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Abstract 

Major depressive disorder (MDD) is associated with increased suicidality, and it’s still 

challenging to identify suicide in clinical practice. Although suicide attempt (SA) is the 

most relevant precursor with multiple functional abnormalities reported from 

neuroimaging studies, little is known about how the spontaneous transient activated 

patterns organize and coordinate brain networks underlying SA. Thus, we obtained 

resting-state Magnetoencephalography data for two MDD subgroups of 44 non-suicide 

patients and 34 suicide-attempted patients, together with 49 matched health-controls. 

For the source-space signals, Hidden Markov Model (HMM) helped to capture the sub-

second dynamic activity via a hidden sequence of finite number of states. Temporal 

parameters and spectral activation were acquired for each state and then compared 

between groups. Here, HMM states characterized the spatiotemporal signatures of eight 

networks. The activity of suicide attempters switches more frequently into the fronto-

temporal network, as the time spent occupancy of fronto-temporal state is increased and 

interval time is decreased compared with the non-suicide patients. Moreover, these 

changes are significantly correlated with Nurses’ Global Assessment of Suicide Risk 

scores. Suicide attempters also exhibit increased state-wise activations in the theta band 

(4-8Hz) in the posterior default mode network centered on posterior cingulate cortex, 

which can’t be detected in the static spectral analysis. These alternations may disturb 

the time allocations of cognitive control regulations and cause inflexible decision 

making to SA. As the better sensitivity of dynamic study in reflecting SA diathesis than 

the static is validated, dynamic stability could serve as a potential neuronal marker for 
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SA.  
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Introduction 

Depression is the leading cause of mental health burden worldwide, and in extreme 

cases leads to suicide [1]. A meta-analysis provides that suicide attempt (SA) has 31% 

lifetime prevalence in individuals with major depressive disorder (MDD) across the 

world [2]. The topic of depression and suicide is unprecedentedly urgent and essential 

as the increased suicidality in the Covid-19 pandemic reported from different countries 

[3-5]. At present, clinical assessments of suicide risk usually rely on retrospective 

information, which are often unsatisfactory [6]. Additionally, nearly 80% of patients 

who committed suicide didn’t report suicidal ideation in their last communication about 

this [7]. Therefore, there is a need to explore the potential mechanism of suicidal 

behavior in order to find suicidal biomarkers which may assist in improving the future 

clinical evaluation of suicidal risk [8, 9]. Identifying brain alterations by neuroimaging 

may help to understand the neuronal mechanism of suicidality and develop such 

markers [10].  

 

Resting brain activity has been linked to higher order cognitive processes and previous 

studies suggested that an impairment of cognitive control may underpin the high suicide 

rates in individuals with MDD [11]. To better understand the neural mechanisms 

underlying resting-state brain functions, there have been a shift in brain mapping from 

the study of discrete functional regions to the identification of networks [12]. The 

existed evidence for resting-state network (RSN) changes in SA comes largely from 

functional magnetic resonance imaging (fMRI) [13-15]. For example, suicide 
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attempters with MDD have been demonstrated with synchronous alterations in intrinsic 

activity of the frontal, temporal, and parietal areas [16], altered intra- and inter-network 

connectivity among default mode network and salience network, as well as the right 

frontal-parietal network [17]. Furthermore, the decreased functional network 

connectivity between insular–default mode network and insular–cerebellum was 

associated with the suicide and stress level in the suicidal depressed group [18]. 

 

Despite the above research progresses, most analysis undertaken in a static definition 

of the whole-time scale usually ignore the dynamic activity in resting state and erase 

the tiny features in particular time point. Actually, resting state has been proved to be 

underpinned by much richer spatiotemporal dynamics then previous studies assumed 

and the network could be better characterized using some extra time-varying measures 

of interactions [19, 20]. But to date, dynamic studies on suicide issue of MDD are still 

limited and they all focused on suicide ideation (SI). Dynamic whole-brain 

connectomics using a sliding window were found with increases in the overall 

topological properties among MDD patients with SI, and the features may correlate 

with the severity of SI [21]. Another dynamic characterization of low-frequency 

fluctuation (dALFF) on resting-state fMRI using sliding-window analysis suggested 

that the SI MDD group showed decreased brain dynamics in various regions involved 

in executive and emotional processing [22]. Dynamic evidence that SI in patients with 

MDD may be related to an abnormality in habenula was also found by sliding-window 

fMRI analysis [23]. These dynamic studies reported their findings on the differential 
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regions of SI, but the instability of neuronal networks has not been considered.  

