Published Ahead of Print on February 21, 2022 as 10.1212/WNL.000000000200240

The most widely read and highly cited peer-reviewed neurology journal The Official Journal of the American Academy of Neurology

Neurology Publish Ahead of Print DOI: 10.1212/WNL.000000000200240

COVID-19–Related Outcomes in Primary Mitochondrial Diseases: An International Study

Author(s):

Chiara Pizzamiglio, MD¹; Pedro M Machado, MD, PhD¹; Rhys H Thomas, MD, PhD²; Gráinne S Gorman, MD, PhD²; Robert McFarland, MD, PhD²; Michael G Hanna, MD, FRCP¹; Robert D S Pitceathly, MD, PhD¹ on behalf of MitoCOVID-19 Study Group

Equal Author Contributions:

Chiara Pizzamiglio and Pedro M Machado contributed equally to this work (co-first authors).

This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0 (CC BY), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Neurology® Published Ahead of Print articles have been peer reviewed and accepted for publication. This manuscript will be published in its final form after copyediting, page composition, and review of proofs. Errors that could affect the content may be corrected during these processes.

Corresponding Author: Robert D S Pitceathly r.pitceathly@ucl.ac.uk

Affiliation Information for All Authors: 1. Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery, London, UK; 2. Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK

Contributions:

Chiara Pizzamiglio: Drafting/revision of the manuscript for content, including medical writing for content; Major role in the acquisition of data; Study concept or design; Analysis or interpretation of data Pedro M Machado: Drafting/revision of the manuscript for content, including medical writing for content; Major role in the acquisition of data; Study concept or design; Analysis or interpretation of data Rhys H Thomas: Drafting/revision of the manuscript for content, including medical writing for content; Study concept or design

Gráinne S Gorman: Drafting/revision of the manuscript for content, including medical writing for content; Study concept or design

Robert McFarland: Drafting/revision of the manuscript for content, including medical writing for content; Study concept or design

Michael G Hanna: Drafting/revision of the manuscript for content, including medical writing for content; Study concept or design

Robert D S Pitceathly: Drafting/revision of the manuscript for content, including medical writing for content; Major role in the acquisition of data; Study concept or design; Analysis or interpretation of data

Number of characters in title: 83

Abstract Word count: 247

Word count of main text: 1094

References: 12

Figures: 0

Tables: 2

Supplemental: Reporting guidelines (STROBE) and Checklist.

Statistical Analysis performed by: Chiara Pizzamiglio, MD and Pedro Machado, MD, PhD. Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery, London, UK

Search Terms: [54] Cohort studies, [96] Mitochondrial disorders, [360] COVID-19, [157] Mitochondrial disorders; see Genetics/Mitochondrial disorders (S)

Study Funding: The University College London Hospitals/University College London Queen Square Institute of Neurology sequencing facility receives a proportion of funding from the Department of Health's National Institute for Health Research Biomedical Research Centers funding scheme. The clinical and diagnostic "Rare Mitochondrial Disorders Service" in London and Newcastle are funded by the UK National Health Service (NHS) Highly Specialized Commissioners. C.P. is supported by a Clore Duffield Foundation grant. PMM is supported by the National Institute for Health Research (NIHR), University College London Hospitals (UCLH) and Biomedical Research Centre (BRC). R.D.S.P. is supported by a Medical Research Council (UK) Clinician Scientist Fellowship (MR/S002065/1). R.M., M.G.H., and R.D.S.P. are funded by a Medical Research Council (UK) strategic award to establish an International Centre for Genomic Medicine in Neuromuscular Diseases (ICGNMD) (MR/S005021/1). G.S.G. and R.M. are supported by the Wellcome Centre for Mitochondrial Research (203105/Z/16/Z), the UK NIHR Biomedical Research Centre for Ageing and Age-related disease award to the Newcastle upon Tyne Foundation Hospitals NHS Trust, the Mitochondrial Disease Patient Cohort (UK) (G0800674), and The Lily Foundation.

Acknowledgment: We are extremely grateful to the Lily Foundation, International Mito Patients, United Mitochondrial Disease Foundation, and MitoCanada for disseminating information concerning the study to their stakeholders.

Disclosures: The authors report no disclosures relevant to the manuscript.

