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Abstract—Blood glucose (BG) prediction is essential to the
success of glycemic control in type 1 diabetes (T1D) management.
Empowered by the recent development of the Internet of Medical
Things (IoMT), continuous glucose monitoring (CGM) and deep
learning technologies have been demonstrated to achieve the
state of the art in BG prediction. However, it is challenging to
implement such algorithms in actual clinical settings to provide
persistent decision support due to the high demand for compu-
tational resources, while smartphone-based implementations are
limited by short battery life and require users to carry the device.
In this work, we propose a new deep learning model using an
attention-based evidential recurrent neural network and design
an IoMT-enabled wearable device to implement the embedded
model, which comprises a low-cost and low-power system on a
chip to perform Bluetooth connectivity and edge computing for
real-time BG prediction and predictive hypoglycemia detection.
In addition, we developed a smartphone app to visualize BG
trajectories and predictions, and desktop and cloud platforms
to backup data and fine-tune models. The embedded model was
evaluated on three clinical datasets including 47 T1D subjects.
The proposed model achieved superior performance of root
mean square error (RMSE), mean absolute error, and glucose-
specific RMSE, and obtained the best accuracy for hypoglycemia
detection when compared with a group of machine learning
baseline methods. Moreover, we performed hardware-in-the-loop
in silico trials with 10 virtual T1D adults to test the whole
IoMT system with predictive low-glucose management, which
significantly reduced hypoglycemia and improved BG control.

Index Terms—Diabetes, deep learning, Internet of Things
(IoT), edge computing, glucose prediction, artificial intelligence.

I. INTRODUCTION

IABETES is a chronic disease characterized by hyper-

glycemia, which affects just under half a billion people
worldwide [1]. Due to autoimmune destruction of pancreatic
[-cell resulting in an absolute insulin deficiency, people living
with type 1 diabetes (T1D) require lifelong management to
maintain the blood glucose (BG) levels in a safe range. To
do so, they need to consistently adhere to a series of self-
care behaviors, such as monitoring BG levels, administrating
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exogenous insulin, and carefully scheduling meals and exer-
cise. Otherwise, the risk of hypoglycemia and hyperglycemia
would increase, which may lead to various short and long-term
complications. Hyperglycemia is a major responsible factor for
the development of nephropathy, retinopathy, coronary heart
diseases [2], but severe hypoglycemia is more dangerous and
may cause coma, seizures, or even death [3]. In this regard,
BG prediction is a crucial tool in T1D management to improve
glycemic control, which allows for proactive interventions to
reduce, or even prevent adverse glycemic events and diabetic
complications. However, due to high inter- and, in the long
term, intra-subject variability, developing an accurate BG
prediction model is still challenging [4].

With the rapid development of the Internet of things (IoT),
recent advances in continuous glucose monitoring (CGM)
have been shown to enhance the treatment for people with
TID [5]. A CGM system comprises an implanted sensor
to measure interstitial BG levels and a transmitter to send
measurements to a receiver, such as a customized hardware
box, smartphone, or smart watch with a fixed frequency (e.g.,
every five minutes). As a well-established paradigm of the
Internet of Medical Things (IoMT) [6], CGM can also be
combined with insulin pumps as sensor-augmented therapy,
i.e., artificial pancreas (AP). In this context, BG prediction
can be used in closed-loop AP systems with model predictive
control [7] and enables predictive low-glucose management
(PLGM) systems that have been proved to be effective for
reducing hypoglycemia in clinical settings [8].

The widespread use of CGM has produced a large amount of
data that offers the promise of developing artificial intelligence
(AI) technologies in BG prediction, especially for machine
learning algorithms [9]. In particular, deep learning-based
models have recently achieved the state of the art in terms
of accuracy [10]-[13]. Of note, by employing the latest deep
learning technologies, the increasingly complex models rely
on a huge number of parameters, neurons, and layers for
model inference. Thus, how to implement these models in
actual clinical settings to bring actual therapeutic benefits is
under-researched, which can be problematic since on-device
inference with a large number of model parameters requires
intensive computational resources and memory consumption.

The existing methods to implement deep learning models
for BG prediction are mainly based on customized smartphone
apps [14]-[16]. However, several limitations exist in these
methods including lack of wearability, battery constraints, and
the dependency on mobile operating systems. It is inconvenient
for T1D users to carry smartphones or other handheld devices
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all the time, especially during high-intensity activities which
would reduce the awareness of subsequent hypoglycemia in
TID [17]. In addition, the battery level of smartphones and
smartwatches are significantly drained because the prediction
algorithms continuously run in the background with Bluetooth
connectivity [18]. As a result, the decision support system will
be unavailable when the devices run out of power. Moreover,
the smartphone implementation is highly dependent on mobile
operating systems, such as Android and iOS, and deep learning
libraries, such as PyTorch [14] and TensorFlow Lite [15],
[16]. Many existing apps for diabetes management suffer from
the frequent updates of mobile operating systems. T1D users,
especially the elderly population, may need to purchase extra
expensive smartphones if the implementation does not support
their own devices. Cloud implementation could be a solution to
this problem, but it is largely limited by Internet connectivity
since there are many daily scenarios suffering from poor
coverage of WiFi and mobile signals. Thus, a power-efficient
and low-cost wearable device based on edge computing [19]-
[21] is preferred in T1D management to provide real-time BG
prediction and predictive hypoglycemia detection. The out-
comes of this study also indicate the possibility of embedding
deep learning algorithms into CGM devices (e.g., wearable
transmitters).

In this work, we propose a new deep learning algorithm and
develop a novel IoMT-enabled wearable device to implement
the algorithm using a system on a chip (SoC) for Bluetooth
low energy (BLE) connectivity and edge computing. In par-
ticular, a computationally efficient recurrent neural network
(RNN) with the attention mechanism is introduced to obtain
accurate BG predictions. We employ evidential regression
to compute model uncertainty and improve the detection of
impending hypoglycemia. Then the well-trained model was
embedded into the SoC of the customized wearable device
with an optimized circuitry to minimize energy consumption.
Receiving the measurements from CGM, the wearable device
performs real-time model inference to obtain BG predictions
and hypoglycemia warning for decision support, which can
be further integrated into AP systems. Finally, we evaluated
the prediction accuracy of the embedded model, analyzed
the power and edge computing performance, and tested the
efficacy of the wearable device in the simulation of 10
virtual TID adults with the FDA-accepted UVA/Padova T1D
simulator [22]. The original contributions of this work can be
summarized as follows.

