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A B S T R A C T

There is an emerging consensus in the literature that locally embedded capabilities and industrial know-
how are key determinants of growth and diversification processes. In order to model these dynamics as a
branching process, whereby industries grow as a function of the availability of related or relevant skills,
industry networks are typically employed. These networks, sometimes referred to as industry spaces, describe
the complex structure of the capability or skill overlap between industry pairs, measured here via inter-industry
labour flows. Existing models typically deploy a local or ‘nearest neighbour’ approach to capture the size of
the labour pool available to an industry in related sectors. This approach, however, ignores higher order
interactions in the network, and the presence of industry clusters or groups of industries which exhibit high
internal skill overlap. We argue that these clusters represent skill basins in which workers circulate and diffuse
knowledge, and delineate the size of the skilled labour force available to an industry. By applying a multi-scale
community detection algorithm to this network of flows, we identify industry clusters on a range of scales, from
many small clusters to few large groupings. We construct a new variable, cluster employment, which captures
the workforce available to an industry within its own cluster. Using UK data we show that this variable is
predictive of industry-city employment growth and, exploiting the multi-scale nature of the industrial clusters
detected, propose a methodology to uncover the optimal scale at which labour pooling operates.
1. Introduction

Emerging from the fields of economic complexity and evolutionary
economic geography, a growing emphasis has been placed on the
role of embedded knowledge in economic development processes (Nel-
son and Winter, 1982). This literature emphasises the role of tacit
know-how and skills embedded in workers, and in particular the de-
velopment of individual specialisation (Jones, 2009; Hausmann and
Hildalgo, 2016) which can be combined in firms and complemen-
tary teams (Neffke, 2019) in order to drive economic growth and
diversification (Hidalgo et al., 2007, 2018).

From this perspective, the human capabilities embedded in a place
constrain its economic and industrial development opportunities. This
idea has been distilled into a general concept, that of ‘relatedness’
(see Hidalgo et al. (2018) for a review). Specifically, places (countries,
cities or regions) tend to growth or diversify into new industries and
technologies that are ‘related’ to what already exists (Frenken and
Boschma, 2007; Hidalgo et al., 2007). Hence, places build on local
capabilities in a path dependent manner. While there have been a wide
variety of both theoretical and empirical proposals on which type of
‘capabilities’ drive these processes, recent work from Diodato et al.
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(2018) suggests that skills and labour sharing increasingly dominate
industry employment growth dynamics.

In general, efforts to model these dynamics rely on metrics derived
from industry networks with edge weights corresponding to some type
of inter-industry relatedness metric (sometimes referred to as ‘industry
spaces’) (Hidalgo et al., 2007). These networks are used to build a
variety of predictive metrics which aim to describe the potential of a
place to grow or enter a new activity based on the presence of related
activities. For example, the size or concentration of employment in
‘related’ sectors has been used to predict industry employment growth
or new entry (Hidalgo et al., 2007; Neffke et al., 2011b; Neffke and
Henning, 2013; O’Clery et al., 2018). However, the vast majority of
these metrics implicitly ignore the network structure and are based on
local or ‘nearest neighbour’ links. If the goal is to the estimate the size
or variety of the labour pool available to an industry, we need a metric
that captures the inter-related set of industries that share skills and
know-how in the broader neighbourhood (surrounding connectivity
structure) of a node or industry. In order to do this, here we deploy
tools from network science and connect with the literature on industry
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clusters in order to propose a new metric which captures the size of the
‘skill-related’ labour pool available to an individual industry.

The role of labour and knowledge sharing within industrial clusters
is well-known, and dates back to Marshall and Marshall (1920). Rather
than geographical clusters, here we focus on industrial clusters based
on skill-sharing which we uncover using data on inter-industry labour
mobility. Such clusters promote firm learning and innovation (March,
1991; Catini et al., 2015), and are key to innovation and labour
pooling (Porter, 1998; Delgado et al., 2016). We construct a network
(industry space) of normalised inter-industry labour flows (Neffke and
Henning, 2013), and deploy community detection in order to uncover
skill-related industry clusters on a range of scales. We can think of these
scales as controlling the size of industry clusters or neighbourhoods
in the network. We develop a new scale dependent metric,’cluster
employment’, which captures the size of employment in an industries’
own cluster. In other words, cluster employment captures the number
of workers with skills relevant to an industry.

We show that this metric, using data from the UK, is associated
with employment growth of industrial sectors. By letting the number
of clusters vary from few large clusters to many small clusters, corre-
sponding to a range of neighbourhood scales, we use a statistical fit
criterion from our econometric model to uncover the optimal scale at
which labour pooling operates. Our work contributes to a better under-
standing of labour markets and particularly segmentation of workers
in distinct skill-based labour pools, and supports policy efforts around
the generation of a class of more granular and targeted industrial and
skills-focused education policies.

The rest of this paper is organised as follows. In Section 2 reviews
the relevant literature, setting our contributions in context. In Section 3,
we introduce the data and methodology. In Section 4, we present
the results on industry clustering and the industry growth analysis. In
Section 5, we conclude by discussing some of the policy implications
and limitations of our work.

2. Literature

2.1. Modelling growth paths

Regions are dependent on what they know. This is the fundamental
tenet on which a large literature is based originating in the pioneering
ideas of Nelson and Winter (1982), and followed more recently by
a surge in both conceptual and empirical contributions spearheaded
by Hidalgo et al. (2007) and Frenken and Boschma (2007) amongst
others. Much of this literature speaks of evolutionary ‘branching’ of
economic activities (Frenken and Boschma, 2007; Essletzbichler, 2015),
whereby regions accumulate capabilities as workers learn on the job
and then use this know-how to diversify into new economic activities
in a path dependent manner.

