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Abstract
Epidemic spreading can be suppressed by the introduction of contain-

ment measures such as social distancing and lockdowns. Yet, when such
measures are relaxed, new epidemic waves and infection cycles may oc-
cur. Here we explore this issue in compartmentalized epidemic models on
graphs in presence of a feedback between the infection state of the popu-
lation and the structure of its social network for the case of discontinuous
control. We show that in random graphs the effect of containment mea-
sures is simply captured by a renormalization of the effective infection
rate that accounts for the change in the branching ratio of the network.
In our simple setting, a piece-wise mean-field approximations can be used
to derive analytical formulae for the number of epidemic waves and their
length. A variant of the model with imperfect information is used to
model data of the recent COVID-19 epidemics in the Basque Country
and Lombardy, where we estimate the extent of social network disruption
during lockdowns and characterize the dynamical trajectories in the phase
space.

1 Introduction
The onset of oscillations in a system as a consequence of feedback has
been highlighted since the inception of control theory [1, 2]. Tradition-
ally, feedback-induced oscillations have been studied in engineering artifi-
cial tools like thermostats and steering devices [3]. More recently, research
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focused also on its application to natural systems [4], in particular home-
ostasis and its disruption in biological systems, a classical example being
glycemic control and diabetes in human metabolism [5].

Feedback-induced oscillations are currently emerging as governments
are trying to control the evolution of the COVID-19 pandemic with con-
tainment measures such as social distancing, lockdowns and quarantine.
The modeling of containment measures in compartmentalized epidemic
models [6] is thus under the focus of intense research [7, 8]. It has been
very recently rigorously demonstrated that compartimentalized epidemic
models display oscillations in presence of feedback between infection rate
and infection states [9],and that in general a feedback between order and
control parameters in large interacting systems subject to phase tran-
sitions triggers self-oscillations [10, 11], where an Andronov-Hopf bifur-
cation takes over the usual phase transition. As infection and recovery
rates are changed, epidemic models on networks display out-of-equilibrium
phase transitions between a phase where a disease is prevented from
spreading and a phase where a finite fraction of the population becomes
infected [12].

In this article, we will study the SIS and SIR models in a full micro-
scopic settings on random networks in presence of a feedback that changes
the structure of the underlying social network, and we will show that such
feedback triggers self-oscillations along the theory proposed in [10], where
suitably defined connectivity properties play the role of the control pa-
rameter. In order to mimic the occurrence of lockdowns, we will focus on
a simple discontinuous feedback control, where a certain fraction of links
is deleted if the fraction of infections exceeds a given threshold 𝐼2. The
same links are then be reinstated once the fraction of infections has been
reduced below a second threshold value 𝐼1 < 𝐼2. Oscillations in epidemic
spreading have been studied mainly from the point of view of seasonal
effects that act as an external driving forces, while in the case studied
here oscillations are autonomously driven by an internal feedback. The
resulting models are described by time-independent equations and param-
eters, and such oscillations can be considered as emerging self-oscillations
[13, 14, 15].

The article is organized as follows: In section 2.1 we define the model
and illustrate its behavior with results from numerical simulations on an
instance of a real social network. In section 2.2 we then study the model
on mean-field uncorrelated networks, where we will show that the overall
effect of lockdowns on the dynamics is captured by a renormalization of
the effective infection rate through a change of the network branching
ratio. This finding is then exploited in section 2.3, where we analyze
simple piecewise well-mixed models with point transformation techniques,
leading to analytical formulae for the number of waves and their length.
In section 2.4, we consider the realistic case of imperfect information on
the infection state, and we infer parameters from data on the current
evolution of the COVID-19 pandemic, for which we estimate the extent of
social network disruption and characterize dynamical trajectories in phase
space.
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2 Results

2.1 Model definition
We consider compartmentalized epidemic models on random networks,
specifically the SIS and SIR models (see [16] for a review), where individ-
ual agents are represented as the nodes of a social network and can be in
different states: Infected, Susceptible and Recovered. Infected individu-
als recover with a Poissonian rate 𝛾, which is a parameter of the model,
becoming either susceptible (in the SIS model) or recovered (in the SIR
model), and they infect neighboring susceptible nodes with a Poissonian
rate 𝛽, which is the second parameter of the model. In order to model
containment measures and their relaxation, we consider a feedback be-
tween the network structure and the infected state and its history in the
following terms:

∙ Starting from a state with few infections (whose relative number we
will indicate with 𝐼) that fastly spread, if the spreading overcomes
a certain threshold 𝐼 > 𝐼2 a central authority decides to disrupt the
network structure by randomly removing a macroscopic fraction 𝑞
of the links. This will eventually revert back the spreading.