« We propose a new attention-based lightweight RNN for
real-time BG prediction and hypoglycemia detection with
CGM input data on edge devices.

o We design an loMT-enabled wearable device with a low-
cost and power-efficient SoC that communicates with
CGM and other devices of TID management through
BLE and performs edge computing for the model infer-
ence of the embedded deep learning algorithm. A cloud
platform is developed for model training and data backup.

o The embedded model is evaluated by three clinical
datasets and compared against a variety of machine
learning and deep learning baseline methods.
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e We analyze the power and memory footprint of the
wearable device and perform in silico trials to validate
the therapeutic efficacy of the PLGM system integrated
with the wearable device.

The remainder of this paper is organized as follows. We first
present an overview of related work in Section II. The details
of the system design including the software and hardware are
illustrated in Section III. In Section IV, we describe the clinical
datasets and analyze the experiment results on clinical datasets
and in silico trials. Finally, we conclude this article and discuss
the future work in Section V.

II. RELATED WORK

A. BG Prediction with Machine Learning and CGM Data

The forecasting of BG levels over short and long-term
prediction horizons (PHs) plays an important role in T1D
management. In general, the prediction algorithms reported
in the literature can be mainly divided into physiological
modeling, data-driven approaches, and hybrid methods [9].
However, due to the larger inter-subject variability, it is
difficult to develop a generic physiological model that has
proper parameter settings for each personal profile. Fortu-
nately, with an increasing amount of CGM data, machine
learning approaches have been shown to achieve superior
prediction accuracy [9]. In this regard, a common strategy
is to treat BG prediction as a supervised learning task that
uses continuous CGM sequences and other relevant features
(e.g., daily activities) as model input and future BG levels
as the corresponding targets. Conventional machine learning
solution to this task include the autoregressive integrated
moving average (ARIMA) [23], random forests [24], artificial
neural networks [25], and support vector machine (SVR) [26].

Particularly, empowered by various architectures of deep
neural networks (DNNs), deep learning-based models have
obtained superior performance on BG prediction and out-
performed conventional machine learning baseline methods
in recent studies. Instead of merely using a feed-forward
structure, RNNs fetch the output at previous timesteps as a part
of current input, which makes it a powerful tool in sequence
processing and regression tasks. In addition, the long short-
term memory (LSTM) and gated recurrent unit (GRU) are two
classic RNN cells that solve the issues of gradient vanishing
and exploding of vanilla RNNs [27], which have been widely
applied in previous work on BG prediction. Martinsson et
al. [28] proposed an LSTM-based model to learn physiological
patterns of BG dynamics only using CGM input. In [29],
a bidirectional LSTM (Bi-LSTM) was used to predict BG
concentration and outperformed an ARIMA baseline.

In addition, temporal convolutional networks (TCNs) based
on convolution neural networks (CNNs) and causal convolu-
tions are comparable to RNNs in sequence modelling [30],
[31]. Li et al. [15] proposed a TCN-based model to classify
the BG changes between current and future values. A convolu-
tional recurrent neural network (CRNN) was proposed in [16],
which used CNN layers to extract feature maps and LSTM to
obtain final predictive BG levels.
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Fig. 1. System architecture of the T1D management system with the proposed wearable device, which contains three subsystems as follows: monitoring and
decision support, medical interventions, and platforms and servers. The wearable device is a part of the monitoring and decision support subsystem that can

provide real-time measurement, BG prediction, and hypoglycemia warning.

To further improve the prediction accuracy, a group of the
latest advances has been applied to improve BG prediction but
increased computational complexity, such as dilated connec-
tions [32], attention mechanism [33], ensemble learning [13],
multi-task learning [14], and residual connections [15].

Although previous studies incorporated physiological mea-
surements and daily activities as model input, such as car-
bohydrate intake [14], insulin injection [15], and exercise
levels [26], prediction with CGM data only is a practical and
valuable option in real-world scenarios [34]. On one hand,
some physiological features require extra wearable devices
(e.g., insulin pumps and wristbands) that are not widespread
in T1D management systems [35] and would introduce artifact
errors due to hardware issues, such as signal loss and drained
battery. On the other hand, the manual data entries are burden-
some and likely to cause human errors (e.g. missing meals).

B. IoMT Systems in Healthcare and T1D Management

The IoMT is defined as the connectivity of numerous
medical devices to healthcare systems and care providers.
Integrated with a variety of physiological sensors, communi-
cation modules, and recent Al technologies, IoMT provides
significant clinical benefits and has the potential to have
a major impact on the healthcare domain [36]. Firstly, the
proliferation of wireless sensors and personal wearable devices
enables IoMT to develop efficient continuous and remote
monitoring systems for healthcare infrastructures. For instance,
Catarinucci et al. [37] proposed the architecture of a smart
hospital system with a specifically designed wireless sensor
network, aiming to automatically monitor and track people
and medical devices within hospitals. In [38], an IoMT-
enabled low-power wearable system was developed to address
the needs of long-term remote electrocardiogram monitoring.
Secondly, IoMT offers promising solutions to enhance self-
care and early diagnosis of various diseases [39]. Su et al. [40]

Authorized licensed use limited to:

integrated IoMT technologies and deep learning algorithms
into a screening system to assess characteristic signals of
patients with valvular heart disease. Similarly, Tuli et al. [41]
combined IoMT, fog computing, and ensemble deep learning
to develop an automatic system for heart disease analysis.
In [39], the authors proposed SPHERE, an IoMT system to
improve the wellbeing of the elderly population with chronic
diseases. In recent work, IoMT was also employed with 5G
cloud computing and deep learning for telemedicine diagnosis
of epidemic diseases [42].

In particular, IoMT has opened a door to efficient and
reliable BG monitoring and glycemic control to improve
diabetes management [43], [44], leveraging various wearable
devices and interconnections in AP systems, such as CGM,
insulin pumps, insulin pens, glucagon pumps, and physiolog-
ical wristbands for measuring signals (Fig. 1). In [45], the
authors presented a smart diabetic healthcare system with
the hardware implementation of a development board and
a microcontroller unit (MCU) to control an insulin pump
and transfer health records to cloud storage. They applied a
hash algorithm to provide authenticity for individual data and
improve the security of the IoMT system. Moreover, Herrero
et al. [46] proposed the Bio-inspired Artificial Pancreas which
comprises a customized handheld unit to implement glycemic
control algorithms on an MCU and communicate with CGM,
insulin pump, and a dedicated smartphone app via Bluetooth.
The cloud services were provided in the app for remote mon-
itoring. This system was demonstrated by the UVA/Padova
T1D simulator and further validated in a clinical trial [47].
Similar IToMT-enabled AP systems with cloud services have
been reported in the literature, such as the Bionic pancreas [48]
and DiAs system [49]. Considering various security issues
existing in implantable sensors and wireless interconnections,
Astillo et al. [50] developed a misbehavior detection system
to assess the trustworthiness of the wearable devices in AP
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systems, including CGM, controllers, and insulin pumps, and
also evaluated the system in the UVA/Padova T1D simulator.