ABSTRACT

Objectives To identify factors associated with severe COVID-19, defined by hospitalization status, in patients with primary mitochondrial diseases (PMDs), thereby enabling future risk stratification and informed management decisions.

Methods We undertook a cross-sectional, international, registry-based study. Data was extracted from the "International Neuromuscular COVID-19 Database" and collected between 1st May 2020 and 31st May 2021. The database included subjects with: 1) PMD diagnosis (any age), clinically/histopathologically suspected and/or genetically confirmed; and (2) COVID-19 diagnosis classified as "confirmed", "probable", or "suspected" based on World Health Organization definitions. The primary outcome was hospitalization due to COVID-19. We collected demographic information, smoking status, coexisting comorbidities, outcome following COVID-19 infection, and PMD genotype-phenotype. Baseline status was assessed using the modified Rankin scale (mRS) and the Newcastle Mitochondrial Disease Adult Scale (NMDAS).

Results Seventy-nine subjects with PMDs from 10 countries were included (mean age 41.5±18 years): 25 (32%) were hospitalized; 48 (61%) recovered fully; 28 (35%) improved with sequelae; and three (4%) died. Statistically significant differences in hospitalization status were observed in: baseline status, including NMDAS score (p=0.003) and mRS (p=0.001); presence of respiratory dysfunction (p<0.001), neurologic involvement (p=0.003); and more than four comorbidities

(p=0.002). In multivariable analysis, respiratory dysfunction was independently associated with COVID-19 hospitalization (OR, 7.66; 95%Cl, 2 to 28; p=0.002).

Discussion Respiratory dysfunction is an independent risk factor for severe COVID-19 in PMDs, while high disease burden and coexisting comorbidities contribute towards COVID-19 related hospitalization. These findings will enable risk stratification and informed management decisions for this vulnerable population.

INTRODUCTION

Despite their variable clinical manifestations and severity, people with primary mitochondrial diseases (PMDs) were considered at high-risk for serious Coronavirus disease 2019 (COVID-19), given the potential for multisystemic involvement and metabolic decompensation during intercurrent illness.¹ Consequently, people with PMDs were grouped internationally within the COVID-19 clinically highest risk category (designated "clinically extremely vulnerable" by NHS England, United Kingdom [UK], and "higher risk of severe COVID-19 illness", by the Centers for Disease Control and Prevention, USA)² and advised to implement the shielding approach, limiting contact with the general population when SARS-CoV-2 infection rates were high.³

In this cross-sectional, international, registry-based study, we aimed to identify factors linked with severe COVID-19 in PMDs, thereby enabling future risk stratification and informed management decisions.

METHODS

The NHS England Highly Specialized Services for Rare Mitochondrial Disorders in London and Newcastle, UK, designed a PMD-specific module within the "International Neuromuscular COVID-19 Database";⁴ this was hosted by University College London (see eMethods in the Supplement), to record details concerning PMD genotype-phenotype and COVID-19 during the pandemic. Inclusion criteria were: 1) a PMD diagnosis (any age) in the opinion of the recruiting healthcare provider, clinically/histopathologically suspected and/or genetically confirmed; and (2) a COVID-19 diagnosis stratified as "confirmed", "probable", or "suspected" based on World Health Organization (WHO) definitions.⁵ Baseline status was assessed using the modified Rankin scale (mRS) and the Newcastle Mitochondrial Disease Adult Scale (NMDAS) (see eMethods in the Supplement). Key comorbidities included respiratory dysfunction, mitochondrial diabetes (a distinct monogenic form of diabetes mellitus that is specific to PMDs and has been associated to a variety of mitochondrial and nuclear

DNA mutations)^{6, 7}, hypertension or other cardiovascular diseases, obesity (Body Mass Index \geq 30), and neurological involvement. Respiratory dysfunction was defined by the presence of at least one of: 1) obstructive lung disease (chronic obstructive pulmonary disease or asthma); 2) restrictive lung disease; 3) obstructive sleep apnea; 4) use of non-invasive ventilation; 5) tracheostomy. Neurological involvement was determined by the presence of at least one of: 1) dysphagia; 2) epilepsy; 3) learning disabilities; 4) polyneuropathy; 5) skeletal muscle weakness; 6) stroke/stroke like episodes. All comorbidities included under the "neurological involvement" section were reported as diseasespecific neurological features in the mitochondrial disease module of the database. Only anonymized, non-identifiable data were collected; thus, participant consent was not required according with the UK Health Research Authority. Statistical analyses were performed using SPSS v19.0 (SPSS Inc.). P-value <0.05 was considered significant. The primary outcome of the study was hospitalization status for COVID-19. See the eMethods in the Supplement for further details concerning database design and data storage, protocol approvals, and participants.

