Anthropogenic pressures coincide with Neotropical biodiversity hotspots in a flagship butterfly group

Maël Doré1,2 | Keith Willmott3 | Boris Leroy4 | Nicolas Chazot5 | James Mallet6 | Andrés V. L. Freitas7 | Jason P. W. Hall8 | Gerardo Lamas9 | Kanchon K. Dasmahapatra10 | Colin Fontaine2 | Marianne Elias1

1 Institut de Systématique, Evolution, Biodiversité, MNHN-CNRS-Sorbonne Université-EPHE-Université des Antilles, Muséum national d’Histoire naturelle de Paris, Paris, France
2 Centre d’écologie et des sciences de la Conservation, UMR 7204 MNHN-CNRS-Sorbonne Université, Muséum national d’Histoire naturelle de Paris, Paris, France
3 McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida, Gainesville, Florida, USA
4 Unité Biologie des Organismes et Ecosystèmes Aquatiques (BOREA UMR 7208), Muséum National d’Histoire Naturelle, Sorbonne Universités, Université de Caen Normandie, Université des Antilles, CNRS, IRD, Paris, France
5 Swedish University of Agricultural Sciences, Uppsala, Sweden
6 Dept of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA
7 Departamento de Biologia Animal and Museu da Biodiversidade, Instituto de Biologia, Universidade Estadual de Campinas, São Paulo, Brazil
8 Department of Entomology, National Museum of Natural History, Smithsonian Institution, Washington, District of Columbia, USA
9 Museo de Historia Natural, Universidad Nacional Mayor de San Marcos, Lima, Peru
10 Dept of Biology, University of York, Heslington, UK

Abstract

Aim: The biodiversity crisis has highlighted the need to assess and map biodiversity in order to prioritize conservation efforts. Clearwing butterflies (tribe Ithomiini) have been proposed as biological indicators for habitat quality in Neotropical forests, which contain the world’s richest biological communities. Here, we provide maps of different facets of Ithomiini diversity across the Neotropics to identify areas of evolutionary and ecological importance for conservation and evaluate their overlap with current anthropogenic threats.

Location: Neotropics.

Methods: We ran species distribution models on a data set based on 28,986 georeferenced occurrences representing 388 ithomiine species to generate maps of geographic rarity, taxonomic, phylogenetic and Müllerian mimicry wing pattern diversity. We quantified and mapped the overlap of diversity hotspots with areas threatened by or providing refuge from current anthropogenic pressures.

Results: The eastern slopes of the Andes formed the primary hotspot of taxonomic, phylogenetic and mimicry diversity, with secondary hotspots in Central America and the Atlantic Forest. Most diversity indices were strongly spatially correlated.
Nevertheless, species-poor communities on the Pacific slopes of the Andes also sheltered some of the geographically rarest species. Overall, tropical montane forests that host high species and mimetic diversity as well as rare species and mimicry rings appeared particularly under threat.

Main conclusions: Remote parts of the Upper Amazon may act as refuges against current anthropogenic pressures for a limited portion of Ithomiini diversity. Furthermore, it is likely that the current threat status may worsen with ongoing climate change and deforestation. In this context, the tropical Andes occupy a crucial position as the primary hotspot for multiple facets of biodiversity for ithomiine butterflies, as they do for angiosperms, tetrapods and other insect taxa. Our results support the role of ithomiine butterflies as a suitable flagship indicator group for Neotropical butterfly diversity and reinforce the position of the tropical Andes as a flagship region for biodiversity conservation in general, and insect and butterfly conservation in particular.

KEYWORDS
anthropogenic pressures, biodiversity hotspots, geographic rarity, Human Footprint, human impacts, Ithomiini butterflies, Müllerian mimicry, phylogenetic diversity, species richness

1 | INTRODUCTION

The global biodiversity crisis is a critical environmental issue (IPBES, 2019) with unprecedented rates of species loss across multiple taxonomic groups, now referred to as the sixth mass extinction (Barnosky et al., 2011; Ceballos et al., 2015). Such species loss significantly alters biodiversity patterns and affects ecosystem functions worldwide. In particular, there is growing evidence for recent massive declines in insects (Cardoso et al., 2020; Eggleton, 2020; Montgomery et al., 2020), which represent the bulk of current biodiversity (Mora et al., 2011; Stork, 2018). This loss is concomitant with the global increase in human pressures on ecosystems, with currently 75% of the planet’s non-frozen land surface impacted (Venter et al., 2016b). These alarming trends are compelling scientists to better assess and map biodiversity in order to prioritize conservation efforts given limited time and resources (Brooks et al., 2006).

One early approach towards identifying global priority areas for conservation was the delimitation of biodiversity hotspots (Myers et al., 2000): areas with high levels of vascular plant species richness and endemicity, and significant loss of primary natural habitats. The Neotropics encompass seven of these biodiversity hotspots, including the richest of them: the Tropical Andes (Myers et al., 2000). However, it is not known how well such hotspots, identified on the basis of vascular plant diversity and confirmed for vertebrates, provide adequate surrogates for the diversity of other taxa, especially insects (Stork & Habel, 2014). Indeed, georeferenced primary biodiversity data for insects, particularly in the Neotropics, are very scarce due to the challenges of collecting, digitalizing and verifying taxonomic identifications for records covering often inaccessible, remote regions (Short et al., 2018; Stork, 2018). Moreover, whether species richness and endemism adequately reflect other facets of biodiversity such as phylogenetic and functional diversity may depend on the group considered (Albouy et al., 2017; Allouche et al., 2006; Devictor et al., 2010; Mazel et al., 2014; Prendergast et al., 1993; Williams et al., 1996; Zupan et al., 2014). There is therefore an urgent need to explore to what extent existing hotspots identified for well-studied taxa coincide with those of other less well-known groups, and how well those hotspots represent facets of biodiversity beyond species richness and endemism. Here, we tackle this issue by investigating the spatial distribution of different metrics of biodiversity in an integrative assessment that covers its multifaceted nature (Pollock et al., 2017, 2020). We focus our assessment on a diverse insect group, the butterfly tribe Ithomiini Godman & Salvin, 1879 (Nymphalidae: Danainae), in the world’s biologically richest region, the Neotropics.