C. Edge Al in IoMT

Most existing solutions to implement decision-support al-
gorithms and interact with wearable devices in IoMT-based
T1D management systems would introduce several essential
challenges, such as the battery limit of smartphone platforms,
lack of wearability for customized handheld devices, and high-
latency decision making with cloud platforms. Edge Al [51],
as known as edge intelligence, is a promising solution to tackle
these challenges, which allows edge computing to execute Al
algorithms, e.g., deep learning. This technique is in an early
stage [51] and emerging in recent research of IoMT [52].
In [53], the authors proposed a framework of edge computing
and machine learning to predict early warning scores with
vital signs, aiming at providing decision support for critical
care interventions. Kong et al. [54] proposed a CNN-based
deep learning model to detect mask-wearing to help prevent
infection of COVID-19 with the edge implementation on the
Intel Neural Compute Stick and Raspberry Pi 4. Olokodana et
al. [55] introduced a machine learning model, ordinary kriging,
to detect seizures with an edge device of Raspberry Pi 3B+.

However, there remain several challenges for edge comput-
ing to be widely adopted in IoMT healthcare systems [56].
Due to the computational constraints and memory limit, it is
challenging to deploy complex algorithms with a high number
of parameters and variables, e.g., deep learning models. The
daily use of personal medical devices generates a considerable
amount of data, which puts a huge burden on the storage of
edge devices. Meanwhile, protecting the security and privacy
of personal health data is an important consideration in data
transmission and task offloading between IoMT devices [57].
Edge devices are also vulnerable to malicious attacks, which
require systematic security approaches, such as trust manage-
ment and defense mechanisms, to ensure trustworthiness in
IoMT systems. Finally, due to the limited capacity of batteries,
power management is essential for edge devices to consistently
provide high-quality services and prevent any signal or data
loss, especially for the devices that provide continuous long-
term decision support in clinical settings.

III. SYSTEM DESIGN

In this section, we present the details of the framework to
develop the proposed deep learning model for BG prediction
and the corresponding implementation of the embedded sys-
tem in the customized wearable device.

A. Framework Overview

Fig. 1 depicts an overview of the proposed system archi-
tecture in T1D management. There are three subsystems: 1)
monitoring and decision support, 2) medical interventions, 3)
platforms and servers, which are described in the subsequent
sections. The IoMT-enabled wearable device is in the center
of the monitoring and decision support system. Communicat-
ing with the CGM via Bluetooth connectivity, the wearable

device empowers a T1D user with real-time BG prediction
and hypoglycemia detection. Then the user can interact with
the subsystem of medical interventions to adjust treatment.
The data transmission between the wearable device and the
platforms and servers aims at data visualization, data backup,
and updating the embedded deep learning model.

1) Monitoring and Decision Support: As the core com-
ponent of the proposed system, it contains a CGM sensor
that measures BG levels every five minutes and transmits the
real-time measurements to a specifically designed wearable
wristband via BLE. The SoC of the wearable device performs
the embedded deep learning algorithm to predict BG levels
and detect forthcoming hypoglycemic events. The historical
CGM measurements and DNN weights are stored in the Flash
memory, which can be accessed and updated by the platforms
and servers. This essential subsystem can run solely without
interactions with other devices to guarantee persistent and
reliable decision support throughout day and night. In addition,
thanks to a power-efficient design of SoC, the battery life of
the wearable device (six months) is longer than that of the
CGM sensor (10 days) and transmitter (three months).

2) Medical Interventions: Automatic control with the same
SoC that enables Bluetooth communication with insulin pumps
has been validated in our previous work [46]. In this work, we
consider manual control to fit different clinical scenarios since
insulin pumps are not widely used by people with T1D. Once
receiving predictions and warnings from the wearable device,
a T1D subject is allowed to seek necessary interventions in
advance and manually adjust existing medical treatment.

3) Platforms and Servers: A smartphone app can connect
with the wristband through Bluetooth to visualize current
CGM reading, predictions, and historical BG trajectories,
while recording daily activities, such as meals, excise, and
health conditions. A desktop platform with a specifically
designed graphical user interface (GUI) (Fig. 8 in the Ap-
pendix) is employed to train the deep learning models and
backup collected data. It communicates with the wristband
through USB ports and can upload data to the Amazon cloud
storage, i.e, a bucket of AWS S3. TID users are allowed to
perform these operations by themselves or with the guidance
of healthcare providers or clinicians if needed. To facilitate
users without a programming background, we deploy the deep
learning models in the cloud using AWS SageMaker. Thus, the
models can be automatically trained with newly uploaded data
on the cloud platform and downloaded from the cloud storage
to the wearable device.

B. Problem Formulation and Feature Engineering

Denoting a BG level measured by CGM at timestep ¢ as
G}, the target of prediction is to estimate a future BG value
of G¢4p, where p is a PH (e.g., 30 minutes) normalized by
resolution of CGM. To extract hidden representations, the
input data contains a sequence of retrospective data X with a
length of L, i.e., X; = [X¢, X¢_1,- .., X¢—a] € RL, where d
is the dimension of the input features; x; € R2*1 denotes the
input vector at the timestep ¢; and A = L—1. Considering edge
computing that delivers computation close to data sources,
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we derive all the input features from CGM measurements
and corresponding timestamps in the monitoring and decision
support system (Fig. 1). The timestamps for a 24-hour period
are converted into two types of time index to map seasonal
patterns: min-max normalization with a range of [0, 1] [32]
and sine-cosine encoding [13]. The BG change over the PH is
used as the learning target y; to reduce underlying bias [15],
[32], ie., ¥+ = fu(Giyp — Gyi), where f, is the min-max
normalization to scale each feature.

Combining CGM sequences with time index, we perform
feature selection during the validation phase. The best vali-
dation performance was obtained with the CGM time series
G; and min-max normalized timestamps S;, i.e., X; =
fn([Gy; S¢]). However, we notice that there is a large number
of missing gaps in the historical CGM measurements, due to
some inevitable reasons (e.g., sensor calibration and signal
loss), which account for around 10% of the total length. Thus,
we interpolate the missing CGM data in the middle of input
sequences and extrapolates the missing CGM data at the tail
to avoid involving future information in current predictions.

C. BG Prediction by Evidential RNN Models

Although RNN-based models have exhibited superior per-
formance in BG prediction, a challenge of implementing such
models in actual clinical settings is the lack of evaluating the
uncertainty and confidence of predictions. It is essential to
determine whether a prediction is reliable and confident when
a deep learning model aims to provide critical decision support
in a healthcare system. In the context of T1D management,
a lower bound of prediction value is a useful indicator, as
low glucose episodes, i.e., hypoglycemia, may lead to life-
threatening events.

