
Ancestral genomic contributions to complex traits in

contemporary Europeans

Davide Marnetto1,2∗, Vasili Pankratov1, Mayukh Mondal1,
Francesco Montinaro1,3, Katri Pärna1,4, Leonardo Vallini5,

Ludovica Molinaro1, Lehti Saag1,6, Liisa Loog7,
Sara Montagnese8, Rodolfo Costa5,9,10,

Estonian Biobank Research Team1, Mait Metspalu1,
Anders Eriksson1, Luca Pagani1,5∗

November 11, 2021

1 Institute of Genomics, University of Tartu, Tartu, 51010, Estonia.
2 Department of Neurosciences ‘Rita Levi Montalcini’, University of Turin, Torino, 10126, Italy.
3 Department of Biology, University of Bari, Bari, 70125, Italy
4 Department of Epidemiology, University of Groningen, Groningen, 9700 RB, The Netherlands.
5 Department of Biology, University of Padova, Padova, 35131, Italy.
6 Research Department of Genetics, Evolution and Environment, University College London,
London, WC1E 6BT, UK.
7 Department of Genetics, University of Cambridge, Cambridge, CB2 3EH, UK.
8 Department of Medicine, University of Padova, Padova, 35128, Italy.
9 Institute of Neurosciences, National Research Council (CNR), Padova, 35121, Italy.
10 Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7YH, UK.
∗ Correspondence: davide.marnetto@unito.it (DM); lp.lucapagani@gmail.com (LP)

Summary

The contemporary European genetic makeup was formed in the last 8000 years when local
Western Hunter-Gatherers mixed with incoming Anatolian Neolithic farmers and Pontic Steppe
pastoralists1–3. This encounter combined genetic variants with distinct evolutionary histories
and, together with new environmental challenges faced by the post-Neolithic European farmers,
unlocked novel human adaptations4.

Previous research efforts have inferred phenotypes in these source populations, using either a few
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single loci5–7 or polygenic scores based on genome-wide association studies8–10, and investigated
the strength and timing of natural selection on traits such as lactase persistence or standing
height6,11,12. However, how ancient populations contributed to present-day phenotypic variation
is poorly understood.

Here we investigate how the unique tiling of genetic variants inherited from different ancestral
components drives the complex traits landscape of contemporary Europeans, and quantify
selection patterns associated with these components. Using matching individual-level genotype
and phenotype data for 27 traits in the Estonian biobank13 and genotype data directly from
the ancient source populations, we quantify the contributions from each ancestry to present-day
phenotypic variation in each complex trait.

We find substantial differences in ancestry for eye and hair colour, body mass index, waist/hip
circumferences and their ratio, height, cholesterol levels, caffeine intake, heart rate and age at
menarche. Furthermore, we find evidence for recent positive selection linked to four of these
traits and, in addition, sleep patterns and blood pressure.

Our results show that these ancient components were differentiated enough to contribute
ancestry-specific signatures to the complex trait variability displayed by contemporary Eu-
ropeans.
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Results and Discussion1

We identified 27 complex traits of interest, based on information availability in the Estonian2

Biobank13 (EstBB) and GWAS catalog14. EstBB contains matching genotype and pheno-3

type information for individuals from a relatively homogeneous population, that contains all4

three ancestry components found in Europe, with the proportion of remnant Hunter Gatherer5

ancestry among the highest in Europe and an additional minor (< 5%) Siberian component6

associated with Iron Age movements15,16. In order to associate specific ancient European an-7

cestry components with predicted phenotypes, we introduce covA, a measure of the relative8

similarity between any contemporary individual and the ancestries that contributed to its ge-9

netic makeup. For each sample in the EstBB we computed its covA with each of the ancestral10

source populations, focusing on genomic regions potentially connected to each trait. We then11

used covA as a predictor to model traits, also in comparison with the same statistic computed12

for the whole genome. Finally we test if those regions associated with the genetic contribution13

from a specific ancestry experienced a post-admixture selective pressure on top of the observed14

local unbalance in contributing ancestries.15
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covA measures similarity with ancestral groups1

