Bourdon, A;
François, V;
Zhang, L;
Lafoux, A;
Fraysse, B;
Toumaniantz, G;
Larcher, T;
... Le Guiner, C; + view all
(2022)
Evaluation of the dystrophin carboxy-terminal domain for micro-dystrophin gene therapy in cardiac and skeletal muscles in the DMDmdx rat model.
Gene Therapy
10.1038/s41434-022-00317-6.
(In press).
Preview |
Text
17168_1_merged_1633546757.pdf - Accepted Version Download (1MB) | Preview |
Abstract
Duchenne muscular dystrophy (DMD) is a muscle wasting disorder caused by mutations in the gene encoding dystrophin. Gene therapy using micro-dystrophin (MD) transgenes and recombinant adeno-associated virus (rAAV) vectors hold great promise. To overcome the limited packaging capacity of rAAV vectors, most MD do not include dystrophin carboxy-terminal (CT) domain. Yet, the CT domain is known to recruit α1- and β1-syntrophins and α-dystrobrevin, a part of the dystrophin-associated protein complex (DAPC), which is a signaling and structural mediator of muscle cells. In this study, we explored the impact of inclusion of the dystrophin CT domain on ΔR4-23/ΔCT MD (MD1), in DMDmdx rats, which allows for relevant evaluations at muscular and cardiac levels. We showed by LC-MS/MS that MD1 expression is sufficient to restore the interactions at a physiological level of most DAPC partners in skeletal and cardiac muscles, and that inclusion of the CT domain increases the recruitment of some DAPC partners at supra-physiological levels. In parallel, we demonstrated that inclusion of the CT domain does not improve MD1 therapeutic efficacy on DMD muscle and cardiac pathologies. Our work highlights new evidences of the therapeutic potential of MD1 and strengthens the relevance of this candidate for gene therapy of DMD.
Type: | Article |
---|---|
Title: | Evaluation of the dystrophin carboxy-terminal domain for micro-dystrophin gene therapy in cardiac and skeletal muscles in the DMDmdx rat model |
Location: | England |
Open access status: | An open access version is available from UCL Discovery |
DOI: | 10.1038/s41434-022-00317-6 |
Publisher version: | https://doi.org/10.1038/s41434-022-00317-6 |
Language: | English |
Additional information: | This version is the author accepted manuscript. For information on re-use, please refer to the publisher’s terms and conditions. |
Keywords: | Science & Technology, Life Sciences & Biomedicine, Biochemistry & Molecular Biology, Biotechnology & Applied Microbiology, Genetics & Heredity, Medicine, Research & Experimental, Research & Experimental Medicine, DUCHENNE MUSCULAR-DYSTROPHY, GLYCOPROTEIN COMPLEX, ALPHA-DYSTROBREVIN, LIFE-SPAN, PROTEIN, ALPHA-1-SYNTROPHIN, SYNTROPHIN, EXPRESSION, DELIVERY, PHOSPHORYLATION |
UCL classification: | UCL UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Population Health Sciences > UCL GOS Institute of Child Health > Developmental Neurosciences Dept UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Population Health Sciences > UCL GOS Institute of Child Health UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences |
URI: | https://discovery.ucl.ac.uk/id/eprint/10144372 |
Archive Staff Only
View Item |