In order to model development paths for a region, it has been com-
mon to predict the entry of new industries or the growth of industry-
specific employment using metrics based on the size or concentration
of local employment in ‘related industries’ (Neffke and Henning, 2013;
Hausmann et al., 2021). This type of metric captures the level of
available relevant capabilities in the local economy. This ‘related di-
versification’ literature has probed a wide range of questions around
local growth paths, including employment and export growth (Hidalgo
et al., 2007; Hausmann et al., 2021), firm and sector entry (Neffke et al.,
2011a; Neffke and Henning, 2013) and technological change (Boschma
et al., 2015; Rigby, 2015).

While some of these studies are agnostic as to the precise type of
apability overlap that connects related industries, either by design
r lack of data, a growing literature aims to more precisely identify
nd measure different types of relatedness. In one example, a frame-
ork proposed by Ellison et al. (2010) has enabled researchers to
isentangle the relationship between a more general capability over-
ap measured via industry co-location and three distinct capability
2

channels: customer–supplier sharing, knowledge sharing and labour
pooling. Deploying this framework, using data on US manufacturing
and services industries from 1910 to 2010, Diodato et al. (2018)
suggest that the customer/supplier channel has decreased in relative
importance compared to the labour pooling channel over time, and that
the labour channel is particularly potent for services industries. O’Clery
et al. (2021) extended this work to look at the relative importance of
each channel for industry clusters, showing that co-location patterns of
complex services are more heavily associated with skill-based linkages.

Investigating employment growth and diversification patterns,
Rossi-Hansberg and Wright (2007) link employment growth to the
accumulation of industry-specific human capital. In related work Neffke
et al. (2011a), Boschma et al. (2013) and Essletzbichler (2015) show
that firms are more likely to diversify into industries that are linked
to core activities via skill-based ties than industries that are linked by
value chain linkages, and Jara-Figueroa et al. (2018) show that pioneer
firms (i.e., the first firm in an industry in a region) are more likely to
survive and grow if their workers had experience in related industries
rather than related occupations. Overall, the literature suggests that
a key factor driving the growth and diversification of industries in a
region is the local availability of relevant know-how in the form of
skills learned on the job in related industries.

We investigate the dynamics underlying the growth of employment
in both the full set of industries and services industries. As argued
by Diodato et al. (2018), services are typically more difficult to trade
than manufactured goods and will hence need to locate alongside their
customers. With respect to labour, services tend to employ skilled work-
ers, and place a premium on face-to-face interaction with customers
compared to manufacturing industries. Hence, access to experienced
and appropriately skilled workers is particularly important in this case.

2.2. Industry spaces

A suite of network based models to describe the process by which
places build on local capabilities to move into new economic activities
in a path dependent manner have been developed, the most well known
of which is the Product Space of Hidalgo et al. (2007). In general,
in such models, nodes represent industries, products or technologies,
and edges represent capability- or skill-overlap (Hidalgo et al., 2007;
Neffke et al., 2011b). This approach aims to model industry diversi-
fication and growth as a dynamical process on a network, akin to a
diffusion/spreading or random walker process, whereby a region can
sequentially jump into new industries based on probabilities defined
by edge weights. The network can be seen as an underlying ‘land-
scape’ or map upon which the dynamics occur. The topology or global
structure of this network determines the dynamics for a particular
initial condition (i.e., the starting subgraph of industries present in the
region).

A wide variety of approaches have been deployed to estimate the
edge weights of this network, each with a slightly different meaning
or interpretation. A well-known example, the Product Space, deploys
geographic co-export of products as a general metric for capability
overlap (Hidalgo et al., 2007). Other approaches aim to capture a more
specific type of capability overlap, for example input–output tables can
be deployed as a proxy for customer–supplier sharing (Acemoglu et al.,
2015a) and the co-appearance of industry pairs on patents can be used
as a proxy for knowledge sharing (Ellison et al., 2010; Jaffe, 1989). A
third type of capability overlap involves labour and skill sharing, which
we focus on here. This can be measured via co-production of goods in
plants (Neffke et al., 2011a), occupational similarity (Farjoun, 1994;
Chang, 1996) or job switches (Neffke and Henning, 2013).

Focusing on skill-proximity between sectors, we adopt the latter
approach and build our industry network using the number of work-
ers who switch jobs between industry pairs as edge weights (Neffke
and Henning, 2013). Intuitively, if many workers move from one
industry to another, then it is likely that these industries share a
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high degree of skill-similarity. This approach is less noisy than al-
ternative metrics, and has comparable estimates across all sectors.
Industry networks based on inter-industry labour flows have been
deployed to study a number of phenomena, including the growth
of formal organised employment in developing cities (O’Clery et al.,
2018, 2019), labour market resilience (Diodato and Weterings, 2014),
affirmative action labour market policies (Landman et al., 2020) and
FDI spillovers (Csáfordi et al., 2020).

Despite widespread use of industry spaces to model diversification
and growth paths, the vast majority of existing metrics implicitly
ignore the network structure and are based on local or ‘nearest neigh-
bour’ links, and thus ignore the wider network topology. Hence, only
immediate connections are considered relevant, and the complex inter-
connection structure in the wider neighbourhood of the node beyond
first order neighbours is neglected. In essence, currently modelling
approaches are at odds with the aforementioned theoretical narrative
concerning evolutionary ‘branching’ of economic activities (Frenken
and Boschma, 2007; Essletzbichler, 2015), and broad empirical use
of networks as a landscape on which to model growth and diver-
sification processes. Limited previous work has looked at diffusion
dynamics on product networks, aiming to model diversification paths
over time (Hidalgo et al., 2007) and diversification strategies (Alshamsi
et al., 2018).

Here we take a distinct approach which enables us to connect to
the literature on industrial clusters. Specifically, we propose that meso
scale structures in the network, which correspond to node communities,
describe the neighbourhood of a node in the network through the
prism of industry clusters. This approach delimits the skills and capa-
bilities available to an industry, and provides a natural framework in
which to model development paths which captures the broader network
structure around a node.

