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Perturbed ferromagnetic chain: Tunable test of hardness in the transverse-field Ising model
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Quantum annealing in the transverse-field Ising model (TFIM) with open-system dynamics is known to use
thermally assisted tunneling to drive computation. However, it is still subject to debate whether quantum systems
in the presence of decoherence are more useful than those using classical dynamics to drive computation.
We contribute to this debate by introducing the perturbed ferromagnetic chain (PFC), a chain of frustrated
subsystems where the degree of frustration scales inversely with the perturbation introduced by a tunable
parameter. This gives us an easily embeddable gadget whereby problem hardness can be tuned for systems
of constant size. We outline the properties of the PFC and compare classical spin-vector Monte Carlo (SVMC)
variants with the adiabatic quantum master equation. We demonstrate that SVMC methods get trapped in the
exponentially large first-excited-state manifold when solving this frustrated problem, whereas evolution using
quantum dynamics remains in the lowest energy eigenstates. This results in significant differences in ground-state
probability when using either classical or quantum annealing dynamics in the TFIM.
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I. INTRODUCTION

Experimental validation of quantum processes and/or
computational scaling advantages in adiabatic quantum com-
putation typically relies on the use of artificial gadgets
[1–6], as these provide a way to demonstrate quantum dy-
namics that can be exploited to enhance computation. A
possible framework to implement these gadgets is through
the transverse-field Ising model (TFIM), where the quantum
dynamics are introduced through the addition of a local non-
commuting Hamiltonian to the system. If one interpolates
between the noncommuting Hamiltonians such that the sys-
tem ends in the computational basis of a problem space, then
this is known as quantum annealing [7,8]. Such Hamiltonians
that use this method typically have the form

Ĥ (s) = −A(s)
N∑

i=1

σ̂ x
i + B(s)

[
N∑

i=1

hiσ̂
z
i +

∑
i, j

Ji j σ̂
z
i σ̂ z

j

]
, (1)

where σ̂ x and σ̂ z are the Pauli X and Z matrices, respec-
tively, and the n-qubit problem is encoded in the biases, hi,
and couplers, Ji j . The coefficients A(s) and B(s) are positive
monotonically decreasing and increasing functions in normal-
ized time, s, respectively. Typically the system is interpolated
from the first term, which is the transverse-field component
that has an easy-to-find ground-state solution at s = 0, to the
second term that encodes the problem of interest at s = 1.

This Hamiltonian has been extensively studied on exper-
imental quantum annealers for the past two decades, both
within the context of combinatorial optimization [9–15] and
quantum simulation [6,16–19]. However, the quantumness of
the dynamics used for computation on quantum annealers
is still subject to debate due to the prevalent quantum and

classical noise sources that can obscure coherent quantum
processes [20–23].

One such process is that of thermalization, which has
been seen to aid computation on quantum annealers where
the anneal times are orders of magnitude larger than the
single-qubit decoherence time [24]. Improvements to ground-
state probability can also be realized if we pause mid-anneal
and allow the system to thermalize near the minimum gap
[25–27]. However, to what extent thermalization is beneficial
is still an active area of research, with lower noise quantum
annealers (i.e., those with lower thermalization rates) being
seen to improve tunneling ranges in local search (reverse)
quantum anneals [28]. It was also shown in Ref. [26] that
the thermalization signature of a quantum anneal can be repli-
cated with spin-vector Monte Carlo (SVMC) [29], which is
a classical heuristic used to mimic the behavior of physical
quantum annealers [4,30]. Therefore it is important to ask
where thermalization with quantum dynamics can be useful
computationally when annealing in the TFIM.

In order to help answer this, we introduce the perturbed
ferromagnetic chain (PFC), a scalable and tunable gadget that
we use to differentiate between SVMC and a system annealed
under quantum dynamics. The PFC possesses the qualities of
a having a false minimum during an anneal (if the magnitude
of perturbation is small enough) and has an exponentially
large degenerate first-excited-state manifold in the compu-
tational basis. Additionally we can tune the minimum gap
energy, �10, with the perturbative parameter such that it can
be tuned through the value of the environmental temperature.

In the thermal regime, it is possible to compare the com-
putational use of thermally assisted quantum tunneling with
classical mechanisms. The extent of the former is analytically
explored using the quantum adiabatic master equation (AME)
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FIG. 1. Illustration of the PFC Hamiltonian in general form. In
yellow are the auxiliary qubits with biases of −R, and in turquoise
are the backbone qubits with biases R(1 − d ). The dark blue edges
are the ferromagnetic couplers of strength −R. The total number of
qubits, N , in this problem is 2M, where M denotes the number of
two-qubit subsystems (indexed by i) in the Hamiltonian. The system
energy is scaled by R, and d describes the magnitude of perturbation.
The properties of this model hold generally for M � 2, R > 0, and
1 > d > 0.

[21,31], whereby we simulate quantum annealing using open-
system dynamics. This provides a model of tunneling in a
system that experiences decoherence at a finite temperature,
such that we can observe its computational role when anneal-
ing with the PFC.