To this end, we propose an embedded edge evidential
neural network (E3NN) model to compute the lower bounds
(LBs) of each prediction. Fig. 2 shows the architecture of the
proposed deep learning model, consisting of a base model
with a stack of RNN layers, an attention layer, a dropout
layer, a dense layer, and an evidential output layer. The
input of E3NN is a multivariate time series with CGM and
timestamps, while the output comprises the parameters of the
evidential distribution to compute prediction values and LBs.
The GRU cells are employed rather than LSTM because they
achieved better validation performance with a smaller number
of parameters [32]. The cell operations are denoted as

ry = O(Wrxt + Urht—l + br)7

Zy = J(szt + Uzhtfl + bz)7

h; = o(Wyx, + Upr; © b’ + by),

hy = (1-2)0h_+20h, (1)
where r;, z;, ﬁt, and h; denote reset gate vector, update
gate vector, candidate activation, and cell output, respectively;
[W,, U,, b,], [W., U,, b.], and [W}, Uy, by] denote the
set of input weights, cell output weights, bias for reset gate,
update gate, candidate activation, respectively. Dropout layers

are used to prevent DNNs from overfitting and improve model
generalization.
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Fig. 2. Block diagram of the proposed E3NN. The model input is a

multivariate time series. The output of E3NN includes the four parameters
ply, 0, e, B] of the posterior distribution to compute BG predictions with
corresponding LBs.

The output of the second GRU layer is fed into an attention
layer to obtain a weighted context vector c; as follows

t

Cy = Z at’ihi, (2)

i=t—L+1

where a;, and h; are attention weight and the hidden state
at the i-th timestep, respectively. The attention weights are
derived by alignment scores that indicate the relationship
between the current cell output and retrospective information
at previous timesteps. In the experiments, we explored a group
of alignment functions, including additive [58], general [59],
dot product [59], and location-based attention [59]. Here we
use the general form, considering it achieved the largest
improvement of the validation performance, which can be
defined as follows

exp(h;W;h

ai = — ( t) , 3)
Zi:t+1—L exp(h;W hy)

where W, computes the alignment scores, which is

parametrized by a feed-forward network; and the attention
weights are normalized by the Softmax function. The output
of the attention layer is processed by a dense layer with
ReLU activation to extract high-level features hf, which can
be expressed as

h¢ = ReLU(Wc; + by) (4)

where W and by are the weights and bias of the dense layer.

To compute model uncertainty and corresponding LBs, we
assume the observed prediction targets are drawn from a Gaus-
sian distribution N (11, 0%) with unknown mean and variance,
ie, p~ N(v,02/)), 0% ~ T~ 1(a, ), where T stands for
the gamma function. We can estimate posterior distribution
with an approximation of the Normal Inverse-Gamma (NIG)
distribution with four parameters of ~,o,«, 3 [60]. In this
case, the objective of the deep learning model is obtaining
the parameters of the NIG distribution rather than a single
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prediction value. Hence, a dense layer with four-dimensional
output is used as the evidential layer (Evid) to compute these
parameters as the final output, i,e., 7, 0, @, 3 = Evid(h¥).

According to Bayesian probability theory, the likelihood of
an observed prediction target can be obtained by applying
marginalization to the parameters of the Gaussian distribution
(i, o). It has been proven that, given the assumption of the
NIG approximation, the Gaussian likelihood function can be
solved by a form of the generalized Student-t distribution
(St) [60]. Therefore, the model is trained by a negative log
likelihood loss to fit the observations with uncertainty, which
is defined as follows

B(1+A)

Et = - IOg(St (yt‘zaa s v

) )
where 2a, 7, % are the degrees of freedom, location
parameter, scale parameter of the Student-t distribution. The
prediction %; and lower bound LB are derived as follows

LB =g, —k

:l)t =7 (6)

where k is a personalized hyperparameter to adjust the LBs for
hypoglycemia detection, which is determined in the validation
phase for each subject. Processed by the inverse function of
the feature normalization, predictive BG levels can be restored
by adding the predictive BG changes to the current BG levels.

D. Edge Computing

Compared with model implementation on the cloud, edge
computing can offer more reliable real-time services on the
wearable device with extremely low latency of decision mak-
ing, which are not limited by Internet connectivity. Deep
learning with edge inference is emerging research in the fast-
growing areas of Al and IoT. Existing inference frameworks,
such as TensorFlow Lite Micro [61] and CMSIS-NN [62],
currently support a limited subset of operations and DNN
layers. Therefore, we convert the E3NN TensorFlow models
to C models based on the CMSIS-DSP library that offers
high-performance APIs for math functions such as matrix
operations, and the firmware development is based on the latest
nRF5 SDK v17.0.2.

The BLE SoC is based on an ARM Cortex-M4 Core with
a tight memory budget (512KB Flash and 64 KB SRAM).
However, the SoC not only communicates with the front-
end CGM transmitter through the BLE protocol but also runs
the trained RNN model on the edge. Thus, we optimize the
SRAM usage of the model inference. In particular, assuming
the input of the embedded model involves L. CGM readouts
associated with timestamps, the first GRU layer processes a
two-dimensional data sample at each timestep and repeats for
L rounds. Each round of operations is dependent on the output
from the previous iteration and cannot be computed in parallel
for acceleration. However, as the second GRU layer runs in
the same way except for using the output of the first GRU
layer as input data, the operations of these two GRU layers
can be pipelined. Thus, the cells of the stacked RNN layers at
the same timestep are performed in one round and iterated L
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Fig. 3. Block diagram of the proposed IoMT system in T1D management,
which is powered by a coin battery and embedded with LEDs, Buttons, and
a Buzzer for user interactions as well as a NOR Flash for data storage. The
system employs a hardware power-gating circuit including a timer and a load
switch for energy saving, which can maintain ultra-low-power during the idle
period.

times. This interleaving process reduces the SRAM utilization
since only one output needs to be temporally stored instead
of an output vector with a length of L. The dropout layer
only applies in the training phase, which is disabled in model
inference and thus not implemented on the SoC.

We import RNN weights as 4-byte hex data as a raw format
representing 32-bit floating-point numbers, aiming to maintain
the prediction accuracy with less loss of precision compared
with post-training quantization. These weights are fixed and
stored in the Flash memory, which can be claimed as static
constant variables.

E. Embedded System and Wearable Device Design

To meet the requirements raised for edge computation, the
proposed system involves a lightweight and compact hardware
design for a low-power and low-cost wearable device. It is
embedded with four main peripherals including the LEDs,
button and buzzer for essential user interactions as shown in
Fig. 3, where a Nordic SoC (nRF52832) is employed as the
system controller. The entire system can be divided into two
parts. The first part is a hardware power-gating circuit that
includes a timer and a load switch to control the on/off state
of the system, while the second part inside the power-gated
region aims to save energy during the idle period.