Here we introduce covA, the covariance between allele frequency (p) in a contemporary individ-
ual i (i.e. its allele dosage) and a given ancestral population j with respect to the contemporary
and ancient average frequencies (pC and pA respectively):

covA(i, j) = (pi − pC)(pj − pA) (1)

The covA statistic is expected to be high when the allele frequencies of the individual i and the2

ancestry j are similar in comparison with the differences within the contemporary population3

and across the ancestries that contributed to its genetic makeup. Furthermore, covA can be4

computed averaging over the contribution of multiple Single Nucleotide Polymorphisms (SNPs),5

either across the whole genome or for specific regions of interest.6

In order to test the potential of covA to distinguish between genetic contributions from different7

ancestries, we simulated polygenic traits in a modern population composed of three ancestral8

groups and verified that when predicting simulated traits, covA estimated coefficient correlates9

well with their ancestral specificity (Pearson’s correlation coefficient ρ=0.919-0.937, Figure S1a).10

See Methods, Supplementary Notes and Figure S7 for further discussion of covA properties and11

simulation details, including the definition of ancestral specificity.12

For each EstBB individual, we computed genome-wide covA between the individual and each13

of the ancestries among Western Hunter-Gatherers (WHG), Neolithic Farmers from Anatolia14

(Anatolia N), Yamnaya Pastoralists from the Pontic Steppes (Yamnaya), and Siberian (Siberia).15

We defined these ancestry groups based on genetic and chronological proximity to a set of iden-16

tified focal individuals, see Methods and Table S1 for a list of the ancient genomes assigned17

to each group. As expected, covAs calculated on the different ancestries are strongly inter-18

dependent, because they include as term the average ancestral frequency (pA) and because of19

varying grades of similarity among the ancestries for historical demographic reasons (see covA20

joint distributions in Figure S2). In particular covA tends to be negatively correlated between21

different ancestral components with the exception of Yamnaya and WHG, reflecting complex22

demographic relationships between the two, involving WHG-like Eastern Hunter Gatherer an-23

cestry presence in Yamnaya2,3,17. Furthermore, although the Estonian population is considered24

relatively genetically uniform, some geographic differences exist with the south-eastern inland25

counties having higher haplotype sharing with Latvians, Lithuanians and Russians compared26

with the rest of the country, as recently shown in Pankratov et al. [18]. This result is also mir-27

rored in our analyses with median covA for WHG being higher in south-eastern inland counties,28

see Figure S3a. Conversely, as shown by median covA for the Siberian component in Figure29

S3d, the Siberian ancestry seems to be more abundant in north-east Estonia, consistently with30

Finnish ancestry shown by Pankratov and colleagues18. Yamnaya and Anatolia N covAs are31

instead more evenly distributed (Figure S3b,c).32
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Phenotype-associated genomic regions show specific ancestry similarity pat-1

terns2

We examined 27 complex traits (31 if considering separate classes of pigmentation) for which3

we had sufficient records in the Estonian Biobank (see Table S2). We corrected and adjusted4

them for confounding covariates, including sex, age, genotyping platform and others as specified5

in Table S2. As our analysis relies on SNPs overlapping between ancient and contemporary6

genetic data, a portion of the genetic influence over these traits, especially when conveyed7

by rare alleles, might elude our experimental setting19. Nevertheless, our data set captures a8

genetic basis for most of them, as confirmed by the trait heritability measured in our sample9

(Figure 1).10

We defined three sets of candidate regions for any given trait by considering windows of 5kb,11

50kb or 500kb centered around GWAS catalog14 hits for corresponding trait categories (see12

Methods and Table S3). As shown in Figure S4, these genomic regions harbor a higher her-13

itability intensity (h2/Mb) than the whole genome, supporting their suitability as candidate14

regions for the traits of interest.15

Next, we used covAs computed on the candidate regions as a predictor to model traits, and asked16

whether they showed significantly different regression coefficients when compared to 50 size-17

matching random genomic sets: this was found true in 11 out of 27 traits (double-sided Z-test,18

