Karlsson, Ida K;
Escott-Price, Valentina;
Gatz, Margaret;
Hardy, John;
Pedersen, Nancy L;
Shoai, Maryam;
Reynolds, Chandra A;
(2022)
Measuring heritable contributions to Alzheimer's disease: polygenic risk score analysis with twins.
Brain Communications
, 4
(1)
, Article fcab308. 10.1093/braincomms/fcab308.
Preview |
Text
Hardy_Measuring heritable contributions to Alzheimer's disease- polygenic risk score analysis with twins_VoR.pdf - Published Version Download (856kB) | Preview |
Abstract
The heritability of Alzheimer's disease estimated from twin studies is greater than the heritability derived from genome-based studies, for reasons that remain unclear. We apply both approaches to the same twin sample, considering both Alzheimer's disease polygenic risk scores and heritability from twin models, to provide insight into the role of measured genetic variants and to quantify uncaptured genetic risk. A population-based heritability and polygenic association study of Alzheimer's disease was conducted between 1986 and 2016 and is the first study to incorporate polygenic risk scores into biometrical twin models of Alzheimer's disease. The sample included 1586 twins drawn from the Swedish Twin Registry which were nested within 1137 twin pairs (449 complete pairs and 688 incomplete pairs) with clinically based diagnoses and registry follow-up (M age = 85.28, SD = 7.02; 44% male; 431 cases and 1155 controls). We report contributions of polygenic risk scores at P < 1 × 10-5, considering a full polygenic risk score (PRS), PRS without the APOE region (PRS.no.APOE) and PRS.no.APOE plus directly measured APOE alleles. Biometric twin models estimated the contribution of environmental influences and measured (PRS) and unmeasured genes to Alzheimer's disease risk. The full PRS and PRS.no.APOE contributed 10.1 and 2.4% to Alzheimer's disease risk, respectively. When APOE ɛ4 alleles were added to the model with the PRS.no.APOE, the total contribution was 11.4% to Alzheimer's disease risk, where APOE ɛ4 explained 9.3% and PRS.no.APOE dropped from 2.4 to 2.1%. The total genetic contribution to Alzheimer's disease risk, measured and unmeasured, was 71% while environmental influences unique to each twin accounted for 29% of the risk. The APOE region accounts for much of the measurable genetic contribution to Alzheimer's disease, with a smaller contribution from other measured polygenic influences. Importantly, substantial background genetic influences remain to be understood.
Type: | Article |
---|---|
Title: | Measuring heritable contributions to Alzheimer's disease: polygenic risk score analysis with twins |
Location: | England |
Open access status: | An open access version is available from UCL Discovery |
DOI: | 10.1093/braincomms/fcab308 |
Publisher version: | https://doi.org/10.1093/braincomms/fcab308 |
Language: | English |
Additional information: | © The Author(s) 2022. Published by Oxford University Press on behalf of the Guarantors of Brain. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. |
Keywords: | APOE, Alzheimer’s disease, heritability, polygenic risk scores (PRSs), twins |
UCL classification: | UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Brain Sciences UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Brain Sciences > UCL Queen Square Institute of Neurology > Neurodegenerative Diseases UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences UCL UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Brain Sciences > UCL Queen Square Institute of Neurology |
URI: | https://discovery.ucl.ac.uk/id/eprint/10144431 |
Archive Staff Only
View Item |