2.3. Industrial clusters

The study of industrial agglomeration patterns is connected to work
on industrial clusters (Porter, 1998, 2003a) whereby geographically
co-located groups of firms generate positive spillovers via sharing of
various costs, and reap other benefits such as competition which drives
productivity (Porter, 2011), and local demand effects (Fujita et al.,
2001). Clusters are an important policy tool, and form a key tenet of
the EU’s ‘smart specialisation’ strategy (Boschma, 2017).

Here we propose a methodology to uncover skill (rather than geog-
raphy) based industrial clusters, which we term ‘skill basins’. Specif-
ically, industry clusters detected in labour networks correspond to
groups of industries which exhibit high internal mobility and low
external (inter-cluster) mobility. Hence, these are groups of industries
which exchange labour, skills and know-how, and thus illuminate both
labour mobility patterns within an economy and enable us to delineate
the relevant skills available to an industry.

The presence of skill-based industrial clusters poses clear benefits
to workers and firms. As mentioned above, industries (and particularly
service industries) frequently co-locate in order to benefit from shared
labour pools, accessing skilled workers and sharing costs associated
with search and matching processes (Marshall and Marshall, 1920; El-
lison et al., 2010). Clusters defined by labour mobility patterns further
provide information on segmentation of the labour force (Wilkinson,
2013), and illuminate knowledge flows between firms which support
learning and innovation (March, 1991) (see Iammarino and McCann
(2006) for a discussion of knowledge transfer within industrial clus-
ters). We note that knowledge flows may be achieved via a variety of
mechanisms including but not exclusive to labour mobility, including
R&D collaboration and patenting.

On the other hand, the formation of skill clusters may also pose
risks, limiting worker and knowledge flow between different sectors.
Adopting an evolutionary perspective on economic resilience, which
3

takes a non-equilibrium view of resilience as the ability of a region
or place to adapt to a shock rather than return to a pre-shock equi-
librium (Boschma, 2015), it is clear that clusters may impede the
ability of firms and workers to move between sectors in response to
adverse events. Diodato and Weterings (2014), Eriksson et al. (2016)
and Straulino et al. (2021a) find that inter-sectoral mobility is an
important factor for regional recovery from an employment shock.
More mobile workers, with more opportunities for transition between
sectors, are better protected in the event of a crisis or a reorganisation
of work.

Another well-known feature, competition, has long been seen as a
benefit of cluster formation (Porter, 2003b, 2011). In particular, it is
thought to foster the pursuit and rapid adoption of innovation. But
its statistical effect on productivity and employment in the empirical
literature is mixed. For example, using a French dataset, Combes (2000)
found that competition had a negative impact on employment growth.
Using Canadian data, however, Wang et al. (2017) found a positive
effect.

Here we uncover industry clusters from the analysis of inter-industry
labour flows in a network. These clusters are interesting and infor-
mative in their own right, but also govern dynamics on the network.
Harnessing this insight, we use these clusters to modify a traditional
(nearest neighbour) metric, aimed at capturing employment in related
industries, to incorporate information on the network structure in the
broader neighbourhood around the node.

In previous related work, focused on detecting clusters in simi-
lar networks, Delgado et al. (2016) has sought to identify industry
clusters for US industries using inter-industry linkages based on co-
location patterns, input–output links, and similarities in employment
shares across occupations. The latter occupational similarities aim to
capture skill-overlap in much the same manner as labour flows, but
are thought to be significantly less precise (Neffke and Henning, 2013)
and do not quantify labour mobility as such. In further related work to
ours, Park et al. (2019) use LinkedIn data to construct a global labour
flow network of firms, and apply community detection techniques to
uncover firm clusters.

2.4. Network structure and dynamics

Network analysis provides a uniquely powerful tool to understand
and quantify complex systems whose aggregate dynamics depends
not on individual agents or homogeneous populations but an under-
lying heterogeneous interconnection structure. Network models are
increasingly used to understand the role interconnection structures
play in economic and innovation-related processes, including research
clusters (Catini et al., 2015), innovations (Hermans et al., 2013),
worker skill complementarity (Neffke, 2019), country-level R&D effi-
ciency (Guan and Chen, 2012), and the success of venture capital mar-
kets (Milosevic, 2018). Of particular relevance to this work are studies
related to industry-networks, including regional skill relatedness (Fit-
jar and Timmermans, 2017; Neffke and Henning, 2013), and the
inter-industry propagation of microeconomic shocks to macroeconomic
outcomes (Acemoglu et al., 2015b; Gabaix, 2011).

Here we are concerned with a network of industries, where the edge
weights correspond to the number of workers who transitioned between
the industry pair during a certain period. In practice, following Neffke
et al. (2018), we normalise this count with respect to the number of
workers who would have moved at random given the respective size
of each industry (similar to the Configuration Model of Molloy and
Reed, 1995). Hence, the eventual edge weight is the ‘excess’ movement
relative to that expected at random.

While there are a wide range of tools and approaches to studying
network structure (Newman, 2003), we will focus on uncovering modu-
lar structure. The presence of densely connected communities of nodes,
with sparse connections between communities, is indicative of an un-
derlying sub-structure or functional organisation (Fortunato, 2010).

Community detection has been used extensively to study the structure
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and dynamics of biological and social networks (Girvan and Newman,
2002). While most well-known methods for community detection seek
to find a single node partition under a particular optimisation strat-
egy (e.g., modularity), it is more natural to think about a range of
partitions on different scales (from many small node clusters to few
larger clusters). This information can be extracted by analysing the
patterns of random walkers on a network: walkers tend to get trapped
in densely connected regions. The Stability method (Delvenne et al.,
2010) uses a resolution parameter to control the time the walkers can
roam. Shorter time scales (lower resolutions) allow for less exploration
of the network resulting in smaller communities, while longer time-
scales (high resolutions) correspond to larger node aggregations. Using
this approach, we extract a hierarchy of partitions of industries into
clusters corresponding to different scales. This can been seen as a
kind of alternative multi-level industry classification, where each level
corresponds to a particular strength of clustering (scale or resolution).