∙ Starting from a regressing infected state in a disrupted network,
when the infection state is reverted to an acceptably low value 𝐼 <
𝐼1, the network structure is restored back to its initial conditions.

For the SIS model, this will eventually lead to an infection cycle as illus-
trated in Fig. 1, where we show results of simulations on a school friend-
ship network reconstructed in [17] (number of nodes 𝑁 = 134). In Fig.
2, we show instead a simulation of the SIR model on the same network
with and without feedback control, thus illustrating the effect of enforcing
containment measures. The control successfully reduces the spreading of
the infection, but for this to occur a series of lockdowns have to be put in
place.

We will consider in the next section the SIS and SIR models for the case
of large uncorrelated random networks, where it is possible to characterize
analytically general features of the dynamics.

2.2 Networks
We consider here the case of large annealed uncorrelated random graphs
with degree distribution 𝑃 (𝑘). At odds with static networks, in annealed
networks we assume that links are randomly rewired over a faster time
scale of the spreading process, while the assumption of uncorrelated net-
works implies there are no correlations between the degrees of neighboring
nodes. The locally tree-like structure of these networks makes it possible
to make analytical progress in the study of dynamical processes taking
place on them, since it allows to recur to well-controlled approximations
for the factorization of probability states. In particular, we will con-
sider here the heterogeneous mean-field approximation, where nodes are
grouped in classes according to their degree.
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Figure 1: 𝐴 → 𝐵: In a dense social network few infected highly contagious people give
rise to an epidemic spreading. 𝐵 → 𝐶: during the epidemic outbreak a centralized authority
decides for containment measures by severing the network. 𝐶 → 𝐷 Under confinement, the
epidemic regresses to few cases. 𝐷 → 𝐴 Once the epidemic is supposedly under control
containment measures are withdrawn and the social network is restored. Red dots represent
infected individuals, while white dots represent susceptible ones.
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Figure 2: Fraction of infected and subsequently recovered individuals as a function of time
(that can be measured in days) from epidemic simulations of the SIR model in a school
friendship network [17] (number of nodes 𝑁 = 134) with (left) and without (right) lockdown
measures in place, with parameters 𝛽 = 0.05 (infection rate), 𝛾 = 0.07 (recovery rate). The
lockdown for the feedback case is enforced if the number of infections is above 13 and it is
relaxed if they are below 2, and it consists in a dilution of the network links by a factor
𝑞 = 0.99. There are three lockdowns occurring at times 𝑡 = 25, 𝑡 = 80 and 𝑡 = 130.
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Let us start from the SIS model. In absence of feedback, the rate
equation for the fraction 𝐼𝑘 of infected individuals of degree 𝑘 can be
written as follows [18]

𝐼𝑘(𝑡) = 𝛽 (1− 𝐼𝑘(𝑡)) 𝑘Θ(𝑡)− 𝛾𝐼𝑘(𝑡), (1)

where Θ(𝑡) =
∑︀

𝑘
𝑘𝑃 (𝑘)
⟨𝑘⟩ 𝐼𝑘(𝑡) is the probability that a randomly selected

neighbor of a node of degree 𝑘 is infected, and we denote by ⟨𝑘⟩ the
average degree of the network. Here we consider the case in which, when
the fraction of infected individuals 𝐼(𝑡) =

∑︀
𝑘 𝑃 (𝑘)𝐼𝑘(𝑡) exceeds a given

threshold 𝐼2, a lockdown measure is implemented that removes a fraction 𝑞
of links, which are then reinstated once the condition 𝐼(𝑡) < 𝐼1 is satisfied.
The equations of the model in presence of this feedback mechanism can
therefore be written in terms of a state-dependent infection rate as follows

𝐼𝑘(𝑡) = 𝛽(𝐼, 𝐼) (1− 𝐼𝑘(𝑡)) 𝑘Θ(𝑡)− 𝛾𝐼𝑘(𝑡), (2)

where

𝛽(𝐼, 𝐼) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝛽, if 𝐼(𝑡) < 𝐼1 or

{︃
𝐼1 ≤ 𝐼(𝑡) ≤ 𝐼2

𝐼(𝑡) > 0

(1− 𝑞)𝛽, if 𝐼(𝑡) > 𝐼2 or

{︃
𝐼1 ≤ 𝐼(𝑡) ≤ 𝐼2

𝐼(𝑡) < 0
.

(3)

We note that we can express 𝛽 as a function of the fraction of infected
population and its derivative because we are considering deterministic rate
equations. A more general representation for the discrete stochastic case
would require the introduction of a binary state variable to denote the
occurrence or absence of a lockdown.