The tribe Ithomiini comprises 396 described species distributed among 42 genera and 10 subtribes (Chazot et al., 2019). These butterflies form diverse communities in humid forests from sea level to 3000 m, throughout the Neotropics. Their habitats are threatened by high rates of deforestation associated with cattle ranches, soybean and oil palm plantations, as well as industrial logging, mining and road building (Armenteras et al., 2017; Fearnside, 2017; Rajão et al., 2020; Sonter et al., 2017). In this context, ithomiine butterflies have been proposed as indicator species for habitat quality and local butterfly diversity (Beccaloni & Gaston, 1995; Brown Jr, 1997; Uehara-Prado & Freitas, 2009 but see Brown & Freitas, 2000), Ithomiini also represent the most diverse radiation of aposematic and Müllerian mimetic butterflies, whereby co-occurring unpalatable species display similar wing colour patterns that advertise their distastefulness to predators. Müllerian co-mimetic species interact mutualistically, because they share the cost incurred during the learning process of predators (Joron & Mallet, 1998; Müller, 1879; Sherratt, 2008). All Ithomiini species engage in Müllerian mimicry and drive mimicry in other distantly related groups of Lepidoptera (Beccaloni, 1997; Brown Jr. &
Remarkably, many ithomiines have partly transparent wings (McClure et al., 2019; Papageorgis, 1975; Figure 1a), which has inspired their common name of ‘clearwing’ butterflies. Overall, ithomiine butterflies combine their potential role as biological indicators with positive public image (e.g. Barua et al., 2012; Sumner et al., 2018), making them candidate flagship species for conservation in the Neotropics. Previous studies have already investigated the historical biogeography of the tribe. Ithomiini likely originated in the eastern Andean foothills and a major clade, composed of the five most species-rich subtribes and comprising 80% of species, diversified in Central Andes 20–10 My ago (Chazot et al., 2019). Those areas, which harbour heterogeneous landscapes favouring speciation, also coincide with known hotspots of species richness for three diverse ithomiine genera (Ithomia, Napeogenes, and Oleria; Chazot, Willmott, Freitas, et al., 2016). However, patterns of species diversity remain to be documented at the level of the entire tribe, across the Neotropics. Similarly, patterns of phylogenetic diversity, geographic rarity and mimicry richness remain largely uncharacterized at such scales.

Phylogenetic diversity has become a fundamental component of biodiversity assessments that addresses the evolutionary distinctiveness of species assemblages (Faith, 1992). It is recognized by the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES) as a key indicator for the maintenance of options in nature’s contribution for people (IPBES, 2019) and is included in conservation tools such as the EDGE index for Evolutionarily Distinct and Globally Endangered species (Isaac et al., 2007). High phylogenetic diversity reflects the presence of species with distinctive evolutionary pathways, which provide a proxy for evolutionary novelties of high value for conservation (Faith, 2018).

Geographic rarity is another component of biodiversity that relates to the spatial dimension of rarity, with species with restricted distributions being considered rare compared to species with wider ranges (Rabinowitz, 1981). Species with small geographic ranges can support original functions in ecosystems (Mouillot et al., 2013), while they often face higher risks of extinction (Böhm et al., 2016; Cardillo et al., 2008; Purvis et al., 2000). Species range size is therefore commonly incorporated into diversity indices (Gumbs et al., 2020; Jetz et al., 2014; Maritz et al., 2016). Mapping species geographic rarity provides an additional tool for conservation prioritization (Cadotte & Davies, 2010), as another complementary facet of diversity patterns linked to species vulnerability and areas of endemism.

Biotic interactions, although rarely integrated in biodiversity assessments, represent the architecture of life that reflects the interdependence of all units of biodiversity (Bascompte, 2009). For example, mutualistic interactions can shape species distributions and community composition (Duffy & Johnson, 2017; Sherratt, 2006), affecting ecosystem stability (Hale et al., 2020; Pascual-García & Bastolla, 2017) and supporting ecosystem services such as pollination function or seed dispersal (Millennium Ecosystem Assessment, 2005).

FIGURE 1 Wing patterns in ithomiine butterflies. (a) Specimen of Hypomenitis libethris harbouring the wing pattern LIBETHRIS with transparent areas. Photo credits: Andrew Neild, 2016. (b) Illustration of the convergence of wing patterns across Ithomiini. Mimicry ring CONFUSA: Methona confusa psamathe (I), Thyridia psidii ino (II), Methona themisto (III). Mimicry ring ILLINISSA: Oleria ilerdina priscilla (IV), Napeogenes sylphis ercilla (V), Hyposcada illinissa illinissa (VI). Mimicry ring MAELUS: Melinaea satevis cydon (VII), Hypothyris anastasia anastasina (VIII), Hypothyris fluonia pardalina (IX). Mimicry ring AURELIANA: Napeogenes sylphis corena (X), Hypoleria aureliana (XI), Pseudoscada fluora aureola (XII). Photo credits: Nicolas Chazot, 2015
Müllerian mimicry systems, such as ithomiine butterflies, provide an excellent opportunity to study mutualistic interactions, because interacting species can be identified through their similarity in warning patterns. Müllerian mimicry is known to affect individual fitness and constrain species distribution (Aubier et al., 2017; Chazot et al., 2014; Kapan, 2001; Langham, 2004; Mallet & Barton, 1989; Sherratt, 2006). Additionally, mimetic species form adaptively assembled mutualistic communities that are predicted to suffer more from community disassembly due to the loss of those mutualistic interactions (Toby Kiers et al., 2010) and to be more sensitive to co-extinction cascades (Dunn et al., 2009). Therefore, Müllerian mimicry systems provide opportunities to map patterns of mimicry richness and geographic rarity, which reflect the distribution of mutualistic interactions in space, a component of functional diversity that is particularly relevant for conservation.

In this study, (1) we provide modelled distribution maps of taxonomic, phylogenetic and mimicetic diversity as well as geographic rarity, for the entire tribe Ithomiini across the Neotropics, in order to identify biodiversity hotspots as areas of both evolutionary and ecological importance for conservation; (2) we evaluate the spatial relationships among those facets of Ithomiini diversity; and (3) we assess current anthropogenic threats to Ithomiini biodiversity hotspots, highlighting risk areas with high anthropogenic pressures, and potential refuges with currently low levels of human influence.

