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Abstract 

A toolkit that simplifies the calculation of solid-state elastic properties at finite temperatures to 

a one-shot task is developed. We report the improvement and automation of the stress-strain 

method, which relies on the averaged stresses from ab initio or classical calculations. Stresses 

obtained from strained crystal lattices at zero and finite temperatures can be directly extracted to 

fit the strain-stress relationship and get the elastic constants. Furthermore, the finite-temperature 

elastic constants can also be obtained by solving a system of overdetermined linear equations 

directly under constant pressure dynamics (NPT, NPH, etc.) within the stress-strain method, which 

does not require the equilibrated lattice as a prior condition. It is shown that the elastic constants 

converge quickly in constant pressure dynamics. This approach proves to be robust and can 

significantly reduce computational cost.  

Keywords 

Thermoelasticity; Elastic constants; Stress-train method; Molecular dynamics 

Program Summary 

Program Title: ElasT, VERSION 1.1 

Licensing provision: GNU General Public License, version 3 

Programming language: Fortran 

Nature of problem: Calculations of the single-crystal elastic constants at finite temperature 

conditions. 

Solution method: Solve the stress-strain linear equations in constant volume or constant 

pressure ensembles.  
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Introduction 

Elasticity is an important aspect of any material because it directly links the nature of chemical 

bonds to fundamental solid-state properties. It is also essential to the understanding of important 

processes like the propagation of elastic waves and fracture mechanics, and is therefore of wide 

interest in both materials- and Earth sciences. However, the accurate measurement of elastic 

constants in the laboratory is still challenging, especially at elevated temperature-pressure 

conditions. Therefore, a complementary theoretical approach to calculate elastic constants is 

required.  

The developments of density functional theory (DFT) [1] and computation power now enable 

quantum mechanical calculations of hundreds of atoms that predict accurate ground-state 

properties. Ground-state elastic constants at zero temperatures can be accurately obtained from 

DFT calculations by using the energy-strain method, stress–strain approach, and density functional 

perturbation theory [2]. Finite-temperature elastic properties from DFT need to resort to either the 

quasi-harmonic approximation (QHA) or ab initio molecular dynamics (AIMD). Both methods 

are computationally demanding: the former involves intensive phonon calculations and the latter 

needs long-time sampling. Although there are methods to circumvent the intensive phonon 

calculations [3-5], the QHA method is still limited to some temperatures and will fail at higher 

temperatures due to the enhanced anharmonic effect [6, 7]. 

Reliable finite-temperature elastic constants can be derived from AIMD calculations using 

either the strain-energy approach that analyses the total energies of strained crystal structures, or 

the stress-strain approach that analyses the stresses resulting from the applied strains [2]. Although 

the methods are simple and straightforward, the calculation of elastic constants at finite 

temperature is extremely challenging and computer intensive since converged stresses/energies 

have to be collected from molecular dynamics (MD) performed on many strained structures for 

long simulation times [8]. The process required to create strained supercells, collect and analyse 

the MD data can be cumbersome and time consuming.  

Therefore, in this toolkit, we implement the well known stress-strain method that uses as input 

the averaged stresses of strained supercells from constant-volume MD runs. We also implement a 
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further stress-strain method that uses a single constant pressure MD run (NPT, NPH, etc.) to 

calculate the elastic constants, which does not require the equilibrium structure as input and can 

greatly reduce the computational cost, especially for low-symmetry crystals. The method, 

implementation, and application are introduced in the following sections. 

2 Methods 

2.1 Elasticity 

Elasticity quantifies deformation in a solid under applied forces. The amount of deformation is 

known as strain, and the applied force per unit area is called stress [2].  

