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ABSTRACT
Thanks to recent advances in computer graphics, wearable
technology and connectivity, Virtual Reality (VR) has landed
in our every-day life. A key novelty in VR is the user’s
role, which has turned from merely passive to entirely active.
Thus, improving any aspect of the coding–delivery–rendering
chain starts with the need for understanding users’ behaviour.
To do so, we investigate navigation trajectories of users
within a 6-Degrees-of-Freedom (DoF) VR environment.
This work is aimed at the behavioural analysis of VR trajec-
tories while displaying dynamic volumetric media in 6-DoF
conditions. Specifically, we investigate the main differences
and similarities between 3 and 6-DoF navigation through
existing methodologies adopted to study users’ behaviour in
3-DoF settings. Our simulation results, based on real nav-
igation paths, show the limitations of clustering algorithms
for 3-DoF in assessing user similarity in 6-DoF. Given these
observations, we state the need for developing new solutions
for the analysis of 6-DoF trajectories.

Index Terms— Point Cloud, User Analysis, 6-DOF, Vir-
tual Reality, Data Clustering

1. INTRODUCTION

Virtual Reality (VR) technology has revolutionised the way
in which users engage and interact with media content, going
beyond the passive paradigm of traditional video technology,
and offering higher degrees of immersiveness and interaction.
In a generic VR scenario, a viewer can freely navigate the im-
mersive scene, selecting the portion (named viewport) to be
displayed based on her/his viewing direction. Depending on
the enabled locomotion functionalities in the 3D space, VR
environments can be classified as 3- or 6-Degrees-of-Freedom
(DoF). In the first scenario, the viewer is virtually positioned
at the centre of a sphere (Fig. 1 (a)) and, the immersive con-
tent media is typically a 360◦ environment projected into the
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(a) 3-DoF (b) 6-DoF

Fig. 1. Viewing paradigm in 3- and 6-DoF VR.

virtual sphere. The media is displayed from an inward posi-
tion and, the interaction is experienced only by rotating and
translating the user head: the head is the only “tool” of in-
teractivity. The setting of a 6-DoF scenario is rather different
due to an extra-level of interaction between user and content
(Fig. 1 (b)). The user has now the freedom to change the view-
ing direction (rotating and translating the head as in 3-DoF)
but also to change position inside the VR environment. The
scene populated by volumetric objects (i.e., meshes or point
clouds) is now observed from an outward position.

Despite their differences, in both systems, the user be-
comes the main driving force in deciding which media con-
tent (or portion thereof) is being displayed at any given time.
Thus, to be able to deliver VR systems at large-scale, there
is a compelling need to develop user-centric VR systems,
which operates in a personalised manner (media processing
is tailored specifically to the users’ behaviour), to remain
bandwidth-tolerant whilst meeting quality and latency crite-
ria. To enable such user-centric systems, there is the need to
understand users’ interactivity models [1, 2]. User movement
in VR environments has been analysed, for both 3-DoF [3–5]
and 6-DoF [6–9] scenarios, in terms of total and averaged
interaction time and angular velocity, among others. User
navigation in 6-DoF scenarios was also studied in the past
in the context of locomotion and display technology for
CAVE environments [10, 11]. However, the focus has been
mainly put on the analysis of completion time per task versus
different setting conditions. While highly informative to sum-
marise the interaction of users within a content, these metrics



usually fail in providing other key information: which users
navigate similarly within the content, and which are the dom-
inant interaction behaviours among users. The importance
of this information has been already proved in 3-DoF, and a
spherical clustering algorithm and an information-theoretic
approach have been proposed in [12, 13], respectively. This
behavioural investigation has been instead overlooked in the
emerging 6-DoF environment.

In this paper, we want to fill the gap of behavioural anal-
ysis in 6-DoF system. The main research question we aim
to address is how new physical settings and locomotion func-
tionalities given to users can affect the analysis and under-
standing of their behaviour. In this first attempt of behavioural
exploration for 6-DoF users, we assume the presence of a
unique object of interest in the empty VR scene. In details,
we propose a comparative analysis of how a clustering al-
gorithm defined for 3-DoF behave when confronted with 6-
DoF trajectories. To do so, we explore how different distances
(such as relative distance between user and content or be-
tween viewing direction) but also different metrics (for exam-
ple euclidean versus geodesic distance) can be used to model
consistent viewport overlap. Finally, we study how spherical
clustering solutions fare when applied to the 6-DoF setting,
using a publicly available dataset of navigation trajectories in
6-DoF [9]. Results indicate that 3-DoF clustering solutions
are not able to capture similarities when users are placed at
far distances between each other, suggesting that new solu-
tions tailored for 6-DoF navigation are needed.