Once a prediction is made and an adverse BG event is
detected, the user can be notified through either the light or
sound, generated by the LED and buzzer, whereas a simple
click on the button can stop the notification. In addition, to
backup the CGM readouts for post-processing, a NOR Flash is
employed that provides 16 MB memory capacity. Considering
that each data sample transmitted by CGM every five minutes
only contains 16 bytes, such Flash memory space can support
long-term data storage for more than one year. The only
drawback is that the Flash-type memory does not support
random access, thus the writable address must be determined
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30 mm

Fig. 4. IoMT-enabled wearable device consists of a PCB designed in a
dimension of 35mm x 30mm and a transparent case manufactured by 3D
printing.

at the start point. To solve this, a binary search algorithm
is implemented on the SoC which significantly improves the
efficiency compared with searching exhaustively.

The BLE SoC can enter a soft power-down mode for energy
saving before starting the next CGM readout. However, its
peripherals can still consume some power if they are connected
to the main supply. As a result of this, the power gating
technique is applied in the system to shut off the current to
the BLE SoC and its peripherals during the idle period. This
is realized through a timer integrated circuit which generates
a periodic power-gated signal to control a load switch. In
addition, due to the need for user notifications, such a process
may take a different amount of time. Because of this, an
extra signal driven by the BLE SoC is connected to the timer
integrated circuit to enter the shutdown mode.

Due to the compactness of the proposed system, the finial
hardware is populated onto a 2-layer printed circuit board
(PCB) in a dimension of 35 mm x 30 mm as shown in Fig. 4.
The PCB is inside a 3D printed case with a transparent
appearance. The button for users to confirm hypoglycemic
events is located at the top-left edge. The black cylinder that
occupies a large area of the PCB is a buzzer. The size of the
wearable device is close to a smartwatch (e.g., Apple Watch).
It can be powered by a single coin battery (CR2302) with a
lifespan of six months.

IV. EXPERIMENTS

In this section, we first describe the clinical data used in
this work and the process of model development. Then we
present the performance of the proposed system, including the
prediction accuracy of BG levels and hypoglycemia on three
datasets, embedded deployment of the wearable device, and
hardware-in-the-loop in silico trials.

A. Clinical Datasets

We developed and evaluated the algorithms using three
datasets collected from a number of T1D subjects in clinical
trials. The first one is the OhioT1DM dataset [11], which

7

is publicly available and contains the eight-week data of 12
T1D subjects who wore Medtronic Enlite CGM that measures
BG levels every five minutes. The other two, the ABC4D
dataset and ARISES dataset, are proprietary datasets (Imperial
College London, London, UK). The ABC4D dataset contains
data of 25 T1D participants over a six-month clinical trial
(NCT02053051), where the participants used Dexcom G5
CGM. The ARISES dataset was collected in a six-week
clinical trial (NCT03643692) with 12 T1D subjects whose BG
levels were measured by Dexcom G6 CGM.

B. Experiment Setup and Evaluation Metrics

The OhioT1DM dataset contains the training set and testing
set of each T1D subject [11], which account for the data
of around 40 days and 10 days, respectively. Similarly, each
of the ABC4D and the ARISES datasets was divided into a
training set that includes the first 80% data and a testing set
with the last 20% data. For each training set, the last 25%
data was used as a validation set for hyperparameter tuning.
This setup can avoid introducing temporal dependencies into
training and testing sets, which was commonly used in pre-
vious work [10]. The selected values of the hyperparameters
are listed in Table VIII in the Appendix.

We developed a personalized model for each T1D subject
with 30-minute and 60-minute PHs and compared the pro-
posed E3NN model against a group of baseline methods in
the literature. The ARIMA [23] and SVR [26] were selected
as two classic machine learning baselines [10], while the
TCN [15], CRNN [16], LSTM [28], and Bi-LSTM [29],
were employed as deep learning baselines. All the considered
models were implemented by Python 3.8 and used the same
input features, except for the ARIMA that used CGM input
only. We respectively applied statsmodels 0.12 and scikit-learn
0.23 libraries to build the ARIMA and SVR models. The
deep learning models were developed by TensorFlow 2.2 and
Keras 2.3. We trained them using an Adam optimizer and
early stopping to mitigate overfitting, which was accelerated
by NVIDIA GTX 1080 Ti GPU. Notably, to evaluate the
performance of model inference on the wearable SoC, we
sequentially fed input data to the embedded E3NN models
through a universal asynchronous receiver-transmitter (UART)
with the general serial port data transmission protocol.

We evaluated the accuracy of BG prediction using three
classic metrics: the root mean square error (RMSE), mean
absolute error (MAE), and glucose-specific RMSE in mg/dL,
which can be expressed as

1 .
RMSE = | — ) (G — G1)?,
t=1

N
1 & .
MAE:N |C‘:t—Gt|7
t=1
1 & .
gRMSE =, | — > P(G)(Gi — Gy)?, )
t=1

where [V is the number of total data samples in the testing sets;
P(G¢) > 1is a penalty function that penalizes underestimation
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in hyperglycemia and overestimation in hypoglycemia, whose
formulation is defined in [63]. An error score (ES) that sums
up the RMSE and MAE for the 30-minute and 60-minute PHs
was used as the indicator of the validation performance.

According to the international consensus [64], a hypo-
glycemic event is defined as three consecutive CGM measure-
ments below 70 mg/dL. The Matthews correlation coefficient
(MCC) is used to evaluate hypoglycemia detection. It is a
preferred metric in binary classifications since high MCC
scores can be obtained only if the classifier performs well
in all the categories of confusion matrix [65], which can be
denoted as

MCC — TP x TN — FP x FN )
/(TP + FP)(TP + FN)(TN + F)(TN + FN)

where TP stands for the number of true positives, ie., the

hypoglycemic events that are correctly detected by the predic-

tions; TN is the number of true negatives; FP is the number of

false positives; and FN means the number of false negatives.

C. Prediction Performance

1) BG Level Prediction: Table I, II, and III respectively
present the results of BG level prediction for the OhioT1DM,
the ABC4D and the ARISES datasets over 30-minute and 60-
minute PHs. To indicate the statistical significance with respect
to the considered baselines, we confirmed the normality of data
distribution with ShapiroWilk test and employed paired t-test
to compute p values. It is worth noting that the E3NN achieved
the best RMSE, MAE, and gRMSE for all three datasets and
obtained significant improvement, compared with the consid-
ered baseline methods. Particularly, the improvement of the
E3NN methods on the OhioT1DM dataset is more significant
than that on the other two datasets, which is possibly due to
the high quality of the dataset with the smallest portion of
missing CGM samples. We observe that the RMSE for the
60-minute PH is much higher than that for the 30-minute PH,
because external events, such as meal intake and exercise, and
internal changes in a T1D subject are more likely to occur
within a longer period, which would have an impact on glucose
dynamics.