 

In addition, the temporal resolution of sliding window approaches is limited, as each 

window requires relatively large amounts of data, typically several seconds in length 

[24]. Due to its limited temporal resolution, fMRI currently cannot be used to image 

dynamic brain activity in the time frame in which neuronal processes occur, i.e., in the 

sub-second range [25]. But it is likely that the brain supports complex thought and 

behavior by dynamic recruitment of whole brain networks across millisecond time-

scales [24]. The signatures of these dynamics may be observable in electrophysiological 

recordings, which reveal that there are sub-second spontaneous states in resting state 

brain activity [26-29]. These spontaneous transient states may organize and coordinate 

neural activity in brain networks. Although SA is the most important risk factor for 

subsequent suicide behavior, how sub-second transient states of large-scale brain 

networks are altered in SA is still unknown. Therefore, we require electrophysiological 

recordings to have more complete understanding measures of the suicidal trajectory of 

networks. 

 

In the current study, we used resting-state magnetoencephalography (MEG) to track the 

abnormality of brain dynamics underlying SA of MDD patients. The major advantage 

of MEG is the ability to capture neuronal electrophysiological signals with high 

temporal resolution and rich frequency information. The development of analysis 

methods that capture dynamics, Hidden Markov Model (HMM), opens such an 
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opportunity to explore how dynamics in oscillations across a spectral range supports 

the electrophysiological networks [19, 29]. HMM was developed without a prior on 

dynamic windows to assess network dynamics across the brain parcellations [24, 30]. 

To our knowledge, this HMM application is the first dynamic electrophysiological 

network study on SA of MDD, which could characterize the brain alternations of SA in 

a spatially, temporally and spectrally defined way. We hypothesized that suicide attempt 

in MDD may be associated with aberrant dynamics involving activation of the frontal, 

temporal, parietal and default mode networks. Our aim is to provide greater mechanistic 

insight into the brain dysfunctions by exploring the altered brain network dynamics 

underlying SA, and also to yield more potential measures to serve as diagnostic 

neuronal markers as a supplement to the clinical suicidal assessments. 

 

Methods and Materials  

Participants 

80 MDD patients were recruited at the Inpatient Department of Psychiatry of the 

Affiliated Brain Hospital of Nanjing Medical University, while 50 healthy controls 

(HCs) were enrolled through advertisements in the same region. Resting-state MEG 

scanning was performed on patients at the time of hospitalization. All subjects were 

right-handed and fulfilled the conditions to undergo a MEG scan. Among them, 2 MDD 

and 1 HC participants were excluded due to excessive head movements and poor image 

quality. In the final analyses, 78 MDD and 49 HC were included. Patients were assessed 

with the MINI-International Neuropsychiatric Interview (M.I.N.I.) [31] in accordance 
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with the criteria of both the Diagnostic and Statistical Manual of Mental Disorders, 4th 

edition (DSM-IV). The severity of depression was evaluated by the 17-item Hamilton 

Depression Scale (HAMD-17).  

 

MDD patients consisted of suicide-attempted (SA) subgroup including 34 participants 

and non-suicide (NS) subgroup including 44 participants. Patients were included in the 

SA subgroup when they had at least one documented self-injurious act with the intent 

to die in the current episode, and confirmed by medical records that the HAMD-17 third 

item (suicide) score ≧ 2 [6, 32]. Patients were included in the NS subgroup when they 

were without any suicide attempt history during the present or in previous episodes. 

