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Abstract. For two graphs G and H, write G
rbw−→ H if G has the prop-

erty that every proper colouring of its edges yields a rainbow copy of H.
We study the thresholds for such so-called anti-Ramsey properties in ran-
domly perturbed dense graphs, which are unions of the form G∪G(n, p),
where G is an n-vertex graph with edge-density at least d, and d is a
constant that does not depend on n.

We determine the threshold for the property G ∪ G(n, p)
rbw−→ Ks for

every s. We show that for s ≥ 9 the threshold is n−1/m2(Kds/2e); in fact,
our 1-statement is a supersaturation result. This turns out to (almost)
be the threshold for s = 8 as well, but for every 4 ≤ s ≤ 7, the threshold
is lower and is different for each 4 ≤ s ≤ 7.
Moreover, we prove that for every ` ≥ 2 the threshold for the property

G∪G(n, p)
rbw−→ C2`−1 is n−2; in particular, the threshold does not depend

on the length of the cycle C2`−1. It is worth mentioning that for even
cycles, or more generally for any fixed bipartite graph, no random edges
are needed at all.
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1 Introduction

A random perturbation of a fixed n-vertex graph G, denoted by G ∪ G(n, p),
is a distribution over the supergraphs of G with the latter generated through
the addition of random edges sampled from the binomial random graph of edge-
desity p, namely G(n, p). The fixed graph G being perturbed or augmented in
this manner is referred to as the seed of the perturbation G ∪G(n, p).

The above model was introduced by Bohman, Frieze, and Martin [6], who
allowed the seed G to range over the family of n-vertex graphs with minimum de-
gree at least δn, denoted by Gδ,n. In particular, they discovered the phenomenon
that for every δ > 0, there exists a constant C(δ) > 0 such that G ∪ G(n, p)
a.a.s. admits a Hamilton cycle, whenever p := p(n) ≥ C(δ)/n and G ∈ Gδ,n.
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Their bound on p undershoots the threshold for Hamiltonicity in G(n, p) by a
logarithmic factor. The notation Gδ,n ∪G(n, p) then suggests itself to mean the
collection of perturbations arising from the members of Gδ,n for a prescribed
δ > 0.

Several strands of results regarding the properties of randomly perturbed
(hyper)graphs can be found in the literature. One prominent such strand can be
seen as an extension of the aforementioned result of [6]. Indeed, the emergence
of various spanning configurations in randomly perturbed (hyper)graphs was
studied, for example, in [3,5,7,8,11,12,15,16,22].

Another prominent line of research regarding random perturbations concerns
Ramsey properties of Gd,n ∪G(n, p), where here Gd,n stands for the family of n-
vertex graphs with edge-density at least d > 0, and d is a constant. This strand
stems from the work of Krivelevich, Sudakov, and Tetali [17] and is heavily
influenced by the now fairly mature body of results regarding the thresholds of
various Ramsey properties in random graphs see, e.g. [21,26,27,28].

Krivelevich, Sudakov, and Tetali [17], amongst other things, proved that for
every real d > 0, integer t ≥ 3, and graph G ∈ Gd,n, the perturbation G∪G(n, p)
a.a.s. satisfies the property G ∪ G(n, p) → (K3,Kt), whenever p := p(n) =
ω(n−2/(t−1)); moreover, this bound on p is asymptotically best possible. Here,
the notation G → (H1, . . . ,Hr) is used to denote that G has the asymmetric
Ramsey property asserting that any r-edge-colouring of G admits a colour i ∈ [r]
such that Hi appears with all its edges assigned the colour i.

Recently, the aforementioned result of Krivelevich, Sudakov, and Tetali [17]
has been significantly extended by Das and Treglown [10] and also by Powier-
ski [25]. In particular, there is now a significant body of results pertaining to
the property G ∪G(n, p)→ (Kr,Ks) for any pair of integers r, s ≥ 3, whenever
G ∈ Gd,n for constant d > 0. Further in this direction, the work of Das, Morris,
and Treglown [9] extends the results of Kreuter [14] pertaining to vertex Ramsey
properties of random graphs into the perturbed model.

