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Convolutional mesh autoencoders 
for the 3‑dimensional identification 
of FGFR‑related craniosynostosis
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Richard W. F. Breakey1,2, N. Owase Jeelani1,2, Allan Ponniah5, Christian Duncan6, 
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Clinical diagnosis of craniofacial anomalies requires expert knowledge. Recent studies have shown 
that artificial intelligence (AI) based facial analysis can match the diagnostic capabilities of expert 
clinicians in syndrome identification. In general, these systems use 2D images and analyse texture 
and colour. They are powerful tools for photographic analysis but are not suitable for use with 
medical imaging modalities such as ultrasound, MRI or CT, and are unable to take shape information 
into consideration when making a diagnostic prediction. 3D morphable models (3DMMs), and their 
recently proposed successors, mesh autoencoders, analyse surface topography rather than texture 
enabling analysis from photography and all common medical imaging modalities and present an 
alternative to image-based analysis. We present a craniofacial analysis framework for syndrome 
identification using Convolutional Mesh Autoencoders (CMAs). The models were trained using 3D 
photographs of the general population (LSFM and LYHM), computed tomography data (CT) scans from 
healthy infants and patients with 3 genetically distinct craniofacial syndromes (Muenke, Crouzon, 
Apert). Machine diagnosis outperformed expert clinical diagnosis with an accuracy of 99.98%, 
sensitivity of 99.95% and specificity of 100%. The diagnostic precision of this technique supports its 
potential inclusion in clinical decision support systems. Its reliance on 3D topography characterisation 
make it suitable for AI assisted diagnosis in medical imaging as well as photographic analysis in the 
clinical setting.

Early diagnosis of many genetic disorders improves outcome, but rarity and the variety of possible syndromes 
make clinical diagnosis problematic. Syndromic craniosynostosis (SC) comprises a group of conditions charac-
terised by premature fusion of the skeletal sutures, compromising normal development of the skull and brain1,2. 
Delayed diagnosis is common in phenotypically mild SC risking irreversible functional impairment, including 
visual failure, neurocognitive defects and airway problems that can be avoided by timely diagnosis and treat-
ment. The inadequacy of current screening paradigms makes syndromic craniosynostosis a prime candidate 
for computer-assisted diagnosis and referral. Muenke, Apert, and Crouzon syndrome are SC variants caused 
fibroblast growth factor receptor (FGFR) gene mutations and occur between 1:30,000 to 1:65,000 live births3. 
Phenotypic presentation is variable with some crossover in phenotype between the syndromes.

The application of computer vision and deep learning approaches has already proven effective for the iden-
tification and diagnosis of CS from 2-dimensional (2D) images4–7. Among the more prominent examples is 
DeepGestalt, a deep convolutional neural network (DCNN) trained on tens of thousands of images to identify 
facial phenotypes for genetic disorders8. While such systems demonstrate impressive results, they are unable to 
take advantage of the rich geometric information in the face and cranium that may give critical insight into the 
phenotypical variations associated with different syndromes. Advances in 3-dimensional (3D) modelling and geo-
metric deep learning have resulted in the introduction of a more shape-based approach craniofacial analysis9–12. 
Previous work has successfully applied statistical shape models in adult populations for diagnosis and surgical 
simulation in orthognathic patients13. A review by Egger et al. 2020 provides an overview on all existing models of 
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which some have been applied beyond faces, such as the surface of the human body and other parts of the body, 
like the ear and hand14. Hammond and their group have performed extensive work on 3D models, however, did 
not perform diagnostic classifications for FGFR-related syndromes, A study by Hallgrimsson et al. 2020 attempted 
automated syndrome identification using parametric and machine learning approaches to phenotype the face 
for nearly 400 syndromes15. They could distinguish syndromic cases from unaffected in 80% of their population.

The recent introduction of convolutional mesh autoencoder models (CMAs), a deep neural network approach 
to 3D model construction, offers further potential for the construction of shape-based models12,16. These models 
learn to extract meaningful shape features from the input data and can consequently be used for classification 
tasks. Such approaches have not yet been applied for automated diagnosis of craniofacial syndromes using an 
age matched population and could potentially increase the diagnostic power based on shape information only.