Data Availability: Dr Pizzamiglio had full access to all the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis.

RESULTS

From 1st of May 2020 to 31st of May 2021, 79 patients (mean age 41.5 years; female 46, 58%, white ethnicity 64, 83%) across 10 countries (UK 44, 56%, see Table 1) were registered. Hospitalization status was recorded for all entries; thus, no cases were excluded. Almost one third of patients were hospitalized (25, 32%) and three died (4%, all hospitalized). Forty-eight (61%) subjects recovered fully from the infection, while 28 (35%) recovered with sequelae. COVID-19 diagnosis was WHO "confirmed" in 65 subjects (82%) and "probable", supported by CT scan or chest x-ray, in six (8%). Eight (10%) patients had a "suspected" diagnosis.⁵ COVID-19 symptoms were present in 75 (95%) patients. As previously reported in PMDs,⁸ the most common symptoms comprised: fever (52, 66%); fatigue (51, 65%); persistent cough (39, 49%); headache (33, 42%); myalgia (39%);

anosmia/hyposmia (24, 30%); and dysgeusia (23, 29%). Only three current or former smokers were identified in the cohort. Consequently, further statistical analysis in this subgroup was not possible. Neurological involvement was the most common comorbidity and was present in 58 subjects (73%), followed by mitochondrial diabetes (21, 27%), hypertension or other cardiovascular diseases (20, 25%), respiratory dysfunction (19, 24%), and obesity (8, 10%). Many patients had multiple single system and/or multisystem comorbidities. Of those with neurological problems, 36 had skeletal muscle weakness; 21 dysphagia; 16 epilepsy; 12 learning disabilities; eight polyneuropathy; and eight stroke like episodes (see eTable 1 in the Supplement). In patients with respiratory dysfunction, there were 14 subjects with restrictive lung disease, six with obstructive lung disease, six using non-invasive ventilation, three with obstructive sleep apnea, and two with a tracheostomy (see eTable 2 in the Supplement).

Univariate analysis (Table 2) showed that hospitalized patients had higher PMD burden (NMDAS score >20, 69%) or moderately severe/severe mRS (52%), compared with people that were not hospitalized (18%, p=0.003, and 17%, p=0.001, respectively). The presence of \geq 4 comorbidities was associated with hospitalization (64% versus 28%, p=0.002), in line with previous data from general adult population.⁹ Analysis of individual comorbidities showed the presence of respiratory dysfunction (56% versus 9%, p<0.001) and neurological involvement (84% versus 48%, p=0.003) were associated with COVID-19 related hospitalization, and were both present in the three deceased subjects. No significant difference in hospitalization status was detected by age, sex, ethnicity, or PMD diagnosis.

Multivariable analysis, adjusted for age group, respiratory dysfunction, neurological involvement, and the mRS, discerned respiratory dysfunction was independently associated with COVID-19 hospitalization (OR, 7.66; 95%Cl, 2 to 28; p=0.002). The results of the sensitivity multivariate is the same when only confirmed cases (n=65) are included (OR 12.2; Cl 2.77-53.77, p=0.001).

DISCUSSION

To date, this study represents the largest cohort of people with PMDs and COVID-19 ever reported. We have identified a group of patients with PMD who are extremely vulnerable to SARS-CoV-2 as a result of respiratory dysfunction. Their respiratory dysfunction is an independent risk factor for developing severe COVID-19, and coexisting comorbidities and high disease burden contribute towards the risk of COVID-19 related hospitalization; a factor now recognized in other chronic neurological disorders.¹⁰ We could not confirm the incremental impact of age for COVID-19 severity and so advice for people with PMDs should be adhered to for any age.^{11,12} Ongoing sequelae following resolution of COVID-19 were detected in 35% of our cohort. These included deterioration of pre-existing neurological symptoms (n=11), worsening of isolated fatigue (n=4), and development of new symptoms (n=13). Limitations of the study include the cross-sectional design and voluntary nature of the registry; thus, a selection bias towards severe, rather than asymptomatic and mild, COVID-19 could exist. Furthermore, the limited sample size does not allow outcomes to be correlated with specific genotypes or comorbidities.