Benjamini-Hochberg FDR = 0.05), see Z-scores in Figure 2. This analysis has the advantage of19

automatically controlling for virtually all potential confounders that apply to the genome in its20

entirety, e.g. social, economic and cultural statuses, thus allowing us to not include any such21

covariates in the model. In addition, this analysis pinpoints genetic signals that are likely to22

be functionally connected to the trait. Among others, blood cholesterol levels are shown to be23

positively correlated with similarity to Yamnaya in cholesterol-associated regions with respect24

to the rest of the genome, while the opposite is true for WHG.25

Since covA exhibits a high correlation across ancestries, we avoided implementing a model with26

largely multicollinear predictors including covA for all ancestries and instead adopted separate27

models for each ancestry, complementing them with a regression on covA Independent Com-28

ponents (ICs) (Figure 2b). We used the loadings from a Principal Component (PC) Analysis29

on whole genome covAs (Figure 2c) to transform region-specific covAs into ICs. This, though30

not returning actual PCs in each candidate region, drastically reduces the collinearity (highest31

Variance Inflation Factor=1.62 in hair color 50kb candidate regions), while allowing simpler in-32

terpretation and, crucially, cross-region comparisons required for Z-scores computation. While33

covAs (Figure 2a) highlight the overall excess or lack of certain ancestries in relation with a34

given phenotype but are largely intertwined, ICs (Figure 2b) can be interpreted as independent35

axes defined by 2 or 3 covAs. We therefore adopted ICs to discriminate significant ancestry-trait36

associations, as they are independent variables in a comprehensive predictive model. Significant37

results, interpreted in light of the ICs, are summarized in Table S4 and discussed below. Among38

others, this analysis confirms the association between cholesterol levels and the Yamnaya-WHG39

axis previously mentioned.40
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Comparison with genome-wide ancestry similarity1

We followed up the association between phenotypes and local excess or lack of a given ancestry2

and explored whether a similar pattern held at whole genome level by computing genome-wide3

covAs. Here, being unable to correct for environmental confounders with a Z-score approach4

and avoiding genotype-based PCs as covariates in order not to hinder potential genome-wide5

signals, we run the risk of obtaining spurious ancestry-trait associations. This is due to uneven6

ancestry similarity across Estonia concurrent with geographically associated socio-economic7

differences that can potentially confound genotype-phenotype associations. Although the con-8

founding effect of population structure is minimised by the inclusion of a relatively uniform9

population, small differences related to historical reasons18 are still visible in covA (see Figure10

S3). Therefore, we include a city/countryside residency covariate in the models, defined as 111

for people living in the wealthiest and most populous county (Harju county) and 0 otherwise,12

and a covariate for educational attainment, which is a good proxy for family socioeconomic13

status20,21. This control allows us to suggest a significant influence of genome-wide ancestry on14

16 traits out of 27, as shown in Figure S5, even when geographical and social stratification is15

present (coefficient p value significant at Benjamini-Hochberg FDR=0.05). Again, covA-based16

PCs were used to interpret significant results.17

Interestingly, we do not always observe concordance between the region-specific and genome-18

wide results, as shown in Figure 3, pointing to the fact that region specific trends are not always19

sufficient to drive genome-wide signals to significance, or might even arise in a contrasting20

genomic background. This is especially true for less polygenic traits (e.g. pigmentation), but21

also for more polygenic ones, as indicated by height association with WHG. On the other hand,22

we also find genome-wide ancestry-trait connections which are not exacerbated in candidate23

regions, thus losing Z-score significance. This can occur for a single ancestry (e.g. Anatolia N or24