Consider a pair of points in close proximity at x and x+dx in a solid, which are displaced to 

locations x+u(x) and x+dx+u(x+dx) under elastic deformation. Since the displacement is very 

small, the squared distance between the points after the displacement can be written as a Taylor 

expansion about the point at x  

∑ (𝑑𝑥𝑖 + ∑
𝜕𝑢𝑖

𝜕𝑥𝑗
𝑑𝑥𝑗𝑗 )

2

𝑖 = ∑ 𝑑𝑥𝑖
2

𝑖 + 2∑ 𝑑𝑥𝑖
𝜕𝑢𝑖

𝜕𝑥𝑗
𝑖,𝑗 𝑑𝑥𝑗 + ∑

𝜕𝑢𝑖

𝜕𝑥𝑗
𝑖,𝑗,𝑘 𝑑𝑥𝑗

𝜕𝑢𝑖

𝜕𝑥𝑘
𝑑𝑥𝑘       (1) 

where i, j, and k run over the Cartesian components. The change of the squared distance after 

displacement is given in the last two terms of Eq. 1 and can be rewritten as 

𝐷(𝑑𝑥) = ∑ 𝑑𝑥𝑖 [
𝜕𝑢𝑖

𝜕𝑥𝑗
+
𝜕𝑢𝑗

𝜕𝑥𝑖
+ ∑

𝜕𝑢𝑘

𝜕𝑥𝑖
𝑘

𝜕𝑢𝑘

𝜕𝑥𝑗
] 𝑑𝑥𝑗𝑖,𝑗 = 2∑ 𝑑𝑥𝑖𝑖,𝑗 𝜀𝑖𝑗𝑑𝑥𝑗                             (2) 

where 𝜀𝑖𝑗 is defined as the component of the strain tensor. Neglecting the trivial second-order 

term, this can be approximated as  

𝜀𝑖𝑗 =
1

2
(
𝜕𝑢𝑖

𝜕𝑥𝑗
+
𝜕𝑢𝑗

𝜕𝑥𝑖
)                                                                                                                 (3) 

and the Green-Lagrange full strain tensor is  

𝜀 = (

𝜀𝑥𝑥 𝜀𝑥𝑦 𝜀𝑥𝑧
𝜀𝑦𝑥 𝜀𝑦𝑦 𝜀𝑦𝑧
𝜀𝑧𝑥 𝜀𝑧𝑦 𝜀𝑧𝑧

)                                                                                                         (4) 

Let us take a small area Ai in the solid that is orthogonal to the i-direction. Assume the sum of 

the applied forces in the solid is zero (otherwise we would have translation). The total force 

acting on the small area can be written as  

∆𝑭 = ∑ ∆𝐹𝑖 ∙ 𝒊𝑖                                                                                                                        (5) 
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Then the stresses can be defined as 

𝜎𝑖𝑗 = 𝑙𝑖𝑚
∆𝐴𝑖→0

𝛥𝐹𝑗

𝛥𝐴𝑖
                                                                                                                      (6) 

where i and j refer to the plane and force directions, respectively. Written in matrix form, the 

stress tensor is given by 

𝜎 = (

𝜎𝑥𝑥 𝜎𝑥𝑦 𝜎𝑥𝑧
𝜎𝑦𝑥 𝜎𝑦𝑦 𝜎𝑦𝑧
𝜎𝑧𝑥 𝜎𝑧𝑦 𝜎𝑧𝑧

)                                                                                                    (7) 

Within the harmonic limit, the relationship between the strain and stress is linear and written as 

𝜎𝑖𝑗 = 𝐶𝑖𝑗𝑘𝑙𝜀𝑘𝑙                                                                                                                         (8) 

where 𝐶𝑖𝑗𝑘𝑙  is a component of the fourth-order elastic stiffness tensor (elastic constant) and in 

total there are 81 components. In the static equilibrium state, 𝜎𝑖𝑗 = 𝜎𝑗𝑖  and  𝜀𝑖𝑗 = 𝜀𝑗𝑖.  So, both   

and  can be contracted to a six-component tensor. The number of independent elastic stiffness 

constants is reduced to 21. In the Voigt notation [9], Eq. 8 can be rewritten in matrix form as  

(

  
 

𝜎1
𝜎2
𝜎3
𝜎4
𝜎5
𝜎6)

  
 
=

(
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(

  
 

𝜀1
𝜀2
𝜀3
𝜀4
𝜀5
𝜀6)

  
 

                                                 (9) 

2.2 Stress-strain method  

In the stress-strain method, a number of strains are applied to the crystal lattice and the induced 

stresses can be calculated from ab initio or classical methods, and the elastic constants can be 

obtained through Eq. 9. The number of distinct elastic constants further reduces according to 

crystal symmetry, and this reduces the number of strains and stresses that need to be calculated. 

