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Abstract 

Fracture of lithium-ion battery electrodes is found to contribute to capacity fade and reduce the 

lifespan of a battery. Traditional fracture models for batteries are restricted to consideration of 

a single, idealised particle; here, advanced X-ray computed tomography (CT) imaging, an 

electro-chemo-mechanical model and a phase field fracture framework are combined to predict 

the void-driven fracture in the electrode particles of a realistic battery electrode microstructure.  

An electrode is shown to exhibit a highly heterogeneous electrochemical and fracture response 

that depends on the particle size and distance from the separator/current collector. The model 

enables prediction of elevated cracking due to enlarged cycling voltage windows, cracking as 

a function of electrode thickness, and increasing damage as the rate of discharge is increased. 
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This framework provides a platform that facilitates a deeper understanding of electrode fracture 

and enables the design of next-generation electrodes with higher capacities and improved 

degradation characteristics. 

Keywords: lithium-ion battery, image-based model, phase field, fracture, electrode, 

microstructure 

1. Introduction 

Lithium-ion batteries (LIBs) are at the forefront of the effort to reduce global CO2 emissions. 

For example, the transition from the fossil fuel-based internal combustion engine to the 

electrical vehicle (EV) is growing at an increasingly rapid rate, a transition in which LIBs play 

a pivotal role. The lifespan of any technology is a crucial factor when sustainability is 

concerned, and for such a pivotal technology as the LIB, it is no exception. The lifespan of LIBs 

is known to be severely limited by cracking of the electrode components [1,2]. The electrodes 

within LIBs are a complex multi-material composite and their microstructure typically 

comprises active particles in which lithium is extracted or inserted, a binder that provides a 

conductive network for electronic conductivity, and a porous network that permits conduction 

of lithium-ions via an electrolyte. During charge or discharge, swelling or shrinking of the 

particles occurs due to insertion or extraction of lithium, giving a highly heterogeneous stress 

state. Consequently, pre-existing particle defects such as voids or cracks promote fracture, 

enabling disintegration of the particles and eventual loss of usable energy storage volume [3]. 

The microstructural evolution of LIB electrodes is therefore central to overall battery 

performance and, in particular, the long-term degradation and lifespan. 

Mechanics plays a significant role in both solid-state lithium transport and the electrochemical 

reactions occurring at particle surfaces, two processes that are fundamental to LIB operation.  

The reaction rate at the particle surface and solid-state lithium transport are both influenced by 
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the chemical potential, a component of the system’s free energy. The mechanical strain energy 

contributes to the free energy of the system and thus plays a role in regulating the chemical 

reactions [4]. The diffusion-related contribution is linked to the hydrostatic stress gradient, 

which, along with the concentration gradient, provides a driving force for lithium transport 

within the active material lattice sites. When insertion occurs, we see compressive stresses 

towards the surface of particles; whilst internally, we see tensile stretching, which generally 

promotes intercalation [5]. Strain levels may reach ~2-3% in LiCoO2 (LCO) [6] and 

LiNiMnCoO2 (NMC) [7] based cathodes, 5% in graphite anodes [8], and up to 310% for next-

generation Si-based anodes [9]. Irrespective of the electrode material, significant levels of stress 

develop in an electrode during cycling, and consequently result in the fracture and subsequent 

degradation of the LIB. 

In broad terms, fracture may initiate in three ways: within the primary particles (intragranular), 

at the grain boundaries between primary particles (intergranular), or due to microstructural 

defects such as pre-existing voids and cracks in the aggregated secondary particles [10,11]. The 

three mechanisms are likely to act in tandem. However, in the present study, we focus 

exclusively on the large voids and cracks that result from synthesis and manufacture; given that 

they are typically the largest defect feature relative to the primary particle and grain boundaries, 

they are likely to be the driving force for the majority of damage in an electrode. Fracture of 

electrode particles contributes to the general degradation of the LIBs through mechanisms such 

as: build-up of solid-electrolyte-interphase (SEI) on newly cracked surfaces, leading to capacity 

fade [12]; loss of contact between particles and carbon binder, resulting in electrical isolation 

of particles, and thus, loss of storage volume; and delamination from the current collector 

resulting in electrical isolation of the entire electrode [13]. 

The effort to develop physics-based models and predict the performance of LIBs is a multiscale 

problem and can be divided into three broad categories: single particle level, micro-scale 
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electrode level, and cell level. The single particle [14-16] and cell [17-19] models typically 

employ homogenised versions of the physical equations used in three-dimensional micro-scale 

models [20] due to their computational efficiency and accuracy. These models have since been 

extended to consider electro-chemo-mechanical coupling and stress-induced diffusion [21,22], 

with further additions to account for capacity fade due to factors including SEI growth [23]. 

Image-based micro-scale modelling tends to consider electrode microstructure heterogeneity, 

and comparatively less work has been carried out at this level with electro-chemo models 

[24,25] and then mechanics-based contributions [26-28]. 