In Figure 3, we compare the result of numerical simulations with the
numerical solution of equation (2) for Erdős-Rényi and scale-free random
networks. In both cases we clearly see the emergence of oscillations due to
the feedback. In Figure 4, we visualize the feedback-induced oscillations
by means of a phase portrait, where we plot the fraction of infected indi-
viduals vs. the fraction of new positives. The figure provides numerical
evidence of the emergence of a limit cycle as an attractor of the dynamic,
a result that will be confirmed analytically in the next section under the
well-mixed approximation. We also note from both Figures 3 and 4 that
the dynamics on scale-free networks display bigger sample-to-sample fluc-
tuations than that on Erdős-Rényi networks.

The same feedback mechanism can be considered for the SIR model as
well. If we now define 𝑅𝑘 as the fraction of recovered nodes with degree
𝑘, the rate equations that describe the dynamic of the SIR model are

𝐼𝑘(𝑡) = 𝛽 (1− 𝐼𝑘(𝑡)−𝑅𝑘(𝑡)) 𝑘Θ(𝑡)− 𝛾𝐼𝑘(𝑡) (4)
𝑅̇𝑘(𝑡) = 𝛾𝐼𝑘(𝑡), (5)
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Figure 3: Fraction of infected individuals as a function of time in an homogeneous and
heterogeneous network (both with 𝑁 = 105 nodes ). Blue dots and error bars represent
the mean and standard deviation for the fraction of infected individuals computed from the
100 numerical simulations of the SIS model with feedback (parameters 𝛽 = 0.03 𝛾 = 0.08
𝐼1 = 0.05 𝐼2 = 0.2 𝑞 = 0.95). Red solid lines refer to the numerical integration of the
mean-field equations. Left: Erdős-Rényi random network of average degree ⟨𝑘⟩ = 8. Right:
scale-free network of minimum degree 𝑘𝑚𝑖𝑛 = 2 and exponent 𝛼 = 2.5.
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Figure 4: Left panel: Phase portrait of an SIS model in an Erdős-Rényi network with
𝑁 = 105 and average degree ⟨𝑘⟩ = 8. Right panel: Phase portrait of an SIS model in a
scale-free network with 𝑁 = 105, 𝛾 = 2.5 𝑘min = 2. In both panels, blue dots refer to 100
simulations of the SIS model (parameters 𝛽 = 0.03 𝛾 = 0.08 𝐼1 = 0.05 𝐼2 = 0.2 𝑞 = 0.95).
Red dots refer to the numerical integration of the mean-field equations.

where, as before, Θ(𝑡) =
∑︀

𝑘
𝑘𝑃 (𝑘)
⟨𝑘⟩ 𝐼𝑘(𝑡)

1 and 𝛽(𝐼, 𝐼) is given as before by
equation (3). In figure 5 we show the evolution over time of the fraction of
infected and recovered individuals for the case of Erdős-Rényi and scale-
free networks. We see that the introduction of the feedback can lead to
oscillations corresponding to multiple infection waves. Clearly, in contrast
to the case of the SIS model, these oscillations will eventually come to an
end once a large enough fraction of the population has been infected.
The number of infection waves depends on the parameters of the model.
In the next section we provide an analytical estimation for a well-mixed

1We are considering here the case of annealed networks, where links are randomly rewired
at each time step. In the case of a static network, the factor 𝑘 in the definition of Θ would be
replaced by a factor 𝑘 − 1.
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Figure 5: Fraction of infected and recovered individuals as a function of time for the SIR
model with feedback. Left panel: Erdős-Rényi network with 𝑁 = 105 nodes. Data refer to
100 simulations with parameters 𝛽 = 0.03 𝛾 = 0.08 𝐼1 = 0.2 𝐼2 = 0.01 𝑞 = 0.95. Right panel:
scale-free network with 𝑁 = 105 nodes, 𝛾 = 2.5 and 𝑘𝑚𝑖𝑛 = 2. Data refer to 100 simulations
with parameters 𝛽 = 0.03 𝛾 = 0.08 𝐼1 = 0.2 𝐼2 = 0.05 𝑞 = 0.95. Blue dots and error bars
represent the mean and standard deviation for the fraction of infected individuals computed
from 100 numerical simulations. Black dots and error bars represent the mean and standard
deviation for the fraction of recovered individuals computed from 100 numerical simulations.
Solid red line: fraction of infected individuals from numerical integration of the mean-field
equations. Solid green line: fraction of recovered individuals from numerical integration of
the mean-field equations.

population in the limit when 𝑞 is close to 1.