2. THE CHALLENGE: USER NAVIGATION IN A
6-DOF ENVIRONMENT

We are interested in analysing users’ behaviour, assuming
that users interact similarly when they observe the same volu-
metric content. The user behaviour can be identified by the
spatio-temporal sequences of user’s movements within the
content, namely navigation trajectories. In the following, we
compare the key characteristics of 3- and 6-DoF systems to
highlight the main novelties of the latter in terms of naviga-
tion trajectories. It should be noted that, in a 3-DoF scenario,
users are bounded to be viewing a portion of the omnidirec-
tional content at any given time. This is not necessarily the
case in a 6-DoF environment where one or multiple objects of
interest are placed in the scene. For simplicity, we consider
only one object of interest in an otherwise empty 3D scene
of a 6-DoF system. Our analysis can be straightforwardly ex-
tended to multiple objects in the same scene.

In a 3-DoF scenario, the trajectory of a generic user i can
be formally denoted by the sequence of user’s viewing direc-
tion over time {pi1, pi2, .., pin} where pit is the center of the
viewport projected on the immersive content (i.e., spherical
video) at a given timestamp t. The point p can be repre-
sented in spherical coordinates by [θ, φ, r] where θ ∈ [0, 2π]
is the azimuth angle (or longitude), φ ∈ [0, π] the polar angle

Fig. 2. An example of 6-DoF trajectories projected in a 2D
domain for user i and j. In the circle, a snapshot at time t
where coloured triangles represent viewing frustum per user.

(or latitude), and r is the distance between the point (view-
port center projected on the immersive content) and the ori-
gin (user position). In a 3-DoF scenario users are positioned
at the centre of the spherical virtual content; thus, r remains
constant during the interaction. As a consequence, the view-
port centre alone is highly informative of the user’s interac-
tion, and can be used as a proxy for viewport overlap among
users [12]. In particular, if their distance is low, the similarity
between users corresponds to high viewport overlap.

In a 6-DoF setting, however, the distance between user
and immersive content can change over time due to the added
degree of freedom. In this scenario, the distance between
viewport centres alone might not be sufficient to identify a
common portion of displayed point cloud. For instance, a
small distance between viewport centres might suggest a high
similarity between the corresponding users, which might not
necessarily be true if they are at a very different relative dis-
tance from the volumetric content. Therefore, the distance
r between the viewer and the object is now crucial to iden-
tify the actual displayed portion of the content. In the top
part of Fig. 2, we have represented the user’s viewing frustum
by triangles, which indicate the area within the user’s view-
port. Given these users i and j at time t with rit � rjt , the
latter, who is very close to the object, will visualise a very
focused and detailed part of it; conversely, user i is pointing
to the same area but from further distance, thus she/he will
experience the content differently. In fact, 6-DoF navigation
trajectories cannot be merely represented only by time and
viewport’s center position, as the point of origin (i.e., user po-
sition) is also needed.

To take into account these differences, as shown in Fig.2,
we define the spatio-temporal trajectory for a 6-DoF user i as
{(xi1, pi1, ri1), (xi2, pi2, ri2), . . . , (xin, pin, rin)}, t indicating the
timestamp. In addition to the viewport’s center pit projected
on the displayed volumetric object, there are also xit which
represents the spatial coordinates (i.e., [x,y,z]) of the user in



(a) Users’ position on the VR floor (b) Couple 1 (c) Couple 2 (d) Couple 3

Fig. 3. Comparison between significant couples of users navigating in PC3 (Red and black).

the VR environment and the distance rit as the distance be-
tween user and viewport center pit.

3. USER TRAJECTORY ANALYSIS IN 6-DOF

3.1. Methodology

We based our investigations on a publicly available dataset
of dynamic Point Clouds (PC) presented in [9]. The dataset
is a collection of navigation trajectories from 26 participants
who experienced 4 different dynamic sequences named, Long
dress (PC1), Loot (PC2), Red and black (PC3), Soldier (PC4).