We report on a geometric deep learning approach to the characterisation and identification of SC. The 
framework leverages convolutional mesh autoencoders and is trained using 3D data from healthy and syndromic 
individuals, focused on the identification of three distinct types of SC, namely Apert, Crouzon, and Muenke 
syndrome. Rather than relying on image data, the proposed model leverages the rich geometric information of 
the 3-dimensional scans. We demonstrate the power of the model for syndrome characterisation and classifica-
tion, and illustrate its diagnostic sensitivity with an unusual Crouzon case.

Results
A summary of the demographics for the subjects used in this study is given in Table 1. This includes data from 
four different databases: CT data from 122 SC patients [Apert, Crouzon, and Muenke, mean age of 5.0 ± 5.1 years, 
58% male (n = 70)] and 142 healthy infants (mean age, 1.9 ± 1.2 years, 56% male), Stereophotogrammetric data 
from 196 healthy subjects from the LSFM dataset17, and 139 healthy subjects from the LYHM database11. As the 
volunteers in both datasets were typically above the age of four while many cases in the syndromic dataset were 
quite young, a dataset of CT scans from healthy children was also used. For full details, see “Methods”.

Intrinsic model evaluation.  Using the available databases, three distinct classes of model were constructed 
to assess the role of facial and cranial shape in the diagnosis of SC; a face-only model, a head-only model, and a 
combined head-and-face model (see “Methods”).

All models reported low reconstruction errors when assessing their reconstruction accuracy and specificity 
(see “Methods”). For the face, head and combined models, these values were 1.4 ± 1.2 mm, 3.8 ± 3.1 mm, and 
2.9 ± 2.5 mm, respectively. Reconstruction error was higher for models that included the head shape, likely due 
to the greater degree of variation between subjects in this region. Model specificity was evaluated by randomly 
synthesising 1000 samples and comparing them to their nearest real neighbour10. Values of 2.7 mm, 4.3 mm, 
and 3.9 mm for the face-only, head-only, and combined models respectively indicate that the samples generated 
are realistic.

Manifold visualisation.  To assess the diagnostic capacity of the model, t-distributed stochastic neighbour 
embedding (t-SNE) was applied to the high dimensional latent vectors of the patients and volunteers. (Fig. 1) 
When samples were labelled by syndromic class, clear clusters emerge for the face-only healthy and syndromic 
groups (Apert, Crouzon, and Muenke). The two clusters that are observed for the healthy individuals are due to 
age, with samples from the paediatric and LSFM datasets clustering separately. Within the syndromic cluster, 
we observe further sub-clusters for the included syndromes. The clusters formed for the head-only embeddings 
are not as distinct as those observed for the head-only cases, however groups for Apert, Crouzon, Muenke, and 

Table 1.   Overview of the face and cranium dataset of the included Syndromic Craniosynostosis and normal 
samples. All syndromic and infant samples were acquired via CT-scan. The LSFM and LYHM databases were 
obtained using 3dMDphotometric stereo capture device set-ups10,11.

Type of SC Number of subjects Average age, years Age range at time of scan Sex (M:F)

Face

LSFM 196 10.5 ± 4.0 4 years–17 years 98:98 (50%:50%)

Paediatric 142 1.9 ± 1.2 1 day–47 months 79:63 (56%:44%)

Apert 47 6.1 ± 6.2 48 days–20 years 28:19 (60%:40%)

Crouzon 61 5.3 ± 4.4 25 days–17 years 35:25 (58%:42%)

Muenke 14 1.6 ± 2.1 1 day–8 years 7:7 (50%:50%)

Total 460 1 day–20 years 247:213 (54%:46%)

Cranium

LYHM 139 10.9 ± 3.8 4 years–18 years 76:63 (55%:45%)

Paediatric 111 1.8 ± 1.1 1 day–47 months 59:52 (53%:47%)

Apert 39 6.5 ± 6.3 48 days–20 years 22:17 (56%:44%)

Crouzon 53 5.4 ± 4.4 5 months–17 years 30:23 (57%:43%)

Muenke 11 1.7 ± 2.3 1 day–8 years 6:5 (55%:45%)

Total 353 1 day–20 years 193:160 (55%:45%)
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healthy individuals do emerge. When considering the model constructed using the combined head-and-face 
template, we again see clear clusters forming for the different subgroups in the dataset.