The format of the paper is as follows. We outline the
definition of the PFC in Sec. II and give an overview of its
properties, both classically at thermal equilibrium and in the
TFIM by inspecting the behavior of both the quantum and
semiclassically approximated states. This will set the foun-
dation as to why this is a problem of interest when testing
the quantumness of certain methods in the TFIM. In Sec. III
we introduce the methods for simulating both the quantum
system using the AME and the classical system using SVMC.
In order to fully explore the dynamics of SVMC, we look
at both SVMC and SVMC-TF (SVMC with transverse-field-
dependent updates [26]) as well as introducing an additional
degree of freedom into both variants, which will allow for
full exploration of the Bloch sphere. Finally in Sec. IV we
present the dynamical simulation results and demonstrate the
effect that the false minimum and the exponentially large
first-excited-state manifold has on ground-state probability for
both the AME and SVMC. We look at these effects with
respect to both the magnitude of perturbation and the PFC
system size.

II. PERTURBED FERROMAGNETIC CHAIN

A. Classical model

The PFC (Fig. 1) is a ferromagnetically coupled chain of
frustrated subsystems each composed of two qubits. This sys-
tem is similar to the cyclic spin gadgets used in Refs. [32,33],
but instead the gadget is made to be acyclic and a perturbative
offset, d , is introduced to break the degeneracy of the ground
state (at d = 0) into a single ground state and 2M-degenerate
first excited state. The degree of frustration in the PFC scales

inversely with d . The PFC Hamiltonian is given by

1

R
ĤP = Ĥss −

M−1∑
i=1

σ̂ z
b,iσ̂

z
b,i+1,

Ĥss =
M∑

i=1

(1 − d )σ̂ z
b,i − σ̂ z

a,i − σ̂ z
a,iσ̂

z
b,i, (2)

where M is the number of subsystems, R scales the energy
of the problem, and the magnitude of the perturbation is
characterized by the parameter d . The auxiliary and backbone
qubits, depicted by the yellow and turquoise circles shown
in Fig. 1, respectively, are denoted by Pauli Z matrices σ̂ z

a
and σ̂ z

b , respectively. The ground state of this Hamiltonian is
the |0⊗M

b , 0⊗M
a 〉 (all up) state, and given that d < (M − 1)−1

the first excited state is a degenerate manifold whose size
grows exponentially in M. This manifold always has the
backbone qubits in the |1b〉⊗M (all down) configuration, and
the auxiliary qubits are isoenergetic with respect to their spin
state, creating a 2M-degenerate manifold of “floppy” auxiliary
qubits. This creates an energy gap between the ground state
and exponential manifold of �10 = 2RMd , where the states
in the manifold have a Hamming distance between M and 2M
from the ground state.

Classically the PFC is exactly solvable via the transfer
matrix method [34], where at an inverse temperature, β, the
partition function, Z , can be found in polynomial time. The
partition function in transfer matrix form is expressed as

Z = vWM−1vT , (3)

where

v = (
e

1
2 βR(d+1) e

1
2 βR(d−3) e

1
2 βR(1−d ) e

1
2 βR(1−d )

)
(4)

handles the boundary subsystems of the chain, and

W =

⎡
⎢⎢⎣

eβR(d+2) eβRd 1 1
eβRd eβR(d−2) e−2βR e−2βR

1 e−2βR eβR(2−d ) eβR(2−d )

1 e−2βR eβR(2−d ) eβR(2−d )

⎤
⎥⎥⎦ (5)

handles the inner subsystems of the chain. We can then find
the magnetization of a subsystem at thermal equilibrium using

〈
σ z

i

〉 = 1

Z
[
vWi−1σ z

i WM−ivT
]
, (6)

where σ z
i = 1

2 (σ̂ z
a,i + σ̂ z

b,i ). The average magnetization of
the PFC is then an average over all contributions, 〈σ z〉 =
1
M

∑M
i 〈σ z

i 〉.
Additionally, the free energy of the PFC can be derived

from the transfer matrix, which can then be used to derive fur-
ther thermodynamic properties. The free energy, F , is defined
as

F = − lim
M→∞

1

βM
lnZ. (7)

We show in Appendix A that in the limit of M → ∞,
Z1/M → λ1, where λ1 is the spectral radius (largest ab-
solute eigenvalue) of W. The free energy of the PFC is
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FIG. 2. (a) Intensity plot of the average qubit magnetization in the instantaneous ground state for a PFC in the presence of a transverse
field [Eq. (9)] with M = 2 and R = 1.0. The solid red line shows the boundary between the quantum paramagnetic and negative magnetization
phases. The white dashed line indicates the position of the minimum gap. (b) Cross sections of (a) showing the average magnetization during
an anneal.

found to be

F = − 1

β
ln

(
v +

√
v2 − 4 sinh 4βR

)
v = e2βR cosh βRd + cosh βR(2 − d ), (8)

which is always real, continuous, and finite given that the
original parameter constraints of the PFC are met.