Patients also met with the following inclusion criteria: (1) having a depressive episode 

with a HAMD-17 total score > 17; (2) no comorbidity with other DSM-IV axis-1 

disorders such as schizophrenia, substance abuse, obsessive compulsive disorders, and 

generalized anxiety; (3) no use of psychotropic medication including antidepressants, 

antipsychotics and benzodiazepines for the past two weeks; (4) no physical therapy 

such as repetitive transcranial magnetic stimulation (rTMS) or electroconvulsive 

therapy (ECT) during the past six months. Participants with the following criteria were 

excluded from the study: (1) serious medical conditions such as organic brain disorders 

and severe somatic diseases; (2) history of alcohol and drug abuse; (3) pregnancy. HCs 

were screened for family history of any mental disorders and adopted similar exclusion 

criteria to that of patients. 
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Table 1 summarized the demographic and clinical characteristics of all participants. 

There is no group difference in gender, age and education years. The difference between 

the NS and SA subgroups in HAMD-17 total scores could be eliminated by subtracting 

the third (suicide) term, which implies there is no difference in their other depressive 

severity. In addition, the suicide risks in MDD patients were also assessed by the Nurses’ 

Global Assessment of Suicide Risk (NGASR) [33] , which also reflects difference in 

suicide level between the NS and SA subgroups. 
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Table 1. Demography for all subjects. 

 MDD patients Healthy 

controls 

p 

values 
 Non-suicide 

(NS) 

Suicide-attempt 

(SA) 

Gender (F/M) 23M/21F 14M/20F 25M/24F 0.577 

Age (years) 30.8±8.6 28.1±9.6 30.9±7.2 0.287 

Education (years) 13.8±2.8 13.7±3.0 14.7±1.4 0.160 

Course of disease (months) 68.8±66.8 73.3±70.6 − 0.429 

Number of episodes of 

depression 

3.0±1.8 3.5±2.8 − 0.224 

Family history of mental 

disorder (Y/N) 

13/31 10/24 − 0.990 

Family history of suicide 

(Y/N) 

2/42 2/32 − 0.791 

HAMD-17 total scores 20.5±4.6 23.1±4.2 − 0.015* 

HAMD-17 3rd item (suicide)  0.3±0.4 3.1±0.6 − 0.000* 

NGASR scores b 6.1±2.1 12.3±1.9 − 0.000* 

a Note here, the third item of HAMD-17 is to evaluate the suicide level from 0 to 4. 

b NGASR, Nurses’ Global Assessment of Suicide Risk. 
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MEG image acquisition 

MEG data were recorded in a magnetically shielded room using an Omega 2000, 275 

channel CTF MEG system (VSM Med Tech Inc, Port Coquitlam, Canada). Resting state 

MEG scanning lasted for 4 minutes with 300Hz sampling rate. The subjects were 

instructed to lie in the supine position with closed eyes and to neither fall asleep nor 

think of anything in particular during the scanning session. 

 

Individual anatomical images were acquired with a Siemens Verio 3T MRI system 

using a high-resolution, T1-weighted, 3D gradient-echo pulse sequence (TR=1900 ms, 

TE=2.48 ms, FA=9°, slices number=176, slice thickness=1 mm, voxel size = 1 × 1 × 1 

mm3, FOV=250× 250 mm2). Three fiducial markers, place at the nasion, left and right 

preauricular, enabled offline MRI and MEG co-registration. 

 

Preprocessing and Source Reconstruction 

The raw MEG data were preprocessed by the Fieldtrip toolbox (fieldtrip.fcdonders.nl). 

All-sensor signals were firstly band-stop filtered to remove power-line inference 

(50Hz), and then band-pass filtered to 1-75Hz frequency range. Within fieldtrip 

interface, trials and channels deviating in the overall distributions were removed. 

Further step was applied using temporal Independent Components Analysis (tICA) 

across the sensors using the FastICA algorithm. Artifacts related to breath, heart beat 

and muscle movement were rejected by visual check in this step. Then a linearly 

constrained minimum variance (LCMV) beamformer was utilized to project the 
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resulting pre-processed MEG data onto a regular 8 mm grid source space [34]. 