2 | METHODS

2.1 | Data sources

We compiled from multiple sources an initial data set of 28,986 georeferenced occurrences for 388 ithomiine butterfly species in their natural habitats, out of the 396 known species, spanning 25 countries across the Neotropics (see maps of occurrences, sampling effort, sampling completeness and bioregions in Figure S1.1, S1.2, S1.3 & S1.4). This data set provided 19,271 species-grid-cell records for distribution modelling at a 0.25° × 0.25° spatial resolution after removing duplicate records from single grid cells, which are available from Zenodo at https://doi.org/10.5281/zenodo.4696055. The data come from fieldwork by the authors over the past five decades, and records from over 60 museums and private collections detailed in the online archive metadata. Each record is associated with its location, its taxonomic identity and its mimicry ring membership (i.e. a wing colour pattern shared by individuals reflecting mutualistic interactions). The current classification of wing patterns presents 44 mimicry rings (Figure S2.5) updated from previous works (Beccaloni, 1997; Chazot et al., 2014, 2019; Elias et al., 2008; Jiggins et al., 2006; Willmott & Mallet, 2004).

Sets of co-mimetic species (i.e. sharing a wing pattern) form mimicry rings (Figure 1b). Most Ithomiini species comprise several to many subspecies that may belong to distinct Müllerian mimicry rings. Additionally, some subspecies show a sexual dimorphism with males and females belonging to different mimicry rings. Since we intended to map mimicry ring distribution as well as species distribution, we defined Operational Mimicry Units (OMUs) as the set of individuals within the same species that shared the same mimicry pattern. An OMU may either be equivalent to an entire species, if all individuals of all subspecies of that species share the same pattern, or it may represent individuals from a smaller group of subspecies that share a common mimicry pattern, in which case a single species may be represented by multiple OMUs. A total of 783 OMUs were used as modelling units for distribution models (complete list in Appendix 4). The mimicry classification of all 1511 subspecies is available from Zenodo at https://doi.org/10.5281/zenodo.5497876.

To compute indices of phylogenetic diversity, we used a recently published time-calibrated phylogeny of the Ithomiini (Chazot et al., 2019; Figure S3.6), which represents 339 out of the 388 species with georeferenced records.

2.2 | Data analyses

2.2.1 | Species distribution modelling (SDM)

In order to map the current distributions of ithomiines, we developed species distribution models (SDMs) relating occurrence data with a set of environmental variables. We describe our SDM methods following the ODMAP (Overview, Data, Model, Assessment, Prediction) protocol for species distribution models (Zurell et al., 2020). Here, we provide the overview of the distribution models while the remaining ODMAP sections, providing details in modelling steps, justifications for modelling choices and a more in-depth discussion about potential caveats and limits, are detailed in Appendix 5.

We aimed to model the current distribution of species and mimicry rings, as well as to infer the current patterns of geographic rarity and taxonomic, phylogenetic and mimicry ring diversity (as described further below) for the whole Ithomiini tribe. We proceeded as follows: (1) we retrieved environmental predictors of Ithomiini distribution, (2) we obtained multiple environmental suitability maps for each OMU employing a set of SDM algorithms, (3) we derived for each OMU a median ensemble model depicting its modelled distribution, (4) we stacked these modelled distribution maps in order to obtain in each pixel the predicted occurrence of OMUs, while observed binary maps of OMU with less than six occurrences were included directly at this step, then we (5) derived species and mimicry ring distribution maps and compute various taxonomic, phylogenetic and mimicry diversity and geographic rarity indices (Figure 2).

Our models encompassed the entire distribution of the tribe in the Neotropics (Longitude 120°E–30°E, Latitude 37°S–28°N) at a 0.25° × 0.25° spatial resolution. Thus, each quarter-degree grid cell (hereafter, pixel) represents a virtual community of ca. 27.8 km × 27.8 km. This resolution is appropriate for niche models based on large-scale predictors such as climate (McGill, 2010), limits commission errors (Di Marco et al., 2017) and appears sufficient to identify broad geographic patterns of diversity at a scale relevant...
to biodiversity conservation (e.g. Abreu-Jardim et al., 2021; Gumbs et al., 2020; Robuchon et al., 2021; Roll et al., 2017). We selected climate, represented by annual temperature and humidity levels and seasonality (MERRAclim v.2.0; Vega et al., 2017), elevation (SRTM Dataset v.4.1; Farr et al., 2007) and vegetation cover (GLCF; Sexton et al., 2013), as environmental predictor variables for distribution modelling. Indeed, these environmental dimensions have been regarded as important in determining large-scale distribution patterns and structuring ithomiine communities (Beccaloni, 1997; Chazot et al., 2014).

We fitted SDMs for 563 OMUs for which we had at least six occurrences available (71.9% of OMUs, encompassing 335 species, i.e. 86.3% of species with known occurrences). We included the remaining 220 OMUs (28.1%) in stacks as binary rasters of presences-absences. We fitted SDMs in *biomod2* v.3.4.6 (Thuiller et al., 2020) using three machine learning algorithms to cope with small sample sizes: random forest, generalized boosted models and artificial neural networks. We drew pseudo-absences from those occurrences in a target group strategy (Mateo et al., 2010), a procedure to increase the likelihood that sampled pseudo-absences were effectively located in sites where OMUs were absent. We evaluated model performance with maximized Jaccard indices. For 361 OMUs with small sample sizes (N < 30; 46.1%), models were evaluated upon the calibration data set. For 202 OMUs with large sample sizes (N ≥ 30; 25.8%), we ran an additional 3-fold spatial block cross-validation step (Roberts et al., 2017; Valavi et al., 2019) to improve model evaluation. We discarded models with a poor performance (Jaccard index < 0.95 without cross-validation; Jaccard index < 0.6 with cross-validation) and produced an ensemble model based on the median of predictions. We clipped final outputs with OMU-specific buffered alpha-hulls and, where relevant, we constrained outputs to the east or west of the Andean continental divide, to limit the extent of possible distributions to reasonable areas.