In conclusion, the data presented here was collected during the initial stages of the COVID-19 pandemic and was not available to influence clinical decision-making during the initial wave. However, we consider that in future waves of COVID-19, or similar pandemics, this information will be crucial to clinicians worldwide managing patients with PMDs, and other conditions where there is mitochondrial dysfunction and significant respiratory muscle weakness.

APPENDIX 2: Coinvestigators

Name	Location	Role	Contribution
Enrico Bugiardini,	Department of Neuromuscular	Site	Contributing
MD, PhD	Diseases, UCL Queen Square	Investigator	participants,
	Institute of Neurology and The	_	collecting data
	National Hospital for Neurology and		
	Neurosurgery, London, UK		
William L. Macken,	Department of Neuromuscular	Site	Contributing
MD	Diseases, UCL Queen Square	Investigator	participants,
	Institute of Neurology and The		collecting data
	National Hospital for Neurology and		
	Neurosurgery, London, UK		
Stefen Brady,	Department of Neurology, John	Site	Contributing
MD	Radcliffe Hospital, Oxford, UK	Investigator	participants,
			collecting data
Patrick F. Chinnery,	Department of Clinical	Site	Contributing
MD, PhD	Neurosciences, University of	Investigator	participants,
	Cambridge, Cambridge, UK		collecting data
Matteo Ciocca,	Department of Brain Sciences,	Site	Contributing
MD	Imperial College London, London,	Investigator	participants,
	UK		collecting data
Lucía Galàn,	Department of Neurology, Hospital	Site	Contributing
MD, PhD	Clinico San Carlos IdiSSC, Madrid,	Investigator	participants,
	Spain		collecting data
Alejandro Horga,	Department of Neurology, Hospital	Site	Contributing
MD, PhD	Clinico San Carlos IdiSSC, Madrid,	Investigator	participants,
	Spain		collecting data
Rita Horvath,	Department of Clinical	Site	Contributing
MD, PhD	Neurosciences, University of	Investigator	participants,
	Cambridge, Cambridge, UK		collecting data
Mirian C.H. Janssen,	Department of Internal Medicine,	Site	Contributing
MD, PhD	Radboud University Medical Centre,	Investigator	participants,
	Nijmegen, The Netherlands		collecting data
Hallgeir Jonvik,	Department of Clinical and	Site	Technical
MSc	Movement Neurosciences, UCL	Investigator	assistance
	Queen Square Institute of		
	Neurology and The National		
	Hospital for Neurology and		
	Neurosurgery, London, UK		
Albert Z. Lim,	Wellcome Centre for Mitochondrial	Site	Contributing
MD	Research, Translational and Clinical	Investigator	participants,
	Research Institute, The Medical		collecting data
	School, Newcastle University,		
	Newcastle upon Tyne, UK		
Michelangelo	Department of Clinical and	Site	Contributing
Mancuso,	Experimental Medicine,	Investigator	participants,
MD, PhD	Neurological Clinic, University of		collecting data
	Pisa, Pisa, Italy		
Maria J. Molnar,	Institute of Rare Disorders and	Site	Contributing
MD, PhD	Genomic Medicine, Semmelweis	Investigator	participants,