We assume that two generic users i and j of the dataset
are placed at given time t in positions xit and xjt , respectively.
Given the nature of the experiment, similarly to what shown
in Fig.2, a single object of interest was places in VR scene,
and users were instructed to focus on the volumetric content
for the duration of the session. Therefore, their viewport’s
centers can be projected at any given time on the volumet-
ric object in pit and pjt , respectively. We define Sit and Sjt
as the set of points of the volumetric content falling within
the viewing frustum cast by user i and j. Then, we denote
the overlap set by Si∩jt , defined as the the portion of points
displayed by both users. Equipped with the above notation,
we can now introduce a key metric for the analysis: the over-
lap ratio Oi,j . The latter is defined as the cardinality of the
overlap set, normalised by the cardinality of the set contain-
ing all points of the PC visualised by both users. Namely
Oi,j = |Si∩jt |/|Sit ∪ Sit |. The higher is the overlap ratio,
the higher is the similarity between users, and vice versa. To
verify whether such overlap can be substituted with the dis-
tance between the two viewport centers D(pit, p

j
t ), as shown

in [12], we consider 4 different distance metrics to take into
account the heterogeneous shape of the PCs: the euclidean
distance between users’ position in the space (L2

x), the eu-
clidean distance between the viewport centres projected on
the volumetric content (L2

p), the geodesic distance (Gp), and
the cityblock distance (L1

p). In particular, geodesic distance is
the the shortest arc-length connecting the points on a sphere,
while cityblock is the `1 distance.

3.2. Distance as proxy for overlap?

We conducted a first analysis of the relationship between
viewport overlap and distance between user and volumetric

object studying three couples of users with different be-
haviour. This difference relies mainly in the user position.
In more details, we considered the following pair of users:
Couple 1 users i and j sharing a similar position at small
distance from the object (||ri−rj || < 1 ; ri, rj � 1); Couple
2 users i and j sharing a similar position at large distance
from the object (||ri − rj || < 1 ; ri, rj � 1); Couple 3
user i (j) close to (far from) the object (||ri − rj || > 1 ;
ri � 1, rj � 1). Figure 3(a) depicts the spatial position
over time of the selected users’ couples (given by their HMD
position) and the centroid of the volumetric content in the se-
quence PC3 . Fig. 3(b-d) compare the viewport overlap over
time (expressed in percentage) for each couple (Oi,j , blue
solid line), which represents our ground truth information,
versus their distance D(i, j) for the four different distance
metrics described in the previous subsection. When users
share similar position, (Fig. 3 (b-c)), the correlation between
pairwise overlap and distance metrics is quite evident (high
overlap, low distance), especially when geodesic distance is
considered and in the case of users being close to the object.
Conversely, the euclidean distance between users is not so
informative since is almost flat. In the context of the third
couple, the overlap is negligible (given the quite different po-
sitions of the users from the object), but the distance metrics
fail in capturing this behaviour. Finally, L2

p and L1
p work sim-

ilarly in all cases, despite the fact that overlap is substantially
different (high in subfigure (b) and (c), very low in (d)). Only
the geodesic distance between the two viewport center seems
to be much higher comparing with the previous couples.

3.3. Distance to assess users similarity?

After showing that the distance metric does not perfectly
replicate the overlap behaviour, we now show why this is a
fundamental problem when studying users’ behaviour. We do
so by looking at users’ similarities via clustering techniques.
We use the clique-based clustering proposed in [12] to iden-
tify users that are attending the same portion of the content.
The clustering algorithm identifies cliques of users all con-
nected within a graph. This graph is built as follows: users
are neighbouring if their distance is below a given threshold.
If the distance is a reliable proxy for the viewport overlap,
this clustering technique ensures to identify the largest clus-
ter of users with large viewport overlap. To implement this
clustering, the first step is to identify the distance threshold



PC 1 PC 2 PC 3 PC 4

L2
x L2

p L1
p Gp L2

x L2
p L1

p Gp L2
x L2

p L1
p Gp L2

x L2
p L1

p Gp

Mean N. Tot Clusters 9.63 8.7 8.7 6.2 10.9 7.14 7.14 6.76 10.05 8.81 8.85 6.49 10.91 9.61 9.54 7.19

Mean N. Single Cluster (cl. = 1 user) 3.85 3.73 3.73 1.90 5.03 2.87 2.97 2.20 4.18 3.61 3.60 1.92 4.77 3.97 3.98 2.23

Mean Overlap within Cl. (cl. >2 user) 62.84% 59.73 % 59.59 % 49.31 % 57.00 % 40.19 % 40.01 % 42.05 % 62.00 % 55.04 % 54.62 % 48.48 % 61.41 % 54.51 % 55.19 % 46.95 %

Mean Clustered Population (cl. >2 user) 73.60 % 72.49 % 72.99 % 85.95 % 66.27 % 78.44 % 78.40 % 78.96 % 72.67 % 71.41 % 70.72 % 83.41 % 67.90 % 71.83 % 72.72 % 84.22 %

Table 1. Spherical clustering analysis over time per each video content. The different distance metrics used as similarity
matrices are considered.