We derived species and mimicry ring distribution maps from the modelled distribution maps of OMUs as the likelihood of finding at least one of the OMUs belonging to the species/mimicry ring in the community (i.e. in the pixel). In the final post-processing step, we computed six diversity and geographic rarity indices based directly on the stack of species and mimicry ring maps. Additionally, we present in Appendix 9 four additional indices evaluating similar facets of diversity with alternative methods to explore the robustness of our analyses to index selection.

2.2.2 Diversity and geographic rarity indices

We computed species and mimicry richness as the expected number of species and mimicry rings found in our communities (i.e. in each pixel), by summing the continuous outputs from models as recommended by Calabrese et al. (2014). To estimate phylogenetic diversity, we computed Faith's phylogenetic diversity index (Faith, 1992) based on the phylogeny of the Ithomiini tribe (Chazot et al., 2019) encompassing 339 species and 719 OMUs. This index estimates the total length of branches connecting all the species within a community, capturing the quantity of evolutionary history they represent.

We assigned geographic rarity weights for each species and mimicry ring based on their relative geographic ranges following the threshold-dependent exponentially decaying weighting scheme of Leroy et al. (2013). This method assigns weights that exponentially increase below the chosen rarity threshold and rapidly decay to zero above the threshold, thereby limiting the impact of common species on community indices. We chose the rarity threshold at which the average proportion of rare species in communities was 25%, as detailed in Leroy et al. (2012). Next, we used these rarity weights to calculate an index of rarity for each community, which was the average rarity weight for all species or mimicry rings. These indices
can be seen as proxies for relative levels of endemism since they quantify the relative importance of species or mimicry ring with small ranges in communities.

To quantify the importance of mutualistic interactions, we estimated the mean size (i.e. number of species) for mimicry rings within each community. Communities with high mean mimicry ring size correspond to greater frequencies of mutualistic interactions, while communities with low mean mimicry ring size host in average species engaged in fewer mutualistic interactions. Assuming that the richest mimicry rings also tend to be the most abundant, species belonging to smaller mimicry rings, thus harbouring locally rare patterns, are likely more vulnerable to predation by naïve predators, and thereby to local extinctions (Müller, 1879). As such, a low mean mimicry ring size may relate to higher vulnerability on average in the mimicry community.

Additionally, we computed indices of effective richness based on Shannon's diversity indices and an index of evolutionary distinctiveness based on Fair-Propportions (Redding, 2003), and we mapped the size of the main mimicry ring in each community (see Figure S9.22). A flow chart and additional details on index computation based on our modelled distribution maps are provided in Appendix 8. The robustness of indices was tested with several sensitivity analyses as described in the ODMAP protocol. Results showed no qualitative difference with the results presented in the main text (see Figure S5.12–S5.16).

2.2.3 | Estimation of index correlation

We computed pairwise Spearman's rho coefficients (ρ) to estimate the spatial congruence among our indices. We tested for the significance of these relationships with corrected degrees of freedom accounting for the positive spatial autocorrelation among observations (Clifford et al., 1989; Haining, 1991). Then, we built a heatmap of spatial congruence among indices based on the absolute Spearman's rho coefficients. Additionally, we ran a hierarchical clustering analysis based on those same absolute coefficients as distances from perfect correlation ($i.e. d = 1 - |\rho|$) with a complete linkage method to produce a dendrogram revealing classes of indices showing highly similar patterns. We distinguished four classes of indices that represented the main facets of biodiversity while grouping indices that were highly correlated and revealed virtually similar hotspots. This resulted in applying a threshold of $|\rho|$ equal to 0.94 (see details in Results). Then, we selected one index per class for subsequent analyses of anthropogenic threats on diversity hotspots.

2.2.4 | Spatial overlap between biodiversity hotspots and anthropogenic threats

We used the 2009 Human Footprint index (Venter et al., 2016a) as a measure of anthropogenic threats to our communities of ithomiine butterflies. Despite representing anthropogenic pressures from a decade ago, Human Footprint remains the most comprehensive and recent map available for worldwide cumulative human pressures on terrestrial ecosystems (see Figure S6.17). It is still widely used in similar large-scale conservation assessments, which allows for standardization and comparative analyses (e.g. Allan et al., 2019; Di Marco et al., 2018; Elsen et al., 2020; Maron et al., 2020; Tucker et al., 2018). The index combines eight variables that measure direct human impacts on the environment, namely (1) human population density, (2) night-time light pollution, (3) extent of built environments, (4) crop land cover, (5) pasture land cover, and (6) proximity to railways, (7) to major roadways and (8) to navigable waterways.

We defined two levels of hotspots as the top 5% and 25% of communities showing the highest values for each of our indices. Similarly, we defined areas of very high (top 5%), high (top 25%), low (bottom 25%) and very low (bottom 5%) threats based on the Human Footprint scores of communities. Then, we characterized as risk areas communities showing the highest values in a facet of Ithomiini diversity (i.e. hotspots), and the highest levels of anthropogenic pressures. Risk areas should be considered as priorities for reactive conservation with the goal of reducing high anthropogenic impact on threatened biodiversity (Brooks et al., 2006). Conversely, we characterized refuge areas as communities within hotspots with the lowest levels of pressures. Refuges should be prioritized for proactive conservation, with the goal of preserving these diverse areas from future anthropogenic threats (Brooks et al., 2006), providing shelter for a portion of ithomiine biodiversity. Finally, we mapped risk areas and refuge areas for four indices selected to represent our classes of highly correlated indices, namely (1) species richness, (2) mean species geographic rarity, (3) mimicry richness and (4) mean mimicry geographic rarity.

2.3 | Reproducibility and data availability

We conducted all analyses using R 3.6.2 (R Core Team, 2019) with packages ‘raster’ 3.0–12 (Hijmans, 2020), ‘biomod2’ 3.4.6 (Thuiller et al., 2020), ‘sf’ 0.9–0 (Pebesma, 2018), ‘blockCV’ 2.1.1 (Valavi et al., 2019), ‘alphahull’ 2.2 (Pateiro-Lopez & Rodriguez-Casal, 2019), ‘ape’ 5.3 (Paradis & Schliep, 2019), ‘geiger’ 2.0.6.1 (Harmon et al., 2008), ‘Rarity’ 1.6.3 (Leroy, 2016) and others. All R scripts are available on GitHub at https://github.com/MaelDore/ithomiini_diversity. Species-grid-cell records and the mimicry classification used for modelling are available from Zenodo at https://doi.org/10.5281/zenodo.4696055 and https://doi.org/10.5281/zenodo.5497876.