We specifically chose this approach to community detection as it
is based on a spreading process on the network, akin to modelling
path dependent diversification as a multi-step diffusion process. We
can interpret the partition found at resolution 𝜏 to be the set of nodes
reached by a spreading process in 𝜏 steps. Hence, by varying the
resolution, we vary the size of neighbourhood around the node that
we consider in our model.

We use this feature to develop a network-based metric to predict
industry-region employment growth. Instead of estimating the size of
the skilled workforce that is locally available to an industry via the stan-
dard approach outlined above (which implicitly ignores the network
structure), we develop a new metric based on the total employment
within an industry’s own cluster, denoted ‘cluster employment’, and
is based on the idea that our clusters naturally delineate the size
and industry composition of the skilled labour pool available to any
industry.

Capturing a nodes’ neighbourhood or cluster is important in a num-
ber of ways beyond those outlined above. Firstly, the cluster captures
a broader swathe of workers with relevant skills for the industry, even
if accessed via multi-step jumps. Secondly, the neighbourhood size is
bespoke for each node, and depends on the degree of connectivity
around the node. Hence, we allow for heterogeneity in terms of the
reach of nodes into the network, meaning that nodes in large dense
parts of the network will have access to much larger labour pools
while those in isolated clusters will be much more limited. Thirdly,
any measurement noise in the network (e.g., missing or mis-estimated
edges) will be lessened by taking into account clusters rather than just
neighbours.

We exploit the information produced by our multi-resolution com-
munity detection analysis to vary the size of the neighbourhood based
on strength of connectivity or spreading time, which enables us to
reveal the statistically ‘optimal’ scale at which labour pooling operates
within a given context. We do this by probing the relationship between
industry employment growth patterns and our ‘cluster employment’
metric across a range of scales, and inferring the optimal scale from
the statistical strength of this relationship.

3. Data and methods

3.1. Data

We use the UK Annual Survey of Hours and Earnings dataset (ASHE)
in order to construct the inter-industry flow matrix. This dataset enables
us to track the industry code of a large cohort of UK employees over the
period 2009 to 2018. Specifically, it contains anonymised demographic
and employment information of 1% of the total employee jobs in the
HM Revenue & Customs (HMRC) Pay As You Earn (PAYE) records.

A longitudinal dataset, it follows a large cohort of workers over
time. For every worker, the dataset includes information on various
variables, from individual characteristics, such as age and sex, to
4
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employment information, including pay, occupation and industry. The
sample does not include the self-employed. We construct our flow
matrix for the maximum period 2009–2018 due to the sparsity of the
sample.

To compute total employment by industry, city and year, we use
the Business Register and Employment Survey (BRES), which contains
employment records from all registered firms in the UK.1 We use
ears 2010–2015. Both ASHE and BRES are compiled by the Office of
ational Statistics (ONS) and are accessed under strict confidentiality
greements and arrangements.

We use functional urban areas (FUAs) as defined by the OECD as
ur city definition (there are 105 FUAs in Great Britain). Industries
orrespond to the 4 digit level standard industrial classification (SIC
007).

.2. Network construction

We construct the labour network based on the skill-relatedness
ethodology of Neffke et al. (2018). First, we calculate skill relatedness

or each year. The number of employees who transitioned between two
ndustries 𝑖 and 𝑗 between years 𝑡 and 𝑡 + 1 are denoted by 𝐹𝑖𝑗𝑡. The

skill-relatedness is expressed as:

𝑆𝑅𝑖𝑗𝑡 =
𝐹𝑖𝑗𝑡

𝐹𝑗𝑡𝐹𝑖𝑡∕𝐹𝑡
here missing indices mean all values are included in the variable. The
enominator represents the worker flow between industries 𝑖 and 𝑗 that
ould be expected at random given the total flows of the respective

ndustries. This is known as the Configuration Model (Molloy and Reed,
995) in the network science literature. Hence, the skill relatedness
etric (edge-weight) captures excess flows beyond what would be

xpected at random.
The skill relatedness measure is highly skewed, with industries that

re more related than expected ranging from 1 to infinity and those that
re less related than expected lying between zero and one. Therefore,
ollowing Neffke et al. (2018), we transform it so that it maps onto the
nterval [−1, 1):

�̃�𝑖𝑗𝑡 =
𝑆𝑅𝑖𝑗𝑡 − 1
𝑆𝑅𝑖𝑗𝑡 + 1

.

To improve the precision of the indicator and protect anonymity, we
average it across all yearly flows between 2009 and 2018:

𝑀 ̃𝑆𝑅𝑖𝑗 =
1
10

∑

𝑡=2009∶2018

̃𝑆𝑅𝑖𝑗𝑡

and make it symmetric:

𝑆 ̃𝑆𝑅𝑖𝑗 =
𝑀 ̃𝑆𝑅𝑖𝑗 +𝑀 ̃𝑆𝑅𝑗𝑖

2
.

We consider the weighted undirected adjacency matrix:

𝐴𝛾𝑖𝑗 =

{

𝑆 ̃𝑆𝑅𝑖𝑗 if 𝑆 ̃𝑆𝑅𝑖𝑗 > 𝛾
0 otherwise

Setting 𝛾 = 0 corresponds to keeping flows for which 𝑆𝑅𝑖𝑗𝑡 > 1, and
hence the proportion of flows is larger than would be expected at
random.

3.3. Community detection

Our aim is to detect groups of industries that exhibit high internal
worker mobility in the form of network communities. There are a wide
array of algorithms and techniques to perform this task as outlined
above. Most community detection algorithms are composed of two

1 We do not include Northern Ireland, and hence technically our cities
orrespond to Great Britain.
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Fig. 1. A. The UK labour flow network, with nodes coloured by community (resolution 𝜏 = 1). The node layout is based on a spring algorithm called ‘Force Atlas’ in Gephi. The
inset shows the number of communities for each value of 𝜏. As the resolution time increases, the number of communities decreases. B/C. The network with nodes coloured by
community at resolution 𝜏 = 4 and 𝜏 = 13. D. A dendrogram illustrates how nodes are grouped for all values of 𝜏. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
components: an optimization criteria which is minimized (or maxi-
mized) by a particular partition of the nodes, and a searching algorithm
which looks for the best node partition to satisfy the optimization
criteria.