The patterns of elastic constants for different lattice types are shown in Fig. 1.  

To reduce computational cost, the number of selected strains should be as few as possible. 

However, the use of small strains will bring in large uncertainty, while the use of large strains will 

invalidate the strain-stress linearity. To overcome this, several strains, including both positive and 

negative strains, should be used and the elastic constants corresponding to the equilibrium state 

can be obtained from fitting the stress-strain relationship and finding the slope at zero strain. For 

finite-temperature calculations (NVT), stresses are averaged over the simulation time, but this can 
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be very computer intensive, especially for low symmetry crystals or alloys. For example, a 

monoclinic crystal needs at least four different strains to solve Eq. 9. If we take four magnitudes 

per strain (two either side of equilibrium) to obtain a polynomial fit, then there are 17 (16 plus one 

NPT run for relaxation) MD calculations in total to be performed.  

 

Figure 1. The patterns of elastic stiffness tensor for different types of lattice [10]. 

2.3 Stress-strain method in constant pressure ensembles 

We note Parrinello and Rahman [11] first presented the strain fluctuation formula that enables 

the derivation of elastic constants from constant pressure ensembles 

𝐶𝑖𝑗𝑘𝑙 =
𝑘𝐵𝑇

〈𝑉〉
[〈𝜀𝑖𝑗𝜀𝑘𝑙〉 − 〈𝜀𝑖𝑗〉〈𝜀𝑘𝑙〉]

−1
                                                                                    (10) 

where kB is the Boltzmann constant and T the temperature. But it converges very slowly with 

inefficient strain fluctuation. Gusev et al. [12] improved the convergence by making use of the 

stress fluctuation 

𝐶𝑖𝑗𝑘𝑙 = 〈𝜀𝑖𝑗𝜎𝑚𝑛〉〈𝜀𝑚𝑛𝜀𝑘𝑙〉
−1                                                                                                  (11) 

It is important to note that the methods assume the validity of linear elasticity. For soft materials 

the strain could be large and exceed the linear region, and thus lead to some underestimation of 

the elastic constants. Buffering the simulation material with an elastic bath can remedy this [13, 

14], however it would require modification of the particular molecular dynamics code used. Here 

we propose another strategy. The amplitude of strain fluctuation in an NPT ensemble is a function 



 

 7 

of bulk modulus BT and system volume [15], expressed as √
𝑘𝐵𝑇

𝐵𝑇〈𝑉〉
. Therefore, the strain fluctuation 

will be reduced by increasing the supercell in an MD run, and the problem of strain-stress 

nonlinearity can be avoided without resorting to complicated methods. Since our aim is to provide 

easy transferability to any MD code and for more general purpose and usage, we follow the idea 

of Gusev et al. (1996) and recommend users to resort to bigger supercells for soft materials. 

Typically, the supercell should be large enough so that the strain fluctuation is no more than 3%, 

but this also depends on materials under investigation. 

In constant pressure dynamics, e.g., NPT dynamics, the lattice tensor R fluctuates around its 

equilibrium states R̅ . The Green-Lagrange strain tensor at each MD step can be calculated 

𝜀 = 𝑅̅−1 ∙ 𝑅 –  𝐼                                                                                                               (12) 

where I is the identity tensor. The corresponding stresses can be calculated in NPT dynamics by 

differentiating the total energy with respect to the lattice vectors. The linear relationship in Eq. 9 

becomes 

(

  
 

𝜎1
𝜎2
𝜎3
𝜎4
𝜎5
𝜎6)

  
 
=

(

 
 
 
 
 
𝜀1 𝜀2 ∙
0 𝜀1 ∙
0 0 ∙

∙ ∙ 0
∙ ∙ 0
∙ ∙ 0

 0  0  ∙
 0  0  ∙
 0  0  ∙

 
 ∙ ∙ 0 
 ∙ ∙ 0 
 ∙ ∙ 𝜀6

⏞              
21 columns

)

 
 
 
 
 

(

  
 

𝐶11
𝐶12
∙
∙
∙
𝐶66)

  
 

                                                             (13) 

For elastic calculations under high pressure, the stress tensor 𝜎 above should be subtracted from 

the hydrostatic pressure. The linear equations with 21 unknown variables (Cij) can be solved with 

a sufficient number of MD runs, and the results should converge as the number of MD steps 

increases. Therefore, the elastic constants can be obtained directly from one NPT dynamics run. 