 

Parcellation and Orthogonalization 

The brain was parcellated with a weighted parcellation of 39 cortical regions, which 

was identified from a resting-state ICA decomposition of fMRI data from the first 200 

subjects of the Human Connectome Project and had been previously used in various 

MEG studies [24, 35, 36], particularly in 275-channel CTF MEG data [37]. Single time 

series as the first principal component was acquired to represent each parcellation. A 

multivariate symmetric orthogonalization was then adopted to attenuate the spatial 

leakage effects [37]. 

 

The Hidden Markov Model 

The HMM assumes that a time series can be described using a hidden sequence of a 

finite number of states [38]. At each time point, only one state is active, the probability 

of a state being active at time point t is modelled to be dependent on which state was 

active at time point t−1 (i.e. it is order-one Markovian) [30]. HMM aims to discover 

these hidden brain states as well as the likely sequence of transitions between them. The 

HMM could be inferred from the source-space MEG data using the HMM-MAR 

toolbox (https://github.com/OHBA-analysis/HMM-MAR). To alleviate overfitting 

issues, time delay embedded HMM (TDE-HMM) [29, 30] applies a different variety of 

the HMM to time courses and infers a multivariate Gaussian distribution describing a 

delay-embedding of the source time courses. 

 

https://github.com/OHBA-analysis/HMM-MAR
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HMM inference 

The source-reconstructed time courses were embedded with time lags varying between 

-7 and 7. In our dataset with 300 Hz sampling rate, it corresponded to windows of 

100ms and specified a 50ms lag in both directions. The lags resulted in (N parcels ×N 

lags)× N timepoints data matrix for each subject. N is referred to 39 parcels here. 

Afterwards, the first dimension of this matrix containing the spatial and lag information 

was reduced by projecting the matrix onto the first 4× N parcels components of a 

principal component analysis. The HMM-MAR uses stochastic inference, which is 

based on taking subsets or batches of subjects at each iteration instead of the entire data 

set [39]. The HMM-MAR toolbox uses the alternative to the standard HMM, a 

stochastic variational inference approach, that can be applied to neuroimaging datasets, 

by greatly reducing its computational cost [40]. The batch size was set to use 15 

continuous data segments at each iteration and number of variational inference cycles 

was set to 500. The whole HMM framework ran 10 times to ensure the stability of 

results and the best performance with lowest free energy was accepted here.  

 

HMM temporal parameters 

After HMM analysis, time series of posterior probabilities was inferred to represent the 

occurrence probability of a state at a time point. After the inference process, the Viterbi 

path was also computed [41]. This is defined as the most probable sequence of states 

representing the mutually exclusive state allocations. They were used to calculate the 

temporal parameters of each state, includes Fractional Occupancy (FO), Life Time (LT) 
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and Interval Times (IT). These parameters could provide an overview of brain state 

dynamics captured by HMM [19]. FO refers to the proportion of each state time spent 

in the total time length. LT is the mean dwell time of each state on a single visit and IT 

is the mean time between the state visits [12]. In the current step, the above temporal 

parameters of each HMM state were calculated for each subject individually.  

 

HMM state-wise spectral analysis 

To acquire power for each frequency band and HMM state, we made use of a 

nonparametric estimation, using a novel state-wise version of the multi-taper [29]. The 

state-wise power across the parcellations were computed from the results of HMM in 

the spectral range of broadband (1–30 Hz) for each state. The spectral content and 

spatial maps were acquired for each subject and then averaged among all subjects to 

see the correspondence of HMM states to intrinsic brain networks. Afterwards, we 

factorized the spectral information in each subject into different frequency modes for 

ease of group comparison in each frequency band.  

 

Statistical analysis 

The overall dynamics of three temporal parameters (FO, LT and IT) were preliminarily 

compared between the whole MDD cohort and the HC cohort, and then between the 

SA subgroup and NS subgroup of MDD cohort to find suicidal differences. These 

differences [HC vs. MDD, MDD(SA) vs. MDD(NS)] were all found with permutation 

tests and the resulted p values were false discovery rate (FDR) corrected. Pearson 
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correlation analysis was then used to study the associations among suicide risk 

measures (NGASR scores) and temporal parameters of different states in SA 

individuals. 