2.3 The well-mixed approximation
By linearizing equation 1, we can describe the early stages of an epidemic
with the following set of equations:

𝐼𝑘(𝑡) ≈ 𝛽𝑘Θ(𝑡)− 𝛾𝐼𝑘(𝑡). (6)

By multiplying by 𝑘𝑃 (𝑘)/⟨𝑘⟩ both sides of the above equations and sum-
ming over 𝑘 we can describe the dynamic in terms of the only variable
Θ

Θ̇(𝑡) ≈ 𝛽⟨𝑘2⟩
⟨𝑘⟩ Θ(𝑡)− 𝛾Θ(𝑡), (7)

from which we see that the variable Θ evolves in the early stage of the
dynamic according to the same equation that describes in the early stage
of an epidemic the behavior of the fraction of infected individuals in a well-
mixed population, but with an effective infection rate equal to 𝛽⟨𝑘2⟩/⟨𝑘⟩.

This suggests that the effect of network embedding and of the feedback
is captured by a simple renormalization of the bare infection rate, and that
some insight on the behavior of a population interacting on a network
can also be gained from the study of well-mixed populations, for which
it is easier to get analytical solutions. This is what we consider in this
section, where 𝐼, 𝑆 and 𝑅 will indicate the fraction of infected, susceptible
and recovered individuals in the total well-mixed population, respectively.
The feedback law mimicking containment, with parameters 𝛽1 > 𝛽0 and
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𝐼2 > 𝐼1, is given by

𝛽(𝐼, 𝐼) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝛽1, if 𝐼(𝑡) < 𝐼1 or

{︃
𝐼1 ≤ 𝐼(𝑡) ≤ 𝐼2

𝐼(𝑡) > 0

𝛽0, if 𝐼(𝑡) > 𝐼2 or

{︃
𝐼1 ≤ 𝐼(𝑡) ≤ 𝐼2

𝐼(𝑡) < 0
,

(8)

and the dynamic is described by

𝐼(𝑡) = 𝛽𝐼(𝑡) (1− 𝐼(𝑡))− 𝛾𝐼(𝑡), (9)

for the SIS model, while for the SIR model we have

𝐼(𝑡) = 𝛽𝐼(𝑡) (1− 𝐼(𝑡)−𝑅(𝑡))− 𝛾𝐼(𝑡) (10)
𝑅̇(𝑡) = 𝛾𝐼(𝑡). (11)

The right-hand sides of the resulting ODEs of the approximated well-
mixed models are defined piecewise, which means that we need to solve
the equations in each interval and then joint the different solutions. For
instance, in the mixed approximation the SIS model with fixed rates has
the simple solution (𝑆 + 𝐼 = 1)

𝐼𝛽(𝑡) =
1− 𝛾/𝛽(︁

1−𝛾/𝛽
𝐼(0)

− 1
)︁
𝑒−(𝛽−𝛾)𝑡 + 1

(12)

In presence of the feedback, the piecewise constructed solution shows that
for 𝛽1 > 𝛾 > 𝛽0, 𝐼2 < 1−𝛾/𝛽1 the dynamics settles into a limit cycle, and
the periods of the quiescent epidemic spreading (𝑡1) and of the recovery
under lockdowns (𝑡2) are given by the following analytical formulae

𝑡1 =
1

𝛽1 − 𝛾
log

(︃
1−𝛾/𝛽1

𝐼1
− 1

1−𝛾/𝛽1
𝐼2

− 1

)︃
(13)

𝑡2 =
1

𝛽0 − 𝛾
log

(︃
1−𝛾/𝛽0

𝐼2
− 1

1−𝛾/𝛽0
𝐼1

− 1

)︃
(14)

For a swift and resolute population lockdown, we can approximate 𝐼2 ≪
1− 𝛾/𝛽1, 𝛽0 ≪ 𝛾 and obtain for the total duration of an epidemic wave

𝑇 = 𝑡1 + 𝑡2 ∼ log(𝐼2/𝐼1)

𝛾

𝑅0

𝑅0 − 1
. (15)

where 𝑅0 = 𝛽1/𝛾. For instance, from the values 𝑅0 ∼ 3, , 𝐼2/𝐼1 ∼ 100
and 1/𝛾 ∼ 2 weeks we can calculate 𝑇 ∼ 3 months.

Since the right-hand-sides of equation (9) is a non-differentiable func-
tion, we cannot use a standard criterion, e.g. checking when the eigenval-
ues from linear stability analysis cross the real axis, neither the Poincare-
Bendixson theorem to prove the stability of the limit cycle and investigate
the bifurcation mechanism. However, we observe that the condition that
determines the switch of the infection rate from 𝛽0 to 𝛽1 and viceversa also
determines the initial condition for solving the equation in each interval.
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When the infection rate switches from 𝛽1 to 𝛽0 (i.e. at the beginning of a
lockdown), the equation must be solved starting from a fraction of infected
individual equal to 𝐼2, while when the infection rate switches from 𝛽0 to
𝛽1 (i.e. at the end of a lockdown), the equation must be solved starting
from a fraction of infected individual equal to 𝐼1. This means that if the
system is perturbed, for instance by increasing or reducing the fraction of
infected individuals at a given time, this would alter the solution in the
current interval of the dynamic, but not in the subsequent intervals, when
the initial condition would be the same with or without the perturbation.