In all cases, even though the syndromic samples tend to group more tightly together, it is noted that the 
syndromes themselves seem relatively disentangled. The proximity of the Crouzon cluster to the normal cases 
in each of the embeddings indicates that this phenotype has a milder manifestation than either Apert or Muenke 
syndrome. For both the head-only and combined head-and-face embeddings, we note that a number of Muenke 
and Crouzon samples cluster closer to the group of healthy cases.

Syndrome classification.  Classification was performed with all syndromic and non-syndromic scans. A 
split of 80–20% for training and testing data was assessed over 1000 iterations. The mean sensitivity, specificity, 
and accuracy over all iterations for each of the assessed regions in the binary classification experiment, and the 
confusion matrices for both binary and multi-class classification, are shown in Table 2 and Fig. 2, respectively.

Binary classification to identify whether an individual belonged to either the syndromic or non-syndromic 
groups showed accuracies of greater than 99% in all cases. The high sensitivity of the models indicates that very 
few syndromic cases were misidentified as normal volunteers (one, sixteen, and two cases per thousand for the 
face-only, head-only, and combined models respectively). The inverse is also true; as indicated by the high model 
specificity values, few healthy volunteers were seldom, if ever, misidentified as having a craniofacial syndrome.

The multi-class classification model endeavoured to predict whether a patient belonged to either the non-
syndromic, Apert, Crouzon, or Muenke categories. Accuracies of 98.3%, 97.9%, and 98.2% were observed for 
the face-only, head-only, and combined regions, respectively. When considering the face-only, Muenke patients 
were the most likely to be mis-diagnosed by our model. As there are the fewest instances of this syndrome in 
the database, such results are to be expected, and increasing the quantity of Muenke samples would likely lead 
to increased accuracy for these patients. When the head shape was considered for classification, Crouzon and 
Apert patients were most likely to be misidentified as each other. As with the binary classification, the poorest 
performance was seen for the head-only model. These results would indicate that the facial region contains 
valuable shape information for the correct diagnosis of SC.

Our method has proven as least as sensitive as expert diagnosis in a multidisciplinary clinic and in one case 
more sensitive. A 2-year-old sibling of a patient with Crouzon syndrome, judged clinically to be unaffected, 
proved to have Crouzon syndrome on genetic testing. Subsequent three images analysed by our technique dem-
onstrated the ability of the model to diagnose clinically undetectable variations from the norm. (Fig. 3) A CT-scan 
of the child was processed following the pipeline described in the “Methods” section and shape vectors for the 
child were acquired. All shape vectors were then embedded into a 2D space using t-SNE. When considering the 
face-only, the atypical instance was embedded at the intersection of the healthy individuals and the Crouzon 
cases, as shown in Fig. 4a. When the head only was considered, the atypical instance clustered among the Crouzon 
cases. The same was observed when head and face were jointly considered. Classification experiments were also 
performed to determine how the atypical case was perceived by an SVM classifier. In the case of multi-class clas-
sification, the child was identified as a Crouzon case by all three models. In the binary classification experiments, 
the child was correctly classified by both the face-only and combined head-and-face models but was incorrectly 
labelled as a non-syndromic individual by the head-only binary classification model. This supports our earlier 
observation that facial shape is more characteristic for the included craniofacial syndromes than head shape.

Figure 1.   t-SNE embeddings of face-only (a), head-only (b), and combined head-and-face (c) models from 
left to right respectively. In all cases, distinct clusters emerge for healthy and syndromic samples. The clearest 
disambiguation between samples is observed for the face-only model.

Table 2.   Classification results for the binary classification experiments.

Model Sensitivity (%) Specificity (%) Accuracy (%)

Face only 99.95 100.00 99.98

Head only 98.36 99.41 99.09

Head and face 99.82 100.00 99.95
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Figure 2.   Confusion matrices for the face-only, head-only, and combined head-and-face models in order from 
left to right. Top row: binary classification. Bottom row: multi-class classification.