 

Similar to the dynamic parameters, the state-wise power in various frequency bands 

(theta, alpha, beta) were also compared between cohorts [HC vs. MDD, MDD(SA) vs. 

MDD(NS)] with premutation test and followed by FDR correction. 

 

Static spectral analysis 

As a comparison to the above dynamic methods, the static frequency analysis was 

calculated with the same multi-taper method. Static power spectra were calculated 

directly from the whole-length time courses of all 39 regions without any state 

information. The static power spectra were compared between cohorts [HC vs. MDD, 

MDD(SA) vs. MDD(NS)] in the exact same way with the dynamic state-wise spectra. 

 

Results 

Eight HMM states were identified by TDE-HMM inference on all subjects. The mean 

activation maps and temporal parameters of eight HMM states across all subjects are 

displayed in Supplementary Figure S1. The goal of the variational inference in the 

current HMM analysis is the minimization of the so-called free energy. Free energy 

from the model inference provides an approximation to model evidence (accuracy - 

complexity) [40]. The percentage change decreases as the number of states increases 
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and the improvement becomes negligible beyond eight states as shown in the 

supplementary Figure S2. In addition to the objective measure, we also followed the 

approach in [19] to determine the final HMM states (K) by testing a range of values for 

K. The corresponding results for mean activation maps are shown in supplementary 

Figure S3. The principle here is not to establish the ‘correct’ number of states, but to 

identify an optimal number that provides a reasonable description of the dataset for 

each specific purpose [24]. Our selection of state number as eight here is also driven by 

that the spatial topographies are in consistent with previous MEG HMM studies [12, 

19] and traditional resting state networks. 

 

Changed temporal dynamics in suicide attempters 

We found differences in temporal parameters of state 1, 4, 7 and 8 between the whole 

MDD cohort and HC cohort (Supplementary Figure S4). Then we further explored 

differences between SA and NS subgroups of MDD to find the suicidal features. The 

changed temporal dynamics related with SA were found in state 4 (Fronto-temporal), 7 

(Sensorimotor) and 8 (Parietal) as present in Figure 1. For the fronto-temporal network, 

the FO of SA patients is significantly higher than that of the NS patients (p<0.001 after 

correction), and IT is significantly lower (p<0.001 after correction). The significant 

higher FO and LT also are displayed for the parietal network in SA patients 

accompanying with lower IT (p<0.001 after correction). And for the sensorimotor 

network, LT is lower in the SA patients (p<0.001 after correction).  
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Figure 1. A. The spatial maps for state 4 (Fronto-temporal), 7 (Sensorimotor) and 8 

(Parietal) for all subjects. Please note that the activation maps have been thresholded 

here to visualize. B. Corresponding plots for each state show fractional occupancy, state 

lifetimes and interval times between suicide attempted (SA) and non-suicide (NS) 

MDD subgroups. Asterisks (***) denote significantly changed temporal dynamics with 

p<0.001. The crosses in the figure represent the mean values. 

 

Furthermore, the temporal parameters of fronto-temporal network (state 4) in SA 

subgroup of MDD could be correlated with their suicide risks, which were clinically 

measured by NGASR. As shown in Figure 2, FO of the fronto-temporal network is 

positively correlated with suicidal risk (r = 0.4239, p = 0.0125) and IT is negatively 

correlated (r = -0.4384, p = 0.0095). The FO and IT are validated to be not correlated 

with severity of depression within SA patients.  
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Figure 2 Significant correlations between suicide risk scores (NGASR) and dynamic 

parameters of fronto-temporal network (fractional occupancy and interval times) in 

suicide attempted MDD patients. NGASR, Nurses’ Global Assessment of Suicide Risk. 