Numerical predictions of crack growth typically treat the crack as a discrete discontinuity in a 

material and are implemented using techniques such as cohesive zone elements where the crack 

advances along a predefined path [27, 29-31]. Methods such as X-FEM can predict arbitrary 

crack trajectories [32,33] but are limited when dealing with complex cracking conditions, 

particularly in 3D. In contrast, the continuum-based phase field approach does not require prior 

knowledge of crack location and can predict complex conditions of practical applications, 

which may include arbitrary crack trajectories, non-sharp defects, merging of voids, cracks and 

other defects, etc. For example, phase field models have been developed for prediction of 

fracture in hydrogen embrittled steel for deep-sea oil pipelines [34,35], shape memory alloys 

for medical stents [36], as well as nuclear reactor materials [37], amongst numerous others. The 

phase field approach has also been used to simulate fracture in idealised LIB single particles 

[37-43]. Other computational methods, such as X-FEM [32,33], cohesive elements [27, 29-31] 

or continuum damage mechanics [44] have also been used to predict the fracture of single 

particles. However, the ability of phase field to capture complex cracking patterns in arbitrary 

geometries and dimensions make it particularly well-suited to achieve a step-change in LIB 

simulation and predict the behaviour at the electrode level, including the interactions resulting 

from multiple components (particles, pores, binders). Xu et al. [27] carried out electro-chemo-
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mechanical simulations of an image-based NMC electrode but the fracture analysis was limited 

to a single (idealised) particle. Here, for the first time, we propose combining the phase field 

framework with advanced imaging techniques and the aforementioned electro-chemo-

mechanical models to deliver realistic multiphysics predictions of damage and degradation of 

an entire electrode. Specifically, these techniques are combined in order to predict the evolution 

of damage within a realistic representation of a LIB electrode (LiNi0.6Mn0.2Co0.2O2, NMC622). 

The model represents a step-change from the traditional model of a single particle in which we 

capture the coupled electrochemical, mechanical and damage performance of an entire 

electrode. This is achieved using a combination of advanced 3D X-ray CT imaging and an 

electro-chemo-mechanical formulation that includes the phase field framework for fracture 

predictions. We model the coupled electro-chemo-mechanical behaviour and fracture of the 

active secondary particles, the mechanical behaviour of the PVDF-carbon-binder composite 

domain (CBD), and their interactions with the current collector. The simulations undertaken 

here advance the fundamental understanding of battery fracture and its dependency on electrode 

morphology, particle position and electrochemical cycling. This knowledge enables the design 

of next-generation electrodes with higher capacities and improved degradation characteristics. 

2. Theoretical framework 

Consider the schematic of a battery half-cell in Fig. 1a: we define a separator, electrode surface, 

current collector and a heterogeneous electrode domain comprising of active material, bound 

together by carbon additives, i.e. CBD, and micropores filled with electrolyte. Fig. 1b shows 

the image-based 3D domain to which the following theoretical framework is applied. 
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Fig. 1. Schematic and image-based representations of LIBs. a) 2D schematic of an electrode 

microstructure highlighting flow of electrons (red) and flow of lithium ions (blue). b) 3D image-

based microstructure captured via X-ray CT, where B=W=50 µm, H=89 µm, and tcc= tsep=10 

µm. 

2.1 Electrolyte: electrochemical and transport formulation 

Consider a binary electrolyte described by concentrated solution theory [45]. To form an 

accurate description of mass transfer within such a medium, we need to consider diffusive mass 

transfer based on Fick’s first law, and migration of ions due to an electric field and the presence 

of an electrochemical potential field, as described by Thomas-Alyea and Newman [45]. If a 1:1 

electrolyte is considered, then a balance of positive lithium ions (concentration, ce+) and 

counterions (concentration, ec − ) may be assumed, allowing us to write ce+= ce-= ce. The 

resulting flux of positive ions Je is given as 

 e +
e e e

F
c

t
D = − +

i
J  (1) 

where De is the electrolyte diffusion coefficient, ie is the ionic current, t+ is the cation 

transference number (the proportion of current transported via positive lithium ions), and 
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F=96485 C mol-1, is the Faraday constant. Fick’s second law must be invoked to capture the 

non-steady-state transport of lithium ions 

 e
e 0

c

t
+ 


=


J  (2) 

The ionic current flow within the electrolyte, as derived based on the Stefan-Maxwell equations 

by [45], may then be defined as 

 e
e e + e

e

2 ln
( ) 1 (1 ) ln

ln
e

RT fK
K t

F c
c

 
= − + + −  

 
i  (3) 

This is formed of two components. The first term is the classic description of Ohm’s law where 

Ke is the ionic conductivity and ϕe is the electric potential across the medium. The second term 

is based on the electrochemical activity of the ions [45]. R and T are the universal gas constant, 

and temperature, respectively, whilst f is the activity coefficient that depends on the 

electrochemical potential. f, t+ and Ke are typically given as a function of ce. Finally, the entire 

electrochemical system, and thus the electrolyte, must observe charge conservation 

 e 0 =i  (4) 

2.2 Active material: electro-chemo-mechanical and transport formulation 

We consider the stress field in the active particles to be dictated by mechanical equilibrium, 

given as follows in the absence of body forces 

 0 =σ  (5) 

where σ is the Cauchy stress tensor. For NMC particles, such as those considered in this study, 

it is appropriate to apply a simple linear elastic material model [27]. Thus the elastic strain εe is 

governed by Hooke’s law; σ=C:ε. C is the stiffness matrix, and in this instance we consider an 

isotropic model with Young’s modulus, Ep and Poisson’s ratio, ν=0.3. Applying a small strain 
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formulation, the total strain ε in an active particle is obtained by solving for the displacement 

field u in the solid 

 ( )( )1

2

T
=  +u uε  (6) 

It can be recognised that the total strain may be decomposed into the elastic strain εe and the 

chemical, lithiation-induced strain εch as follows 

 
e ch= +ε ε ε  (7) 

The lithiation-induced strain is 

 ( )p p0

1

3

ch c c= − Iε  (8) 

where Ω is the partial molar volume of the active material, cs0 is the concentration of Li in the 

unstressed state, and I is the identity matrix that recognises that the contribution from lithiation-

induced strains produces a hydrostatic stress state only. 