Overall, the deep learning methods performed better than
the classic machine learning baselines, except for CRNN. The
RNN-based models, including LSTM and Bi-LSTM, exhibited
better performance than TCN and CRNN that use CNN layers
for feature extraction, where the LSTM performed best among
the baseline model. In addition, it is noted that the performance
of the ARIMA is good for the 30-minute PH but degraded with
a longer PH. A possible explanation is that the ARIMA method
uses a linear equation, for which it is difficult to capture non-
linear long-term temporal dependencies. The trajectories of the
CGM measurements and the predictive results of the E3NN,
LSTM, TCN, and ARIMA methods are shown in Fig. 5.
The dashed green and cyan lines indicate the thresholds of
hypoglycemia and hyperglycemia, respectively. When com-
pared with the LSTM and TCN methods, the E3NN method
obtained less underestimation in hyperglycemic regions and
less overestimation in hypoglycemic regions. However, it is
observed that deep learning methods lack sensitivity for BG
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TABLE I
PERFORMANCE OF THE PREDICTION MODELS EVALUATED ON THE
OHIOT1DM DATASET

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JI0T.2022.3143375, IEEE Internet of

PH Method RMSE (mg/dL) | MAE (mg/dL) | gRMSE (mg/dL)
E3NN 18.92+2.12 | 13.46+1.49 | 23.40+2.86

TCN 20.23 4+ 2.35% | 14.59 4+ 1.66% | 25.04 + 2.90%

é CRNN | 21.48 £2.63% | 15.80 £2.03% | 27.25+ 3.28¢
§ LSTM 20.11 £2.48 | 14.06 = 1.697 | 24.84 4+ 2.88*
S | Bi-LSTM | 20.15+£2.25* | 14.16 £1.63% | 25.01 +2.73*
SVR 21.37+2.25¢ | 16.27+1.68 | 26.73 & 2.87F

ARIMA | 20.43+2.19% | 14.42+1.41% | 24.51 +2.65%

E3NN 32.544+3.61 | 24.05+2.94 | 41.52+4.83

TCN 34.21 +3.71T | 25.29 +2.99% | 44.26 + 4.79%

§ CRNN | 34.05+4.26 | 2557 +3.60% | 44.22+5.57¢
§ LSTM 33.10 £ 3.84* | 24.50+3.08 | 42.65+ 5.20*
@ | Bi-LSTM | 33.76 =4.06% | 25.10 £3.311 | 43.87 & 5.20%
SVR 33.99 + 3.59F | 25.69+2.77F | 44.21 +4.94%

ARIMA | 35.5143.72% | 26.03 +2.69% | 43.89 +4.65*

*p < 0.05 Tp < 0.01 p < 0.005.
TABLE 11

PERFORMANCE OF THE PREDICTION MODELS EVALUATED ON THE
ABC4D DATASET

PH Method RMSE (mg/dL) MAE (mg/dL) gRMSE (mg/dL)
E3NN 20.11+2.54 | 14.34+1.78 | 24.90+ 3.39
TCN 21.8645.52 | 15.06 & 1.89% 27.05 & 6.33
°~E CRNN | 22.96+3.28% | 16.61 +2.21% | 29.11+4.35%
g LSTM 20.26 4+ 2.58% | 14.53 4+ 1.84% | 25.16 + 3.371
S | Bi-LSTM | 20.36 =2.56% | 14.64 £1.84} | 25.38+3.33%
SVR 21.89 +2.52% | 16.64 4+ 1.99% | 27.74 + 3.56%
ARIMA | 22.1542.59% | 15.61 +1.90% | 26.48 + 3.56%
E3NN 33.884+4.81 | 24.98+3.56 | 43.77+6.44
TCN 40.56 £17.10 | 26.17 +3.88% | 51.30 & 19.48
§ CRNN 38.23 4+ 13.61 | 26.97 +4.19% | 49.14 +15.07
§ LSTM 34.31+4.94 | 25.36 £ 3.67F 44.32 + 6.80
@ | Bi-LSTM | 34.38 £5.15* | 2543 +£3.79% | 44.48 £ 7.11*
SVR 34.90 + 4.76% | 26.46 +3.61% | 45.43 £ 6.55%
ARIMA | 38.5945.12% | 28.02+£3.74% | 47.95+7.14%

*p < 0.05 Tp < 0.01 ¥p < 0.005.

changes at the troughs of the plotted curves, as highlighted by
the black ellipses. This may cause missed detection of severe
hypoglycemia and lead to life-threatening events in clinical
settings. Therefore, we introduced the corresponding LBs to
address this challenge, which is detailed in Section IV-C3.
2) Comparison among Deep Learning Methods: As an
edge Al application implemented on a hardware platform with
limited computational resources, the memory footprint and
operations per inference, as well as prediction accuracy, are
important considerations during the selection of deep learning
models. The deep learning models were developed by the
TensorFlow library. Thus, we converted them into a Tensor-
Flow Lite compressed format that supports on-device inference
for many mobile and IoT devices, to analyze the hardware
requirements. Table IV summarizes the number of parameters
(Param) and floating-point operations per second (FLOPS),
peak SRAM, Flash, and the ES for each DNN architecture. It is
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TABLE III
PERFORMANCE OF THE PREDICTION MODELS EVALUATED ON THE
ARISES DATASET

TABLE IV
COMPARISON BETWEEN THE PROPOSED E3NN AND CONSIDERED DEEP
LEARNING BASELINE METHODS.

*p < 0.05 Tp <0.01 ¥p < 0.005.

noteworthy that the E3NN model obtained the best prediction
performance (the lowest ES) with the smallest numbers of
parameters, FLOPs, and Flash. Although the E3NN consumes
relatively high peak SRAM, this amount is much smaller than
the available capacity of most commercial MCUs, as well
as the target SoC in this work (64KB). We observe that the
LSTM model achieved the second-best ES at the cost of a large
number of parameters and Flash requirement that is likely to
exceed the memory constraint.