Siberia and height) or cause the loss of trait associations altogether, as for alcohol consumption,25

depression, sleep duration, social jetlag, diopters, pulse pressure, creatinine levels. Finally, we26

observed that genome-wide covAs for WHG and Yamnaya tend to be linked to most phenotypes27

in a similar fashion, in contrast with results found in candidate regions where the two ancestries28

behave in a more independent manner (Figure S5).29

Selection signatures at candidate regions with ancestry-trait association30

So far we only explored associations between a given trait and a local or genome-wide excess31

of a given ancestry. The observed local admixture unbalance points to a role of that ancient32

contribution in explaining a given phenotype. However, these results alone do not show whether33

after the admixture event the incoming genetic material also underwent a selective sweep within34

the recipient population, altering population-wide allele frequencies as investigated in Mathieson35

et al. [6]. In other words, the local admixture imbalances we detected so far are not necessarily36

transferred to the whole population.37

We independently asked whether the phenotype-associated regions above also exhibit signs of38

recent natural selection. We applied CLUES22 to the list of GWAS hits used as index for our39
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candidate regions to obtain per-SNP evidence of recent (up to 500 generations ago) natural1

selection, and to see which phenotypes show enrichment in SNPs with strong selection signals2

compared to a random set of GWAS hits. Out of the genomic regions responsible for ancestry-3

trait association shown in Figure 2, pigmentation-related SNPs (eye and hair color) showed4

extremely high CLUES logLR values (Figures 4a, S6) in accordance with previous results6,9,23,5

as well as SNPs related to BMI and cholesterol, pointing to ongoing or recent selection at these6

loci. Diastolic blood pressure (DBP) and sleep-related SNPs also showed the same extreme7

signature, but the candidate regions encompassing them did not reach significance in ancestry-8

trait association.9

The recent and putatively ongoing nature of the inferred selective pressure on the six traits10

shown in Figure 4a is further exemplified by the steep increase in derived allele frequencies over11

time inferred for the top 3 SNPs of each trait and shown in Figure 4b. These include some loci12

previously shown to be selected in West Eurasians (rs4988235 at MCM6/LCT24, pigmentation-13

related SNPs at HERC2/OCA2, TYRP1, TYR, TPCN29,23,25, rs653178 at ATXN226) and14

some other, yet to be explored. In particular rs17630235, associated with BMI and DBP, is15

an expression Quantitative Trait Locus (QTL) in several epithelial tissues27 for ALDH2, an16

aldehyde dehydrogenase known for its role in the alcohol metabolism28. Although this selective17

signal might be due to rs17630235 proximity with ATXN2, it is tempting to speculate about the18

changed role of ALDH2 in a post-neolithic society, which made available several fermentable19

substrates. Other selected SNPs include rs74555583 and rs11539148, both associated with sleep20

patterns (chronotype). Most notably, the latter is a missense variant in the catalytic domain of21

QARS1, for which also functions as splicing QTL27. QARS1 itself encodes an enzyme involved22

in the glutaminyl-tRNA synthesis and, when mutated, leads to microcephaly, cerebral-cerebellar23

atrophy and seizures29.24

Discussion25

Here we combined existing knowledge on genotype-phenotype associations and the availability26

of ancient genomes to assess the impact of ancient migrations on the phenotypic landscape of27

contemporary Europeans. We leveraged on traits measured in living individuals, complement-28

ing previous works where phenotypes were inferred for ancient genomes instead. As a whole,29

the most affected traits include pigmentation and anthropometric traits together with blood30

cholesterol levels, caffeine consumption, heart rate and age at menarche.31

Importantly, while our genome-wide results highlight an overall excess of an ancestry in the32

carriers of a given phenotype, this is not necessarily mirrored at the genetic loci for which33

the genotype-phenotype association is ascertained in the literature. A genome-wide excess can34

completely explain a regional signal, leading to non-significant Z-scores, and even indicate a35

different direction for the same ancestry. While the first scenario can be due to the extreme36

polygenicity of a trait, possibly coupled with an inaccurate tagging of the actual functional37

regions by the GWAS catalog hits, the second might indicate an incomplete correction of non-38

genetic factors in the genome-wide analysis. Indeed, it is possible that place of residence and39

educational attainment alone cannot fully account for confounding environmental effects such as40
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socioeconomic status. Conversely, candidate region Z-scores are disentangled from background1

confounders, and virtually free from collinearity issues when they also agree with the relevant2