2.2.1 Phase field fracture formulation 

Consider an arbitrary domain B where a crack exists with corresponding cracked surfaces Γ. 

The variation of the total energy Π due to an incremental increase in the crack area dA is a 

function of the elastic strain energy density of the solid ψ(εe) and the energy required to create 

two new surfaces Ws, as dictated by thermodynamics. In the absence of external forces:  

 s 0
dWd d

dA dA dA


= + =


 (9) 

where c s /G dW dA=  is the critical energy release rate that characterises the resistance to 

fracture of a material. It follows that we can recast Equation (9) in variational form as follows 

[46] 
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e

c( )dV G d
 

 = +  ε  (10) 

To overcome the fact that the crack surface is unknown, we now introduce a phase field variable 

ϕ that assumes the value of 1 for a fully cracked material point and 0 when the material is 

uncracked. Furthermore, a damage degradation function g can be defined that enables the 

diminishing stiffness of the material to be quantified, where 
2) (1 )(g  = − . Griffith’s 

functional can then be approximated as [47] 

 ( ) ( )
22 e 2

c
2

1
1

2
dV

l
G

l
    



 
 = − 




 


+ + 

 
  (11) 

where l is the phase field length scale, which characterises the size of the fracture process zone 

and provides a relation with the material strength [48]. By forming the Lagrangian )( , ,L u u   

and finding a stationary point 0L = , the following balance equation for the phase field can 

be found 

 ( ) e

2

1
2 1 ( ) 0cG l

xl


   

 
− − 

 


− =


 (12) 

Equation (12) constitutes the evolution equation for the phase field, which enables the 

prediction of cracking behaviour of arbitrary complexity as a result of the exchange between 

elastic and fracture energies. 

2.2.2 Solid-state transport 

The diffusive flux of lithium ions in the particles is governed by Fick’s first law of diffusion, 

which is modified to account for the driving force presented by the presence of hydrostatic 

stresses 

 
p

p p p HD
R

c
c

T




 
= − + 


 


J  (13) 
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where σH=tr[σ]/3. Transient transport of the lithium within the solid particles is given by Fick’s 

second law 

 p

p 0
c

t
+ 


=


J  (14) 

The particles follow the typical charge conservation law 

 
p 0 =i  (15) 

whilst electronic conduction is governed by Ohm’s law, 

 
p p pK = − i  (16) 

2.2.3 Charge transfer reaction 

Here we impose a boundary condition at the interface between particle and electrolyte to capture 

the charge transfer reaction. Once positive lithium ions reach the surface of the particles, they 

are neutralised by electrons during a charge transfer reaction and subsequently diffuse into the 

particles. The charge transfer rate can be modelled by a Butler-Volmer type equation 

 a c
BV 0 exp exp

F F
i i

RT RT

       
= − −    

    
 (17) 

The local exchange current density is defined as a function of cp and ce  

 

a

a c a c e
0 c a p p,max p

e,ref

( ) ( ) ( ) ( )
c

i F k k c c c
c



   
 

= −   
 

 (18) 

where ce,ref is a reference electrolyte concentration, typically taken as unity. The deviation from 

equilibrium conditions is governed by 

 p
H

e U
F


  − −= −  (19) 
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where   is the overpotential, U is the open circuit voltage, and the fourth term on the right-

hand side accounts for the diffusion-induced hydrostatic stress on the overpotential. 

2.3 Carbon binder domain: electrical, transport and mechanical formulation 

Finally, we consider the conductive carbon binder phase: the binder maintains electrical contact 

between the particles and the current collector permitting electron flow, thereby facilitating the 

charge transfer reaction. In reality, the carbon binder domain phase is a nanoporous foam-like 

material, for example see the work of Daemi et al. [49] where the carbon binder was measured 

to be ~28% porous. To minimise computational expense, we attribute effective transport 

properties, which permits both ionic (lithium ions) and electronic flow. The conductive phase 

must obey Ohm’s law 

 
c c cK = − i  (20) 

where ic and ϕc are the current and potential in the CBD, respectively. Charge must also be 

conserved; therefore 

 c 0 =i  (21) 

Ionic transport within the electrolyte has been outlined in Section 2.1. The effective conductive 

properties of carbon binder Kc,eff, effective ionic conductivity Ke,eff  of electrolyte and effective 

diffusivity De,eff of the electrolyte within the nanopores, are determined by scaling their 

associated bulk properties by a factor f=0.276. The factor f is equivalent to the porosity factor 

of typical carbon binder material as reported by Daemi et al. [49]. 

The mechanical behaviour of the CBD is assumed to be isotropic, undergo small strains and 

adhere to a simple linear elastic Hooke’s law [26] with Young’s modulus Ec and Poisson’s ratio, 

ν=0.3. The strains are obtained via Equation (6) with no lithiation-induced strains present. An 

ideal boundary, i.e. perfect contact, is assumed between the active materials and CBD. A similar 
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ideal boundary is assumed between the CBD and the current collector which is given as an 

electronically conductive, linear elastic solid undergoing small strains. 

2.4 Boundary and initial conditions 

Consider Fig. 1b; we define a coordinate system (x, y, z) as shown. At the current collector, we 

apply a current density 
nc cc ii =i n at z=0 where ncc is the unit normal vector pointing outwards 

from the current collector surface in the negative x-direction. The applied current density iin at 

1C discharge, is calculated based on the active material volume Vp, the maximum accepted 

quantity of lithium for the given electrode material, cp,max: the current density is given as iin= 

cp,maxFVp/t0A, where A=BW and t0=3600 s. In addition, we prescribe fully clamped conditions 

to the current collector surface, i.e. 0cc =u n
 
whilst all other surfaces are free. 