 

Changed state-wise power in suicide attempters 

Significant differences on state-wise power were found in state 1, default mode network 

(DMN) between the whole MDD cohort and HC cohort as shown in Supplementary 

Figure S5. To detect suicidal features, spectral activation differences of the DMN 

between SA and NS subgroups of MDD were further compared in each independent 

frequency band. DMN (state1) shows an abnormal power activation pattern in theta 

band (Figure 3A) in SA patients compared with NS patients. In the posterior part of 

DMN, SA patients activate with higher power in theta band than NS depressed patients 

do (after correction). Interestingly, the posterior cingulate cortex (PCC), on which the 

posterior DMN centers [42], is included in the differential regional sets (p<0.001 after 

correction). In Figure 3B, power of the whole brain averaged among 39 parcellations 

are plotted for 8 dynamic states (acquired from HMM inference) and a static condition 

(calculated in the whole-length time scale without HMM). The power of PCC is also 
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plotted in the same way. The power of state 1 (DMN) is mainly activated in the low 

frequency and much higher than all the other states here. The same situation is 

applicable to the PCC. The PCC power is also highest in state 1 compared with all the 

other states and the static condition. Suicide induced spectral changes in the static and 

HMM-specific frequency content are displayed in Figure 3C. The dynamic spectral 

analysis is likely to decompose the static spectral findings in different temporal HMM 

states, but could reveal more clear and detailed differences. To validate that, we also 

present the static spectral analysis in the following part.  

 

Figure 3. A. Comparison between suicide attempted and non-suicide MDD subgroups 

on the power of default mode network derived from HMM states. Colorbars represent 

-log10 transform of p values, which mean 1.3-3.5 in the colobars correspond to p values 

in 0.05-0.0003. B. Powers of the whole brain averaged across regions for the 8 states in 

HMM dynamic analysis and for the whole time-scale static analysis. Power 

distributions for the PCC are also plotted in the same way. C. Power changes in the 
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HMM-specific and static frequency content induced by suicide attempt. The significant 

difference of default mode network (state1) in Figure A is boxed in red. 

 

Static spectral findings  

As a comparison, static spectral power was calculated and compared also in three 

frequency bands, which could be found in Figure 4A. Among the 39 parcels, the main 

difference between the whole MDD group and HC group is located in the prefrontal 

power (after correction) of theta and beta. Then the static powers of three frequency 

bands were further compared between MDD subgroups of SA and NS as shown in 

Figure 4B. Although certain changing trends could be found in the frontal and 

sensorimotor areas between groups, there is no significant result survived after multi-

comparison correction. The static method is not as sensitive as the HMM method to 

find the distinguishing characteristics of suicide attempt. 
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Figure 4. A. Static spectral comparisons between the whole MDD and HC cohorts. 

Significant decreased theta power and increased beta power in the depressed group are 

displayed. Colorbars represent -log10 transform of p values, which mean 1.3-3.5 in the 

colobars correspond to p values in 0.05-0.0003. B. Static spectral comparisons between 

the non-suicide and suicide attempted MDD subgroups. Changing trends could be 

found between MDD patients without suicide and with suicide attempt, but no 

significant finding could be found after correction. Colorbars represent -log10 

transform of p values, which mean 1.3-2 in the colobars correspond to p values in 0.05-

0.01. 

 

Discussion  

The study investigated and compared dynamic functional networks in MDD patients 

with and without suicide attempts. By the comparision between SA and NS subgroups 

of MDD, we show that FO of fronto-temporal network is a dynamic varaiable 

increasing significantly in SA patient subgroup. Furthermore, we show that this variable 

is a sensitive marker for SA, as the fronto-temporal FO is positively correlated with the 

clinically assessed suicide risk. Also in the SA subgroup, the DMN exibits a higher 

state-wise activation in theta band compared with the NS group, which could not be 

captured by the static analysis and emphasizes the essentiality of dynamic analysis. The 

current study provide a more comprehensive insight into neural activites, which may 

be ignored via averaging those activities over time in static analysis. 
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A recent review has also proposed that the suicidal brain across psychiatric diagnoses 

seems to heavily involve the dysfunction of the fronto-temporal network [43] . Such 

dysfunction has also been further enriched from the dynamic aspect from our findings. 