Here, we deploy an optimization criteria based on simple random
walk model, which is called Stability (Delvenne et al., 2010; Lambiotte
et al., 2008, 2011). The core idea is that if a random walker – who
jumps from node to node with probability proportional to the edge
weights – gets trapped in a region of the network (set of nodes) for
a prolonged period of time this indicates a region of densely connected
nodes which form a community. The Stability optimization criteria,
elaborated on in the Supplementary Material, seeks to maximize the
probability of a node remaining within a community for a time period,
denoted by resolution parameter 𝜏.

One of the key advantages of this approach is that it detects com-
munities on a range of scales, ranging from a large number of small
communities to few large communities. Intuitively, if we let a ran-
dom walker wander for longer periods on the network, the walker
will encounter larger and larger communities. Hence, the parameter
𝜏 corresponds to a resolution or scale. For smaller values of 𝜏, we
detect many small communities, while for larger values of 𝜏, we detect
fewer, mostly larger communities. While there are other algorithms
which can detect communities corresponding to different resolutions,
including an adapted version of modularity which includes a resolution
parameter (Reichardt and Bornholdt, 2006), the Stability approach
connects the resolution parameter to an intrinsic notion of time within
a dynamical framework, which is more appropriate for our application.
More broadly, Stability has a mathematical relationship to several well
known community detection optimizations. It can be seen as a gener-
alisation of modularity (Newman and Girvan, 2004) and Normalised
Cut (Shi and Malik, 2000), which corresponds to 𝜏 = 1, and Fiedler’s
spectral method (Fiedler, 1973) which corresponds to 𝜏 = ∞.
5

The second component, the searching algorithm, looks for the best
node partition to satisfy the optimization criteria. This latter problem
is NP-hard, and we therefore use heuristic methods, such as Louvain’s
algorithm (Blondel et al., 2008), to solve it.

More detail on these algorithms is provided in the Supplementary
Material.

3.4. A network-based model for industry employment growth

Many previous studies have used industry networks to model the
process by which regions or countries move into ‘related’ industries
(see Hidalgo et al. (2018) for a review). These studies (e.g., Hausmann
et al., 2021; Diodato et al., 2018) typically estimate relationships of the
form:

𝐺𝑖𝑟 = 𝛼 + 𝛽0𝐸0
𝑖𝑟 + 𝛽1𝑅𝐸

𝛾
𝑖𝑟 + 𝜓𝑖 + 𝜂𝑟 + 𝜖

where 𝐸0
𝑖𝑟 is the employment in industry 𝑖 and region 𝑟 at time 𝑡0, and

𝐺𝑖𝑟 is the growth in employment between times 𝑡0 and 𝑡1:

𝐺𝑖𝑟 = log𝐸1
𝑖𝑟 − log𝐸0

𝑖𝑟.

and 𝜓𝑖 and 𝜂𝑟 are industry and region fixed effects. The expression 𝑅𝐸𝛾𝑖𝑟
is the ‘related employment’, or the size of employment in proximate
industries in the network (in the region) at time 𝑡0:

𝑅𝐸𝛾𝑖𝑟 =
∑

𝑗≠𝑖

𝐴𝛾𝑖𝑗
∑

𝑘≠𝑖 𝐴
𝛾
𝑖𝑘

𝐸0
𝑗𝑟.

Hence, for a region 𝑟, this is the sum of employment in all industries
(except 𝑖) weighted by their (normalised) edge weight to node 𝑖. The
related employment can be seen as the size of the potential labour
pool with relevant skills or capabilities. For a positive and significant
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Table 1
OLS for industry employment growth as a function of log employment and cluster
employment (CE) in the base year as defined by Eq. (2) - for all industries, manufac-
turing only and services only — including city and industry fixed effects. We use an
edge threshold of 𝛾 = 0 and resolution 𝜏 = 4.

coefficient 𝛽1, we can infer that a larger pool of similar skills for
industry 𝑖 (in region 𝑟) is correlated with a higher rate of employment
growth for industry 𝑖.

The expression 𝑅𝐸𝛾𝑖𝑟, however, is a local metric in the sense it
does not take into account the network structure other than weight
the employment in neighbouring industries by the normalised edge
weights. We propose an alternative form based on the community
structure, whereby industries have access to labour only within their
own community, which we refer to as the ‘cluster employment’:

𝐶𝐸𝜏,𝛾𝑖𝑟 =
∑

𝑗≠𝑖∩𝑗∈𝐶𝜏𝑖

𝐴𝛾𝑖𝑗
∑

𝑘≠𝑖∩𝑘∈𝐶𝜏𝑖
𝐴𝛾𝑖𝑘

𝐸0
𝑗𝑟 (1)

where 𝐶𝜏𝑖 denotes the set of nodes in the community of node 𝑖 at
resolution 𝜏. This approach captures the size of the local skilled work-
force available to an industry accounting for the modular nature of the
network structure. In general, we estimate a model of the form

𝐺𝑖,𝑟 = 𝛼 + 𝛽0𝐸0
𝑖𝑟 + 𝛽𝑥𝑋𝐸

𝜏,𝛾
𝑖𝑟 + 𝜓𝑖 + 𝜂𝑟 + 𝜖 (2)

where 𝑋𝐸𝜏,𝛾𝑖𝑟 = 𝐶𝐸𝜏,𝛾𝑖𝑟 or 𝑅𝐸𝛾𝑖𝑟.
Due to the 1% sample used to construct the UK adjacency matrix,

which results in a sparse dataset, we use an adjacency matrix built
from years 2009 − 2018 to predict employment growth in the UK from
𝑡0 = 2010 to 𝑡1 = 2015. Although we do not have an ideal out-of sample
estimation (following Hausmann et al., 2021; Diodato et al., 2018),
the structure of this type of adjacency matrix is known not to change
significantly over relatively short periods of time (Neffke et al., 2017)
and hence this is highly unlikely to materially affect any of our results.