Figure 3.   t-SNE embeddings for all samples, including the atypical Crouzon case, for the face-only (a), head-
only (b), and combined head-and-face (c) models.

Figure 4.   Mesh templates. (a) Face only template, (b) Head and Face template, (c) Head only template.
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Discussion
AI assisted diagnosis is set to play and increasing role in healthcare particularly in relation to rare or difficult to 
diagnose conditions. In this work, we leverage state-of-the-art geometric deep learning approaches to present a 
framework for the detection and classification of a subset of syndromic craniosynostoses. Requiring only a 3D 
input allows potentially deceptive texture information to be omitted, allowing the architecture to focus on the 
extraction of characteristic shape-based features to return an accurate diagnosis.

Our autoencoder model demonstrates high sensitivity and specificity. The model can be applied for both 
binary classification (syndromic vs healthy) and multi-class classification (Apert, Crouzon, Muenke, and healthy). 
The high degree of separation of the different classes in the shape space of the model, as demonstrated by the 
t-SNE embeddings, intuitively supports these results. The high sensitivity and specificity of the model make it 
suitable as a diagnostic aid in primary and secondary care settings ensuring reliable diagnosis with few false 
positive results. A possible confounding factor for these results is the mix of 3D image acquisition modali-
ties, though some studies have suggested that there is strong agreement between different shape acquisition 
systems18. All paediatric and syndromic scans were captured using CT imaging, however the over-4 normative 
data was acquired using surface scanning modalities. That said, a strong separation between the different classes 
is observed for the under-4 data subset, and multi-class and binary classification accuracies for this subset are 
comparable to that of the full dataset (Supplementary Materials). This indicates that it is not just the acquisition 
modality that is driving the classification, but that the model is using shape-based features during prediction. 
Furthermore, the scans were registered to a common template and analysis was conducted on the registered 
samples and not on the raw data.

A limitation of this study is the small number of phenotypes that could be included in the analysis. 3D data 
are less abundant than 2D images and require more processing to be readied for computational analysis than 
their 2D counterparts. For these reasons, current 3D dataset sizes are constrained.

Utilising 3D topography rather than the surface texture analysis central to most other facial analysis tech-
niques lends itself to integration with many forms of diagnostic imaging technologies, such as MRI, ultrasound 
scans, and CT. Our technique facilitates auto- segmentation of surfaces as well as syndrome identification and 
could therefore be used as a machine learning diagnostic tool to aid radiological diagnosis. Integration with 
ultrasound imaging is of particular interest, as this presents an opportunity for the foetal detection of genetic 
disorders19. The rising availability of 3D scanning applications and cameras on mobile devices presents further 
possibilities to introduce such a framework in primary and secondary care. In a field where timely diagnosis 
is necessary for appropriate management, the use of such technologies to detect SC and other conditions will 
streamline assessment at an earlier stage could be pivotal to improving long-term health outcomes.

While several machine learning approaches for the identification of craniofacial syndromes have been pre-
sented 11, to the best of our knowledge, this is the first time the problem of syndrome classification has been 
approached from a shape-based perspective.

Methods
Institutional review board statement.  Patient data for this study were retrospectively retrieved from 
electronic medical records after receiving approval from the Institutional Review Board: Great Ormond Street 
Hospital (R&D no. 14DS25). Informed consent was obtained from all participants, or if participants are under 
18, from a parent and/or legal guardian. All methods were carried out in accordance with relevant guidelines 
and regulations.

Data sources.  A full summary of the demographics for the databases used is given in Table 1.
All SC patients diagnosed with Apert, Crouzon, or Muenke syndrome at the Craniofacial Unit of Great 

Ormond Street Hospital for Children, London, UK were reviewed retrospectively for preoperative 3D imaging. 
Computed Tomography (CT) head scans were selected as the most suitable image modality for the assessment of 
the craniofacial anatomy. CT-scans with insufficient quality for 3D reconstruction due to low number of slices or 
(movement) artefacts were excluded. Baseline characteristics were collected from corresponding medical charts. 
We refer to this database as “the syndromic dataset”.