(a) ROC curves per distance metrics. In the leg-
end, threshold values for the spherical clustering.

(b) Mean overlap over time
(Clusters > 2 users)

(c) Mean clustered user over time
(Clusters > 2 users)

Fig. 4. Spherical clustering results over time per sequence PC3 (Red and black).

value. As in [12], we empirically evaluate the Receiver Oper-
ating Characteristic (ROC) curves per each analysed distance
metrics and select the best value. In details, we assumed that
two users are attending the same portion of content if their
viewports overlap by at least 80% of their total viewed area;
we then computed the ROCs curves in Fig.4 (a) based on
all user’ navigation trajectories in the dataset. We selected
threshold values in order to have a probability to correctly
classify an event (i.e., True Positive Rate (TPR)) equal to
0.85. In figure, the selected values of threshold per metrics
are shown in the legend. All the distance metrics achieve the
selected TPR with False Negative Rate (FNR) values smaller
than 0.4. Considering that FNR should ideally be minimized,
the results confirm the validity of the chosen threshold. Using
the selected values, we applied the spherical clustering at
each content frame. To avoid misleading results with clusters
composed by a single user, we only consider clusters com-
posed by more than 2 users. At each frame, we evaluated
the viewport overlap among all users within the same cluster
and averaged across clusters. Fig. 4 (b) shows this mean
as function of the time frame for the four distance metrics
under consideration. In Fig. 4 (c), instead, we measure how
large clusters are on average. We depict this by plotting the
percentage of users falling within each cluster (averaged over
all clusters) as a function of time. We plot this for each of the
four distance metrics considered. We observe that all metrics
reach an average of viewport overlap within clusters between
40% − 60%. Even if clusters based on L2

x seem to reach
higher overlap ratio within the same cluster, it is also relevant
to notice that part of the user population is not covered since
they fail in small clusters (with less than 2 users). The percent
of users took into account is indeed around 70 of the entire
population (Fig. 4 (c)). On the contrary, clustering based on
geodesic distance between viewport centers (L2

p) finds larger

clusters but less meaningful ones as it leads to a smaller mean
overlap ratio. A global view on the results is offered in Ta-
ble 1, which provides results (averaged over time) for all the
sequences in the dataset. Results in the table confirms the pre-
viously observed trend: clusters based on geodesic distance
between viewport centers (L2

p) are able to identify consistent
groups of users while whose based on the euclidean distance
between users (L2

x) are stronger in terms of viewport overlap.
Here, the first limitation of the metrics currently available
to analyse users behaviour in 6-DoF: the lack of one metric
able to provide highly populated clusters (as we would like
to identify mainstream interactivity) with large overlap ratio
between users within clusters (as we need to identify rep-
resentative clusters). Equally important, despite the metric
used, the values of overlap ratio are below 63%. However,
we recall that we set a distance threshold value as proxy of
a 80% overlap. Here the second limitation: current distance
metrics are not reliable proxy for the viewport overlap mea-
sure. As a consequence, this paper open the door to a very
new challenge on designing a proper metric to analyse users’
behaviour in 6-DoF. The intuition is that this metric will
need to consider both user positions (i.e., xi, xj) and viewing
directions (i.e., pi, pj) to efficiently analyse 6-DoF users.

4. CONCLUSION

We have presented a first attempt of behavioural analysis of
users while exploring a 6-DoF immersive content, focusing
on studying users’ similarities. The core of the paper high-
lights the key differences in the interactivity models between
3-DoF and 6-DoF, showing that i) the definition of the trajec-
tory is different, ii) current metrics fail in capturing similarity
among users (in terms of overlap of the displayed content), iii)
existing clustering methodologies used in 3-DoF cannot be
reliably extended to 6-DoF due to the lack of proper metrics.



As consequence, we highlight the need to develop new met-
rics and methodologies to be able to properly analyse users’
behaviour in 6-DoF.
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