A flux of electrolyte salts is applied at the separator: 
l el in /i F =J n at z=tcc+L+tsep, where nel is 

the unit normal vector pointing from the separator in the positive z-direction. tcc, L, tsep are the 

thicknesses of the current collector, electrode and separator, respectively. In addition, an ionic 

current is applied at the separator: l el ini = −i n at z=tcc+L+tsep. A potential of ϕp=0 is applied at 

the same location. At the interface between the separator and heterogeneous electrode we 

specify that the electronic current flow must be zero; 0ec s =i n  and 
ep s 0 =i n  at z=L+tcc where nse 

is the unit normal vector to the interface between the electrode and the separator, pointing in 

the positive z-direction. This ensures that only the ionic current is permitted across this surface. 

At the electrolyte-particle interface we observe a flux of lithium into the solid, or lithium ions 

into the electrolyte as a result of the charge transfer reaction. The fluxes are as follows: 

e pe BV /i F = −J n and
s pe BV /i F = −J n , where npe is the normal vector pointing from the 

electrolyte to the active particles. We also prescribe a current density at this interface:  
Vpee Bi = −i n

and
Vpep Bi =i n . 
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An initial active material concentration, cp0, is prescribed, whilst the electrolyte initial 

concentration is given by ce0. The electrode and all associated constituent domains are assumed 

to be in an initially unstressed state. Finally, all external domain surfaces normal to the x-z plane 

and y-z plane are assumed to be insulating to active material- , CBD- , and electrolyte-related 

current densities, as well as species fluxes. 

3. Experimental methods 

3.1 Electrode manufacture 

The formulations for the cathode made in this work are generic formulations that are extensively 

employed [50,51]. The cathode slurry consists of LiNi0.6Mn0.2Co0.2O2 (NMC622, BASF), 

polyvinylidene fluoride (PVDF, Solvay) and C65 (Imerys) powders, which were pre-dried at 

120 °C in a vacuum oven over 12 h to remove any moisture. 13 mL of N-methyl-2-pyrrolidone 

(NMP, Sigma Aldrich) mixed with 0.4 g of PVDF was then weighed to form a binder solution. 

A THINKY mixer (ARE-20, Intertronics) was used to mix the cathode binder solution (PVDF 

and NMP) at 2000 rpm for 15 min until the solution became homogeneous. Then, 19.3 g of 

NMC622 and 0.4 g of C65 were added slowly to the binder solution to form a slurry with a 

solid content ~60 wt. %. The slurry was then mixed again with THINKY mixer at 2000 rpm for 

2 periods of 15 min. The slurry was left to cool between the two mixing steps to avoid any 

temperature increment of the slurry. Finally, the homogeneous slurry was degassed in the 

THINKY mixer at a speed of 2000 rpm for 2 min.  

The cathode slurry was then coated on a piece of aluminium foil with thickness ~16 µm (PI-

KEM) using a doctor blade thin-film applicator (calibrated with a metal shim), resulting in a 

dried electrode of ~89 µm thickness.  

3.2 Image acquisition 
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The NMC622 sample was prepared using an A Series/Compact Laser Micromachining System 

(Oxford Lasers, Oxford, UK) with an embedded Class 4, 532 nm wavelength laser [52]. X-ray 

CT imaging was conducted using a lab-based X-ray micro-CT instrument (ZEISS Xradia 520 

Versa, Carl Zeiss., CA, USA) with a tube voltage of 80 kV. An exposure time of 28 s was used 

for each of the 601 projections, with a 20× magnification lens. Reconstruction of the data was 

carried out via Zeiss XM software (Carl Zeiss., CA, USA), utilizing cone-beam filtered back-

projection algorithms, resulting in a voxel size of 0.371 µm. 

4. Numerical methods 

4.1 Image processing 

The raw CT image was transformed, cropped and filtered (using a non-local means filter) within 

Avizo software (Avizo, Thermo Fisher Scientific, Waltham, Massachusetts, USA). In order to 

balance the microstructural resolution and computational expense, we chose a region of interest 

with the full electrode thickness L=89 µm and B=W=50 µm. A single slice from the processed 

image can be seen in Fig. 2a. Machine learning based, open-source segmentation software 

ilastik (Berg et al. [53]) was used to segment the three-phase raw image (pore, CBD and 

particles). The segmentation process yielded a ternary electrode image with the following 

volume fractions: 51.3% particle, 35.5% carbon binder, and 13.2% pore. The segmentation 

results are shown in Fig. 2b (the same slice as Fig. 2a). We have used established image analysis 

protocols to extract the relative volume fractions of the active material, CBD and macro-

porosity, and have achieved vol% which are comparable to literature benchmarks [49]. Regions 

representing the current collector and separator were added to the segmented volume with tcc= 

tsep=10 µm. 

4.2 Finite element implementation 
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Simpleware ScaniP (Mountain View, CA, USA) was used to mesh the segmented image (see 

Fig. 2c), giving approximately 3.6 million linear tetrahedral elements, with 11.6 million degrees 

of freedom. The characteristic element size in the regions of interest is 400 nm, which is 4.5 

smaller than the phase field length scale and thus sufficient to achieve mesh convergence 

[34,54]. The meshed volume is shown in Fig. 2c. The theoretical framework was implemented 

in the finite element software COMSOL Multiphysics (v5.6, Sweden) on a 3D tomography-

based mesh, as described. The Parallel Direct Sparse Solver (PARDISO) was used to solve the 

discretised transport, electrode kinetics and deformation kinematics equations. A segregated 

approach was taken, which involved solving the coupled field variables in a sequential 

staggered manner, see Miehe et al. for details [54]. Also, a history field was defined to prohibit 

damage irreversibility [54]. Time stepping was handled using 2nd order backward Euler 

differentiation, whilst time step sensitivity analysis was carried out. 