At Necker Children’s Hospital, (Necker-Enfants Malades Hospital), Paris, France, CT-scans of patients between 
the age of 0–4 years without a history of craniofacial anomalies were assessed. Patients indicated for a CT-scan 
between 2011 and 2018 due to headaches, trauma or epilepsy were reviewed for inclusion. The scans were evalu-
ated by two independent reviewers: (1) a paediatric radiologist and (2) a clinical research fellow in craniofacial 
surgery, to exclude any scans with abnormalities such as fractures, brain tumours, brain damage or craniofacial 
anomalies. Henceforth, this database of normal craniofacial images will be referred to as ‘the paediatric dataset’. 
For the paediatric and syndromic datasets, several samples used for the face models were omitted when con-
structing the head models. Scans with incomplete cranium information or those with previous calvarial surgery, 
such as posterior vault remodelling, were excluded.

The original data consisting of 10,000 faces of the Large Scale Face Model (LSFM) was used for age-matched 
diagnostics for cases between the ages of 4 and 17. Of the subjects who met the desired age criteria, 196 samples 
were randomly selected to provide this age matched reference (7 male, 7 female for each age).

The Liverpool-York head model (LYHM) was constructed using the craniofacial scans from approximately 
1200 individuals aged between 2 and 90 from the Headspace database11. The scans from those aged between of 4 
and 17 were used to provide an age-matched reference for full head scans from the Syndromic Craniosynostosis 
dataset. The database included 139 scans that met the required age criteria. The mean age was 10.9 ± 4.4 years, 
and 55% were male.
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Image pre‑processing.  CT‑scan pre‑processing.  The DICOM-files of the collected datasets, i.e. the syn-
dromic and paediatric datasets were converted to 3D soft tissue meshes by applying standardised skin setting 
using Horos, an open-source medical viewer, and exported at stereolithography (STL) files. The STL files were 
imported in MeshMixer, an open-source software, to undergo a cleaning process where redundant objects, such 
as draping and gel pads, back of the CT-scanner, pacifiers, and lines and tubes, were removed. The meshes 
were saved as an Object (OBJ) files. A sparse set of 68 facial landmarks were manually added to the meshes. To 
encourage good correspondence around the ears, an additional 55 landmarks per ear were also added to the 
meshes, following the landmark template outlined in Ref.20. Using the facial landmarks, the raw meshes were 
subjected to Procrustes analysis, allowing them to be rigidly aligned with the template meshes prior to obtaining 
dense correspondence.

The construction of a 3D mesh autoencoder model requires that all meshes are re-parametrised to have a 
consistent topological structure, where each mesh has the same number of vertices connected in consistent 
triangulation, with similar vertices having the same semantic meaning. Meshes meeting this criterion are said 
to be in dense correspondence. In this study approach, a non-rigid iterative closest point registration (non-rigid 
ICP) was used to achieve dense correspondence21. This approach allows for the use of landmark points to guide 
the correspondence process, and the use of data weights to restrict how certain vertices can move during the 
registration. As this method requires an initial template mesh with the desired final topology, the cropped facial 
template from Ref.17 was used for construction of the facial models, while the template from Ref.22 was used 
for the craniofacial models. (Fig. 4) The head-only template was created by removing the facial region of the 
combined head-and-face template.

Dense correspondence for the Syndromic Craniosynostosis dataset.  The faces and heads of those in the infant and 
syndromic craniosynostosis datasets differ greatly in shape both from each other, and from the samples used for 
the construction of previous (cranio)facial 3DMMs. For this reason, the use of landmark guided NICP was not 
always sufficient to achieve good quality correspondences. As such, Gaussian Processes were applied to the face 
template mesh to increase deformation flexibility and improve the quality of the correspondences obtained for 
the syndromic cases.

3D mesh autoencoder construction.  Once dense correspondence had been achieved for all meshes, the 
3D models were created using mesh autoencoders. Three classes of model were created: face-only, head-only, 
and combined head and face models (Fig. 4). For each of these classes, a model was trained using all samples 
up to and including the age of three, all samples above the age of three, and a final model constructed from all 
available data.