	University, Budapest, Hungary		collecting data
Olimpia Musumeci,	Unit of Neurology and	Site	Contributing
MD, PhD	Neuromuscular Disorders,	Investigator	participants,
	Department of Clinical and	_	collecting data
	Experimental Medicine, University		-
	of Messina, Italy		
Victoria Nesbitt,	NHS Highly Specialised Service for	Site	Contributing
MD, PhD	Rare Mitochondrial Disorders,	Investigator	participants,
	Nuffield Dept Women's &	, C	collecting data
	Reproductive Health, The Churchill		
	Hospital, Oxford, UK		
Wladimir B.V.R.	Division of Neuromuscular Diseases,	Site	Contributing
Pinto,	Department of Neurology and	Investigator	participants,
MD	Neurosurgery, Federal University of		collecting data
	São Paulo (UNIFESP), São Paulo, SP,		Ŭ
	Brazil		
Guido Primiano,	Neurophysiopathology Unit,	Site	Contributing
MD, PhD	Fondazione Policlinico Universitario	Investigator	participants,
	A. Gemelli, IRCCS, Rome, Italy, and		collecting data
	Dipartimento di Neuroscienze,		U U
	Università Cattolica del Sacro Cuore,		
	Rome, Italy		
Ernestina Santos,	Department of Neurology, Centro	Site	Contributing
MD, PhD	Hospitalar Universitario do Porto,	Investigator	participants,
	Hospital de Santo Antonio, Oporto,	-	collecting data
	Portugal		
Paulo Victor Sgobbi	Division of Neuromuscular Diseases,	Site	Contributing
Souza,	Department of Neurology and	Investigator	participants,
MD	Neurosurgery, Federal University of		collecting data
	São Paulo (UNIFESP), São Paulo, SP,		
	Brazil		
Serenella Servidei,	Neurophysiopathology Unit,	Site	Contributing
MD, PhD	Fondazione Policlinico Universitario	Investigator	participants,
	A. Gemelli, IRCCS, Rome, Italy, and		collecting data
	Dipartimento di Neuroscienze,		
	Università Cattolica del Sacro Cuore,		
	Rome, Italy		
Yareeda Sireesha,	Department of Neurology, Nizam's	Site	Contributing
MD	Institute of Medical Sciences,	Investigator	participants,
	Hyderabad, Telangana, India		collecting data

Supplement ---- http://links.lww.com/WNL/B828

References

1. McFarland R, Taylor RW, Turnbull DM. A neurological perspective on mitochondrial disease. Lancet Neurol 2010;9:829-840.

2. Get support if you're clinically extremely vulnerable to coronavirus (COVID-19). GOV.UK. Accessed August 1, 2021. https://www.gov.uk/coronavirus-shielding-support.

3. Interim Operational Considerations for Implementing the Shielding Approach to Prevent COVID-19 Infections in Humanitarian Settings. Centers for Disease Control and Prevention (CDC). Updated July 26, 2020. Accessed August 1, 2021. https://www.cdc.gov/coronavirus/2019-ncov/global-covid-19/shielding-approach-humanitarian.html.

4. Keddie S, Pakpoor J, Mousele C, et al. Epidemiological and cohort study finds no association between COVID-19 and Guillain-Barre syndrome. Brain 2021;144:682-693.

 World Health Organization. (2020). Coronavirus disease 2019 (COVID-19): situation report,
World Health Organization. Updated March 20, 2020. Accessed August 1, 2021. https://apps.who.int/iris/handle/10665/331605.

American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes
Care 2014;37 Suppl 1:S81-90.

7. Chow J, Rahman J, Achermann JC, Dattani MT, Rahman S. Mitochondrial disease and endocrine dysfunction. Nat Rev Endocrinol 2017;13:92-104.

8. Mancuso M, La Morgia C, Valentino ML, et al. SARS-CoV-2 infection in patients with primary mitochondrial diseases: Features and outcomes in Italy. Mitochondrion 2021;58:243-245.

9. Kompaniyets L, Pennington AF, Goodman AB, et al. Underlying Medical Conditions and Severe Illness Among 540,667 Adults Hospitalized With COVID-19, March 2020-March 2021. Prev Chronic Dis 2021;18:E66. 10. Money KM, Mahatoo A, Samaan S, et al. A New England COVID-19 Registry of Patients With CNS Demyelinating Disease: A Pilot Analysis. Neurol Neuroimmunol Neuroinflamm 2021;8.

11. O'Driscoll M, Ribeiro Dos Santos G, Wang L, et al. Age-specific mortality and immunity patterns of SARS-CoV-2. Nature 2021;590:140-145.

12. Ho FK, Petermann-Rocha F, Gray SR, et al. Is older age associated with COVID-19 mortality in the absence of other risk factors? General population cohort study of 470,034 participants. PLoS One 2020;15:e0241824.