We use a subset of industries that form the largest connected
component of the labour flow network, omitting a small number of pe-
ripheral industries which experienced no labour flows (job transitions)
with other industries within our time period. This leaves us with 339
industries (SIC 2007).

Following the literature, for the majority of the analysis below,
we set 𝛾 = 0. We perform a sensitivity analysis, however, in the
Supplementary Material to check to what extent the choice of 𝛾 affects
our key results.

4. Results

4.1. Industry clusters

First, we focus on exploring the multi-scale modular structure of
the UK inter-industry labour flow network. Beyond forming the basis
for our new metric, insights from this preliminary analysis are key for
place-based policy-making as discussed in Section 5.1 below.

Fig. 1A shows a visualisation of the labour flow network for the UK.
The node layout is based on a spring algorithm called ‘Force Atlas’ in
6

Gephi.2 Edges are shown over a threshold 𝛾 = 0. We observe a large
degree of clustering of related industries, with public services broadly
located on the far right-hand side, retail leisure on the bottom right and
finance and professional activities on the top right. Manufacturing and
related industries appear slightly less clustered and dominate the left,
with construction on the top left and food and farming on the bottom
left. In order to systematically extract industry groupings corresponding
to labour mobility and skill sharing patterns, we apply a community de-
tection algorithm as introduced above. A key feature of this algorithm
is that it produces not one, but several node partitions corresponding
to industry clusters at different scales.

The inset of Fig. 1A shows the number of communities as the reso-
lution parameter increases. As the parameter increases, the community
detection algorithm finds increasingly larger industry clusters, effec-
tively merging smaller clusters into large industry groupings3 Fig. 1B
and C shows the communities at resolutions 𝜏 = 4, and 13.

A couple of features are evident at first glance. For example, by 𝜏 =
13 services including the public sector and finance have merged with
business and software activities (yellow cluster), but remain distinct
from retail, farming, manufacturing and construction (blue cluster).
This highlights a clear segmentation of the economy, whereby workers
and skills rarely transition from services to manufacturing and vice
versa. This is a particularly striking finding which is consistent with
the well established view that large swathes of traditional ‘blue collar’
workers are being left behind in the ‘knowledge economy’.

We wish to examine in more detail the structure of the partitions
found as the resolution parameter increases. Specifically, if a node
community persists over a range of resolutions or scales, as other
communities merge into larger groupings, then we can deduce that this
community exhibits particularly high internal connectivity and weak
connections to other clusters. On the other hand, if a node community
merges quickly at a relatively low value of the resolution parameter,
then this cluster enjoys stronger connections to other communities in
the network. A dendrogram, seen in Fig. 1D, quantifies this merg-
ing process.4 We observe that eventually, as the resolution parameter
increases, all clusters are merged into a large single cluster by 𝜏 = 14.

On short timescales, we observe merging on the services side be-
tween health, social work and education as well as finance and real
estate. We also observe a number of fast merges in manufacturing food-
based industries. These early merges correspond to initial groupings
which exhibit tight connections to other clusters. Many of these new
groupings remain intact until they merge with other groups later. For
example, finance and real estate merges with software and comms at
𝜏 = 6, and health, social work and education merges with retail at
𝜏 = 7. A large number of clusters also remain unmerged until high
values of 𝜏. These are tightly knit clusters with few strong connections
to other clusters. These include, for example, waste and cleaning. By
𝜏 = 11, a super-cluster of services industries has formed, while most
manufacturing and heavy industries have merged by 𝜏 = 13. Eventually,
at 𝜏 = 14, both large clusters (as well as books and music) are forced
to merge into a single cluster.

This analysis highlights the heterogeneous nature of industry clus-
ters based skill-sharing. As opposed to official sectoral groupings, some
industries cluster into tightly knit groups of very similar activities,
rarely exchanging workers with other sectors. Other industries are
connected to a diverse set of other industries, exhibiting a large number
of connections and flows. These groupings ebb and flow as the resolu-
tion parameter changes, implicitly tuning the degree of connectivity

2 Gephi version 0.8 was used.
3 The algorithm is not strictly hierarchical in the sense that the clusters of

partition 𝑘 are not necessarily nested in partition 𝑘 + 1.
4 The partitions generated by the community detection algorithm are not

strictly nested. A simple majority rule is deployed here to produce the
dendrogram.
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Fig. 2. The coefficient of CE (column 1), tstat (column 2), R2 (column 3) and number of observations (column 4) corresponding to column 2 (all industries) and 3 (services) of
Table 1 for variation in the cluster resolution 𝜏.
required for cluster formation. This motivates us to consider a bespoke
‘neighbourhood’ for each node when estimating the size of its labour
pool, with neighbourhood size dependent on the resolution selected, as
captured by our cluster employment variable.

4.2. Uncovering the scale at which labour pooling operates

Following a rich literature (cited extensively above) that supports
the theory that industrial diversification and growth processes depend
on the availability of relevant skills and capabilities, we wish to explore
the relationship between ‘cluster employment’, capturing the size of
the labour pool of related skills available to industries, and industry
growth patterns. Specifically, we wish to investigate if a particular scale
(or division of industries into clusters of a characteristic size) is more
predictive of growth patterns. If we find the model performs best for
coarse partitions with few clusters each with many industries, then
it implies that industries look deep into the network, and tap distant
industries for new workers and skills. If we find the model performs
best for fine partitions (many clusters each with few industries), then
it implies that industries source skills only from very similar industries.