3 | RESULTS

We inferred the distribution for each of the 388 species and 44 mimicry rings based on the 783 OMUs. All OMU/species/mimicry ring modelled distribution maps can be found at https://doi.org/10.5281/zenodo.4673446. Examples are provided in Appendix 7.
3.1 | Index maps

The Eastern slopes of the Andes appeared as the primary hotspot of Ithomiini taxonomic, phylogenetic and mimetic diversity, especially between 500 and 2500 m (Figure 3a, c, d, g). We estimated that some quarter-degree grid cells (hereafter referred to as communities) may harbour as many as 120 species, representing up to 28 mimicry rings, especially in Ecuador and Peru. These species totals partly represent alpha-diversity and partly different habitats contained within single quarter-degree grid cells. The Atlantic Forest and the highlands of Central America appeared as secondary hotspots but fall far behind in terms of numbers of species, mimicry richness and phylogenetic diversity. Conversely, we estimated species and mimicry richness, and phylogenetic diversity.
to be relatively low in regions with low forest cover such as in the Llanos, in the semi-arid Caatinga, in the seasonal Cerrado savannas, and the Pantanal wetlands (see map of bioregions in Figure S1.4). Regions around the outer margin of the Ithomiini distribution such as the north of Central America, the Chaco region and the Pampas grasslands from Northwest Argentina to Uruguay (see map of bioregions in Figure S1.4), also show relatively low levels of richness and phylogenetic diversity.

Mean geographic rarity of species and mimicry peaked on the western slopes of the Andes facing the Pacific coast and appeared generally high in the Andes (Figure 3b, e, h). Mean species geographic rarity was also estimated to reach high levels in Central America. Conversely, few species and mimicry rings with restricted ranges occurred in the species-poor Cerrado savannas, in the Chaco region and in the semi-arid Caatinga (Figure 3b, e). The Amazon basin also hosted few rare species and mimicry rings, with the notable exception of the regions around the course of the Amazon River in the Upper Amazon (Figure 3b, e, h).

Communities with the largest mimicry rings on average, that host the highest proportion of mutualistic interactions, were estimated to occur in Central America in Panama and Costa Rica, on the eastern slopes of the Andes in Ecuador and Peru, along the Amazon River, and in the Atlantic Forest (Figure 3f, i). Conversely, communities in the species-poor Llanos, Caatinga, Cerrado and Chaco regions contained the most vulnerable mimicry rings with the fewest species on average (Figure 3f).

3.2 Correlation among indices

All indices were significantly positively correlated (Table S10.26: Clifford’s correction for Spearman’s rank test, all pairwise p-values < 0.001). We distinguished four classes of indices based on their levels of correlation (Figure 4). The dendrogram and correlation heatmap for the full set of ten indices are presented in Figure S9.23.

The first class represented a set of indices strongly correlated with species richness (Figure 4; Table S10.27). Species richness appeared to be a very strong predictor of Faith’s phylogenetic diversity (Tables S10.26 and S10.27: \(\rho = 0.996, t = 84.0, \) Clifford’s \(df = 56.7, p < 0.001 \)), and mean mimicry ring size (Tables S10.26 and S10.27: \(\rho = 0.941, t = 21.2, \) Clifford’s \(df = 57.9, p < 0.001 \)).

Mimicry richness also correlated strongly with species richness (Tables S10.26 and S10.27: \(\rho = 0.934, t = 19.7, \) Clifford’s \(df = 56.6, p < 0.001 \)), but it was less strongly correlated with the other indices of the first group (Table S10.26: \(\rho = 0.854 \) in average). Moreover, the relationship between species richness and mimicry richness was not strictly linear: some communities with the highest number of mimicry rings are not the most speciose (Figure S10.24c). Since this pattern can lead to differences in hotspot identification, we attributed mimicry richness to a second class of indices on its own (Figure 4).

Geographic rarity indices (species and mimicry) were more closely correlated with each other (Tables S10.26 and S10.27: \(\rho = 0.657, t = 7.05, \) Clifford’s \(df = 65.5, p < 0.001 \)) than with any other indices. However, they were less correlated with each other than the first group of indices. As such, they formed a third and fourth class of indices (Figure 4). They were nonetheless moderately correlated with species richness (Tables S10.26 and S10.27: \(\rho = 0.473, t = 4.34, \) Clifford’s \(df = 65.4, p < 0.001 \)) for mean species geographic rarity; \(\rho = 0.606, t = 5.98, \) Clifford’s \(df = 61.5, p < 0.001 \) for mean mimicry ring geographic rarity). Indeed, species-rich communities tended to present high mean geographic rarity values, while species-poor communities exhibited the entire range of relative levels of species endemism (Figure S10.24a and S10.24b). Similarly, communities with high mimicry richness showed high mean mimicry geographic rarity, while communities with few mimicry rings could exhibit the entire range of relative levels of mimicry endemism (Figure S10.24d).

Correlations including the four additional indices computed (namely species Shannon’s diversity, mimicry Shannon’s diversity, Evolutionary Distinctiveness and the maximum mimicry ring size) supported the classification in four classes of indices and can be found in Appendices 9 and 10.

3.3 Threat and refuge maps

Our assessment of current anthropogenic threats on Ithomiini diversity hotspots showed that the northern Andean cordilleras combine high taxonomic and mimetic diversity with high levels of human impact, making them a region of focus for conservation. Meanwhile, remote portions of the Upper Amazon rainforest may act to some extent as refuges for the different facets of Ithomiini diversity (Figure 5). However, the top 5% hotspots consistently demonstrated very limited to no overlap with potential refuge areas for all indices (Figures 5b, d, f, h and 6b).

