularly on physical health conditions. This confirms the importance 
of both demographic characteristics and medical history in under
standing the development of human diseases [30]. Finally, previous 
studies show that mental health conditions, such as depression and 
anxiety, are often associated with the occurrences of hearing impair
ment and arthritis [63,29]. In our association analysis between pre- and 
post-SMI diagnoses, we have not found a strong association between 
mental illnesses and ear or musculoskeletal conditions. However, we 
find that patients who experienced nervous conditions at an early stage 
tend to suffer from ear, musculoskeletal and mental health conditions at 
a later stage. This implies that nervous conditions may act as a con
founding factor that influences the incidences of both mental illnesses 
and ear, musculoskeletal illnesses, leading to an association among these 
illnesses. 

Unlike previous network-modeling based studies that often compress 
patient-diagnosis data in a traditional one-mode network 
[33,29,30,28,31,11], which often results in information loss in data 
representation [64,54], we here use bipartite networks to jointly model 
patients’ demographic characteristics and medical histories. These 
bipartite network models provide a natural representation of relation
ships between patients and diseases in diagnosis data and avoid infor
mation loss, which allows us to examine the interactions between 
individual patients’ attributes and disease progression paths, extending 
previous studies on network medicine from the population level to an 
individual level. Based on these models, this study has revealed for the 
first time the relational structure between patients and diseases, going 
beyond the relational structure among a single set of nodes, such as 
diseases’ co-occurrence relations in existing studies [33,29,30]. We find 
that the bipartite networks show disassortative mixing by degree, i.e., 
patients with a small number of conditions tend to connect to prevalent 

Fig. 11. Percentages of all 2-edge temporal graphlets within a time window of 5 years, in all, pre- and post-SMI episodes respectively.  
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diseases. This result can be relevant to public health, e.g., prevention 
strategies that target prevalent conditions may strongly destroy the 
connections in these bipartite networks and improve patients’ well- 
being, particularly for those affected by a small number of conditions. 
Prevention for prevalent diseases becomes even more vital, when 
considering another finding that prevalent conditions tend to have a 
wide range of co-occurrence conditions. It is well known that individuals 
with multiple conditions have complex care needs, and they are often 
the most costly and challenging patients to manage [7]. Thus, effective 
prevention or intervention programs for prevalent diseases may help to 
reduce combinations of multiple conditions in a single individual and 
improve care outcomes. We also find that patients with similar attri
butes, such as demographics, tend to experience the same conditions, 
which provides practical tips for detecting individuals at risk of these 
prevalent diseases, i.e., identifying those who have similar attributes as 
existing patients with a prevalent disease, which aligns with existing 
methodologies of diagnostic prediction models [65–67]. 

Furthermore, our analyses on the temporal evolution of patient- 
diagnosis networks reveal that patients and diseases become more 
interconnected over time, along with the illness duration of SMI. This 
clustering trend is more pronounced in post-SMI periods, as compared 
with null models. Our results also suggest that the clustering process is 
more likely to be driven by the fact that patients with similar attributes 
tend to suffer from the same conditions than disease progression. This is 
not surprising, as a rich body of research has shown that the onsets of 
both physical health conditions, e.g., cardiovascular diseases [68,66] 
and diabetes [65], and mental health conditions such as psychosis 
[67,69], are associated with a range of risk factors such as de
mographics, socioeconomic status, lifestyle behaviors (e.g., smoking and 
alcohol intake) and genetic attributes captured by family history, rather 
than disease progression alone. However, our results differ from prior 
network-based studies on disease trajectories, in which diseases pro
gression is deemed as a main factor driving the clustering of diseases 
[30,28,31,11]. One reason for this difference is that prior studies have 
largely focused on modeling relationships among diseases/symptoms at 
a population level by using one-mode network models, without 
considering the relationships between individual patients and diseases. 
In other words, these models assume homogeneity in patients and 
neglect disease heterogeneity, i.e., each patient may develop a distinct 
pathway in disease development [34,70]. Ignoring such heterogeneity 
in patients – by looking only at aggregates across a whole cohort – can 
lead to an overestimate of disease progression. For example, if a group of 
patients are often diagnosed with disease i followed by a subsequent 
diagnosis of disease j and another group of patients are diagnosed with 
disease j followed by a subsequent diagnosis of disease k, a progression 
path between i to k, i.e., i→j→k, is derived in these one-mode networks 
models. This can be problematic, as the two progression paths i→j and 
j→k are identified from two different groups respectively and may not be 
transitive among the same group of patients, i.e., i→j→k. Thus, ignoring 
heterogeneity in patients can result in misleading results on disease 
progression. In contrast, our temporal bipartite models take information 
on both patients and diseases into account, which allows us to distin
guish the clustering patterns of diseases driven by disease progression 
and those driven by other factors, with control for patient heterogeneity. 