B. Transverse-field Ising model

Translating the PFC into the TFIM involves the addition
of a noncommuting transverse-field term, composed of σ̂ x

operators, which introduces the driver of quantum fluctuations
that can potentially be used to aid computation [7,8]. The
TFIM Hamiltonian of the PFC is given by

Ĥ (s) = −A(s)
N∑

j=1

σ̂ x
j + B(s)ĤP, (9)

where the classical PFC is encoded into ĤP [Eq. (2)]. The
coefficients are taken to be A(s) = 3(1 − s) GHz and B(s) =
3s GHz throughout this work, where s is the normalized an-
nealing time s = t/tanneal.

For sufficiently small values of d , the ground state of this
Hamiltonian is seen to undergo a quantum phase transition,
illustrated in Fig. 2 by the change in average qubit magne-
tization from negative to positive phases. The average qubit
magnetization is defined as

〈σ z〉 = 1

N

N∑
j=1

〈E0(s)|σ̂ z
j |E0(s)〉, (10)

where |E0(s)〉 is the instantaneous ground state from the di-
agonalized Hamiltonian of Eq. (9) at some value of s, and
N is the number of qubits in the PFC. The formation of
the negative phase before the minimum gap is indicative of
the ground-state qubits becoming magnetized to resemble
the exponentially large degenerate first-excited-state manifold
(further illustrated in Secs. II C and IV). After passing through

the minimum gap, the instantaneous ground state enters the
positive phase and then goes on to finish in the computational
ground state. It must be noted that even if the d < (M − 1)−1

condition is broken such that the exponentially degenerate
manifold is no longer the computational first excited state, for
small d the instantaneous ground state maintains its resem-
blance to the exponentially degenerate manifold before the
minimum gap.

The tuning of d scales the size of the gap for all M in the
TFIM, and therefore can be used as a tunable hardness pa-
rameter for the PFC. Although scaling with M is numerically
seen to exponentially scale the minimum gap size and there-
fore hardness, it can lead to intractable computational times
for some of the simulation methods explored in the results,
making d a more desirable tunable hardness parameter.

In summary, the PFC becomes hard in the TFIM for small
values of d due to the presence of a quantum phase tran-
sition, and for large values of M where the minimum gap
exponentially reduces in size. In the next section we perform a
semiclassical analysis to show that when the PFC is translated
into the TFIM a false minimum exists. The interplay between
the false and true minima is particularly prominent when
annealing through the region where the ground state is in the
negative magnetization phase shown in Fig. 2.

C. Semiclassical analysis

To further explore the behavior of the PFC in the TFIM, a
semiclassical approximation can be made by using the spin-
coherent ansatz [35]

|θ〉 =
N⊗

j=1

cos

(
θ j

2

)
|0〉 + eiφ j sin

(
θ j

2

)
|1〉 (11)

to calculate the semiclassical effective potential landscape as
a function of s. The magnetization expectation values of the
auxiliary qubits are almost identical, and the same is true for
the backbone qubits. We can therefore approximate the states
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FIG. 3. Plots of the semiclassical energy potential (top row) and the energy along the hyperplane (white dashed line) passing through the
landscape (bottom row) at the specified values of normalized time, s. This potential is for a PFC with M = 2, R = 1.0, and d = 0.09. The red
marker indicates the global minimum of the landscapes. The backbone and auxiliary spins in the PFC are parametrized by angles θb and θa,
respectively.

of the PFC in the spin-coherent ansatz as

|θa, θb〉 =
[

M⊗
i=1

cos

(
θa

2

)
|0〉 + sin

(
θa

2

)
|1〉

]

⊗
[

M⊗
i=1

cos

(
θb

2

)
|0〉 + sin

(
θb

2

)
|1〉

]
. (12)

Here, θa and θb are the angles of the states in the XZ plane of
the Bloch spheres for all of the auxiliary and backbone qubits,
respectively. Here we assume that the azimuthal angle φ j is
equal to zero. The semiclassical potential is then given by

VSC (s, θa, θb) = 〈θa, θb|Ĥ (s)|θa, θb〉. (13)

The visual representation of the potential at various stages
of an anneal (Fig. 3) shows the PFC initially taking a path
to the first excited states (θa ∈ [−π, π ], θb = π ). This is then
followed by a discontinuous change in the position of the
global energy minimum about the minimum gap (at s =
0.841) to the computational ground state (θa = 0, θb = 0). By
taking a hyperplane that passes through the global minimum
(and the local minimum where applicable), it is clear that as
we evolve from a unimodal to a bimodal potential the all-down
(θb = π ) configuration of the backbone qubits is energetically
preferable until the minimum gap is traversed.

Additionally, the computational ground state is energeti-
cally isolated from the low-energy excited states, meaning that
further dynamical evolution is still needed to reach the ground
state after the minimum gap. If the system is evolved under an
adiabatic, coherent regime [36] then the dynamical process is

quantum tunneling. In a classical model (like SVMC) we can
only use thermal excitations to traverse these energy barriers.