16 
 

 

Fig. 2. X-ray tomography, segmentation, meshing and simulation of an electrode. a) Tomogram 

of cropped three-phase image, b) segmentation of CT image, c) computational mesh of 

segmented 3D volume, d) example of model output showing fracture at a slice equivalent to a) 

and b), e) void size, and f) particle size distributions as a function of electrode thickness. 
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4.3 Material models 

Properties for the constituent materials were extracted from literature and are outlined in Table 

1. NMC622 was treated as an isotropic linear-elastic solid with an underlying assumption of 

brittle failure. The Young’s modulus and fracture toughness of NMC were obtained from [27] 

while we estimated the phase field length parameter, l, through its relation with the material 

strength σc, as described by Tanné et al. [48]. The solid-state diffusivity of NMC622 was treated 

as non-linear, with a dependence on lithium concentration, drawn from the measurements of 

Noh et al. [55]. The open-circuit voltage response of NMC622 was drawn from the work of Xu 

et al. [27]. The carbon binder was assumed to be an electronically conductive, linear elastic 

material with a Young’s modulus magnitude following the measurements by Grillet et. al. [56]. 

A LiPF6 electrolyte was modelled and the salt concentration-dependent properties were given 

by Valoen and Reimers [57]. The aluminium current collector was assumed to be an 

electronically conductive linear elastic solid with electrical conductivity of K=3.7107 S m-1, 

Young’s modulus of E=69 GPa, and Poisson’s ratio of ν=0.3. Finally, the universal gas constant 

was given as 8.314 J mol-1 K-1, whilst all simulations were carried out assuming a temperature 

of T=293 K. 

 

 

 

 

 

Table 1. Material properties and model parameters. 
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Parameter Unit Value Source 

t+ 1 0.37 Valoen et al. [57] 

e

ln

ln

f

c




 1 0.43 Valoen et al. [57] 

De m2 s-1 f(ce)  Valoen et al. [57] 

Ke S m-1 f(ce) Valoen et al. [57] 

ce0 mol m-3 1000 -- 

Dp m2 s-1 f(cp/cpmax)  Noh et al. [55] 

cp,max mol m-3 48700 Xu et al. [27] 

Kp S m-1 1.610-4 Noh et al. [55] 

Ep GPa 140 Xu et al. [27] 

Gc N m-1 0.11 Xu et al. [27] 

Ω m3 mol-1 1.810-6 Koerver et al. [58] 

cp0 mol m-3 500 -- 

Vp m3 1.310-13 -- 

σc MPa 100MPa Xu et al. [27] 

l m 1.810-6 Tanné et al. [48] 

Kc S m-1 375 Liu et al. [59] 

Ec GPa 0.3 Grillet et al. [56] 

αa 1 0.5 -- 

αb 1 0.5 -- 

ka m s-1 210-11 Xu et al. [27] 

kb m s-1 210-11 Xu et al. [27] 

U V  f(cp/cpmax) Xu et al. [27] 
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4.4 Simulation details 

We applied the described model to a variety of test cases that allowed us to gain insight into the 

electrode fracture behaviour. The three cases were as follows: 

1. A single high rate discharge at 6C, followed by other single discharges at 1C, 3C and 

9C to establish the influence of rate of discharge on electrode fracture. All discharges 

began at the pristine state with no prior cycling history. 

2. The influence of electrode thickness on fracture behaviour (at 6C discharge rate). 

3. The influence of voltage window and multi-cycle charges and discharges on the extent 

of electrode cracking (at 6C discharge rate). 

5. Results and discussion 

An example of the phase field fracture profile following high-rate discharge (lithiation of the 

positive electrode) at 6C is shown in Fig. 2d (on the same slice as Fig. 2a and b) - a systematic 

study of C-rate follows. With the increasing need for fast charging of EVs and potential extreme 

operating conditions, e.g. severe accelerations, it is prudent to assess high discharge (and 

charge) rates such as those assessed in this study. Furthermore, there is the possibility of local 

heterogeneities in discharge rate within the microstructure, potentially resulting in excessive 

cracking and degradation. At a discharge rate of 6C, even in the presence of small central voids, 

Fig. 2d reveals that the model predicts significant fracture within an electrode as widely 

reported [30,60]. Our hypothesis of a void-driven fracture process is backed up by fracture 

mechanics estimates of the critical flaw size. For a material strength of σc=100 MPa, Young’s 

modulus Ep=140 GPa and energy release rate of Gc=0.11 N/m (as outlined in Table 1), then the 

transition flaw size at can be calculated as 2/t c ca K = =0.49 μm, where 0.5( )c cK EG=  =0.124 

MPa m0.5. As shown in Fig. 2e, a large number of voids have a characteristic length larger than 

this transition flaw size. Moreover, we observe that the extent of the cracks in any given particle 
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(average measured particle radius ~4.8 µm) is quite large and that particles will completely 

fracture with cracks extending from central voids to the outer surfaces of the particles (see 

particle A in Fig. 2d), whilst large disk-like cracks will form due to central cracks (see particle 

B in Fig. 2d). These observations qualitatively agree with those reported by Klinsmann et al. 