By definition, cluster employment depends on a chosen partition.
For ease of notation, we drop the 𝛾 from CE and use CE𝜏 to refer to
cluster employment computed for resolution 𝜏.5

First, we investigate the relationship between cluster employment
and industry employment growth for single partition. Table 1 shows
the OLS for industry employment growth as a function of log employ-
ment and cluster employment in the base year for a chosen partition.
Considering the full set of industries and services alone, we observe a
statistically significant relationship between industry-city employment
growth and cluster employment. The coefficient of the size of employ-
ment in the base year is a negative, which is also consistent with the
literature and due to mean reversion effects.

Next, we split the set of industries into services and manufacturing.
We find a more significant association in the case of services which cor-
responds to previous results showing that service employment growth
is more strongly related to labour availability in related industries com-
pared to manufacturing sectors (Diodato et al., 2018). In general, the
size and sign of the coefficients and statistical indicators are consistent
with the literature.

Our main goal, however, is to deploy our framework to estimate at
which scale does labour pooling operate when it comes to supplying

5 Following previous literature, here we use an edge threshold of 𝛾 = 0. A
sensitivity analysis can be found in the Supplementary Material.
7

growing industries with suitably skilled labour. In other words, what
is the statistically ‘optimal’ partition of the network into groups of
industries that share ‘sufficiently related’ workers and skills to assist
industry growth?

In order to investigate this we repeat the model from column 2 and
3 of Table 1, computing CE𝜏 for all values of 𝜏. As 𝜏 increases, the size of
the clusters increases and industries can ‘reach’ further in the network
in order to access more distant related skills. We plot the coefficient and
t-statistic of CE𝜏 , and r-squared and number of observations in Fig. 2,
showing results for both the set of all industries and services. We focus
on the r-squared as a measure of statistical fit. We observe a peak in
the size of the r-squared around 𝜏 = 4 for both the full set of industries
and services.

A detailed visual representation of the partition corresponding to
𝜏 = 4 is provided in Fig. 1B. It is composed of 13 communities, each
containing between 2 and 54 industries (average size is 26 industries).
We can clearly see that some key merges have already occurred by
𝜏 = 4. On the services side, we have health and education, retail
and leisure, finance and real estate, publishing and software/comms.
On the manufacturing and heavy industry side, we have vehicles and
waste, paper, furniture, plastics and chemicals. These groupings can be
seen as integrated labour pools, frequently sharing workers, skills and
knowhow.

However, what is clear from Fig. 2 column 4 is that the number
of observations is changing depending on the value of the resolution
parameter 𝜏. This occurs because for each 𝜏 there exist some single-
ton clusters containing just one industry. Cluster employment is not
defined for such industries as there is no skill-related employment pool
available to them under our definition, and these observations are
dropped. For finer divisions of the network (corresponding to lower
values of 𝜏) there exist more of these. Singletons are typically peripheral
industries with no strong connections to any cluster. Hence, the peaks
in predictive power seen in Fig. 2 for specific values of 𝜏 may be as a
result of dropping the ‘right’ industries – those that are peripheral in
the network and thus likely smaller in terms of employment size and
more difficult to predict – rather than any information bestowed by the
non-singleton industry partition itself.

In order to investigate this question, we fix the number of obser-
vations at each resolution, and compare the r-squared of CE𝜏 for two
different values of 𝜏 (this is done by dropping singleton industries for
both values of 𝜏). Fig. 3A–F illustrates this idea. We compare the r-
squared of CE𝜏 (for all 𝜏) to the r-squared of CE1 (many small clusters),
CE4 and CE10 (few large clusters). If, for example, CE10 results in
huge labour pool estimates due to overly large cluster sizes, then we
would expect the r-squared corresponding to CE10 to be smaller than
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Fig. 3. A–F. We fix the number of observations at each resolution, and compare the r-squared of CE𝜏 defined as above to the r-squared of CE1 (many small clusters), CE4 and CE10

(few large clusters). G. Absolute value of 𝛥R2 (difference in r-squared) between pairs of CE𝜏 with identical number of observations. Rows or columns of darker entries indicate
values of 𝜏 for which the difference in r-squared is large.
more appropriate cluster definitions (values of 𝜏). In each case, we
compute the difference in r-squared (𝛥R2) between the two versions of
CE at each resolution 𝜏 in order to find values of 𝜏 which consistently
yield larger r-squared scores (while holding the number of observations
constant within each comparison).

We observe a peak in 𝛥R2 for CE𝜏 relative to both CE1 and CE10

around 𝜏 = 4 (Fig. 3B and F). We can interpret these results as sug-
gesting that CE𝜏 is more strongly associated with employment growth
than CE1 or CE10 for a range of 𝜏 around 2 ≤ 𝜏 ≤ 5. In contrast, when
we compare CE𝜏 to CE4 for all 𝜏 (Fig. 3D), at no point does CE𝜏 ‘out-
perform’ CE4. We infer from this that 𝜏 = 4 is the (statistically) optimal
scale at which labour pooling occurs for services industries in the UK
case.

In Fig. 3G we repeat this exercise for all pairwise combinations of
CE𝜏 . Darker rows (and, symmetrically, columns) signify values of 𝜏
which tend to produce a larger values of r-squared relative to other
resolutions. The results confirm what we saw above, with a peak around
𝜏 = 4.

Finally, we compare cluster employment with its close cousin ‘re-
lated employment’ (RE). Related employment is essentially equivalent
to the single community case of CE (i.e., resolution 𝜏 ≥ 14). Hence,
related employment neglects the network structure, and does not cap-
ture the presence of industry clusters limiting skill-sharing. Consistent
with the wider literature, Fig. 4A shows that related employment
is positively associated with employment growth for the set of all
industries and services, but insignificant for manufacturing alone.

Taking a similar approach as above, we compare the r-squared of
CE𝜏 at each resolution with RE. In Fig. 4B we show the r-squared for
two models with RE, the first includes all observations (open squares)
and the second drops observations such that CE and RE have the same
observations (open circles). As above, we observe a clear difference in
r-squared between the two models for a range of 𝜏 around 𝜏 = 4. In
Fig. 4C we compute 𝛥R2 as the difference in r-squared between CE and
RE with identical observations (closed and open circles respectively).
These results lend further evidence to the idea that it is at these scales
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or resolutions at which clusters extracted from the network best explain
industry employment growth, and do so better than a metric that
implicitly ignores the network structure.