If tunneling were to occur in the instantaneous ground
state, then this would result in delocalization about the
bistable potential. Using the trace-norm distance,

D(s, θa, θb) =
√

1 − |〈E0(s)|θa, θb〉|2, (14)

we can quantify the distance between the instantaneous
ground state and the spin-coherent ansatz to determine the ex-
tent to which the ansatz accurately describes the instantaneous
ground state. In Fig. 4 we show the trace-norm distance for a
four-qubit (M = 2) instance of the PFC in the vicinity of the
minimum gap. This is the same instance whose potential land-
scape is shown in Fig. 3 and whose minimum gap occurs at
s = 0.841. At s = 0.835 the trace-norm distance has a global
minimum whose location in (θa, θb) space closely corresponds
to the global minimum of the semiclassical potential (i.e., near
θb = π ). Nevertheless, there is a local minimum in the trace-
norm distance which extends along the indicated hyperplane,
showing that, prior to the minimum gap, tunneling enables
a finite probability amplitude in the local minimum of the
potential landscape near θb = 0. After the minimum gap, as
shown for the case s = 0.845 in the right panel of Fig. 4,
the global minimum of the trace-norm distance now closely
corresponds to the global minimum of the semiclassical po-
tential near θb = 0. This minimum continuously evolves into
the global minimum of the problem Hamiltonian at s = 1 as
shown in Fig. 3.
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FIG. 4. The trace-norm distance between the spin-coherent state
and the instantaneous ground state [Eq. (14)] in the vicinity of the
minimum gap at s = 0.841 for a PFC with M = 2, R = 1.0, and
d = 0.09. The backbone and auxiliary spins in the PFC are char-
acterized by angles θb and θa, respectively. The red cross marker
indicates the global minimum of the trace-norm landscapes and the
red circle indicates the minimum of the potential landscape in Fig. 3.
The hyperplane (white dashed line) from Fig. 3 is also plotted.

Using semiclassical analysis we have shown the existence
of a false global minimum before the minimum gap, when the
value of d is small enough. Under quantum evolution, the tran-
sition from the false minimum to the true minimum exploits
tunneling, and this is visualized by measuring the trace-norm
distance between spin-coherent states and the instantaneous
ground state to show delocalization across the potential bar-
rier (Fig. 4). Under classical evolution, thermal excitation
of multiple qubits is needed to traverse the barrier to reach
the computational ground state. Additionally the manifold
along θb = π (corresponding to the exponentially large com-
putational first-excited-state manifold) is equally accessible
under classical dynamics. Therefore classical algorithms that
explore this energy landscape, such as SVMC, can remain in
this manifold instead of reaching the ground state. We explore
in Sec. IV the extent to which this hinders computation in both
classical and quantum evolution.

III. METHODS

A. Spin-vector Monte Carlo

The spin-vector Monte Carlo algorithm [29] is an algo-
rithm that replaces the Pauli matrices in the Hamiltonian of
Eq. (9) with O(2) rotors in the XZ plane of the Bloch sphere.
The energy function we are to minimize using Metropolis-
Hastings updates becomes

E (s) = − A(s)
N∑

j=1

sin θ j

+ B(s)

⎡
⎣ N∑

j=1

h j cos θ j +
∑
〈 j,k〉

Jjk cos θ j cos θk

⎤
⎦, (15)

where A(s) and B(s) are the same schedule functions intro-
duced in Eq. (1). The SVMC algorithm attempts to update
all rotor angles, θ , in every sweep (i.e., every increment
of time). The method of update can be described in two

ways:

θ t
j ∈ [0, π ], θ t+1

j ∼ Uniform(0, π ),

θ t
j ∈ [0, π ], θ t+1

j = θ t
j + min

(
A(s)

B(s)
, 1

)
u, (16)

u ∼ Uniform(−π, π ). (17)

The traditional method of update in SVMC is described by
Eq. (16), whereby the new angle is a sample from a uniform
distribution from zero to π . A more recent update method
used to capture additional annealing artifacts such as freeze-
out is shown in Eq. (17), which we refer to as SVMC-TF
[26]. In this latter version, the freedom of the rotor movement
in an update is proportional to the relative magnitude of the
transverse field that drives the dynamics.

We also consider another variant of SVMC and SVMC-TF,
whereby the dynamical restriction of only operating in the
XZ plane is removed by including the azimuthal angle φ j in
Eq. (12), such that SVMC now has access to the entire Bloch
sphere. We will refer to these variants as spherical SVMC
and spherical SVMC-TF. This coordinate extension does not
affect the Z (polar) components of the energy function. It does,
however, affect the transverse-field component, such that the
new energy function becomes

E (s) = − A(s)
N∑

j=1

cos φ j sin θ j

+ B(s)

⎡
⎣ N∑

j=1

h j cos θ j +
∑
〈 j,k〉

Jjk cos θ j cos θk

⎤
⎦, (18)

where the azimuthal angle, φ j ∈ [−π, π ], is also updated in
the same way as the polar angle, θ j .

Throughout the rest of this paper, we look at both the
simplest case, SVMC, and the more complex spherical-
SVMC-TF for the comparative experiments, with the other
variants included in Appendix B for completeness. For all
variants, we also take the annealing functions to be A(s) =
3(1 − s) GHz and B(s) = 3s GHz, where we start the an-
nealing from s = 0 to s = 1 at a temperature of 12 mK. All
algorithms update spins individually in a randomly permuted
order and thus cannot capture any simultaneous multiqubit
moves, unlike those that may occur in a system evolved using
quantum dynamics.