A subgraph H ⊆ G is said to be rainbow with respect to an edge colouring ψ,
if any two of its edges are assigned different colours under ψ. An edge-colouring
ψ of a graph G is said to be proper if incident edges are assigned distinct colours

under ψ. We write G
rbw−→ H, if G has the property that every proper colouring

of its edges admits a rainbow copy of H. The first to consider the emergence
of small fixed rainbow configurations in random graphs with respect to proper
colourings were Rödl and Tuza [29]. The systematic study of the emergence of
general rainbow fixed graphs in random graphs with respect to proper colourings
was initiated by Kohayakawa, Kostadinidis and Mota [18,19].

In [18] it is proved that for every graph H, there exists a constant C > 0 such

that G(n, p)
rbw−→ H, whenever p ≥ Cn−1/m2(H), where here m2(H) denotes the

maximum 2-density of H, see e.g. [13]. Nenadov, Person, Škorić, and Steger [24]
proved, amongst other things, that for H ∼= C` with ` ≥ 7, and for H ∼= Kr

with r ≥ 19, n−1/m2(H) is, in fact, the threshold for the property G(n, p)
rbw−→ H.

Barros, Cavalar, Mota, and Parczyk [4] extended the result of [24] for cycles,

proving that the threshold of the property G(n, p)
rbw−→ C` remains n−1/m2(C`)
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also when ` ≥ 5. Kohayakawa, Mota, Parczyk, and Schnitzer [20] extended the

result of [24] for complete graphs, proving that the threshold of G(n, p)
rbw−→ Kr

remains n−1/m2(Kr) also when r ≥ 5.

For C4 and K4 the situation is different. The threshold for the property

G(n, p)
rbw−→ C4 is n−3/4 = o

(
n−1/m2(C4)

)
, as proved by Mota [23]. For the

property G(n, p)
rbw−→ K4, the threshold is n−7/15 = o

(
n−1/m2(K4)

)
as proved by

Kohayakawa, Mota, Parczyk, and Schnitzer [20]. More generally, Kohayakawa,
Kostadinidis and Mota [19] proved that there are infinitely many graphs H for

which the threshold for the property G(n, p)
rbw−→ H is significantly smaller than

n−1/m2(H).

Lastly, properly edge-coloured triangles are rainbow. Hence, the thresholds

for the properties K3 ⊆ G(n, p) and G(n, p)
rbw−→ K3 coincide so that n−1 is the

threshold for the latter.

1.1 Our results

For a real d > 0, we say that Gd,n ∪ G(n, p) a.a.s. satisfies a graph property P,
if limn→∞ P[Gn ∪G(n, p) ∈ P] = 1 holds for every sequence {Gn}n∈N satisfying
Gn ∈ Gd,n for every n ∈ N. We say that Gd,n ∪ G(n, p) a.a.s. does not satisfy
P, if limn→∞ P[Gn ∪G(n, p) ∈ P] = 0 holds for at least one sequence {Gn}n∈N
satisfying Gn ∈ Gd,n for every n ∈ N. Throughout, we suppress this sequence-
based terminology and write more concisely that Gd,n∪G(n, p) a.a.s. satisfies (or
does not) a certain property. In particular, given a fixed graph H, we write that

a.a.s. Gd,n ∪G(n, p)
rbw−→ H to mean that for every sequence {Gn}n∈N, satisfying

Gn ∈ Gd,n for every n ∈ N, the property Gn∪G(n, p)
rbw−→ H holds asymptotically

almost surely. On the other hand, we write that a.a.s. Gd,n ∪ G(n, p)
rbwX−→ H to

mean that there exists a sequence {Gn}n∈N, satisfying Gn ∈ Gd,n for every n ∈ N,

for which a.a.s. Gn ∪G(n, p)
rbw−→ H does not hold.

A sequence p̂ := p̂(n) is said to form a threshold for the property P in the
perturbed model, if Gd,n ∪ G(n, p) a.a.s. satisfies P whenever p = ω(p̂), and if
Gd,n ∪G(n, p) a.a.s. does not satisfy P whenever p = o(p̂).