The autoencoder architecture applied here is similar to that described in Ref.12. Four convolutional and 
down-sampling/up-sampling layers were used for the encoder and decoder for construction of the head-only 
and combined head-and-face models. Five such layers were used for the face-only model as the template mesh 
for this model is far denser (28,431 vertices for the face-only model, compared to 7,505 vertices in the head-only 
model, and 17,039 vertices in the combined model). Encoder convolutional filter sizes of [16, 16, 32, 32, 32] 
were used for the face-only model, while encoder filter sizes of [16, 16, 32, 32] were used for the head-only and 
combined models. In both cases, decoder filter sizes were the mirror of the encoder. Each convolutional layer 
in the encoder was followed by a mesh downsampling layer by a factor of 4—in the decoder, this was replaced 
with a layer to upsample the mesh by a factor of 4. An additional convolutional layer with an output dimension 
of 3 is added to the decoder to allow for the reconstruction of the 3D shape coordinates. An ELU activation 
function was applied after each convolutional layer. Spiral convolutional with a fixed length of nine were applied 
in all layers23, and a latent vector size of 128 was used. A latent vector size of 128 was chosen as it outperformed 
sizes 16, 32 and 64 in our prior experiments. Model weights were initialised using Xavier initialistion. Adam 
optimisation with an initial learning rate of 1 × 10–3, and a learning rate decay of 0.99 was used. Mesh vertices 
were used as the autoencoder input and an L1 reconstruction loss was applied to the output. All models were 
trained for 300 epochs using a batch size of 16.

Models were constructed for the face-only, head-only, and combined head and face regions to gain an insight 
into how characteristic these regions are of the various craniofacial syndromes. All paediatric healthy cases 
and syndromic patients with incomplete or poor-quality head CT-scans were omitted from the head-only and 
combined head and face models. Consequently, these models were constructed using fewer samples. Due to 
the wide age range of the individuals in the dataset (1 day to 20 years), two additional models were created for 
each of the regions of interest. The first included all patients and volunteers who were up to and including three 
years of age. The second consisted of those above the age of three. Nine models were created in total. All results 
pertaining the age-based models can be found in the supplementary materials.

Error quantification.  To assess reconstruction accuracy, the Euclidean distance, d, between each sample 
in the real dataset and the corresponding model reconstruction was calculated on a per-vertex basis. For two 
meshes, A and B, with n vertices, the mean error over all vertices is defined as:

where x, y, and z correspond to the cartesian coordinates of the mesh vertices. The mean error over all samples 
was reported.

d =

∑n
i=1

√

(

xi,A − xi,B
)2

+
(

yi,A − yi,B
)2

+
(

zi,A − zi,B
)2

n
,



7

Vol.:(0123456789)

Scientific Reports |         (2022) 12:2230  | https://doi.org/10.1038/s41598-021-02411-y

www.nature.com/scientificreports/

Model specificity.  Specificity is a metric that is commonly used evaluate the validity of novel instances cre-
ate by generative models. To assess this, 1000 samples were randomly synthesised for each of the models and the 
Euclidean distance to all ground truth samples was calculated. The specificity error was reported as the mean 
Euclidean distance over all vertices between a synthesised face and the closest ground truth neighbour.

Manifold visualisation.  t-Distributed Stochastic Neighbour Embedding (t-SNE) is a dimensionality reduc-
tion technique that allows the high dimensional shape vectors to be embedded in a lower dimensional space and 
can reveal hidden structures of the data24. To assess the diagnostic capacity of the models, t-SNE was applied to 
the high dimension latent vector encodings for the patients and healthy volunteers, allowing the global manifold 
of these vectors to be embedded in a 2-dimensional space for visualisation. Samples were then labelled according 
to their syndromic class (Normal, Apert, Crouzon, or Muenke) with the aim of uncovering distinct groupings, or 
clusters. All t-SNE embeddings were created using a perplexity of 30 and run for 1000 iterations.

Classification.  Autoencoders are often utilised for their ability to compress data into a much more compact 
format. This manifests as the latent vectors of the model. These latent vectors provide a natural means by which 
we can attempt to classify the data and determine its applicability as a diagnostic tool.