ICs. In this light, we here chose to report and discuss results showing region-specific significance3

for covAs and matching ICs (as reported in Table S4), hence refraining from making inferences4

on traits such as eye pigmentation in Yamnaya, among others.5

WHG ancestry in present day individuals is linked to lower cholesterol levels, higher BMI and6

putatively contributed brown hair and light eye color to the contemporary Estonian population.7

This last association has been previously described based on the HERC/OCA2 haplotypes found8

in ancient WHG samples5,23. In addition, loci associated with these features also appear to have9

undergone selection in Estonians. Other region-specific associations for this ancestry include10

decreased hip circumference, and increased caffeine consumption and heart rate.11

An enriched Yamnaya ancestry is linked to a strong build, with tall stature (in agreement12

with previous studies6,8) and increased hip and waist circumferences, both at genome-wide13

and region-specific levels, but also to black hairs and high cholesterol concentrations when14

focusing on candidate regions. The associations of Yamnaya and WHG ancestries to respectively15

higher and lower cholesterol levels, together with the observed signatures of selection at loci16

connected to cholesterol and BMI, add a new component to our understanding of post-neolithic17

dietary adaptation7,30,31 with potential implications to disease risk and outcomes in present-day18

populations.19

Anatolia N enrichment in trait-related genomic regions is connected with a reduced BMI-20

corrected waist to hip ratio, reduced BMI, light (but not green) eyes and fair hair, increased21

age at menarche and reduced heart rate. Notably, covA(i,Anatolia N) has a substantial weight22

only in IC2, the single IC that reaches significance when predicting heart rate, suggesting a23

prominent role for this ancestry in determining this trait.24

Finally, the Siberian ancestry is connected with dark hair pigmentation, higher heart rate,25

lower caffeine consumption and most prominently green eye color and lower age at menarche.26

Importantly, while the results connected to the Siberian ancestry are not of broad applicability27

to all European populations, covA(i,Siberia) and relative ICs received effect-sizes with mixed28

significance in all the previous traits except for age at menarche and pigmentation, suggesting29

that other ancestries might have a larger impact. In other words, we do not find other pheno-30

types that can be best explained by similarity with Siberia, implying that the presence of this31

ancestry in the Estonian genome does not significantly affect the inference based on the other,32

pan-European ancient components.33

A general caveat about significance levels observed in this study is that as we refrain from34

reducing interdependent traits by arbitrary choices, even testing multiple alternatives of the35

same trait, we expose ourselves to inflated false negatives. We deemed it best to acknowledge36

and control this risk by avoiding overly stringent multiple testing corrections as Bonferroni, and37

adopting the Benjamini-Hochberg procedure to control FDR instead. In addition, as highly38

significant traits tend to have higher heritability, it is likely that our analysis might not have39

enough statistical power for poorly heritable traits. Nevertheless, as we are able to highlight40

ancestry-trait associations for caffeine consumption (h2 = 0.087 ± 0.009), brown hair color41
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(h2 = 0.079± 0.009) and even heart rate (h2 = 0.044± 0.009), this condition should be limited1

only to the very few traits exhibiting lower heritabilities.2

Importantly, our inferences are applicable to contemporary individuals of European ancestry,3

where the phenotypes were collected. Conversely, using them to extrapolate features of ancient4

populations, although tempting, should be done with caution due to the interaction of their5

genetic legacy with a radically different lifestyle and environment. Furthermore, when seeking6

a biological interpretation of our results, it should be kept in mind that certain narrowly de-7

fined, contemporary phenotypes such as caffeine consumption may point to broader biological8

pathways.9

Taken together, our results show that the ancient components that form the contemporary Eu-10

ropean landscape were differentiated enough at a functional level to contribute ancestry-specific11

signatures on the phenotypic variability displayed by contemporary individuals, regardless of12

which target population one may examine. In particular, when looking at Estonians, for 1113

out of 27 traits surveyed here we could confirm a significant relationship between presence of a14

given ancestry in genetic regions associated with a given phenotype and how this is expressed15

by contemporary individuals. While showing that both autochthonous (WHG) and incoming16

groups contributed genetic material that shapes the phenotype landscape observed today, we17

also demonstrated that a subset of these loci further underwent positive selection in the last18