For the SIR model, the solution in each interval – starting from initial
conditions 𝑆𝑖, 𝑅𝑖, 𝐼𝑖 at time 𝑡𝑖 – reads

𝐼 +𝑅+ 𝑆 = 1 (16)

𝑆 = 𝑆𝑖𝑒
𝛽/𝛾(𝑅𝑖−𝑅) (17)

𝑡− 𝑡𝑖 =

∫︁ 𝑅

𝑅𝑖

𝑑𝑟

1− 𝑟 − 𝑆𝑖𝑒𝛽/𝛾(𝑅𝑖−𝑟)
. (18)

The total number of lockdowns can be worked out analytically by joining
solutions piecewise, and a first order expansion in (𝛽0/𝛽1, 𝛽0/𝛾) (see the
appendix) gives the formula

𝑛*(𝛽0) ∼ 𝑛*(𝛽0 = 0)/𝑥, (19)

where
𝑛*(0) =

1− (1 + log𝑅0)/𝑅0

𝐼2 − 𝐼1
(20)

and
1− 𝛽0/𝛽1 ≤ 𝑥 ≤ 1 + 𝛽0/𝛽1 + 𝛽0/𝛾. (21)

For instance for the values 𝑅0 ∼ 3, 𝐼2 − 𝐼1 ∼ 0.1± 0.05 we get 𝑛* ∼ 3± 2.
In the next section we will illustrate data modeling applications of our
framework.

2.4 Imperfect information and data modeling
In this section, we illustrate our framework in the context of modeling
epidemic data of the COVID-19 infection in 2020 in the Italian region of
Lombardy and the Spanish region of the Basque Country. Data includes
daily reports of new infections and active cases 2, plus a single prevalence
estimate.

We do point out that data do not provide enough evidence for a sus-
tained versus decaying oscillations at this stage (that is to discriminate
between SIR and SIS model and/or different regimes in an extended SIRS
model). At the time of writing this is currently one of the main chal-
lenges faced by the scientific community as a whole (if the COVID-19
epidemic would end being endemic or not), and it is beyond the scope of
this manuscript. Our purpose here is to hint at the fact that close orbits
can be seen and quantitatively analyzed upon choosing the right coordi-
nate variables as inspired by our modeling framework. We remark thus

2From https://github.com/pcm-dpc/COVID-19 (Lombardy) and
https://opendata.euskadi.eus/catalogo-datos (Basque country)
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that the model we consider in this section works under the simplifying
assumptions of

∙ Naive populations (ie 𝑆 ∼ 1 and no non-linear term)

∙ An ensuing no distinction between the processes 𝐼 → 𝑆 or 𝐼 → 𝑅

For the purpose of data analysis, we consider a variant of the model
with imperfect information by splitting the total number of infections into
detected and undetected cases, whose numbers we denote by 𝐼𝑑 and 𝐼𝑢
respectively. We assume the existence of a detection process by which
undetected infected individuals are spotted with rate 𝑟 and then put in
isolation (which is equivalent to removing them). The mean-field rate
equations are as follows

𝐼𝑢 = 𝛽(𝐼𝑑, 𝐼𝑑)𝐼𝑢𝑆 − (𝛾 + 𝑟)𝐼𝑢 (22)
𝐼𝑑 = 𝑟𝐼𝑢 − 𝛾𝐼𝑑 (23)

where 𝛽(𝐼𝑑, 𝐼𝑑) is the piece-wise constant function defined in equation (8)
(parametrized by 𝛽1, 𝛽0, 𝐼1, 𝐼2), and analogous equations for 𝑆 and/or 𝑅,
depending on whether we consider the SIS and/or the SIR model. The
inference of the model parameters has been performed by approximately
solving Bayes equations under the hypothesis of Gaussian noise by means
of Monte Carlo methods and dynamical system numerical simulations (see
the appendix).
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Figure 6: New daily cases vs time for the first epidemic wave of COVID-19: data from
Lombardy (left) and Basque country (right) against the inferred model (maximum likelihood
estimate).