For every real d > 0 and every pair of integers s, t ≥ 1, every sufficiently

large graph G ∈ Gd,n satisfies G
rbw−→ Ks,t; in fact, every proper colouring of

G supersaturates G with Ω(ns+t) rainbow copies of Ks,t. Consequently, the

property Gd,n ∪G(n, p)
rbw−→ Ks,t is trivial as no random perturbation is needed

for it to be satisfied. The emergence of rainbow copies of non-bipartite prescribed
graphs may then be of interest. For odd cycles (including K3), we prove the
following.

Proposition 1. For every integer ` ≥ 2, and every real 0 < d ≤ 1/2, the

threshold for the property Gd,n ∪G(n, p)
rbw−→ C2`−1 is n−2.
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Unlike the threshold for the property G(n, p)
rbw−→ C`, established in [4,24],

the threshold for the counterpart property in the perturbed model is independent
of the length of the cycle.

Our main result concerns the thresholds for the emergence of rainbow com-
plete graphs in properly coloured randomly perturbed dense graphs. From the
results of [20,24], one easily deduces that if r ≥ 5 and p = o

(
n−1/m2(Kr)

)
, then

a.a.s. there exists a proper edge-colouring of G(n, p) admitting no rainbow copy
of Kr. Consequently, given a real number 0 < d ≤ 1/2 and an n-vertex bipartite
graph G of edge-density d, a.a.s. there exists a proper edge-colouring of G ∪
G(n, p) admitting no rainbow copy of K2r−1, provided that p = o

(
n−1/m2(Kr)

)
.

We conclude that Gd,n ∪ G(n, p)
rbwX−→ K2r and Gd,n ∪ G(n, p)

rbwX−→ K2r−1 hold
a.a.s. whenever p = o

(
n−1/m2(Kr)

)
.

For every r ≥ 5, we prove a matching upper bound for the above construction.
Our main result reads as follows.

Theorem 1. Let a real number 0 < d ≤ 1/2 and an integer r ≥ 5 be given.

Then, the threshold for the property Gd,n ∪ G(n, p)
rbw−→ K2r is n−1/m2(Kr). In

fact, Gd,n∪G(n, p) a.a.s. has the property that every proper colouring of its edges

gives rise to Ω
(
p2(

r
2)n2r

)
rainbow copies of K2r, whenever p = ω(n−1/m2(Kr)).

The following result is an immediate consequence of Theorem 1 and of the
aforementioned lower bound.

Corollary 1. Let a real number 0 < d ≤ 1/2 and an integer r ≥ 5 be given.

Then, the threshold for the property Gd,n ∪G(n, p)
rbw−→ K2r−1 is n−1/m2(Kr).

Theorem 1 and Corollary 1 establish that for sufficiently large complete

graphs, i.e., Ks with s ≥ 9, the threshold for the property Gd,n ∪G(n, p)
rbw−→ Ks

is governed by a single parameter, namely, m2(Kds/2e). This turns out to be
true (almost, at least) for s = 8 as well, but proving it requires new ideas. For
4 ≤ s ≤ 7, this is not the case; here, for each value of s in this range, the threshold
is different. Using completely different methods, we prove the following.

Theorem 2. Let 0 < d ≤ 1/2 be given.

1. The threshold for the property Gd,n ∪G(n, p)
rbw−→ K4 is n−5/4

2. The threshold for the property Gd,n ∪G(n, p)
rbw−→ K5 is n−1.

3. The threshold for the property Gd,n ∪G(n, p)
rbw−→ K7 is n−7/15.

For K6 and K8, we can “almost” determine the thresholds.

Theorem 3. Let 0 < d ≤ 1/2 be given.

1. The property Gd,n ∪G(n, p)
rbw−→ K6 holds a.a.s. whenever p = ω(n−2/3).

2. For every constant ε > 0 it holds that a.a.s. Gd,n ∪G(n, p)
rbwX−→ K6 whenever

p := p(n) = n−(2/3+ε).
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Theorem 4. Let 0 < d ≤ 1/2 be given.

1. The property Gd,n ∪G(n, p)
rbw−→ K8 holds a.a.s. whenever p = ω(n−2/5).

2. For every constant ε > 0 it holds that a.a.s. Gd,n ∪G(n, p)
rbwX−→ K8 whenever

p := p(n) = n−(2/5+ε).

Proofs of all of our results can be found in [1,2].
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26. V. Rödl and A. Ruciński, Lower bounds on probability thresholds for Ramsey prop-
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