For monoclinic crystals, this reduces the computational cost by over 90%. 

3 Implementation 

The calculation of elastic constants using stress-strain methods described above can be tedious 

and so we have automated the methods (under both the constant-volume and constant-pressure 

dynamics) into a toolkit named ElasT, which simplifies such calculations to a single stage task. 

We implement both methods – a) the widely used stress-strain method under constant-volume 

dynamics and b) the more efficient stress-strain method under constant-pressure dynamics. 
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In constant-volume dynamics, stresses are collected from strained calculations, and the elastic 

constants are obtained by polynomial fitting of the stress-strain relationship. First, the lattice 

parameters obtained from the NPT simulation are needed to create a unit cell to which strains are 

applied. The stresses on the strained cells can then be obtained from NVT simulations at the target 

temperature.  

 The more efficient stress-strain method under constant pressure NPT dynamics is also 

implemented. It collects the stress and strain tensors in each MD step and calculates the elastic 

constants from solving a system of overdetermined linear equations. Only the isothermal elastic 

constants can be correctly derived from the NPT simulations.  In NPT simulations, the strain or 

volume oscillate with a frequency determined by the fictious mass of the lattice. If the frequency 

is much larger than the temperature oscillation, the system is assumed to be adiabatic and the 

derived elastic constants should, therefore, also be adiabatic. However, fast volume oscillation can 

perturb the trajectory and lead to energy deviations, which make the derived adiabatic elastic 

constants incorrect. Conversely, infinitely slow strain oscillation turns the constant pressure 

dynamics into constant volume, and no strains can be used to derive the elastic constants. 

Therefore, in order to get the correct isothermal elastic constants from an NPT simulation, a 

suitable barostat mass should be used and the temperature oscillation must be much faster than the 

strain fluctuation. 

At present, the toolkit is only interfaced to the VASP code [16], but it can be easily extended to 

other codes like Quantum Espresso [17], or to classical calculations, by converting stresses and 

trajectories from other codes to the VASP format. The implementation assumes that the crystal 

structures are in their standard orientations. Together with the elastic stiffness and compliance 

tensors, aggregate properties using different averaging methods (Reuss, Voigt and Voigt–Reuss–

Hill) [9] are also calculated.  

Test calculations were performed to validate the implementation and can be found at the 

National Geoscience Data Centre (NGDC) [18]. The structure relaxations and total energy 

calculations were performed using the VASP code based on DFT [16], applying the projector 

augmented wave (PAW) potentials [19]. Exchange-correlation was treated by the generalized 

gradient approximation (GGA) [20]. The plane-wave cutoff energy was taken as 1.5 times of the 

maximum cutoff defined in the PAW potential. The k-mesh for the Brillouin zone sampling was 
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tested to converge the total energies to 5 meV/atom. The residual forces and stresses were relaxed 

to be less than 0.002 eV/Å and 0.1 GPa, respectively. For MD runs, we employed the Souza-

Martins barostat and Nosé–Poincaré thermostat implemented in VASP by Hernández [21]; a 

timestep of 1 fs was used for both NPT and NVT. 

4 Application and discussion 

The stress-strain methods described above have been successfully applied to crystals of 

different materials and lattice types. The strains used and implemented in this toolkit are listed in 

Table 1.  Four degrees of strain, namely, ±0.02 and ±0.01, were applied to each type of strain. 

The elastic constants corresponding to the unstrained equilibrium states were then calculated from 

second-order polynomial fitting.  

Table 2 tabulates the calculated elastic stiffness constants and aggregate properties in 

comparison with the available experimental or theoretical data at 0 K. Fig. 2 plots the calculated 

elastic constants against the data from other studies. Overall, the calculated elastic constants are 

very close to those of experiments or other calculations. The examined crystals include the 

metallic, semiconducting, and insulating elements/compounds. Monoclinic AlCu (space group 

I12/m1) is an intermetallic phase and its elastic properties affect the overall mechanical properties 

of the widely used Al-Cu alloys [22]. The experimental measurement of its elastic constants is not 

available. The calculated elastic properties by the toolkit, especially the aggregate properties, 

match well with the other theoretical calculations. TiSi2 takes an orthorhombic lattice with the 

space group of Fddd. The calculated elastic properties agree well with the experiment data [23]. 