B. Quantum dynamics

To simulate the quantum evolution of the PFC, we look at
the dynamics in both closed and open systems using the von
Neumann equation and AME [21,31], respectively. For the
closed-system simulations, the von Neumann equation takes
the form

h̄
∂

∂t
ρ̂(t ) = −i[Ĥ (t ), ρ̂(t )], (19)

where ρ̂(t ) is the density matrix, and t is related to normalized
time, s, by s = t/tanneal. The initial state is the pure ground
state of the system at s = 0, which when using Eq. (9) is
ρ̂(0) = |+〉〈+|. To solve the von Neumann equation and the
AME we have used the Hamiltonian Open Quantum System
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Toolkit [37] (HOQST), a simulation library written for the
JULIA language.

The form of the AME we have chosen for the open-system
simulations is one that uses parameters similar to those used
in theoretical studies of the experimental annealing hardware
[33,38]. We will not define the AME in its entirety here (see
Refs. [31,37]), but we use a Davies-style AME that is valid in
the weak-coupling limit. It is also necessary to make assump-
tions on the model of decoherence used, where we assume
that all qubits are coupled equally to the bath independently.
All qubits experience decoherence by dephasing, and the bath
spectral density takes the form of a bosonic Ohmic bath,

γ (ω) = 2πηg2 ω exp (−|ω|/ωc)

1 − exp (−βω)
, (20)

where β = (kBT )−1 is the inverse temperature, ωc is the cutoff
frequency, ηg2 is the dimensionless bath coupling strength,
and kB is the Boltzmann constant. Throughout the rest of the
paper we specify the bath parameters to be T = 12 mK, ωc =
4 GHz, and ηg2 = 10−3.

The decoherence by dephasing then manifests itself
through the time-dependent Lindblad operators

L̂ j,ωkl (t ) = 〈El (t )|σ z
j |Ek (t )〉|El (t )〉〈Ek (t )|. (21)

This describes how the jth qubit couples to environment
according to energy gaps, ωkl = Ek − El , between the instan-
taneous energy eigenstates, |Ek (t )〉 and |El (t )〉 of the system
Hamiltonian [Eq. (9)].

We use this form of the AME since it models thermally as-
sisted adiabatic quantum computation near the adiabatic limit.
Assuming that most of the ground-state population is lost to
the first excited state after passing through the minimum gap,
the repopulation of the ground state via thermal relaxation can
be related to the transition rate via

�1→0(t ) ∝ γ1→0(t ) = γ (ω10(t ))
∑

j

∣∣〈E0(t )
∣∣σ z

j

∣∣E1(t )
〉∣∣2

.

(22)

Here the temperature dependence of the transition rate is intro-
duced by the Ohmic spectral density function, γ in Eq. (20).

However, when the gap, ω10, is sufficiently small, the
weak-coupling assumption in the AME starts to break down.
This is the case for hard PFC instances since the gap can be
very small relative to the bath temperature. In such a regime
the energy levels become broadened due to the stronger cou-
pling to the bath, such that the discrete energy levels should
emulate a more continuous potential, similar to the semiclas-
sical picture. Therefore, despite the AME not being able to
describe these strong-coupling regimes as accurately as more
sophisticated models like the Redfield equation, it serves as
a reasonable approximation of an open-system model of the
PFC.

IV. DYNAMICAL SIMULATIONS

We begin the dynamical analysis of the PFC by observing
the performance of the SVMC variants when scaling in M.
The systems chosen meet the d < (M − 1)−1 condition such
that the first excited state is the exponentially large manifold
which is at least a Hamming distance of M away from the

FIG. 5. Probability of being in the ground state (PG) for both
SVMC (solid lines) and spherical SVMC-TF (dotted lines) as the
system scales in size, M, for a PFC with d = 0.1. Here, the SVMC
and spherical-SVMC-TF probabilities are found from 20 000 sam-
ples, which we repeat 50 times and bootstrap to find the median
and 95% confidence intervals for the data point and error bars,
respectively.

ground state. The combined effects of an exponentially scal-
ing gap and manifold are observed in Fig. 5 by measuring the
ground-state probability at the end of the anneal with respect
to the number of incremental sweeps used in both SVMC
and spherical SVMC-TF. Typically we expect an increasing
number of sweeps to correspond to an increasing ground-
state probability, but here there are three distinct regimes
when annealing the PFC. For low sweep numbers, where the
semiclassical potential is evolved in large steps, we have a
relatively high ground-state probability as the false minimum
is not well resolved but SVMC still guides the spin vector to
the low-energy states.

For medium sweep numbers we see reduction in ground-
state probability, caused by the quasicontinuous evolution of
the semiclassical potential now leading the SVMC algorithm
to the false minimum. This guides SVMC to the θb = π

manifold (Fig. 3) corresponding to the degenerate computa-
tional first excited states, causing SVMC to spread out into
this manifold and into states that are potentially further in
Hamming distance from the computational ground state (see
Fig. 6 for further evidence of this). Finally, for high sweep
numbers SVMC starts to thermally equilibrate and ground-
state probability begins to return.