We estimated hotspots of species richness to be under relatively high anthropogenic pressures in the Andes, with most of the mountainous areas below 2500 m coinciding with species-rich communities and high human impact levels (Figure 5a). The Atlantic Forest, as the secondary hotspot for Ithomiini species richness, appeared to be the most threatened with a large portion of its range falling under high levels of threats, including the top 5% of the most threatened communities (Figure 5a). The Upper Amazon encompassed a significant part of potential refuge areas with low levels of threats (Figures 5a and 6a; 33.3% of hotspots compared to the expected 25% overlap), but these areas showed limited overlap with the top 5% of the richest communities (Figures 5b and 6b; 13% of hotspots compared to the expected 25% overlap).

We estimated mean species geographic rarity hotspots to be relatively more threatened than the other facets of Ithomiini diversity, and also to deviate positively from that expected from a random distribution of anthropogenic threats (Figures 5c–d and 6). This trend remained detectable when exploring other thresholds to define the hotspots (Figure S11.28). Hotspots in the Andes, the coastal part of the Atlantic Forest, and the mountainous spine of Central America showed high to very high levels of threats...
4 | DISCUSSION

4.1 | Spatial congruence of the facets of Ithomiini diversity

In our integrative approach to mapping Ithomiini diversity, we found that estimated species, mimicry and phylogenetic diversity indices are strongly correlated across the Neotropics. All indices peaked on the eastern slopes of the Peruvian and Ecuadorian Andes, and in the Upper Amazon region, while the Atlantic Forest and Central American mountains appeared as secondary richness hotspots (Figure 3a, c, d). We also uncovered relatively low levels of biodiversity in the Llanos, the Guyana Shield and the Cerrado savannas. As is common in stack-SDM procedures, these predictions likely overestimate richness and diversity within individual grid cells because species are likely absent in at least some environmentally suitable grid cells where they are predicted to occur (see ODMAP in Appendix 5). However, this potential bias affects all cells evenly and therefore does not prevent the generation of meaningful insights into the relative patterns of biodiversity and the identification of hotspots.

Spatial patterns of ithomiine biodiversity likely result from the combined effects of historical, ecological and topographical factors. The tribe likely originated in the eastern Andean foothills, about 26 My ago and diversified in the Andes throughout the Miocene (Chazot et al., 2019). The demise of the Pebas, a large wetland system that occupied the lowlands on the eastern side of the Andes, led to the expansion of the modern Amazonian forest (Hoorn & Wesselingh, 2010), allowing multiple colonizations and diversification in the Upper Amazon during the last 10 My (Chazot et al., 2018, 2019; Chazot, Willmott, Condumine, et al., 2016; De-Silva et al., 2016, 2017; Elias et al., 2009). Ithomiini are strongly specialized on their larval hostplants, and hostplants are likely a limiting resource (Drummond III & Brown Jr, 1987; Willmott & Mallet, 2004). The diversity of Solanaceae, on which most Ithomiini feed as larvae, also peaks in the Andes and the Upper Amazon (Knapp, 2002; Ulloa Ulloa et al., 2017), thereby potentially enabling greater local Ithomiini diversity. This apparent spatial correlation between species diversity in ithomiines and their hostplants is consistent with a hostplant-mediated adaptive radiation scenario (Willmott & Freitas, 2006).

Finally, the topological complexity of the Andes and adjacent foothills creates high variability in abiotic conditions, habitat and vegetation types (Osborne, 2012), which generates species turn-over, mimicry shifts and fosters vicariant speciation (Chazot et al., 2014; Elias et al., 2009; Jiggins et al., 2006). Therefore, the tropical Andes represent the primary hotspot of alpha-diversity (Figure 3a), but also beta-diversity with high local endemicity (Figure 3b and h) and turn-over across communities, both of high interest for conservation. The Upper Amazon, because of its proximity and historical exchanges with the Andes, its soil enriched with organogenic sediments, as well as a more variable climate and heterogeneous forest structure hosting numerous microhabitats, tends to host more diverse communities.
Species richness
Top 25% hotspots

Species richness
Top 5% hotspots

Species geographic rarity
Top 25% hotspots

Species geographic rarity
Top 5% hotspots

Mimicry richness
Top 25% hotspots

Mimicry richness
Top 5% hotspots

Mimicry geographic rarity
Top 25% hotspots

Mimicry geographic rarity
Top 5% hotspots

FIGURE 5 Legend on next page
Communities with high levels of species and mimicry rarity. Such communities are species ranges. Yet, some species-poor communities also coincide strong hostplant turnover (Knapp, 2002), which may limit ithomiine harbour steep environmental gradients (Osborne, 2012) enabling Andean and Central American mountains (Figure 3b). These regions stand out as the primary hotspot for the multiple facets of Ithomiini diversity hotspots (Myers et al., 2000). Moreover, our inferred patterns of diversity and endemism (Myers et al., 2000). As such, the tropical Andes biodiversity hotspots appear fairly congruent with biodiversity hotspots based on vascular plant species richness and endemism (Myers et al., 2000). (Figure 5a, e, g). (g) and (h): Mean mimicry geographic rarity based on mimicry ring range. (a) and (b): Species richness. (c) and (d): Mean species geographic rarity based on species range. (e) and (f): Mimicry richness (i.e. number of mimicry rings). (c) and (d). Y-axis represents the number of communities (i.e. grid cells) within risk and refuge areas for each biodiversity hotspots. Species rarity describes mean geographic rarity based on species range. Horizontal dashed lines represent the expected size of the overlap for a random distribution of anthropogenic threats. Percentages displayed on bars represent the proportion of the hotspot overlapping with the threat area. (a) For the top 25% hotspots. (b) For the top 5% hotspots.

Overall, Ithomiini biodiversity hotspots appear fairly congruent with biodiversity hotspots based on vascular plant species richness and endemism (Myers et al., 2000). As such, the tropical Andes stand out as the primary hotspot for the multiple facets of Ithomiini biodiversity. Secondary hotspots of Ithomiini diversity, namely the Atlantic Forest, Central American mountains and the Pacific slopes of the Andes, also coincide with areas previously recognized as biodiversity hotspots (Myers et al., 2000). Moreover, our inferred patterns of diversity and endemism are in line with the trends observed for other taxa in the Neotropics. Angiosperms and tetrapods show a peak of diversity and endemism in the western part of Amazonia and in the Andean foothills (Gumbs et al., 2020; Jenkins et al., 2013; Kier et al., 2009; Morawetz & Raedig, 2007; Roll et al., 2017; Ter
Steere et al., 2003). Among insect taxa, the overall biodiversity patterns of Ithomiini are consistent with those of Cicindelinae beetles (Pearson & Carroll, 2001), Adelpha butterflies (Mullen et al., 2011), Nymphidini butterflies (Hall, 2018) and Heliconiini butterflies (Rosser et al., 2012). Conversely, the distribution of bees in the Neotropics presents an opposite trend, with higher richness per area reached in the Chaco regions, Caatinga, dry Southern Andes and Atlantic forest, reflecting the great success of this group in xeric and seasonal habitats (Orr et al., 2021). Overall, these results support the role of ithomiine butterflies as suitable flagship indicator group for Neotropical butterfly diversity and reinforce the position of the tropical Andes as the flagship region for biodiversity conservation in general and insect and butterfly conservation in particular.