In Fig. 6 we show the time series of new daily cases for the two
analyzed cases against the model with maximum likelihood parameters,
the latter showing a clear cusp peak and piece-wise exponential trends
corresponding to the lockdown event. The model suggests that a closed
trajectory must be observed in the plane of new and active daily cases.
This is shown in Fig. 7, where we report data smoothened by a 7-days
moving average as well. This closed trajectory in the ideal case of a pure
SIS model with feedback would be a limit cycle attractor of the dynamics.
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Figure 7: Scatter plots of new daily and active cases for Lombardy (left) and Basque country
(right) for the first epidemic wave of COVID-19. In both panels, the solid blue line refers
to the model inferred maximizing the likelihood, red dots refer to daily data and green stars
refer to weekly data.

3 Conclusions
Connectivity plays a crucial role in the definition of the parameters that
control the collective behavior of a system. This finding has striking con-
sequences, like the absence of an epidemic threshold in epidemic spreading
models defined on scale-free networks [19], and it suggests that it is possi-
ble to control the spreading by acting on the network of social interactions.

In this article we have shown that feedback control at the level of the
social network in epidemic models triggers self-oscillations along the the-
ory proposed in [10]. We have investigated self-oscillations induced by a
simple discontinuous feedback control mimicking lockdown events in clas-
sical compartmentalized epidemic models (SIS and SIR) on networks. On
random graphs, for Erdős-Rényi as well as scale-free networks with naive
populations, we have shown that the effect of lockdowns simply amounts
at renormalizing the effective infection rate to account for the reduction
in the network branching ratio. This led to simple piece-wise mean-field
approximations that we solved analytically by means of transformation
point methods, recovering formulae for the number of waves and their ex-
tent in terms of the model parameters. These formulae can be in principle
tested against data, once a certain amount of evidence accumulates on the
number of lockdowns and their lengths, prevalence estimates, and basic
infection numbers region by region.

A problem related to data collection during the COVID-19 epidemic
outbreak was the fact that many positives were undetected. In order to
bring the model to data, we have therefore extended it by assuming the
existence of a fraction of undetected positives, who can then be detected at
a given rate (for instance through testing). We have applied our extended
framework to analyze data from the first epidemic wave of COVID-19
in Lombardy and Basque country, where parameters have been inferred
leading to a characterization of the dynamical attractors in the phase
space.

Apart from applications to predictive modeling – which would require
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more extensive data analysis [20] and methods of system identification- -
we do point out here briefly some potentially interesting theoretical prob-
lems stemming from this work. First, the issue of optimal scheduling [21]
in the control of the social network, leading to continuous feedback and
potentially smoother oscillations. Current qualitative evidence from the
second epidemic wave of COVID-19 seems indeed to show in some re-
gions smoother trends and oscillations around the phase transition point
(𝑅𝑡 ∼ 1), due to attempts of finer control like partial restrictions and se-
lected closures taken in due course. Recently proposed analytical frame-
works [7] can be very useful in this respect. Second, within the frame-
work proposed here, where epidemics can be regarded as self-oscillators,
it comes naturally the question of coupling and synchronization [22, 23] of
epidemic waves running on different networks that are weakly connected,
e.g. by migration processes. Finally, another interesting issue concerns
the impact of periodically external drive on oscillators: analogously to
well-known forced double well oscillator [24], the combined effect of sea-
sonal changes and feedback could potentially lead to chaotic oscillations
in strange attractors, an aspect that adds to the problem of predictability
of such systems, and that we leave for future investigations.

A Number of epidemic waves: perturba-
tive expansion
In this section we derive formula (14-16). In the SIR model at fixed
infection rate 𝛽 (as in a simple model without feedback, or in a given
interval for the piece-wise feedback model) the peak value of the infected
fraction is (when 𝐼𝑝 = 0 and 𝑆𝑝 = 𝛾/𝛽)

𝐼𝑝 = 𝐼𝑖 + 𝑆𝑖 −
𝛾

𝛽
log𝑆𝑖 − 𝛾/𝛽(1− log(𝛾/𝛽)). (24)

This value is not achieved if it is greater than the one triggering the lock-
down, i.e. when 𝐼𝑝 > 𝐼2. Thus we will assume as halting condition that
𝐼𝑝 ≤ 𝐼2, since in this case no lockdown takes place and the system pro-
ceeds towards herd immunity. We will now work out a series for fraction
of susceptible individuals at the various stages of the epidemic waves,
exploiting the piece-wise analytical solutions in each interval.