To confirm the detrimental role that the exponential man-
ifold has on SVMC, the state probabilities just after the
minimum gap are measured in Fig. 6 for both spherical
SVMC-TF (for 10 000 sweeps) and a system evolved using
AME (for 200 ns). The probability distribution was measured
at s = 0.83 for a PFC (M = 3, R = 1.0, d = 0.1) with a
minimum gap at s = 0.8227. It can be seen that the probabil-
ity density spreads into the computational first-excited-state
manifold when evolving using spherical SVMC-TF, which
is caused by following the false minimum and accessing the
θb = π manifold using classical dynamics. However, a system
evolved using the AME remains in the lowest instantaneous
eigenstates after the minimum gap, where E0 also has a
large overlap with the computational ground state, 〈E0(s =
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FIG. 6. State probability at s = 0.83 (= t/tanneal), just after pass-
ing through the minimum gap (s = 0.8227) for (a) the AME with
tanneal = 200 ns and (b) spherical SVMC-TF with tanneal = 10 000
sweeps. We measure a PFC with M = 3 and d = 0.1. For the AME
we measure the probability of being in the jth instantaneous state,
Ej , and for spherical SVMC-TF we take a classical measurement of
being in either the ground state or any of the first excited states. The
spherical-SVMC-TF probabilities are found from 20 000 samples,
of which we repeat 50 times and bootstrap to find a median and 95%
confidence intervals for the data point and error bars, respectively.

0.83)|0⊗N 〉 = 0.98. After this point in the anneal, both the
AME and spherical SVMC-TF experience freeze-out, which
prevents any more dynamical evolution that could affect
ground-state probability. This is illustrated by the ground-state
probability of the AME (spherical SVMC-TF) evolution at
s = 0.83 being ∼0.50 (∼3.4 × 10−3), compared to that at
s = 1 being ∼0.51 (∼3.4 × 10−3) (see Fig. 7). It is also worth
noting that we measure in the computational basis for SVMC
since it is a classical algorithm with no other analogous dis-
crete states to compare against the instantaneous states used
by the AME.

Finally, we explore how the tunable hardness parameter,
d , affects the PFC in both quantum and SVMC simulations
for M = 3, in Fig. 7. We measure the probability at the end
of the anneal of being in the ground state as well as any of
the first excited states for different annealing durations. The
value of d also determines the size of the minimum gap, such
that we span d to capture various regimes at a fixed system
temperature of 12 mK. At d ∼ 0.227 we have a minimum gap
that approximately equals the system temperature.

The form of SVMC and spherical SVMC-TF when scal-
ing in d in Fig. 7 is similar to what is also seen in Fig. 5
when scaling in M. For all sweeps, the PFC becomes harder
as d becomes smaller, and SVMC and spherical SVMC-TF
preferably anneal to the first-excited-state manifold (following
the false minimum). Additionally, spherical SVMC-TF con-

sistently outperforms SVMC for our hardest problems (d �
0.15), something which is further discussed in Appendix B.

The probabilities at the end of a closed-system quantum
anneal (for time tanneal) are of a similar form, with a bump for
short anneal times (the diabatic bump [39]) and then reaching
the adiabatic limit (where the ground-state probability tends
towards 1) at longer anneal times (e.g., tanneal 
 20 ns for
d = 0.3). The closed-system dynamics describe quantum evo-
lution at a temperature of 0 K with no dephasing, and therefore
requires a run time of tanneal = O(1/�2

10) to run adiabatically.
For example, at d = 0.05 the approximate adiabatic run time
is ∼163 μs and we therefore see a probability ∼0 due to the
short run times (see Appendix B for a logarithmic-scale plot
of the closed-system quantum anneal).

However, for the open-system simulations we see a
nonzero ground-state probability at d = 0.05 for tanneal =
200 ns. This can be attributed to thermally assisted quantum
transitions, whereby the relaxation rate [Eq. (22)] is nonzero
about the minimum gap (Fig. 8) and can return probability to
the ground state from the first excited state. This can occur
because the system is subthermal [27] (i.e., the ground-state
probability is less than that at thermal equilibrium) imme-
diately after the minimum gap, and the energy gap is still
small enough to allow significant thermalization from the first
excited state to the ground state. Additionally, this transition
involves all backbone qubits changing their magnetization
simultaneously.

Therefore thermalization in a quantum system is seen to be
of some computational use, as has been seen in other literature
[24–28]. However, we see that on the time scales tested that
thermalization in classical SVMC plays a far less significant
role, and results in a ground-state probability (after 10 000
sweeps) two orders of magnitude lower than a 100-ns AME
evolved anneal. The marked difference between the two types
of dynamical simulations highlights the effect of the minimum
gap and the exponential manifold on ground-state probability,
making it a gadget of interest for when differentiating between
quantum and classical evolutions in the TFIM. For a better
contrast between dynamics, annealing larger versions of the
PFC (M > 10) would result in negligible statistical contri-
bution from random state sampling, and an extremely large
first-excited-state manifold that would likely result in SVMC
failing to find the ground state. Open-system simulations of
this kind are unfeasible, and would most likely only be real-
ized on experimental quantum hardware.