[10] in their analysis of sharp cracks in perfectly spherical single particles. Later, we will 

comment on this in the context of a non-idealised sphere, i.e. the as-manufactured particle. 

As a precursor to the ensuing studies we must first highlight the electrochemical behaviour of 

the electrode, see Fig. 3a. It is clear that a significant reduction in usable capacity occurs when 

the electrode is discharged at increasingly higher rates. This is a widely reported issue, see for 

example, Park et al. [61]; here, the influence of the electrode thickness is also investigated. In 

the case of a 6C discharge we observe that an 89 µm thick electrode has 38% less usable 

capacity when compared to the 44.5 µm thick electrode. Reductions in lithium storage capacity 

due to rate behaviour as a function of electrode thickness have been reported by Xu et al. [62]. 
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Fig. 3. Simulated electrochemical and fracture response of a LIB. a) The open circuit voltage 

and the simulated voltage response as a function of degree of discharge for the electrode volume 

at 1C, 3C, 6C, and 9C. b) Phase field, lithium concentration and hydrostatic stress distributions 

in a sample volume at three instances of discharge as highlighted in a) i), ii) and iii). 

5.1 General observations: first discharge 

Fig. 3a illustrates the predicted electrode voltage response during a single discharge, i.e. 

lithiation of NMC, at a rate of 6C with a voltage window of 3.0 V-3.8 V. We highlight three 

key regions on the voltage response. First, at ~20% degree of discharge, labelled as (i), we 

observe crack initiation in some large particles (radii~6-7 µm) close to the separator 

(highlighted in Fig. 3b(i)). This corresponds with severe lithium concentration and hydrostatic 

stress gradients throughout the electrode. Furthermore, we observe lithium concentration and 

hydrostatic stress gradients within the particles themselves (primarily within the particles close 

to the separator). This behaviour is linked to diffusion-limited transport. At high discharge rates, 

the electrode is experiencing significant lithium ion flux in the near-separator region. However, 

this high concentration of lithium ions cannot be distributed homogeneously throughout the 

electrode due to the limitations of the electrolyte diffusivity. A similar rationale explains the 

concentration gradients within the particles themselves: once lithium ions are neutralised at the 

surface of particles, lithium must diffuse to the centre of the particles where there is a low 

concentration of lithium relative to the surface. If a particle begins in a delithiated state then 

there will be a significantly higher lithium concentration near the surface of the particle due to 

diffusive transport limitations. This imposes tensile hydrostatic stress towards the centre of the 

particle as a result of the excessive lithium in the outer regions of the particle. This 

heterogeneous concentration and stress state may be observed in Fig. 3b (i). It is clear that 

particle size dictates the severity of concentration and stress gradients. Thus, elevated tensile 

stresses in the centre of the particles induces fracture that is further exacerbated by the presence 
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of voids, which act as stress raisers. Similar qualitative behaviour was observed for 2D 

individual idealised particles [63]. 

As discharge proceeds, we observe progressive fracture of the electrode, note points (ii) and 

(iii) in Fig. 3a and the associated phase field profiles in Fig. 3b. Particle-level concentration and 

stress gradients move as a front through the material throughout discharge, resulting in fracture 

of the inner regions of the electrode. At point (iii), the end of discharge, the regions closest to 

the current collector remain in a delithiated state relative to the regions in the centre and closer 

to the separator. This under-utilisation of active material results from transport limitations and 

the depletion of lithium ions in the electrode due to the high surface current densities in the 

separator regions during early discharge. Consequently, the level of particle damage is lowest 

in the current collector region and at its peak closest to the separator; this has been observed 

experimentally by Xu et al. [27] and Heenan et al. [60]. 

5.2 Influence of discharge rate 

The rate of discharge influences the permissible energy stored [61]. Furthermore, it is generally 

accepted that an increased rate of charge or discharge, i.e. rate of lithiation/delithiation, reduces 

the lifespan of the battery [50]. Discharge or charge of cells at a high rate increases the extent 

of concentration gradients within the particles, resulting in higher levels of particle stresses. We 

illustrate this in Fig. 4, which highlights the post-discharge fracture patterns in the electrode at 

four different rates. At 1C rate of discharge with a 3.0 V-4.3 V voltage window, we observe no 

obvious particle cracking. The cracking is primarily restricted to the narrow regions or struts 

that connect the particles. In the case of 9C discharge, we observe severe particle cracking both 

at the narrow strut regions and within the particles themselves. In the intermediate cases, we 

observe an increased level of cracking, which may be attributed to the increasing degree of 

heterogeneity in the lithium concentration and thus the hydrostatic stress profiles. Furthermore, 
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we observe that as the rate of discharge increases the fracture is increasingly limited to the 

separator region.  

 

Fig. 4. The influence of discharge rate on electrochemical and fracture performance. A slice 

through the electrode volume with profiles of the phase field variable, lithium concentration at 

the end of discharge at rates of 1C, 3C, 6C, and 9C. The hydrostatic stress profile is shown at 

approximately 10% degree of discharge and prior to fracture initiation. 