3) Hypoglycemia Detection: A widespread application of
BG prediction in T1D management systems is to prevent

Authorized licensed use limited to:

PH | Method | RMSE (mg/dL) | MAE (mg/dL) | gRMSE (mg/dL) Method | Param | FLOPs | SRAM Flash ES (mg/dL)
E3NN 20.45+3.81 | 14.78+2.62 | 25.31+5.09 TCN 124K | 248K | 13.7KB | 499KB 94.44
TCN 22.01 +4.19% | 15.984+2.91% | 28.03 + 5.80% CRNN 52K 136K | 8.1KB | 227KB 96.78
§ CRNN 24.434+5.19f | 17.934+3.761 | 31.67 + 7.28% LSTM 53k 1577K | 7.3KB | 2096KB 91.87
E LSTM 20.74 + 3.66 15.03 £ 2.55 26.09 + 4.89* Bi-LSTM | 141K | 412K | 13.2KB | 624KB 93.17
= Bi-LSTM 20.86 4+ 3.78* 15.19 + 2.73% 26.30 + 5.12F E3NN 32K 93K 13.8KB 171KB 88.97
SVR 22.87 £3.99% | 17.254+2.99% | 29.10 +5.49%
ARIMA | 21.76 +£4.73% | 15.59 £ 2.71% | 26.20 £ 5.20%
E3NN 35.55+7.24 | 26.22+528 | 46.37 £10.11 hypoglycemic episodes that would lead to fatal complications.
3 CTI\II\IN 2;'8; i ;;2; ;;'ig i z'fgi :i'?ii 1?;6; We detected impending hypoglycemia using the LBs of E3NN
E : : : : : : predictions and the prediction values of the considered baseline
g LSTM 36.68 £6.97" | 27.02+5.12" 48.80 + 9.83¢ methods at the same PHs. Table V presents the MCC scores
g | BLLSIM | s7.14+ 7'38i 27.59 % 5'451 19.00 £ 10'551 evaluated on the three clinical datasets. Although the TCN-
10T b ol i higher RASE. AT, and gRMSE
results than the LSTM and Bi-LSTM in Table I, II, and III,

it is worth noting that the TCN achieved the best perfor-
mance of hypoglycemia detection among all the considered
deep learning baseline methods. A possible explanation is
that the TCN-based models have longer effective memory
than canonical RNNs with the same capacity, as suggested
in [31]. Therefore, the TCN model could better understand
the patterns of hypoglycemia caused by external events that
occurred hours ago, such as postprandial hypoglycemia. In
our previous work [15], we also noticed that the TCN model
exhibited a short prediction time lag, indicating good sensi-
tivity to the changes in the troughs of glucose trajectories,
i.e., hypoglycemia regions. Meanwhile, it is noted that the
ARIMA outperformed the SVR model with a higher MCC
score. Therefore, we compared the E3NN with the TCN model
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TABLE V
MCC SCORES OF THE HYPOGLYCEMIA PREDICTION EVALUATED ON THE
THREE DATASETS

Things Journal

TABLE VI
DETAILS OF FLASH AND SRAM MEMORY FOOTPRINT

Layer Input Shape | Flash (B) | SRAM (B) Time

Input 2, 12) 0 96 0
GRU 1 ** 1, 2) 52,224 1,536 22.58 ms
GRU 2 ** (1, 64) 37,632 768 16.16 ms
Attention (12, 32) 20,480 2,096 28.92 ms

Dense (1, 64) 16,640 256 6.22 ms
Evidential (1, 64) 1,040 16 0.32 ms

Output (1, 4) 0 16 0

PH | Method | OhioTIDM ABC4D ARISES
= | E3NN | 0.70+0.09 | 0.68+0.09 | 0.70 +0.12
OE TCN 0.55 + 0.10% | 0.49 +0.20% | 0.40 4 0.12%
“ | ARIMA | 0.65+0.09* | 0.59+0.07 | 0.61+0.10
= | E3NN | 0.57+0.09 | 0.54+0.11 | 0.49+0.14
E TCN 0.38+£0.11% | 0.37+£0.18% | 0.30 £ 0.15%
* | ARIMA | 0.49+0.06 | 0.48+0.06% | 0.45+0.12

** This layer is repeatedly executed for 12 times.
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and ARIMA in Table V.

Notably, the E3NN model achieved the highest MCC scores
for each dataset in both 30-minute and 60-minute PHs. It
is interesting to note that the MCC scores of the ARIMA
method are significantly higher than the TCN and the other
deep learning methods, while the improvement of the E3NN
on the ABC4D and ARISES datasets is not significant when
compared with the ARIMA. In Fig 5, we see that the ARIMA
predictions can identify more hypoglycemic events than the
TCN with a time-shifted delay on the curve, which, however,
degrades the RMSE performance (Table I). It is reasonable
since the weights of the DNN models were optimized by
the regression loss that aims to enhance RMSE performance,
instead of the accuracy of hypoglycemia detection. It is
observed that the LBs of the E3NN curve successfully detected
five hypoglycemic events circled by the black ellipse, which
are likely to be missed if we use the prediction values only. In
particular, the use of LBs increased average MCC scores for
the three datasets by 0.13 (p < 0.005) and 0.17 (p < 0.005) for
the 30-minute and 60-minute PHs, respectively. Hence, these
results suggest that evidential regression is an important im-
provement in BG prediction methods based on deep learning.

D. Edge Implementation

The proposed RNN predictor was implemented on the BLE
SoC for edge computing. By means of utilizing the optimized
CMSIS-DSP library that is pre-compiled and included in
the latest NRF52 SDK, the SoC is able to accept high-
throughput data while performing rapid computation of matrix
operations that typically involve single-cycle multiplication
and accumulation. This enables efficient data processing with
minimal overhead and the real-time execution of computation-
intensive algorithms.

Table VI presents the detailed utilization of Flash and
SRAM memory in Byte (B) for the implementation of the
proposed RNN model. As the RAM memory was allocated
dynamically during the run time, the implementation of this
RNN model only led to an increase of 2.48% on the SRAM
utilization compared with that without the edge computation.
Whereas the capacity of the Flash memory is the main
bottleneck that limits the size of the RNN predictor, occu-
pying 66.13% of the total flash utilization. In addition, the
computation time was empirically estimated by executing each
layer for 100 rounds and averaging the run time through the

Authorized licensed use limited to:

UART timestamp. The result shows an average computation
time of approximately 500 ms. Moreover, compared with the
implementation by TensorFlow Lite Micro in Table IV, our
implementation significantly reduced Flash from 171 KB to
125 KB and peak SRAM from 13.8 KB to 3.5 KB, mainly
because it computed outcomes using low-level CMSIS-DSP
APIs without interpreting the network graph. For each con-
sidered T1D subject, the RMSE between the testing results of
Python model and those of the edge model is less than 10~
mg/dL.

The final firmware for the BLE SoC utilizes 189.03 KB
Flash and 16.12KB SRAM memory, which provides the
following six functionalities: 1) CGM sensor connectivity and
readout, 2) input data pre-processing, 3) edge computing of
the RNN predictor, 4) external flash memory management, 5)
basic user interactions, and 6) designer mode for data readout
and parameter update.

E. Power Analysis

Power estimation was conducted by using a source meter
Keithley 2606A, which supplied 3 volts and monitored the
power in real time. Fig. 6 presents the power monitoring of
a typical cycle that lasts for 13 seconds, which consumes an
average run-time power of 3.78 mW. The power spikes at the
initial stage indicate the Bluetooth scanning process, which
involves a tunable window and interval. The highest power
occurring in the middle indicates the edge computing for the
embedded predictor. During the pulse at the end, the system
polls the power-gating circuit to enter shutdown mode.