500 generations. Although not determining whether the selected alleles (and phenotypes) were19

predominantly contributed by the autochthonous or incoming groups, by connecting genotypic20

ancestry and complex traits measured in a large dataset, our results reveal both neutral and21

adaptive consequences of the post-neolithic admixture events on the European phenotype land-22

scape.23
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Figure 1: Traits and their heritability. All traits analyzed and their estimated heritability
after covariate adjustment. Bars indicate standard errors of the estimate. Numbers in paren-
theses indicate the number of unrelated samples for which phenotypic information was available
for each trait.
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Figure 2: ancestry-trait association on candidate regions. a Z-scores of covA coeffi-
cients, the color refers to the ancestry tested. b Z-scores of coefficients associated with covA
independent components (IC) computed with whole genome-based covA PC loadings. Each
color is associated with one of the three ICs. For each trait we show the Z-score of the standard-
ized coefficient associated with candidate regions against a distribution of 50 random genomic
regions of matching size. Candidate regions are determined around GWAS hits for appropriate
traits as windows with three different widths: 5 (small dot), 50 (medium dot) and 500 (large
dot) kilobases. Pastel dots are deemed not significant at Benjamini-Hochberg FDR = 0.05, p
value from double-sided Z-test; asterisks mark traits to be considered significant according to
b; dotted lines correspond to absolute Z-scores = 2. c Loading matrix for genome wide covAs
and their PCs, used to transform covAs into their ICs. The three genome wide PCs accounted
for 0.498, 0.327 and 0.175 covAs variance, respectively. PCs and relative ICs can be interpreted
as axes defined by 2 or 3 covAs.
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Figure 4: Selection signatures. a CLUES log likelihood ratios (logLR) values distribution
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STAR Methods1

0.1 Resource Availability2

Lead contact3

Further information and requests for resources and reagents should be directed to and will be4

fulfilled by the lead contact, Davide Marnetto (davide.marnetto@unito.it).5

Data and code availability6

This paper analyzes existing, publicly available data. These accession numbers for the datasets7

are listed in the key resources table. Data from Estonian Biobank are under managed access8

and subject to approval of the Estonian Committee on Bioethics and Human Research; accessed9

with Approval Number 285/T-13 obtained on 17/09/2018 by the University of Tartu Ethics10

Committee.11

All original code has been deposited at bitbucket_repository_url_upon_publication and12

is publicly available as of the date of publication.13

Any additional information required to reanalyze the data reported in this paper is available14

from the lead contact upon request.15

0.2 Method details16

Sample selection and ancient European grouping17

We used 50,353 sequenced or genotyped individuals from the Estonian Biobank13 as con-18

temporary Estonian sampleset. After removing second-degree relatives (pi-hat > 0.25) we19

obtained a subset of 37,952 individuals and used it as a scaffold to perform a PC Analy-20

sis (PCA) with Eigensoft-6.1.4. Other individuals were projected on the same PCA space.21

Outliers identified in this process (with parameters numoutlieriter: 5 numoutlierevec: 1022

outliersigmathreshold: 6) were discarded. Samples that on the first round of genome-wide23

covAs were more distant than 8 Interquartile Ranges (IQR) from the upper or lower quartile24

against any of the ancestries were also discarded, resulting in 49811 individuals included in our25

sample set. For each trait of interest we first removed individuals with missing data for traits26

and covariates and subsequently discarded second-degree relatives.27

To define ancestral European groups we started from the Allen Ancient DNA Resource (AADR)28