-Al2O3 (space group R-3c) is an insulator with a trigonal lattice. Although the calculated elastic 

constants of -Al2O3 are close to the experimental values [24], they are consistently smaller. 

Because the electrons in -Al2O3 are more localized than in metals, GGA usually overestimates 

the lattice constants and underestimates the elastic constants. -Sn (space group I4/mmm) in the 

tetragonal lattice is a semiconductor. The calculated elastic constants also match well with the 

experimental data [25] except for C12, for which the calculated value is 56 GPa while the 

experimental value is 23 GPa. However, another experiment gave C12 as 49 GPa [26]. The 

calculated elastic properties of hexagonal Mg and cubic Si also match well with the experimental 

data [27, 28]. Note that, although agreement is not perfect between DFT and experimental data in 

some places, it may be due to the use of the same setting for metals, semiconductors and insulators; 
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since we are only interested in the implementation of the method here, we do not discuss further 

the accuracy of DFT results. 

Table 1. The list of applied strains for the seven types of crystal lattice used in the toolkit.  

designates the applied strain. 

Strain 

Tensor 

Crystal Lattice 

Triclinic Monoclinic Orthorhombic Trigonal Tetragonal Hexagonal Cubic 

1  0 0 0 0 0  0 0 0 /2 -/2 0 0 0  0  0  

2 0  0 0 0 0 0  0 0 /2 /2 0  0  /2 0 0 0 

3 0 0  0 0 0 0 0 0  0 0  0  0  0  0 

4 0 0 0  0 0  0 0 0  0 0  0 0   0 0 

5 0 0 0 0  0 0 0  0 0  0 0 0 0 0 0 0 0 

6 0 0 0 0 0  0  0 0 0 0  0   0 0 0  

 

 

Figure 2. Plot of elastic stiffness constants calculated by the toolkit against other 

experimental/theoretical data in Table 2. 

Table 2. List of elastic stiffness constants and aggregate properties calculated by the toolkit in 

comparison with other experimental or theoretical data. Only independent elastic constants are 

shown. Aggregate properties (B: bulk modulus, G: shear modulus, E: Young’s modulus, and : 

Poisson’s ratio) are only given in the Voigt average.  

Cij 

Monoclinic 

AlCu 

Orthorhombic 

TiS2 

Trigonal 

Al2O3 

Tetragonal 

Sn 

Hexagonal 

Mg 

Cubic 

Si 

DFT 
DFT 

[11] 
DFT 

Exp. 

[12] 
DFT 

Exp. 

[13] 
DFT 

Exp. 

[14] 
DFT 

Exp. 

[16] 
DFT 

Exp. 

[17] 

C11 208 215 305 318 457 495 66 73 56 60 156 166 

C22 211 218 311 320         
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For finite-temperature elastic calculations, we tested our Toolkit on cubic Si. The stress-strain 

method implemented under constant pressure dynamics within our Toolkit directly provides the 

elastic properties from a single MD run, while the widely used stress-strain method needs the 

relaxed lattice from NPT dynamics and the averaged stresses from the subsequent NVT dynamics 

on strained cells.  

The isothermal elastic constants 𝐶𝑖𝑗
𝑇  of cubic Si were calculated by the two methods at 300 K, 

600 K, 900 K and 1200 K. Adiabatic elastic constants 𝐶𝑖𝑗
𝑆  can be obtained via the relationship [29] 

𝐶𝑖𝑗
𝑆 = 𝐶𝑖𝑗

𝑇 +
𝑇𝑉(𝑇)𝜆𝑖(𝑇)𝜆𝑗(𝑇)

𝐶𝑉(𝑇)
                                                                             (14) 

where 𝐶𝑉(𝑇) is the molar constant-volume specific heat of the system, 𝑉(𝑇) is the molar volume 

of the system, and  

𝜆𝑖(𝑇) = −∑ 𝛼𝑗(𝑇)𝐶𝑖𝑗
𝑇(𝑇)𝑗                                                                                  (15) 