Classification was performed using a Support Vector Machine (SVM) with linear kernel and balanced class 
weighting. A stratified data split with an 80%:20% train:test proportion was used. The scikit-learn SVM imple-
mentation with default gamma and regularization parameters (C = 1.0) was employed. The mean accuracy, 
specificity, and sensitivity were calculated following a Monte-Carlo cross-validation system where the training 
and test sets were randomly selected 10,000 times.

Received: 29 March 2021; Accepted: 9 November 2021

References
	 1.	 Slater, B. J. et al. Cranial sutures: A brief review. Plast. Reconstr. Surg. 121, 170e–178e (2008).
	 2.	 Stricker, S. & Mundlos, S. FGF and ROR2 receptor tyrosine kinase signaling in human skeletal development. Curr. Top. Dev. Biol. 

97, 179–206 (2011).
	 3.	 Van De Lande, L. S., Greig, A. V. & Dunaway, D. J. Craniosynostosis. In Plastic Surgery-Principles and Practice (pp. 267–282). 

(Elsevier, 2022).
	 4.	 Basel-Vanagaite, L. et al. Recognition of the Cornelia de Lange syndrome phenotype with facial dysmorphology novel analysis. 

Clin. Genet. 89, 557–563 (2016).
	 5.	 Cerrolaza, J. J., et al. Identification of dysmorphic syndromes using landmark-specific local texture descriptors. In 2016 IEEE 13th 

International Symposium on Biomedical Imaging (ISBI) 1080–1083 (IEEE, 2016).
	 6.	 Shukla, P., Gupta, T., Saini, A., Singh, P. & Balasubramanian, R. A deep learning frame-work for recognizing developmental dis-

orders. In 2017 IEEE Winter Conference on Applications of Computer Vision (WACV) 705–714 (IEEE, 2017).
	 7.	 Valentine, M. et al. Computer-aided recognition of facial attributes for fetal alcohol spectrum disorders. Pediatrics 140, e20162028 

(2017).
	 8.	 Gurovich, Y. et al. Identifying facial phenotypes of genetic disorders using deep learning. Nat. Med. 25, 60–64 (2019).
	 9.	 Blanz, V. & Vetter, T. A morphable model for the synthesis of 3D faces. In Proceedings of the 26th Annual Conference on Computer 

Graphics and Interactive Techniques 187–194 (1999).
	10.	 Booth, J., Roussos, A., Zafeiriou, S., Ponniah, A. & Dunaway, D. A 3d morphable model learnt from 10,000 faces. In Proceedings 

of the IEEE Conference on Computer Vision and Pattern Recognition 5543–5552 (2016).
	11.	 Dai, H., Pears, N., Smith, W. A. & Duncan, C. A 3d morphable model of craniofacial shape and texture variation. In Proceedings 

of the IEEE International Conference on Computer Vision 3085–3093 (2017).
	12.	 Ranjan, A., Bolkart, T., Sanyal, S. & Black, M. J. Generating 3D faces using convolutional mesh autoencoders. In Proceedings of the 

European Conference on Computer Vision (ECCV) 704–720 (2018).
	13.	 Knoops, P. G. et al. A machine learning framework for automated diagnosis and computer-assisted planning in plastic and recon-

structive surgery. Sci. Rep. 9, 1–12 (2019).
	14.	 Egger, B. et al. 3d morphable face models—Past, present, and future. ACM Trans. Graph. TOG 39, 1–38 (2020).
	15.	 Hallgrímsson, B. et al. Automated syndrome diagnosis by three-dimensional facial imaging. Genet. Med. 22, 1682–1693 (2020).
	16.	 Bouritsas, G., Bokhnyak, S., Ploumpis, S., Bronstein, M. & Zafeiriou, S. Neural 3d morphable models: Spiral convolutional net-

works for 3d shape representation learning and generation. In Proceedings of the IEEE International Conference on Computer Vision 
7213–7222 (2019).

	17.	 Booth, J., Roussos, A., Ponniah, A., Dunaway, D. & Zafeiriou, S. Large scale 3D morphable models. Int. J. Comput. Vis. 126, 233–254 
(2018).