In the Supplementary Material, we provide a range of additional
figures. These include robustness checks for variation in edge threshold
parameter 𝛾 and in the number of neighbours used in the construction
of RE. Specifically:

• Figure S.2 investigates robustness to changes in edge threshold 𝛾.
Here we repeat the analysis of Fig. 4B for values of 𝛾 = 0, 0.1,
0.3 and 0.5. We find that for a perturbation of the threshold up
to 0.5, the analysis continues to exhibit similar behaviour.

• Figure S.3 replicates Fig. 4B but constructs RE using k nearest
neighbours (nodes connected by k highest edges, similar to Haus-
mann et al. (2021)). We find that the r-squared for CE peaks at a
higher level than RE for all values of 𝑘.

5. Discussion and policy implications

In this paper we extend the literature on defining industrial clusters
ignited by Porter (1998, 2003a) and later Delgado et al. (2016), and
develop the conceptual and modelling toolbox of evolutionary eco-
nomic geography by connecting commonly used metrics for ‘related
employment’ to skill-based industrial clusters. In particular, we develop
a methodology based on multi-scale community detection to uncover
the statistically optimal scale at which inter-industry labour pooling
operates in terms of supporting industry employment growth. Applying
our model to data from the UK, we find that key sectors merge to form
integrated labour pools.

We contribute to a current push to exploit tools from network and
data science to probe the complex dynamics underlying the labour
market (Park et al., 2019; Moro et al., 2021). Specifically, we link
the topological structure of the labour mobility network to industry
employment growth dynamics in a way that is both novel and founded
in economic theory.
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Fig. 4. A. OLS for industry employment growth as a function of log employment and related employment (RE) in the base year as defined by Eq. (2) - for all industries,
manufacturing only and services only. FE for cities and industries are included. B. We compare the r-squared of CE at each resolution with RE, including all observations (squares)
and dropping observations such that CE and RE have the same observations (open circles). C. We show 𝛥R2 as the difference in r-squared between CE and RE (same observations).
5.1. Policy implications

Polices often suffer from a ‘data deficit’ concerning skills (Centre
for Progressive Policy, 2018), particularly concerning the matching
of skills training with employer needs. The application of tools from
data science to labour market data, as we do here, has the potential
to make a significant contribution to this issue. In this case, we il-
luminate in greater detail than was previously possible the complex
inter-connection structure of industries based on skill overlap. Our
methodology to extract a particular resolution at which labour pooling
operates provides granular information on which industry combina-
tions effectively exchange skills and know-how in the economy – and
even more importantly – which do not. This is relevant for a wide
range of policy domains, and particularly those aimed at promoting
industrial growth and diversification, and developing targeted educa-
tional offerings that combine multi-sector skills that span traditional
disciplinary boundaries. Specifically, education and training policies
can be enhanced by understanding inter-industry linkages and mobility
patterns, and particularly missing linkages which might be a target for
new courses or apprenticeships.

Much policy discussion has been focused on interventions to in-
crease labour market resilience in the presence of either short term
shocks or longer term technological change. A key component of labour
market resilience is the issue of the mobility of workers. More mo-
bile workers, with more opportunities for transition between sectors,
are better protected in the event of an economic shock. For exam-
ple, Diodato and Weterings (2014) find that intersectoral mobility is
an important factor for regional recovery from an employment shock,
and Straulino et al. (2021a) find that UK cities with greater ability to
reallocate skills between sectors were more resilient to the 2008 Finan-
cial Crisis. Our analysis of the modular structure of the labour network
can provide a granular picture of both potential and realised worker
movements in a shock, particular one affecting a limited number of
sectors. It could be used to design policies that promote resilience, for
example by creating new career pathways, or support workers with
targeted schemes in the event of a crisis.

Cities and regions benefit from a better understanding of their
embedded skills and capabilities, particularly with respect to the de-
velopment of evidence-based industrial policy. In recent years, insights
9

from evolutionary economic geography have influenced the develop-
ment of the EU’s Smart Specialisation policy (Foray, 2014; Boschma
and Gianelle, 2014). This policy advocates for the development of
distinctive local clusters of businesses, building on a region’s existing
strengths. The methodology developed here is well-placed to further
quantify the existence of particular skill-based clusters in a region, and
uncover potential new industries which are closely related, requiring
similar capabilities to those already present.

5.2. Limitations and future work

On a methodological level, we implicitly assume that skill clusters
are fixed over time. While this assumption is backed up by some
analysis of similar German data (Neffke et al., 2017), an interesting
avenue of future research would be to investigate the patterns and
drivers of change in the modular structure of the network over longer
periods of time which is particularly pertinent for the design of longer
term policies, such as higher level education. Similarly, short term
periods of high mobility in response to a shock is of key interest,
particularly in the case of Covid 19.

Our study is limited by the nature of the data required to study
worker inter-industry labour mobility. Longitudinal micro data on in-
dividual workers is only available in very limited circumstances, and
is not even collected in all countries, even highly developed ones with
advanced statistical capabilities. If collected, it is typically only avail-
able under limited access agreements. While efforts have been made to
standardise and compare labour networks across countries (Straulino
et al., 2021b), further work is required to build and release comparable
administrative datasets for cross-country studies.

Finally, while the idea that the presence of skills and capabilities
in ‘related’ sectors benefits employment growth is well-established, the
precise mechanisms by which firms access these skills and facilitate
transitions remains less well understood. While a number of recent
studies aim to more precisely measure the skill content of firms and
industries using occupation and task based data (see e.g., Neffke (2019)
and Turco and Maggioni (2020)), further investigation of worker traits
and drivers of inter-industry mobility is warranted.
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