5.3 Influence of electrode thickness 

Subsequently, as shown in Fig. 5, we alter the thickness of the electrode by cropping the original 

image (using Avizo) to observe the influence of a shorter diffusion length on fracture behaviour. 
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The particle size distribution through the thickness of the original 89 µm electrode is shown in 

Fig. 2f. It appears that the particle size is randomly distributed throughout the thickness of the 

electrode, with no clear gradient. Furthermore, given the uniform distribution of flaws within 

the electrode (Fig. 2e), cropping of the image is likely to have no significant influence on the 

crack initiation. The thinner electrode, discharged at 6C, displays severe cracking throughout 

the entire microstructure. There are no longer through-thickness, electrode-level gradients in 

lithium concentration although the particle-level gradients exist throughout the electrode, 

causing fracture. It is clear that the lithium concentration gradients throughout the thin electrode 

are less pronounced, relative to the thicker electrode, which is commensurate with the lower 

capacity of the thicker electrode when discharged at high rate. In addition, we note that the 

hydrostatic stress gradient, while detrimental in terms of fracture, acts as a driving force for 

lithium transport within the particles. It follows that a more uniform distribution in large 

hydrostatic stresses at the electrode-level will facilitate better utilisation of the entire electrode 

volume. 

 

Fig. 5. The influence of electrode thickness on electrochemical and fracture performance. A 

slice through two electrodes of 44.5 µm and 89 µm thickness, with profiles of the phase field 
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variable, lithium concentration following discharge and hydrostatic stress prior to fracture 

initiation at approximately 10% depth of discharge. The discharge rate was 6C. 

5.4 Influence of cycling and depth of charge/discharge 

We now consider the microstructural evolution when cycling of the electrode is simulated. 

Consider first the electrochemical response (I) in Fig. 6a. The electrode was charged and 

discharged at a rate of 6C between 3.0 V and 4.3 V over 5 cycles. First, we observe that a severe 

loss in capacity occurs after the first cycle. This may be attributed to significant polarisation, 

which is represented by a sharp increase in voltage, and happens at the beginning of the first 

charge (and then at the beginning and end of each subsequent half cycle). This effectively 

reduces the cycling voltage window and results in reduced opportunity to remove or insert 

lithium or lithium ions to or from the particles. Here we show that once the first high-rate 

discharge is complete, a subsequent charging results in a limited level of delithiation or removal 

of lithium from the particles (see the lithium concentration profiles of Fig 6b, (I), End of 1st 

charge). We note that, throughout cycling, the polarisation is greater during charge (cathode 

delithiation). This asymmetry in polarisation leads to an observed asymmetry in the duration of 

charge and discharge. Thus, more lithium is being added to the particles than extracted due to 

the diminished opportunity for electrochemical reactions. Furthermore, we observe capacity 

fade such that the duration of both charge and discharge half cycles decreases progressively as 

cycling proceeds. This can be interpreted via profiles of active material lithium concentration 

at the end of the 5th cycle (Fig 6b, (I), End of 5th discharge). There is a greater degree of 

homogeneity in lithium concentration throughout the electrode, giving a lower gradient and 

thus driving force for diffusion of lithium within the particles, resulting in the aforementioned 

capacity fade. Experimental evidence [64] has shown that the overpotential is greater during 

charge and that this contributes to capacity fade due to increasing inefficiency of lithium ion 
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transport or potential slowing down of the charge transfer. This aligns with the mechanism of 

capacity fade presented here. 

We now compare the above results with those of a larger voltage window (3.8 V-4.5 V), see 

Fig. 6a (II) and the corresponding lithium concentration profiles in Fig. 6b (II). Here, the larger 

voltage window permits greater levels of lithiation and delithiation, resulting in greater 

utilisation and storage capacity. However, we note that there is still a lower capacity upon 

continuous cycling of the electrode, albeit to a lesser extent than the lower voltage window 

(Case I). Thus the same polarisation-related mechanism dominates here. 
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Fig. 6. The electrochemical response during cycling of an electrode. a Voltage response of an 

89 µm thick electrode undergoing cycling with voltage window of Case (I) 3 V-4.3 V and Case 

(II) 2.8 V-4.5 V. b The lithium concentration profiles at the end of the 1st discharge, end of 1st 

charge and end of 5th discharge for Cases (I) and (II). 
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Fig. 7 shows the evolution of fracture as cycling proceeds. It is clear in both cases (I) and (II) 

that the majority of damage occurs within the first cycle. With a greater depth of discharge 

(discharge to 2.8 V in Case (II)), we observe that a larger degree of cracking occurs relative to 

that of Case (I), the discharge to 3 V. Upon charging and then further cycling we observe 

additional crack growth, most of which occurs in the 1st charge, see particles (X) and (Y) in 

Fig. 7, for example. The results from above show that a larger voltage window facilitates greater 

extents of lithiation and delithiation, giving greater capacity. However, there are drawbacks to 

this, as we observe greater degrees of damage in the centre of the electrode upon cycling, see 

particle (Y) in Fig. 7 (II), for example. 

During delithiation, we observe a reversal in particle-level hydrostatic stress gradients such that 

the outer surfaces of the particles are in tension and the central regions are in compression. In 

this scenario, the presence of edge defects will promote crack growth [42]. In the present study, 

the majority of defects are located in the centre of the particles and since we begin from an 

undamaged, fully delithiated (charged) state, the majority of fracture occurs there. Any cracks 

that develop during discharge will extend further during charge due to the rearrangement of the 

stress field, and this is the primary mechanism presented here.  
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Fig. 7. The fracture response during cycling of an electrode. The phase field profile at the end 

of the 1st discharge, end of 1st charge and end of 5th cycle for Cases (I) and (II) in Fig. 6. 