Our work has its limitations. First, due to the restrictions of data 
linkage policies, we only have access to HES data for patients who had 
used a service at SLaM and do not have data for patients without a 
mental health condition. As a result, there is a lack of control/reference 
groups in our study, which makes it hard to explore whether and how a 
diagnosis of SMI influences patients’ diagnoses on other diseases when 
compared to the general population. Second, although our dataset 
covers 22 years of inpatient data for SMI patients within South London, 
we only included diagnoses generated in inpatient admissions. We did 
not include diagnoses in outpatient appointments, and accident and 
emergency visits in HES data, because (1) the focus of this study is to 
investigate patients’ hospitalization which involves the most costly 

healthcare services [71] and (2) inpatient data have been recorded for a 
longer time and have higher quality in data recording [72]. Also, milder 
diseases and symptoms that are often diagnosed and treated by general 
practitioners might not be included in our data. Third, since HES data 
were originally constructed for billing purposes, some diseases may be 
over-recorded or mis-recorded to meet reimbursement criteria. Also, 
while we searched both HES and CRIS data to identify an accurate date 
that a patient was first diagnosed with SMI, there may be a delay from 
the date that a patient first experienced symptoms to the date recorded 
in EHR data. Similar issues may exist for the diagnosis dates of other 
conditions. Finally, in this work, we have focused on examining an 
overview of temporal multimorbidity profiles for the whole SMI 
(focusing on schizophrenia and bipolar disorder) cohort. Future research 
is needed to examine the differences between groups affected by 
different types of SMI. However, given a high mis-diagnostic ratio be
tween some types of SMI [57], special attention is needed in identifying 
the cohort with a specific type of SMI to avoid misleading results in these 
comparison studies. 

5. Conclusion 

This paper presents an approach based on temporal bipartite 
network models to characterize hospitalization patterns and multi
morbidity profiles for patients with SMI. The proposed models provide a 
natural, flexible and unified framework to integrate and represent rich 
information in patient-diagnosis data, which allows a deeper under
standing of relationships between patient attributes and diseases, going 
beyond the associations of diseases studied by using traditional one- 
mode network models. We find that the resulting bipartite networks 
display disassortative mixing patterns, i.e., patients with a small number 
of conditions tend to connect to more prevalent diseases, and both de
mographics and medical history strongly determine the network struc
tures. Our analysis on the temporal evolution of these networks further 
reveals that patient and disease nodes become more interconnected over 
the illness duration of SMI, mainly driven by the process that patients 
with similar attributes tend to be diagnosed with the same conditions. 
Our results reveal developmental trajectories of multimorbidity over the 
illness duration of SMI, which can help healthcare professionals decide 
on treatment and prevention for patients with SMI and improve patient 
well-being. 

Our work also provides a basis to further investigate temporal tra
jectories of multimorbidity by jointly modeling multiple risk factors of 
individuals such as demographic, clinical, socioeconomic and environ
mental factors. Future research on applying network embedding 
methods which map nodes in temporal bipartite networks to vectors of 
real numbers in a multidimensional space [73,74] can offer further in
sights into the course of a disease and the relationships between dis
eases, as the resulting vector representations can be used for various 
network-based disease analysis tasks such as link prediction (i.e., 
determining the risk of a disease for an individual), detecting clusters of 
diseases, predicting an attribute of a patient/disease node and removing 
noise information (e.g., mis-diagnoses) in raw data. 
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