4.2 Distribution patterns of mimetic interactions

Mimicry rings displayed strong distinctive geographic patterns, suggesting different underlying biogeographical trajectories (see examples in Figure S7.20; names are provided in capital letters hereafter). Central America and the Atlantic Forest are secondary hotspots for Ithomiini species richness and host relatively large mimicry rings (Figure 3a, f and i), but few of those rings are endemic to these regions (Figure 3e). Only two mimicry rings are endemic to the Atlantic Forest (HEMIXANTHE and LYSIMNIA), while in Central America, some mimicry rings extend south to the northern Cordilleras of the Andes (DILUCIDA, EXCELSA, PARALLELIS), and others span a large part of the entire distribution of Ithomiini (e.g. AGNOSIA, EURIMEDIA, MAMERCUS). By contrast, the Amazon forest harbours about ten endemic mimicry rings, whose centres of species richness are located in the Upper Amazon (e.g. AURELIANA, MAELUS, SINILIA) close to the predicted centre of origin of the tribe, and along the Amazon River (i.e. DOTO, EGRA). Most narrow-ranging and species-poor mimicry rings are found in the Andes (Figure 3e), where mimicry rings are strongly segregated along the altitudinal gradients (Chazot et al., 2014). Lowland communities shelter mostly wide-ranging rings (e.g. CONFUSA, HERMIAS, LERIDA) while highland communities host rare, narrow-ranging rings (e.g. DERCYLLIDAS, HEWITSONI, THEUDELINDA) comprising species adapted to higher altitudes. Paradoxically, mimicry rings with transparent patterns tend to be found in higher proportions at high elevations (e.g. THABENA-F, PANTHYALE, OZIA) in contrast to predictions of the thermal melanism hypothesis that opaque patterns should be under positive selection under colder climates (Clusella Trullas et al., 2007; Dufour et al., 2018). As such, further research is still needed to better understand the selective advantages of these transparent wings that shape the biogeography of mimicry patterns in ithomiines.

Altogether, mimicry richness is expected to follow species richness since more species provide greater opportunities to harbour different wing patterns. In parallel, mimicry fuels species richness by limiting the exclusion effect of competition among co-occurring co-mimetic species (Gross, 2008). However, aposematic signals are predicted to converge locally due to positive frequency-dependent selection incurred by predators (Müller, 1879). Therefore, mimicry richness should increase more slowly than species richness and plateau when all ecological niches are occupied and a (set of) wing pattern(s) already dominates each niche (Joron & Mallet, 1998). The relationship between Ithomiini mimicry and species richness was positive (Figure 4), but it appeared only slightly saturated ($S10.24c$).

This suggests that even in species-rich communities, there is some free ecological space, or that the effect of selection for wing pattern convergence is weaker than thought in Müllerian mimetic communities. For instance, the high numbers of mimicry rings found in the most speciose communities in the Ecuadorian and Peruvian tropical Andes may arise because the steep environmental and altitudinal gradients in these regions create a small scale mosaic of zones within each grid cell, hosting locally adapted species and mimicry rings with fuzzy limits (Sherratt, 2006; e.g. altitudinal bands; Chazot et al., 2014). This dense spatial structuring facilitates the recurrent permutation of species and mimicry rings from adjacent zones that may not represent local adaptive peaks of the available niches. Yet, such species could persist, rescued by recurrent immigration (Brown Jr. & Freitas, 2002; Joron & Iwasa, 2005), thereby fuelling local mimicry richness. From a conservation point of view, preserving high species richness should also ensure the preservation of mimicry richness. We estimated that rich communities may not only harbour the highest number of species but also the highest proportion of mutualistic interactions in the ithomiine butterfly communities, with the largest mimicry rings on average (Figures 3a and f, 4). Thus, species in those communities might be better protected against secondary extinctions that would result from the loss of mutualistic interactions associated with the extirpation of their co-mimetic species.

4.3 Threats and refuges for Ithomiini diversity hotspots

In this study, we highlighted areas of high risks for biodiversity loss, of priority interest for reactive conservation to reduce high anthropogenic pressures on biodiversity. In parallel, we defined refuge areas, of priority interest for proactive conservation to provide shelters for biodiversity from human pressures (Brooks et al., 2006). As such, hotspots for species and mimicry richness, and phylegetic diversity, located in the Andes and the Upper Amazon, face contrasting situations. While the Upper Amazon has some of the most intact ecosystems in remote areas, the Andes, particularly the rich communities in the western foothills in Ecuador and the three Andean cordilleras in Colombia, are facing high levels of human impacts (Figures 5a, b, e, f and 6). The second diversity hotspot, the Atlantic Forest, is also of great concern, demonstrating the highest level of human pressures and relentless fragmentation of its forested habitats (Ribeiro et al., 2009). Communities with geographically rare species and mimicry rings are found mostly in Andean and Central American mountain ranges, coinciding with areas of high human impacts (Figure 5c, d). Their situation is of particular concern
The spatial location of threats and refuges for Ithomiini biodiversity uncovered here appear consistent with trends observed for vertebrates in general. The slopes of the northern and central Andes and the Atlantic Forest are the regions with the highest number of threatened and near-threatened vertebrates (along with South East Asia), while the Amazon rainforest has been suggested as the major refuge for vertebrate richness (Allan et al., 2019). Our study complements this picture by casting light on the specific situation of tropical highlands in the Neotropics. Mountains provide heterogeneous landscapes that host a high diversity of ithomine species and mimicry rings, especially geographically rare and vulnerable ones. They act as a refuge for lowland species that become increasingly restricted to higher altitudes by climate warming (Chen et al., 2009), while species already adapted to high elevations, with narrow physiological specializations, are threatened by the extirpation of their climatic niche (Oehlermüller et al., 2008). Yet, many tropical species, with typically narrow niches and slow niche evolutionary rate, are suspected to lag behind the shift of their climatic envelope (Jezkova & Wiens, 2016). In the case of Ithomiini, which rely on local mutualistic interactions with co-mimics and host plants, the threat of community disassembly due to climate change is even more profound (Sheldon et al., 2011; Toby Kiers et al., 2010). Mountain habitats are particularly under threat from human activities, with high deforestation rates due mostly to the competition for arable lands (Armenteras et al., 2017). Even where human population density is low in remote mountain regions, natural habitats may come under threat from road-building and mining operations (Bax et al., 2019; Sonter et al., 2017).