14
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V44.3 merged with present-day individuals typed on the Human Origins array (see Data Avail-1

ability section). From this set we defined a manually curated core set for each ancestral group,2

then performed a PCA on a space defined by modern Eurasian and North African individuals3

west of Iran (included), where the ancient samples were projected. We expanded these core4

sets to other individuals from AADR dataset using multi-dimensional ellypses with diameters5

equal to 3 core set SDs. We used 4 dimensions: the annotated dating and the first 3 PCs6

generated above. With this process we selected 90 WHG, 92 Anatolia N, 74 Yamnaya S1.7

In addition, from the ones available from the same dataset, we took 7 samples as representa-8

tive of the broader Siberian ancestry, assuming any Siberian individual would be equidistant9

to the other ancestral European groups: S Even-3.DG, S Even-1.DG, S Even-2.DG, Bur1.SG,10

Bur2.SG, Kor1.SG and Kor2.SG. 957,869 SNPs remained in our dataset after merging the11

contemporary and ancient sets.12

Phenotypes treatment and heritability13

Continuous traits were treated as specified in Table S2 and regressed against the covariates14

according to the same table. Individuals with traits or covariates more distant than 4 IQRs15

from the upper or lower quartile were considered as outliers and discarded. After adjusting16

traits as described, their heritability was computed using LDAK 5.032. First we computed17

a kinship matrix with the LDAK-Thin Model: we thinned down SNPs on the non-related18

sample set defined above with parameters --window-prune .98 --window-kb 100, then used19

--calc-kins-direct with the resulting weights and --power .25. Finally we estimated heri-20

tability using REML solver.21

covA definition22

covA is the covariance in allele frequency (p) within a contemporary individual i (i.e. its allele
dosage) with the ancestral group of interest j, computed respectively against the allele frequency
pC of the contemporary population C and the average frequency pA in all the A ancient groups:

covA(i, j) = (pi − pC)(pj − pA) (2)

When comparing covA with outgroup f3(i, j;Y oruba)33, where j is one of the four ancestral23

groups, the statistics are different but strongly correlated (see Figure S7): this is expected24

when the f3 outgroup population is an outlier to all populations, contemporary and ances-25

tral, considered in covA, as in f3(i, j;Y oruba). Indeed covA(i, j) has a strong relationship26

with f -statistics34, i.e. covA(i, j) = f4(i, C; j, A) = f3(i, j, A) − f3(C, j,A) where C is the27

contemporary population (Estonians in our case) and A is an ideal population with p = pA.28

Nevertheless, as opposed to f -statistics, which include allele frequencies in groups that portray29

actual populations, covA(i, j) includes pA, an average allele frequency which only serves as bal-30

anced comparison for the ancestries under analysis. In relation with our aim, this constitutes31

an advantage of covA, which does not take into account drift or selection occurred in the branch32

15



that connects the outgroup population with the internal node shared by the other populations1

under analysis.2

Predicting traits with covA and covA-based PCs3

We fitted each standardized trait ti with a model including one standardized covA for each4

ancestry j and estimated its coefficient: ti = βjcovAj + εi. We adopted a logistic regression for5

categorical traits, which were transformed to {0, 1} where 1 stands for the specified category6

and 0 for all the others. In addition, each trait was regressed against three PC-transformed7

covAs: ti = β1PC1+β2PC2+β3PC3+εi. Notably, we transformed all covAs using the loadings8

obtained from a PC analysis run on whole genome covAs, thus obtaining components that were9

largely independent, yet not strictly principal. These Independent Components (ICs) were10

standardized and included together as predictors. To evaluate association we used coefficient11