5.5 Damage at the current collector-particle interface 

A common observation and theme within all simulations was the fracture response at the 

interface between the aluminium current collector and the attached NMC particles, see for 

example point (Z) in Fig. 7. It is clear that significant levels of tensile stress develop at the 

interface due to expansion of the particles. In addition, the attached particles are, by nature, not 

completely spherical, and this results in stress concentrations at the boundary between the 

current collector, particle and the surrounding CBD or pore. Some caveats must be kept in mind 

as we proceed with this discussion. We do not model the post-yield stress-strain behaviour of 

aluminium, nor do we consider the bond strength between the NMC particles and aluminium 
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(we assume they are perfectly attached, i.e. they share the same computational nodes at the 

point of contact). However, we can determine that there is the potential for damage within the 

NMC particles at this interface and furthermore the potential for detachment from the current 

collector, which results in electrical isolation of the electrode. This behaviour has been observed 

to occur during the cycling of NMC electrodes by Heenan et al. [60]. Cracking at the current 

collector interface exhibits a dependence on discharge rate; Fig. 4 shows that cracking at this 

interface is more likely to occur at lower C-rates (1C and 3C for example). The absence of 

interface cracking at higher discharge rates can be attributed to the greater degree of 

heterogeneity in electrode-level lithium concentration and hydrostatic stresses, as described 

previously. However, we note that once an electrode is cycled at high rate, this interface 

cracking occurs at later cycles (see Fig. 7) due to the ever-increasing lithium concentration in 

particles adjacent to the current collector as cycling proceeds. 

5.6 Observations on individual particle fracture 

Shown in Fig. 8 is the detailed mechanical and fracture characteristics of a representative single 

particle (radius~6.9 µm) that has been extracted from the full electrode simulations, as 

described above. As the discharge at 6C progresses, we observe that fracture progresses in three 

stages, as follows: (1) cracks initiate at pre-existing voids and do so due to the high levels of 

triaxial stress, as indicated by the coexistence of highly tensile first, second and third principal 

stresses in the centre of the particle. (2) Following crack initiation, we observe unstable crack 

growth and coalescence of the cracks into a single central disk-like void (see Fig. 8(ii) and (iii)), 

also observed by Klinsmann et al. [10] for an ideal insertion particle with multiple voids. (3) 

Growth of the central void continues and multiple instances of branching occur. The cracks 

then arrest without fully reaching the particle surface. We observe that the stress is still 

compressive at the outer regions of the particle, which prevents further crack growth. During 
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delithiation upon charging, the outer surfaces will exhibit tensile hydrostatic stresses, which 

increases the likelihood of further propagation of these cracks towards the surface. 

The branching in (3) may be interpreted in the following manner. When a crack occurs there is 

stress relief at the crack surfaces, which results in redistribution of the stress field in the vicinity 

of the crack faces. We can observe this via the changes that occur in the principle, and thus 

hydrostatic stresses, as shown in Fig. 8(ii) and (iii). However, it is evident that there are 

sufficient tensile stresses adjacent to the crack tip to promote further crack growth. Given that 

fracture occurs perpendicular to the direction of maximum principle stress, this further crack 

growth and its associated branching is therefore due to the change in direction of the maximum 

principle stress. Furthermore, we observe that crack branching occurs in arbitrary directions, 

which may be partly attributed to the asymmetric nature of the particle geometry, the 

heterogeneous distribution of carbon binder at the particle surface, and the resulting asymmetric 

lithium concentration distributions that we observe in Fig. 8. The influence of carbon binder is 

not explored in detail in this study, however some assumptions can be made on this subject: the 

volume fraction of CBD and Young’s modulus are likely to influence the overall 

microstructural stiffness, which will, in turn, affect the level of particle expansion/contraction 

during lithiation/delithiation. Consequently, this may influence the level of damage experienced 

by the microstructure, however, this is beyond the scope of the present study and further work 

is required to ascertain the influence of these factors on particle fracture. In broad terms, the 

fracture behaviour described above is indicative of all particles throughout the electrode, some 

of which are shown in Fig. 3. 
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Fig. 8. The electrochemical, mechanical and fracture response of a single particle. A particle 

(radius~6.9 µm) extracted from the electrode volume during discharge at 6C, where (i)-(iii) are 

the same discharge instances as that in Fig. 3. Profiles of phase field, hydrostatic and principal 

stresses, and lithium concentration are shown. 
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6. Conclusion 

The coupled electro-chemo-mechanical and phase field formulation presented in this work has 

demonstrated the ability to predict the void-driven damage that occurs within the realistic 

microstructure of a lithium-ion battery during early-stage cycling. Moreover, we demonstrate 

the ability of the model to predict the microstructural evolution at a variety of cycling rates and 

electrode thicknesses, whilst also considering the cycling voltage window. Incidence of damage 

is shown to be highly location-dependent within the electrode microstructure, which, is linked 

to the heterogeneous electrochemical response due to slow diffusion in the electrolyte and 

active material. Furthermore, the majority of void-induced damage is shown to occur within the 

first cycle, with relaxation of the structure thereafter. 

With these electrochemical, transport and mechanical insights in mind, it is now possible to 

propose some potential electrode design and operating guidelines. For example, given that slow 

diffusion within the particles limits the performance of thick electrodes and promotes damage, 

then it is clear that, in particular, smaller particles are required in the near-separator region. This 

suggests that grading of the electrode microstructure may be required to produce high capacity, 

thicker electrodes, with improved degradation characteristics. In addition, it is evident that the 

voltage window must be limited, given the propensity for cracking when an electrode is 

operated at the extremities of the voltage window during charge and discharge. 

We have demonstrated that a framework formed of advanced imaging and coupled numerical 

implementations of electrochemistry, mechanics and phase field fracture provides a wealth of 

information about the characteristics of a lithium-ion battery. This paper has outlined the 

foundations for a tool that will benefit the design of improved battery electrode microstructures 

and will help define operational boundary conditions to preserve battery performance. 
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