Suppose we are at the beginning of a wave 𝐼 = 𝐼1 with given susceptible
fraction 𝑆 = 𝑆𝑛,−, the system (with 𝛽 = 𝛽1) will evolve towards 𝐼2 and a
given 𝑆𝑛,+ that satisfies

𝑆𝑛,+ − 𝛾

𝛽1
log𝑆𝑛,+ = 𝑆𝑛,− − 𝛾

𝛽1
log𝑆𝑛,− −Δ𝐼, (25)

where Δ𝐼 = 𝐼2 − 𝐼1. Then we have the lockdown 𝛽 = 𝛽0, and the system
will evolve towards 𝐼1 with a given 𝑆𝑛+1,− that satisfies

𝑆𝑛+1,− − 𝛾

𝛽0
log𝑆𝑛+1,− = 𝑆𝑛,+ − 𝛾

𝛽0
log𝑆𝑛,+ +Δ𝐼 (26)

These equations define a series eventually halting when 𝐼𝑝 ≤ 𝐼2.

12



A.1 Vanishing 𝛽0

Suppose 𝛽0 = 0. In this case 𝑆𝑛+1,− = 𝑆𝑛,+ ≡ 𝑆𝑛 and we have

𝑆𝑛+1 −
𝛾

𝛽1
log𝑆𝑛+1 = 𝑆𝑛 − 𝛾

𝛽1
log𝑆𝑛 −Δ𝐼 (27)

= 𝑆𝑛−1 −
𝛾

𝛽1
log𝑆𝑛−1 − 2Δ𝐼 (28)

= . . . (29)

= 𝑆0 −
𝛾

𝛽1
log𝑆0 − 𝑛Δ𝐼 (30)

If we start from 𝑆0 ≈ 1, from the halting condition we find that the
number 𝑛* of lockdowns is

𝑛* =

⌊︂
1− (1 + log𝑅0)/𝑅0

Δ𝐼

⌋︂
, (31)

where we denote by ⌊𝑥⌋ the integer part of 𝑥.

A.2 First order expansion in 𝛽0

A first order expansion in 𝛽0 leads to

𝑆𝑛+1,− ∼ 𝑆𝑛,+(1− 𝛽0/𝛾Δ𝐼). (32)

Then defining
𝐹𝑛 = 𝑆𝑛,− − 𝛾/𝛽1 log𝑆𝑛,− (33)

we have the recursion relation

𝐹𝑛+1 = 𝐹𝑛 − 𝑥𝑛Δ𝐼 (34)

where
𝑥𝑛 = 1− 𝛽0/𝛽1 + 𝛽0/𝛾𝑆𝑛+1,− (35)

that can be bounded by 𝒪(𝛽0) terms (given that 0 ≤ 𝑆𝑛,− ≤ 1)

1− 𝛽0/𝛽1 ≤ 𝑥𝑛 ≤ 1− 𝛽0/𝛽1 + 𝛽0/𝛾 (36)

and the halting criterion leads to

𝑛*(𝛽0) ∼ 𝑛*(𝛽0 = 0)/𝑥 (37)
1− 𝛽0/𝛽1 ≤ 𝑥 ≤ 1− 𝛽0/𝛽1 + 𝛽0/𝛾 (38)

In Figure 8 we show the agreement between numerical simulations on an
Erdős-Rényi network and the analytical prediction given by equation (31)
for 𝛽0 = 0.

B Inference of model parameters from epi-
demic data
Here we consider the task of fitting against epidemic data a model includ-
ing imperfect information on the state of the system. This is an instance
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Figure 8: Number of lockdowns: comparison between analytical and numerical results ob-
tained for an Erdős-Rényi random network with 𝑁 = 105 nodes, average degree 8, 𝛽0 = 0,
𝐼1 = 0.2, 𝐼2 = 0.05. The four points correspond to 𝛽1 ∈ {0.02, 0.03, 0.06, 0.09}.

of a system identification problem [25], which we solved along the follow-
ing lines: We consider the time series of observed new daily and active
cases (𝑁𝑜

𝑡 , 𝐴
𝑜
𝑡 ) (𝑡 = 1 . . . 𝑇 is the temporal index in days, starting from

the 1st of March, 𝑇 = 𝑇𝑙 = 155 for Lombardy, and 𝑇 = 𝑇𝑏 = 100 for
the Basque country), and we assume it as coming from an instance of the
model plus a noise term

𝑁𝑜
𝑡 = 𝑟𝐼𝑢(𝑡, ℘) + 𝛿𝑁 (39)
𝐴𝑜

𝑡 = 𝐼𝑑(𝑡, ℘) + 𝛿𝐴 (40)
℘ = {𝛾, 𝛽1, 𝛽0, 𝑟𝐼1, 𝐼2, 𝐼𝑢(0), 𝐼𝑑(0)} , (41)

where we highlighted the dependence of the model trajectory by the dy-
namical parameters and boundary values.