Remote portions of the Upper Amazon forest may currently act as refuges for a fraction of Ithomiini diversity. Yet, even within protected areas, landscape-level changes can impact insect faunas (Hallmann et al., 2017, 2020; Salcido et al., 2020). The Upper Amazon remains largely exposed to climate change, notably increases in temperature and drought intensity (Malhi et al., 2008; Nobre et al., 2016), and to deforestation threats (Carvalho et al., 2019; Escobar, 2020). Thus, the potential refuge areas we have mapped represent only the currently less threatened areas of Ithomiini diversity hotspots, but do not guarantee the conservation of all the biodiversity facets they currently host, especially in the face of global changes. The next avenue for research is therefore to model the effects of climate change and future land-use changes on the patterns of Ithomiini diversity to refine conservation perspectives in a changing world.

ACKNOWLEDGEMENTS

The authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest, or non-financial interest in the subject matter or materials discussed in this manuscript. MD is financed by the French Ministry of Research (MENSR). We thank the museum curators who allowed us to examine the Ithomiini collections under their care and individuals who provided access to or shared information from their private collections or fieldwork, including Keith S. Brown Jr., Eric Quinter, Allan & Lesley Wohlhueter, Steven Heydon, Jeff & Cathy Smith, Lynn Kinsey, John Rawlins, Olaf Mielke, Mirna Casagrande, Chris Jiggins, Fabio Vitale, Jackie Miller, Andy Warren, Andrei Sourakov, Francisco Piñas, Gerrit ten Broek, Santiago Villamarín, Jamie Radford, Jean-François Le Crom, Jean-Claude Petit, Wolfram Mey, Miguel Monné, Tomasz Pyrecz, Phil Ackery, Blanca Huertas, George McGavin, Pierre Boyer, Fernanda Checa, Sebastián Padrón, Heinz Schröder, Christoph Häuser, Bob Robbins, Don Harvey, Brian Harris, Axel Hausmann, Lisa de Silva, Melanie McClure and Paola Santacruz. We thank S. Villamarín, S. Nogales, the INABIO and Ecuadorian Ministerio del Ambiente for arranging the necessary permits for research in Ecuador, most recently under the project ‘Diversity and Biology of Lepidoptera in Ecuador’ (No. 006-19 IC-FLO-FAU-DNB/MA). Museum and fieldwork in Ecuador were funded in part by the Leverhulme Trust, the Darwin Initiative, the FLMNH Museum Associates, the National Geographic Society (Research and Exploration Grant # 5751-96) and NSF (# 0103746, #0639977, #0639861, #0847582, #1256742). We thank the INRENA/SERFOR for arranging the necessary permits for research in Peru. We thank the Instituto Chico Mendes de Conservação da Biodiversidade (ICMBio) for providing a research permit in Brazil (SISBIO no. 10802-5). Brazilian species are registered at the Sistema Nacional de Gestão do Patrimônio Genético e do Conhecimento Tradicional Associado (SisGen – AD78279, AD23304, ACCEDE4A, A33D8D7, ADF1F75, A37A48D). ME acknowledges funding by the ANR grant CLEARWING (ANR-16-CE02-0012) and a Human Frontier Science Program grant (RGPO14/2016). AVL acknowledges the FAPESP (Biota-FAPESP grants 2011/50225-3, 2012/50260-6 and 2013/50297-0), the Brazilian CNPq (563332/2010-7 and 303834/2015-3) and United States Agency for International Development (USAID) and the U.S. National Academy of Sciences (NAS) under the PEER program (Mapping and Conserving Butterfly Biodiversity in the Brazilian Amazon—Sponsor Grant Award Number: AID-OAA-A-11-00012). For their companionship and assistance in the field, we thank Julia and Jamie Robinson Willmott, Alexandre Toporov, Raúl Aldaz, and Ismael Aldas. We thank the numerous people who contributed to databasing museum specimens, particularly Fraser Simpson. Models were run with the support of the computer cluster ‘Plateforme Calcul Intensif Algorithmique’ (UMS2700-PCIA) of the Muséum national d’Histoire naturelle MNHN.

CONFLICT OF INTEREST

The authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest, or non-financial interest in the subject matter or materials discussed in this manuscript.

PEER REVIEW

The peer review history for this article is available at https://publons.com/publon/10.1111/ddi.13455.
DATA AVAILABILITY STATEMENT

ORCID

Maël Doré https://orcid.org/0000-0003-3242-9242

REFERENCES

BIOSKETCH
The research team has a long-standing interest in ithomiine ‘clearwing’ butterflies, spanning systematics, diversification patterns and processes, the role of host plants and mimetic interactions from micro- to macroevolutionary scale, community ecology and phylogenetics, and historical biogeography. This paper is the result of over 30 years of collaborative efforts to collect, describe and classify Ithomiini butterflies and their mimicry patterns in order to unravel the mechanisms at play in species distribution, community assemblages, and mimicry patterns and niche evolution. The first author, Maël Doré, is a PhD student interested in the interplay between community ecology, phylogenetics and macroecological patterns in tropical environments. To this end, he employs various tools ranging from systematics to species distribution models and comparative phylogenetic methods.

SUPPORTING INFORMATION
Additional supporting information may be found in the online version of the article at the publisher’s website.