In this study, dynamic parameter of the fronto-temporal network, particularly the FO, 

is significantly increased in the SA subgroup and positively correlated with the 

increases in suicide risks. From the asepect of cognitive impairment, suicide attempters 

were proven with impaired executive function, attention, and memory, which was 

linked to prefrontal lobe dysfunction [18]. The specific brain network of fronto-

temporal regions was suggested for processing emotional prosody [44]. In addition, 

planning and acting out suicidal impulses in response to mental pain were also 

associated with increased activity in the frontal cortex [45]. It’s interesting that we 

report the increase of fronto-temporal FO in SA patients is acompanied by a decrease 

in IT, but with no apparent difference in state LT between the two MDD subgroups. 

Once the fronto-temporal state occurs, its dewell time is not changed with SA. However, 

the increased FO and decreased IT imply that the resting-state activity of SA patients 

switches more frequently into the fronto-temporal state, which may disturb the regular 

time allocation of the whole cognitive processing and increase mental pain in MDD 

patients. The correlation between temporal parameters and suicidal risk also impiles 

further that FO of fronto-temporal network could be a potential biomaker to predict the 

risk level of suicide behavior.  
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In addition to the frontal and temporal cortices, it is agreed that dysfunction associated 

with the parietal cortices is also implicated in the suicidal brain. Fronto-parietal network 

is involved as a part of cognitive control network which is critical for problem-solving 

and executive functioning [14]. Previous in vivo and post-mortem neurobiological 

studies have also implicated ventromedial and parietal regions in suicide risk [46]. 

According to our HMM analysis, three temporal parameters of the parietal network are 

all significantly changed by SA. Compared with NS MDD subgroup, SA MDD 

subgroup exhibits increased FO and LT. There may be major dynamic disturbation to 

the related cognitive control function, so as to increase the vulnerability to suicide for 

MDD patients. In addition, this study found decreased LT of sensorimotor network in 

the SA subgroup. Sensorimotor-related areas involve the lateral temporal and occipital 

lobes, and primary sensorimotor cortex [47]. Attention and other cognitive processes 

also play a role in the modulation of rhythmic activity in sensorimotor regions and 

similarly may reflect sensory gating mechanisms involved in motor preparation or 

anticipation of sensory input [48].Based on the suicidal changing trend in the parietal 

and sensorimotor state, we propose that sensorimotor network works as a complement 

to the parietal network in the suicidal cognition processing, and thus, it exhibits the 

opposite changing dynamics to the parital abnormalities in SA patients. 

  

Of our HMM anaysis, state 1 exhibits significant spatial similarity with the stationary 

activation pattern. Its spatial morphology, coupled with low FO and high IT 

(Supplementary Figure S1) between state visits suggests that this state is equivalent to 
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what Baker and colleagues [19] termed the DMN. In addition, its power spectra is also 

much higher than all the other states as shown in Fig 3B, which is in agreement with 

Diego et al.[30]. Our dynamic analysis finds SA related theta-band power difference in 

the posterior activations of DMN (Figure 3A), including its centered region PCC. The 

DMN plays an important role in “internal mentation” - the introspective and adaptive 

mental activities in which humans spontaneously and deliberately engage [49]. Several 

lines of evidences suggest a perturbed sense of self in people who attempt suicide [50, 

51]. Suicidal activity in mood disorder patients may be also a consequence of impaired 

self-referential thought processing [15]. In particular, posterior DMN has been 

implicated in consciousness and memory processing [42], which are both critical to 

suicidal susceptibility. Our results in the posterior part of DMN, SA patients activate 

with higher power in theta band. The evidence from EEG study reported that theta 

power in the fronto-central region was significantly increased in the high SI group [52]. 

Although the EEG study were conducted in the sensor level and reported scalp electrode 

changes, it supports the increased activity in theta band has clinical potential as a 

biomarker for identifying suicide. Thus, we validate the essentiality of exaggerated 

posterior DMN activation in theta band underlying SA. 