We assume shot-noise of the form

⟨𝛿𝑁 ⟩ = ⟨𝛿𝐴⟩ = 0 (42)
⟨𝛿2𝑁 ⟩ = 𝑁 ⟨𝛿2𝐴⟩ = 𝐴, (43)

which for large numbers we assume to be distributed normally. Upon
assuming an uniform prior, we have the following formula for the log-
likelihood of the parameters

ℒ(℘) =
∑︁
𝑡

(𝑁𝑜
𝑡 − 𝑟𝐼𝑢(𝑡, ℘))

2

2𝑁𝑜
𝑡

+
(𝐴𝑜

𝑡 − 𝐼𝑑(𝑡, ℘))
2

2𝐴𝑜
𝑡

+ const. (44)

From the Bayes formula, the posterior probability distribution of param-
eters 𝑃 (℘) ∝ 𝑒−ℒ(℘) has been sampled by a Metropolis Montecarlo rule,
where the evaluation of ℒ(℘) has been done by numerical integration of
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the model equations. More explicitly we have been following the following
flowchart:

∙ Start from some value of the parameters ℘0: a warm start has been
provided by fitting the curve of new daily cases alone in linear ap-
proximation (𝑆 ≪ 𝑁).

∙ Propose a change for the parameters ℘𝑛 → ℘𝑛+1: we used indepen-
dent geometrical random walks of stepsize 10−3.

∙ Numerically integrate the model equations with the new proposed
parameters to evaluate their log-likelihood ℒ(℘𝑛+1). We used the
standard Verlet algorithm.

∙ Accept the proposed new parameters with probability
min(1, expℒ(℘𝑛+1)− ℒ(℘𝑛)) (Metropolis rule), otherwise keep the
old parameters.

This defines a series that asymptotically uniformly samples the posterior
probability for the parameters, whose peak values have been used for the
results showed in Fig. 6 and 7. Finally, we do point out that when we
numerically integrate the model equations we rejected solutions that i)
do not include at least one lockdown event and ii) do not agree with
prevalence estimate from serological data. The latter gives a lower bound
for the total number 𝐾 of infected individuals at a certain time, 𝐾 ≥ 𝐾𝑜

that can be reformulated as an inequality between the model parameters
(in particular 𝑟, 𝛽1 and 𝛽0) as follows: 𝐾 can decomposed in detected
and undetected cases 𝐾 = 𝐾𝑑 +𝐾𝑢, where 𝐾𝑑 =

∑︀
Δ𝐼+𝑑 is given by the

data, while for the latter we have

𝐾𝑢 =
∑︁
𝑡

Δ𝐼+𝑢,𝑡 =
∑︁

𝛽(𝐼𝑑,𝑡)𝐼𝑢,𝑡 = (45)

=
1

𝑟

∑︁
𝛽(𝐼𝑑,𝑡)Δ𝐼+𝑑 = (46)

=
𝛽1

𝑟

∑︁
𝑖𝑛𝑐𝑟

Δ𝐼+𝑑 +
𝛽0

𝑟

∑︁
𝑑𝑒𝑐𝑟

Δ𝐼+𝑑 = (47)

=
𝐾𝑑

𝑟
(𝛽1(1− 𝑥) + 𝛽0𝑥) (48)

In the first and second lines we have used the model hypothesis, in the
third we have decomposed the sum in terms of the increasing and decreas-
ing part of the wave, and finally in the last line 𝑥 is the fraction of the
detected infections during the decreasing part of the epidemic wave. We
have finally the inequality

𝑟(𝐾𝑜/𝐾𝑑 − 1) ≤ 𝛽1(1− 𝑥) + 𝛽0𝑥 (49)

Given the simplicity of the model employed – in particular with respect
to the hypothesis of a constant detection rate 𝑟 – we obtain a fairly high
value of the 𝜒2 ∼ 20, with a concomitant acceptably low average relative
error of 𝜖 ∼ 20% across data points that can be considered apt for a
qualitative description of the data. We report in the following table the
maximum likelihood inferred parameters with their standard deviation.
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Region 𝑅0 = 𝛽1/𝛾 1− 𝑝 = 𝛽0/𝛽1 𝑟(day−1)

Basque country 2.9± 0.1 1.3± 0.4 · 10−2 3± 1 · 10−3

Lombardy 5.2± 0.2 4± 1 · 10−2 8.4± 0.6 · 10−3

We do point out an anomalously high 𝑅0 for Lombardy, due to a very
low average recovery rate of approximately 1 month (while the one from
Basque country is around two weeks in agreement with WHO estimates).
This is apparent upon looking at the much slower decay of the infection
curves during the lockdown, and it is probably due to a biased over-
sampling of critically ill cases whose average recovery is typically longer.
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