V. CONCLUSION

In this work, we have introduced the perturbed ferro-
magnetic chain (PFC), a gadget with an exponentially large
first-excited-state manifold and an isolated ground state,
whereby problem hardness and frustration are tuned by the
perturbative parameter, d . When annealed in the transverse-
field Ising model (TFIM), the PFC develops computationally
hard characteristics such as an exponentially small minimum
gap (in N), a quantum phase transition, and a false minimum.

The evolution of the PFC in the TFIM was assessed
with quantum dynamics using the adiabatic master equa-
tion (AME), and classically using both spin-vector Monte
Carlo (SVMC) and spherical SVMC-TF (see Sec. II C for
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FIG. 7. Plots of state probability for being in either the ground state (solid lines) or any of the 2M -degenerate first excited states (dashed
lines) at the end of an anneal. A PFC with system size M = 3 was evolved using quantum (top row) and classical (bottom row) dynamics. The
horizontal black dashed line indicates the probability with random guessing, i.e., 1/64. The quantum simulations are plotted against anneal time
in nanoseconds, while the SVMC simulations are plotted against the number of sweeps. The closed- and open-system dynamics are evolved
according to the von Neumann and adiabatic master equation, respectively (see Sec. III B). The SVMC and spherical-SVMC-TF probabilities
are found from 20 000 samples, of which we repeat 50 times and bootstrap to find a median and 95% confidence intervals for the data point
and error bars, respectively.

FIG. 8. Plot of the evolution of ground-state probability from the
AME (black solid) and the Gibbs state (black dotted), as well as the
transition rate (blue) [Eq. (22)]. A PFC of M = 3, R = 1.0, and d =
0.05 was simulated at a system temperature of 12 mK. The AME
was evolved for tanneal = 200 ns and the minimum gap occurs at s =
0.9059.

more information). For quasicontinuous evolution of the PFC
with the SVMC methods, the false minimum is followed to
the computational first-excited-state manifold. This results
in probable transitions to other low-energy states further in
Hamming distance away from the computational ground state
(Fig. 6), and therefore reduces the probability of reaching the
ground state significantly. This is compounded by increasing
problem size (Fig. 5) and by tuning d (Fig. 7).

For a PFC evolved using the AME, the system mostly
remains in the lowest two eigenstates (Fig. 6) instead of
accessing the exponential manifold, such that a 100-ns open-
quantum-system anneal results in a ground-state probability
two orders of magnitude larger than a 10 000-sweep spherical
SVMC-TF anneal for the hardest comparative problem simu-
lated (Fig. 7). The AME evolution permits thermalization to
the ground state (Fig. 8) in time scales too short for adiabatic
evolution, indicating that thermalization aids computation of
the PFC in the TFIM.

The distinct differences seen between classical and quan-
tum evolutions therefore makes the PFC a useful gadget
in differentiating dynamical systems, something which other
gadgets cannot always exhibit [4,26,30]. Comparative tests at
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larger PFC system sizes of M > 10 would also allow for better
differentiation and insight into the computational extent of
thermalization in quantum and classical evolutions. However,
realizing open quantum system simulations of this scale is in-
tractable, and would therefore require further approximations
or an experimental implementation with quantum hardware.
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APPENDIX A: PFC FREE-ENERGY PROOF

The transfer-matrix representation of the PFC partition
function [Eq. (3)] involves singular, noncommuting matrices
W [Eq. (5)] and V = vT v [where v is defined in Eq. (4)],
which does not allow for an obvious reduction to an analytical
free energy that is generally defined as

F = − lim
N→∞

1

βN
lnZ, (A1)

where Z is the partition function. We begin by redefining the
partition function in Eq. (3) to

Z = Tr(WM−1V), (A2)

where M = N/2, such that we now take the limit in M → ∞
due to W containing information about the subsystem rather
than a single qubit. Performing an eigendecomposition on
W yields a diagonal matrix of eigenvalues, D, and a ma-
trix of eigenvectors, P, in the form W = PDP−1. When W
is raised to any power, the decomposition simply becomes
WM = PDMP−1. Given the cyclic invariance of the trace, the
partition function therefore becomes

Z = Tr(PDM−1P−1V) = Tr(DM−1P−1VP). (A3)

Taking A = P−1VP, and the largest absolute eigenvalue of
W to be λ1 (the spectral radius), the trace summation will

FIG. 9. Probability of being in the ground state (PG) for both
SVMC-TF (solid line) and spherical SVMC (dotted line) as the sys-
tem scales in size, M, for a PFC with d = 0.1. Here, the SVMC and
spherical-SVMC-TF probabilities are found from 20 000 samples,
which we repeat 50 times and bootstrap to find the median and 95%
confidence intervals for the data point and error bars, respectively.

yield

Tr(DM−1A) =
4∑

i=1

Aiiλ
M−1
i =

4∑
i=1

( M−1
√

Aiiλi )
M−1

= ( M−1
√

A11λ1)M−1
4∑

i=1

(
M−1
√

Aiiλi
M−1
√

A11λ1

)M−1

. (A4)

Given that W is positive semidefinite, in the limit of M → ∞
the trace is simply left with λM−1

1 as a nonvanishing term, such
that we find the analytical form of the free energy to be

F = − lim
M→∞

1

βM
ln Tr(DM−1A) = − 1

β
ln λ1. (A5)

This eigenvalue can be found symbolically using PYTHON’s
SymPy library, such that

λ1 = e2βR cosh βRd + cosh βR(2 − d )

+
√

(e2βR cosh βRd + cosh βR(2 − d ))2 − 4 sinh 4βR.