Z-scores computed against the same parameter extracted from 50 random genomic sets with12

matching size.13

In the genome-wide analysis, we adopted similar steps, performing individual regressions for14

all the covAs and coupling this with a model including all covAs PCs, but socioeconomic15

variables were added as covariates in all models as described in the result section. Note that16

in this analysis ICs are not needed anymore, but actual PCs are used. Then, the standardized17

coefficient (β or effect size), or the Odds Ratio (OR) were directly used to assess ancestry-18

trait association for continuous and categorical traits respectively. This analysis was restricted19

to samples for which socioeconomic covariates were defined, i.e. 38,996 samples (including20

relatives): the actual sample size for this analysis is therefore less than reported in Figure 121

and Table S2.22

Candidate genomic regions23

We downloaded GWAS hits from GWAS catalog14 (date of download: 20/11/2020) and then ex-24

tracted for each trait a set of hits connected to it filtering on the reported trait (”TRAIT/DISEASE”25

field) or selecting the appropriate trait in the Experimental Factor Ontology (EFO) field, as26

specified in Table S3. Then we took windows of 5, 50 and 500 Kbs centered on the selected27

hits and merged them where overlapping, obtaining three sets of candidate regions for each28

trait. To perform the Z-score analysis, for each of them we obtained 50 matching window sets29

randomly placed across the genome.30

Testing for signals of positive selection31

In order to test individual SNPs for signatures of positive selection we utilized the Relate/CLUES32

pipeline22,35. This was applied on a curated subset of 1800 unrelated samples; further details33

on its application are described in Relate/CLUES Supplementary Methods. CLUES was run34

16



once for each of the 14,712 unique GWAS hits for traits analyzed here with a derived allele1

frequency (DAF) above 1% and passing the 1000 Genomes strict mask. To obtain an expected2

distribution we randomly sampled 10,000 GWAS hits from the GWAS catalog meeting the same3

conditions and ran CLUES for positions not present among the 14,712 SNPs. Next, for each4

phenotype we compared its distribution of the logLR values to that of random GWAS hits. We5

took 1000 random subsets (with replacement) from the 10,000 logLR values each of the same6

length as the number of GWAS hits for a given phenotype and ranked the logLR values from7

lowest to highest within each subset. In this way we obtained 1000 values for each logLR rank8

from 1 to N where N is the number of SNPs analyzed for a given phenotype. For each rank we9

calculated the mean and the 5th and 95th percentiles. Finally, we rank SNPs within each trait10

and compare each logLR value to the mean and 5th−95th percentiles range for the correspond-11

ing rank of the background distribution. As we are interested in deviations in the higher ranks12

we focus on the top 100 ranks for each phenotype. Such an approach is conservative as we are13

testing not against presumably neutral SNPs but against random GWAS hits that are shown14

to be enriched in signals on natural selection compared to random SNPs in the genome35.15

0.3 Quantification and statistical analysis16

Statistical details to obtain any p value or significance assessment mentioned in the text are17

given immediately in the text and in the figure captions. remaining statistical methods and18

softwares are specified in ”Method details” and listed in the ”Key resources table”.19
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0.4 Key resources table1

2

REAGENT or RESOURCE SOURCE IDENTIFIER
Deposited data
Estonian genetic and pheno-
typic data

Estonian Biobank https://genomics.ut.ee/en/

access-biobank

AADR and Human Origins
dataset

Allen Ancient DNA Re-
source

https://reich.hms.harvard.edu/

allen-ancient-dna-resource-

aadr-downloadable-genotypes-

present-day-and-ancient-dna-

data

GWAS hits GWAS catalog on
20/11/2020

https://www.ebi.ac.uk/gwas/

eQTL and sQTL data GTEx portal on 18/10/2021 https://www.gtexportal.org/

home/

1000 Genomes strict mask The 1000 Genomes Project
Consortium [36]

Software and algorithms
PLINK 1.9 Chang et al. [37] https://www.cog-genomics.org/

plink2

Eigensoft-6.1.4 Patterson et al. [38] https://alkesgroup.

broadinstitute.org/EIGENSOFT/

LDAK 5.0 Speed et al. [32] https://dougspeed.com/ldak/
Relate Speidel et al. [35] https://myersgroup.github.io/relate/
CLUES Stern et al. [22] https://github.com/35ajstern/clues
Analysis Pipeline This paper bitbucket_repository_url_upon_

publication
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