𝛼𝑗(𝑇) is the linear thermal expansion coefficient. However, since the thermal expansion is small 

for silicon, the corrections to adiabatic elastic constants are less than 1 GPa. Therefore, we only 

give the calculated isothermal elastic constants in comparison with the experimental data in both 

Table 3 and Fig. 3. The NPT and NVT data are in good agreement, especially for aggregate 

C33 164 183 399 413 458 497 92 87 69 62   

C44 62 69 105 111 134 146 20 22 15 16 74 80 

C55 65 46 72 76         

C66 78 80 112 117   23 23     

C12 68 67 32 29 151 160 56 23 33 26 63 64 

C13 75 66 32 38 110 115 26 28 20 22   

C14     -21 -23       

C15 7.4 7.9           

C23 65 68 85 86         

C25 -6 -3           

C35 7 15           

C46 2 2           

B 111 113 146 149 235 252 48 58 36 － 94 98 

G 66 67 117 121 151 163 20 18 15 － 63 － 

E 165 167 274 278 372 － 52 50 40 － 155 － 

 0.252 0.25 0.186 0.188 0.236 － 0.318 0.36 0.315 － 0.225 － 
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properties. The calculated elastic moduli also generally agree with the experimental data but show 

a deviation of ~10%; this can be significantly improved by using hybrid functionals [30]. As shown 

in Table 3, C11 and B calculated from NPT are generally smaller than the NVT data. Possibly this 

is due to the fact that the strain in NPT exceeds the region where the stress-strain linearity is valid, 

since we used a supercell of only 64 atoms. Mg is much softer than Si, and to achieve similar 

accuracy a bigger supercell must be used. We used a supercell of 144 atoms for hexagonal Mg to 

calculate its elastic moduli at 600 K, and the results are shown in Table 4. The absolute differences 

between NPT and NVT results are no larger than those for Si though Mg is much softer. This re-

emphasises the need to choose big supercells when calculating elastic constants of soft materials 

with the NPT method.  

 The convergence of elastic constants calculated within the NPT dynamics Toolkit are plotted 

in Fig. 4. The elastic constants quickly approach their converged values after 2 ps. After that, the 

fluctuations are small and excellent convergence can be achieved after 7 ps.  

Table 3. Calculated elastic stiffness constants for the cubic Si at 300 K from NPT and NVT, in 

comparison with experimental data. Aggregate properties are only given in the Voigt average. 

T (K) P (bar) Method 
Elastic modulus (GPa)  

C11 C12 C44 B G  

293 1 Exp. [31] 160 59 80 93 68 0.206 

300 0 NVT 152 62 72 92 61 0.228 

300 0 NPT 146 64 76 91 62 0.221 

600 0 NVT 143 61 67 88 56 0.237 

600 0 NPT 140 59 69 86 58 0.225 

900 0 NVT 135 59 63 84 53 0.240 

900 0 NPT 136 59 62 85 52 0.244 

1200 0 NVT 132 59 59 83 50 0.249 

1200 0 NPT 123 61 60 81 49 0.251 

 

Table 4. Calculated isothermal elastic stiffness constants for the hexagonal Mg at 600 K from 

NPT and NVT. Aggregate properties are only given in the Voigt average. 

T (K) P (bar) Method 
  Elastic modulus (GPa)  

C11 C33 C12 C13 C44 B G  

600 0 NPT 48 47 14 18 12 27 13 0.293 

600 0 NVT 43 51 19 14 15 26 14 0.267 
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Figure 3. Calculated elastic properties of Si from both NVT and NPT ensembles in comparison 

with experimental data [31]. 

 

Figure 4. Convergence of the elastic constants of cubic Si with the increasing simulation time in 

the NPT dynamics. Data at each point were derived from Eq. 11 using all MD steps up to the 

given time point. 

 

5 Summary 

We have automated the stress-strain method to derive elastic constants from ab initio 

calculations. We found the stress-strain method implemented under our constant pressure 
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dynamics Toolkit can provide almost identical results to the implementation under constant 

volume dynamics. The computational load is greatly reduced under constant pressure dynamics 

while remaining sufficiently accurate. This Toolkit will prove invaluable to those carrying out 

materials and mineral physics research, where thermoelastic properties are frequently sought. 
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