TABLES

Table 1: Demographic and clinical characteristics of patients with primary mitochondrial disease

Demographic and clinical	Number	Demographic and clinical	Number
characteristics	(%)	characteristics	(%)
Country of recruitment		PMD, genetically unconfirmed ^b	11 (14)
United Kingdom	44 (56)	Baseline status	
Italy	17 (22)	NMDAS score (n=38)	
Hungary	6 (8)	No symptoms (score: 0)	4 (11)
Brazil	3 (4)	Mild symptoms (score: 1 to 5)	5 (13)
Spain	3 (4)	Moderate symptoms (score: 6 to 20)	14 (37)
Portugal	2 (2)	Severe symptoms (score: >20)	15 (39)
Finland	1 (1)	mRS	
India	1 (1)	0. No symptoms	8 (10)
Netherlands	1 (1)	1. No significant disability	35 (44)
United States of America	1 (1)	2. Slight disability	9 (12)
Sex at birth		3. Moderate disability	5 (6)
Female	46 (58)	4. Moderately severe disability	19 (24)
Male	33 (42)	5. Severe disability	3 (4)
Age group (years)		mRS after COVID-19 infection	
<18	4 (5)	0. No symptoms	6 (8)
18-39	32 (41)	1. No significant disability	28 (35)
40-49	18 (23)	2. Slight disability	13 (17)
50-59	9 (11)	3. Moderate disability	5 (6)
60-69	12 (15)	4. Moderately severe disability	19 (24)
70-79	3 (4)	5. Severe disability	5 (6)
≥80	1 (1)	6. Death	3 (4)
Mean (± SD)	41.5 (±18)	Most common comorbidities	,
Ethnicity (n=77)		Respiratory dysfunction ^c	19 (24)
White	64 (83)	Mitochondrial diabetes	21 (27)
Other ^a	13 (17)	Hypertension or other cardiovascular	20 (25)
	. ,	diseases	, , ,
PMD, genetically confirmed		Obesity (BMI ≥ 30)	8 (10)
mtDNA mutation	49 (62)	Neurological involvement ^d	58 (73)
3243A>G, <i>MT-TL1</i>	23	Smoking status (n=74)	
8344A>G, <i>MT-TK</i>	4	Ever ^e	3 (4)
3460G>A, MT-ND1	3	Never	71 (96)
8993T>G, <i>MT-ATP6</i>	3	COVID-19 symptoms	
9134A>G, <i>MT-ATP6</i>	1	Yes	75 (95)
1555A>G, <i>MT-RNR1</i>	2	No 4 (5	
11778G>A, <i>MT-ND4</i>	2	Hospitalization	
15092G>A, <i>MT-CYB</i>	1	Yes, no oxygen therapy required	6 (8)
Single large scale mtDNA deletion	7	Yes, oxygen therapy required	15 (19)
Multiple mtDNA deletions	3	Yes, mechanical ventilation required	4 (5)
nuclear DNA mutation	19 (24)	No	54 (68)
POLG	5	Outcome of COVID-19 infection	
PDHA1	2	Fully recovered	48 (61)
RRM2B	2	Resolved, with sequelae ^f	28 (35)
ANT1, C19orf12, DARS2. COXFA4.	1	Deceased	3 (4)
OPA3, PC, SERAC1, SURF1. TWNK. TK2			- ()
		Mean days from COVID-19 onset to	26 ± 23.7

diagnosed with COVID-19 (n=79)

resolution (± SD)	
Mean days from COVID-19 onset to	11.7 ± 10.8
death (± SD)	

Abbreviations: BMI, body mass index; mRS, modified Rankin Scale; mtDNA, mitochondrial DNA; NMDAS, Newcastle mitochondrial disease adult scale; PMD, primary mitochondrial disease; SD, standard deviation. **a:** South Asian (n=7); Latin American (n=3); East Asian (n=2); Black (n=1). **b:** Clinical phenotype and pathological/biochemical findings consistent with a diagnosis of primary mitochondrial disease according to recruiting clinician. **c:** Obstructive lung disease (chronic obstructive pulmonary disease or asthma) (n=6), restrictive lung disease (n=14), obstructive sleep apnea (n=3), use of non-invasive ventilation (NIV) (n=6), tracheostomy (n=2). **d:** Dysphagia (n=21), epilepsy (n=16), learning disabilities (n=12), polyneuropathy (n=8), skeletal muscle weakness (n=36), stroke/stroke like episodes (n=8). **e:** current smoker (n=2), former smoker (n=1). **f:** Deterioration of pre-existing neurological symptoms (n=11); worsening of fatigue in isolation (n=4); development of new symptoms (n=13). Table 2: Demographic and clinical factors of patients with primary mitochondrial disease diagnosed