(A6)

The validity of this free energy relies on the fact that our
spectral radius is � 1, otherwise W would converge to zero
in the limit of M → ∞. However, the PFC has bounds of
R > 0 and 0 < d < 1, such that our eigenvalue λ1 � 4, and
is therefore finite everywhere except for βR = ∞.

APPENDIX B: RESULT OF SVMC VARIANTS

In this Appendix, we present three additional results
of the two other SVMC variants (SVMC-TF and spher-
ical SVMC) and demonstrate the intermediate effects in
performance when going from the simplest case (SVMC)
to the most complex (spherical SVMC-TF) variant. The
first is of Fig. 9, where we illustrate how SVMC-TF and
spherical SVMC are affected by increasing the system size,
similarly to what is seen in Fig. 5. Second, we see the re-
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FIG. 10. Plots of state probability for being in either the ground state (solid lines) or any of the 2M -degenerate first excited states (dashed
lines) at the end of an anneal. A PFC with system size M = 3 was evolved using quantum (top row, but now on a logarithmic scale unlike
Fig. 7) and classical (bottom row) dynamics with SVMC-TF and spherical SVMC. The horizontal black dashed line indicates the probability
with random guessing, i.e., 1/64. The quantum simulations are plotted against anneal time in nanoseconds, while the SVMC simulations are
plotted against the number of sweeps. The closed- and open-system dynamics are evolved according to the von Neumann and adiabatic master
equation, respectively (see Sec. III B). The SVMC-TF and spherical-SVMC probabilities are found from 20 000 samples, of which we repeat
50 times and bootstrap to find a median and 95% confidence intervals for the data point and error bars, respectively.

sults for SVMC-TF and spherical SVMC (Fig. 10) missing
from our comparative results in Fig. 7. This also includes
a logarithmic-scale view of the quantum systems tested for
comparison, which highlights what appears to be discontinu-
ities in the results. These are caused by undersampling the
rapid oscillatory behavior in the ground-state probability after
passing through the minimum gap too quickly (given that
sufficient probability density is placed on the ground state),
and this is amplified for small d (i.e., small minimum gap).

Finally, we show a comparative experiment for the simpler
M = 2 PFC in Fig. 11 that is analogous to the M = 3 case
shown in Fig. 7. Here we tune the perturbative parameter d
and show results and simulations for all variants. As expected,
the M = 2 is easier to solve and we therefore see higher
ground-state probabilities in general compared to the M = 3
case. Furthermore, it illustrates better how combining both
the transverse-field updates and the extension to the whole
Bloch sphere has an enhanced effect and outperforms all
variants for the hardest cases (given the sweep ranges we have
tested).

From the variants tested, each individual addition to the
SVMC algorithm brings an improvement to ground-state
probability for the hardest problem cases. The helpful addition
of the azimuthal component to SVMC can be explained by the
fact that not only does it provide another degree of freedom,
but on average it can reduce the transverse-field energy contri-
bution in Eq. (18). This reduces both the size of the minimum
gap and moves the position of the minimum gap to earlier in
the anneal, therefore giving SVMC more time (sweeps) to try
and reach the ground state after the minimum gap.

Finally, we would expect the addition of transverse-field
updates to provide a more accurate description of the quan-
tum annealer (by emulating freeze-out [26]), but also hinder
computation as dynamics would be slow in regimes where
we would need additional dynamics to reach the ground state
after the minimum gap. However, provided that the spin vector
has followed the false minimum and is near the global mini-
mum of the semiclassical potential (Fig. 3), the spin vector
would most likely resemble the first excited state closest in
Hamming distance to the ground state after the minimum gap
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FIG. 11. Plots of state probability for being in either the ground state (solid lines) or any of the first excited states (dashed lines) for the
closed- and open-system quantum simulations and the SVMC variants for a PFC with system size M = 2. The horizontal black dashed line
indicates the probability with random guessing, i.e., 1/16. The quantum simulations are measured against anneal time in nanoseconds, while
the SVMC simulations are measured against the number of sweeps used to increment the anneal. Here, the probabilities of the SVMC variants
are found from 20 000 samples, of which we repeat 50 times and bootstrap to find a median and 95% confidence intervals for the data point
and error bars, respectively.

(see Fig. 6). Therefore, slowed dynamics are preventing the
spin vector from getting lost in the first-excited-state manifold

to some extent, which makes it statistically more likely for
SVMC-TF to reach the ground state.
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