	18.	 Knoops, P. G. et al. Comparison of three-dimensional scanner systems for craniomaxillofacial imaging. J. Plast. Reconstr. Aesthet. 
Surg. 70, 441–449 (2017).

	19.	 Dallasta, A. et al. Quantitative analysis of fetal facial morphology using 3D ultrasound and statistical shape modeling: A feasibility 
study. Am. J. Obstet. Gynecol. 217, 76. e71-76 e78 (2017).

	20.	 Zhou, Y. & Zaferiou, S. Deformable models of ears in-the-wild for alignment and recognition. In 2017 12th IEEE International 
Conference on Automatic Face & Gesture Recognition (FG 2017) 626–633 (IEEE, 2017).

	21.	 Amberg, B., Romdhani, S. & Vetter, T. Optimal step nonrigid ICP algorithms for surface registration. In 2007 IEEE Conference on 
Computer Vision and Pattern Recognition 1–8 (IEEE, 2007).

	22.	 Ploumpis, S., Wang, H., Pears, N., Smith, W.A. & Zafeiriou, S. Combining 3d morphable models: A large scale face-and-head 
model. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 10934–10943 (2019).

	23.	 Gong, S., Chen, L., Bronstein, M. & Zafeiriou, S. Spiralnet++: A fast and highly efficient mesh convolution operator. In Proceedings 
of the IEEE International Conference on Computer Vision Workshops (2019).

	24.	 Maaten, L. & Hinton, G. Visualizing data using t-SNE. J. Mach. Learn. Res. 9, 2579–2605 (2008).



8

Vol:.(1234567890)

Scientific Reports |         (2022) 12:2230  | https://doi.org/10.1038/s41598-021-02411-y

www.nature.com/scientificreports/

Acknowledgements
This work has been funded by Great Ormond Street Hospital for Children Charity (Grant No. 12SG15), the 
Engineering and Physical Sciences Research Council (EP/N02124X/1) and the European Research Council 
(ERC-2017-StG-757923). This report incorporates independent research from the National Institute for Health 
Research Biomedical Research Centre Funding Scheme. The views expressed in this publication are those of the 
author(s) and not necessarily those of the NHS, the National Institute for Health Research or the Department 
of Health. The funders had no role in study design, collection, analysis and interpretation of the data, decision 
to publish, or preparation of the manuscript.

Author contributions
A.P., L.S.L., and D.J.D., initiated and designed the study. A.P. and E.O.S. developed the algorithms, designed data 
analysis and performed experiments, and S.Z. validated the methodology, helped design the study and helped 
with data interpretation. D.J.D., N.U.O.J. and R.K. provided the electronic medical record data, and L.S.L. and 
R.W.F.B. extracted the electronic medical record data. L.S.L., R.W.F.B., and E.O.S. pre-processed the data, L.S.L., 
E.O.S., A.P., and wrote the paper in conjunction with R.K., and D.J.D., and S.S., A.P., N.O.U.J. and S.Z. provided 
manuscript feedback.

Competing interests 
A.P. and S.Z. currently work with Huawei Technologies Co., Ltd. They were with Imperial College London 
and University College London during the experiments, respectively. The other authors declare no competing 
interests.

Additional information
Supplementary Information The online version contains supplementary material available at https://​doi.​org/​
10.​1038/​s41598-​021-​02411-y.

Correspondence and requests for materials should be addressed to L.S.L.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access   This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

© The Author(s) 2022

https://doi.org/10.1038/s41598-021-02411-y
https://doi.org/10.1038/s41598-021-02411-y
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Convolutional mesh autoencoders for the 3-dimensional identification of FGFR-related craniosynostosis
	Results
	Intrinsic model evaluation. 
	Manifold visualisation. 
	Syndrome classification. 

	Discussion
	Methods
	Institutional review board statement. 
	Data sources. 
	Image pre-processing. 
	CT-scan pre-processing. 
	Dense correspondence for the Syndromic Craniosynostosis dataset. 

	3D mesh autoencoder construction. 
	Error quantification. 
	Model specificity. 
	Manifold visualisation. 
	Classification. 

	References
	Acknowledgements