At the very beginning, the device keeps scanning the target
sensor and involves an on-off current switching with a peak
value around 6.5mA. To reduce the power consumption of
this process, the BLE scanning window is shortened into a
duty cycle of 10%, resulting in an average power of 5SmW.
Once the target sensor is connected, the BLE SoC will start
the authentication and bonding process, which typically lasts
for 2 seconds. After the success of bonding, the device is
able to request the glucose data and start prediction. Notably,
the running of the RNN predictor is the most energy-hungry
process as it utilizes the on-chip digital signal processing for
the computation of floating-point arithmetic operations, but
only takes a short operating time of around 500 ms. Depending
on the predicted blood glucose level, the notifications of the
low excursion with intermittent alarms are generated through
the LED and buzzer. During this period, the system waits for
user response but maintains a low power that is less than 1 mW.
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TABLE VII

Power Measurement of a Complete Cycle
i i i i i GLYCEMIC OUTCOMES OF THE IN SILICO TRIAL

30

. f Method TIR (%) TBR (%) TSH (%) LBGI
Control | 74.26 +7.62 | 5.44 4+ 3.38% | 2.00 + 1.45% | 1.50 +0.81%
PLGM | 74.83+9.02 | 2.024+1.14 | 0.47+0.38 | 0.65+0.28

Power [mW]
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Timestamp [sec]

Fig. 6. Power measurement of a complete run cycle that involves BLE
scanning, authentication and bonding, edge Al computing, and hypoglycemia
notification. Among these processes, the two main contributors, including BLE
scanning and edge AI computation, lasted for 5 and 0.52 seconds, which
consumed an average power of SmW and 27 mW, respectively.

If the button is pressed, i.e., the warning of a hypoglycemic
event is confirmed, the system will enter the shutdown mode
by triggering the on-board timer for power gating.

In the real application, the device can be powered by a single
coin battery, e.g., CR2032, which typically has a capacity of
240 mAh. This capacity enables the device to operate for six
months, assuming that each CGM readout is processed every
five minutes. The commercial CGM sensors and transmitters
in the market typically require a replacement every 10 days
and 3 months, respectively. Thus, the achieved battery life of
our wearable device is long enough to cover these periods.

FE In Silico Trial

To evaluate the performance of the whole system with the
wearable device, we performed a 3-month hardware-in-the-
loop in silico trial using the UVA/Padova T1D simulator,
which is a common experimental setup of pre-clinical trials
in TID management systems. In particular, we employed 10
virtual adult subjects with additional intra- and inter-subject
variability [66] and used the carbohydrate of meal protocol
as follows: 70 g (breakfast, 7 am), 110 g (lunch, 2 pm),
and 90 g (dinner, 9 pm), with the variability of mealtime
(STD = 30%) and meal size (CV = 10%). The simulator sent
CGM values to the wearable device and received 30-minute
predictions through a debug mode with the UART and USB
ports. We performed the PLGM algorithm with the settings
in [67], where the pump suspended basal insulin when the
predictions were at or below the threshold of hypoglycemia,
i.e., 70 mg/dL.

Table VII presents the outcomes of the PLGM and a
control group (i.e., no suspension) as a baseline, evaluated
by time in range (TIR) of [70, 180] mg/dL, time below range
(TBR) (BG< 70 mg/dL), time of severe hypoglycemia (TSH)
(BG< 54 mg/dL), low blood glucose risk index (LBGI). It is
noted that integrating the wearable device with the PLGM
significantly reduced the LBGI and percent time of hypo-
glycemia and severe hypoglycemia without a decrease of TIR.
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Fig. 7. CVGA plot comparing PLGM (orange dots) against the control group
(blue dots) for a virtual adult subject in the trial. Each dot stands for the
extreme values of BG trajectories over 24 hours.

Fig. 7 depicts the outcomes of control-variability grid analysis
(CVGA) for a virtual adult subject. CVGA is a common
method to visualize the efficacy of glucose regulation [68],
[69], where each dot on the plot indicates the minimum and
maximum BG values in a 24-hour period. We observe that,
compared with the control group, more of the PLGM dots
are located in the left bottom zones. Specifically, the PLGM
improved the percentage of the A+B zone from 67% to 77%
and reduced 10% of the dots in the D+E zone, indicating good
BG control. Besides the PLGM, other interventions, such as
glucagon delivery and rescue carbohydrate recommendations,
could also be performed in clinical settings to further reduce
the incidence of hypoglycemia, based on the real-time BG
predictions of the wearable devices.

V. CONCLUSION

In this article, we proposed a GRU-based RNN model,
the E3NN, with attention mechanism and evidential regres-
sion and developed a novel IoMT-enabled wearable device
to implement the deep learning algorithm for real-time BG
prediction and hypoglycemia warning with edge computing
on the SoC. When evaluated on the three clinical datasets,
the proposed model obtained the best prediction accuracy for
both future BG level and impending hypoglycemic events
with the smallest number of model parameters and FLOPs,
compared with the considered deep learning baseline methods.
Moreover, the optimized hardware design of the wearable
device enables extremely low energy consumption for edge
inference and BLE connectivity, which can run 24/7 operations
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TABLE VIII
LIST OF HYPERPARAMETERS

Parameter Value
Hidden units of GRU layers [64,32]
Hidden units of the attention layer 64
Hidden units of the dense layer 64
Dropout rate 0.1
Learning rate 1x10°3
Length of input sequences 12
Batch size 32
Number of epochs 300
Early stopping patience 30

over six months. The results of in silico trials demonstrated
that integrating the wearable device into the T1D management
system notably improved glycemic outcomes of BG control.
In future work, the wearable device with the proposed
algorithm will be evaluated in actual clinical trials to further
investigate the performance of software and hardware in real-
world settings and modify the functions and GUIs according
to user feedback. Considering that the edge computing for the
E3NN is based on a tiny MCU of the SoC, it is possible to
deploy the prediction algorithm in other T1D IoMT wearable
devices with the collaboration of manufactures, such as CGM
and insulin pumps, to provide on-device decision support.

APPENDIX A
HYPERPARAMETERS

Table VIII listed the hyperparameters used in the E3NN
model, which were determined by the Hyperband algo-
rithm [70] with the Keras Tuner.

APPENDIX B
GUIS OF SMARTPHONE AND DESKTOP PLATFORMS

Fig. 8 depicts the GUIs of the iOS app and the desktop
platform developed by Swift 4.2 and PyQt5 5.15, respectively.
The desktop platform consists of multiple panels, including
system settings, data readout, model training and update, and
visualization of historical CGM data. Besides the historical
trajectories, the smartphone platform also supports the visual-
ization of the current CGM value and trend as shown by the
green arrow.
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Fig. 8. Overview of the smartphone and desktop GUIs.
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