	Not hospitalized	Hospitalized	P value
	n=54	n=25	
Sex at birth			0.48
Female	30 (56)	16 (64)	
Male	24 (44)	9 (36)	
Age group (years)			0.08
<60	46 (85)	17 (68)	
≥60	8 (15)	8 (32)	
Ethnicity			0.53
White	45 (85)	19 (79)	
Other ^a	8 (15)	5 (21)	
Mitochondrial disease diagnosis			
m.3243A>G <i>, MT-TL1</i>	19 (35)	4 (16)	0.11
Other ^b	35 (65)	21 (84)	
Baseline status			
NMDAS (n=36)			0.003
No, mild or moderate symptoms (score 0 to 20)	18 (82)	5 (31)	
Severe symptoms (score >20)	4 (18)	11 (69)	
mRS			0.001
0 - 1 - 2 - 3 ^c	44 (83)	12 (48)	
4 - 5 ^c	9 (17)	13 (52)	
Most common comorbidities			
Respiratory dysfunction ^d	5 (9)	14 (56)	<0.001
Mitochondrial diabetes	15 (28)	6 (24)	0.76
Hypertension or other cardiovascular diseases	13 (24)	7 (28)	0.71
Obesity (BMI ≥ 30)	4 (7)	4 (16)	0.25
Neurological involvement ^e	26 (48)	21 (84)	0.003
Number of comorbidities			
0-3	39 (72)	9 (36)	0.002
4 or more	15 (28)	16 (64)	

with COVID-19 by hospitalization status

Abbreviations: BMI: body mass index; NMDAS: Newcastle mitochondrial disease adult scale; mRS: modified Rankin Scale. **a**: South Asian (n=7); Latin American (n=3); East Asian (n=2); Black (n=1). **b**: mtDNA mutations, m.3243A>G excluded (n=26), nuclear DNA mutations (n=19), mitochondrial disease genetically unconfirmed (n=11). **c**: 0, No symptoms; 1, No significant disability; 2, Slight disability; 3, Moderate disability; 4, Moderately severe disability; 5, Severe disability. **d**: Obstructive lung disease, restrictive lung disease, obstructive sleep apnea, use of non-invasive ventilation (NIV), tracheostomy. **e**: Dysphagia, epilepsy, learning disabilities, polyneuropathy, skeletal muscle weakness, stroke/stroke like episodes.

COVID-19–Related Outcomes in Primary Mitochondrial Diseases: An International Study

Chiara Pizzamiglio, Pedro M Machado, Rhys H Thomas, et al. *Neurology* published online February 21, 2022 DOI 10.1212/WNL.000000000200240

Updated Information & Services	including high resolution figures, can be found at: http://n.neurology.org/content/early/2022/02/21/WNL.000000000200 240.full
Subspecialty Collections	This article, along with others on similar topics, appears in the following collection(s): Cohort studies http://n.neurology.org/cgi/collection/cohort_studies COVID-19 http://n.neurology.org/cgi/collection/covid_19 Mitochondrial disorders http://n.neurology.org/cgi/collection/mitochondrial_disorders Mitochondrial disorders; see Genetics/Mitochondrial disorders http://n.neurology.org/cgi/collection/mitochondrial_disorders http://n.neurology.org/cgi/collection/mitochondrial_disorders http://n.neurology.org/cgi/collection/mitochondrial_disorders_see_gene tics-mitochondrial_disorders
Permissions & Licensing	Information about reproducing this article in parts (figures,tables) or in its entirety can be found online at: http://www.neurology.org/about/about_the_journal#permissions
Reprints	Information about ordering reprints can be found online: http://n.neurology.org/subscribers/advertise

This information is current as of February 21, 2022

Neurology ® is the official journal of the American Academy of Neurology. Published continuously since 1951, it is now a weekly with 48 issues per year. Copyright © 2022 The Author(s). Published by Wolters Kluwer Health, Inc. on behalf of the American Academy of Neurology.. All rights reserved. Print ISSN: 0028-3878. Online ISSN: 1526-632X.