 

To our knowledge, only few previously published studies examined suicide in MDD 

using MEG. Optimal use of the rich information content of MEG signals often benefits 

from reconstruction of the generators of the signals [53]. The previous analysis from 

our group of resting-state MEG data in source space found caudothalamic coupling 
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abnormality in the high risk suicidal group [54]. In a whole-brain source-level MEG 

study, the gamma power of anterior insula regions was found to be associated with SI 

and Ketamine could improve the clinical symptoms of SI [55]. Healthy controls were 

not included. In the recent MEG study, they didn’t capture the group difference, but 

revealed that electrophysiological connectivity, as coupling of low frequency power 

(delta and theta) with alpha and beta power, was strongly related to SI [56]. These 

published MEG study on suicide didn’t consider the sub-second dynamics in 

spontaneous fluctuations, but validated the potential of MEG to explore SA and inspired 

us to make full use of MEG temporal information. As we adopted the difference 

analysis methods from the previous MEG application, the results are hard to be 

comparable with them. In our static analysis shown in Figure 4, the difference of brain 

regional power can only be found between the whole MDD and HC cohorts. No static 

power difference between SA and NS subgroups is significant after correction. That is 

not surprising because the difference between subgroups in a cohort is usually not as 

significant as that between two cohorts. Dynamic differences in the time scale may be 

erased in the traditional static analysis. This dynamic analysis complements the past 

static findings and provides more sensitive measures. The HMM is a probabilistic 

model, which means it does not specify a model fit with Gaussian noise distributed 

around it, instead the state-specific multivariate Gaussian distribution is itself the actual 

model description. So we can look at the free energy, as an approximation of the model 

evidence, i.e. prob (model | data) [40]. As shown in supplementary Figure S2, the 

improvement in free energy over the K=1 model as evidence that it is doing a better job 
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than a static model at least. Together with the process of HMM validation completed in 

the supplementary material, we could be confident that the HMM was focused on 

relevant dynamics of MEG. 

 

In the current study, we used the mean temporal parameters within each subject in the 

statistical analysis following the previous resting-state neuroimaging HMM studies [12, 

57-60]. Before that, each individual does not only generate the single value of LT or IT 

from the direct HMM output other than FO. These application studies of HMM could 

support the feasibility of within-subject averaging parameters in our group comparisons, 

and the high dependency of the values from the same subject could be eliminated in 

this way. However, for analysis of task data, the scanning time of each subject may be 

divided into different period according to the stimulus onset and response time. In this 

case it will be tricky to average the dynamic parameters in different visits to get the 

within-subject mean values. To overcome the high dependency across the values from 

the same individual, a mixed-effect modeling/regression and controlling some 

predictors in the regression would be good and essential for analysis of task data where 

the task design may limit the summary statistics of state sequences. Controlling some 

predictors, like demographical variables could also be discussed in our current study. 

As noted in Table 1, demographical variables were not significantly different between 

groups in our dataset. Furthermore, we repeated the between-group comparisons of 

dynamic parameters after regressing out age and education years and performing 

inference on the resulting residuals. Between-group differences were unchanged when 
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inference was performed on the residuals, suggesting that these matched variables did 

not significantly influence our findings. We would like to recommend readers to 

consider these points in their following work in such cases. 

 

Some limitations need to be discussed for the current study. Firstly, our sample size is 

relatively small due to the difficulties in MEG acquisition. But it’s relatively considerate 

comparing with other MEG studies. Secondly, we only performed a cross-sectional 

study, and a longitudinal study is also in need both with neuroimaging recordings and 

clinical follow-up to ascertain the predictions of SA in the future. A bigger dataset with 

more clinical data would also be of interest in the future suicidal study. 

 

Conclusion 

Overall, we propose that fast transient dynamics is potential for capturing changes in 

state-wise temporal-spatial-spectral patterns, which may lead to dysfunctional 

emotional processing and cognitive control in SA of MDD individuals. Dynamic 

measures (FO and IT) of fronto-temporal network may become potential biomarkers of 

SA in MDD patients, and state-wise activation of DMN in specific frequency band 

should also be emphasized in the future dynamic studies on SA . The whole framework 

could fuel our ability to understand the neuronal mechanism of SA, and potentially 

response to the clinical need of suicidal prediction in the MDD population. 
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