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Abstract: Karst ecosystems occupy approximately 20% of the Earth's land surface with 18 

the unique and vulnerable geomorphological and hydrogeological characteristics. To 19 

date, it remains a challenge to accurately monitor ecosystem productivity from space, as 20 

well as their responses to the environmental conditions due to climate change and 21 

anthropogenic pressure, which is pivotal to the sustainable development strategies in 22 

global karst areas. Here we use a reconstructed long-term solar-induced chlorophyll 23 

fluorescence dataset (SIF) and two satellite-based gross primary productivity (GPP) 24 

products to examine the patterns and trends of vegetation productivity within global 25 

karst ecosystems, and to assess the relative contributions of different countries to the 26 

restoration of these fragile ecosystems over the period 2001–2016. As an effective proxy 27 

for terrestrial GPP, SIF reveals a greening trend across most of the world's karst areas. 28 

China and the European Union (EU) lead the world in vegetation greening within their 29 

karst areas by 78.02% and 42.44%, respectively. The total net increase in SIF shows that 30 

China alone accounted for 43.66% with just 7.0% of global karst area. Brazil is the only 31 

country with a negative greening trend. Recent land cover changes caused by the grain-32 

for-green programme in China and deforestation in Brazil account for 36.93% and 64.71% 33 

of the increases and decreases, respectively. Our results have significant implications for 34 

restoring ecosystem productivity in global karst areas. 35 

Keywords: Karst ecosystem; Vegetation restoration; Solar-induced chlorophyll 36 

fluorescence; GPP; LUCC  37 
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1.  Introduction 38 

Global environmental change has rapidly altered terrestrial vegetation, with 39 

consequent impacts on the functioning of the Earth system and the provision of 40 

ecosystem services (Grimm et al., 2013). Long-term changes in vegetation can be 41 

attributed to multiple interacting factors including changes in climate and anthropogenic 42 

activities, particularly land use and land cover changes (Piao et al., 2015; Mao et al., 43 

2016; Keenan et al., 2018). Despite the observed greening of many parts of the globe 44 

derived from a range of satellite data over the last decade (Ju & Masek, 2016; Zhu et al., 45 

2016), uncertainties still remain regarding the dominant controls of the trends, the spatial 46 

differences, and the possibility of continued greening in face of future environmental 47 

change. In particular, the responses of the world's ecologically-fragile areas, including 48 

karst ecosystems, to the changing environmental conditions are not well understood. 49 

Karst landscapes, characterized by features such as caves, sinkholes and extensive 50 

underground water flow systems developed on predominantky limestone geologies, link 51 

the Earth's surface to the subsurface (De Waele et al., 2015). Approximately 25% of the 52 

world population depends upon natural resources and ecosystem services derived from 53 

karst ecosystems (Ford & Williams, 2013). Given the large extent and wide distribution 54 

of karst terrain around the world (Fig. S1), these ecosystems play important roles in 55 

regulating the terrestrial carbon cycle and potentially mitigating climate change. 56 

However, rocky desertification has emerged as one of the most serious environmental 57 

problems in karstic areas because of long-term overexploitation. It is a process of land 58 

degradation involving serious soil erosion, extensive exposure of underlying rocks, 59 
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drastic declines in soil productivity, and the appearance of a desert‐like landscape. The 60 

occurrence and magnitude of these environmental changes vary around the world. Of 61 

the three largest global karst regions, the eastern North America and middle and southern 62 

parts of Europe are relatively unaffected. In contrast, the large karst area of East Asia 63 

has seen widespread rocky desertification and is now recognized as an ecologically-64 

fragile region (Yan & Zhong, 2011). Appropriate management strategies to prevent and 65 

control the expansion of rocky desertification are critically necessary for the sustainable 66 

development of global karst ecosystems. Several counties including China have 67 

implemented large-area ecological conservation projects to combat desertification and 68 

improve ecological conditions (Laffoon et al., 2014; Tong et al., 2018). Long-term 69 

management of such initiatives requires accurate monitoring of restoration progress. 70 

Several different approaches have been used to monitor the variability in terrestrial 71 

gross primary productivity (GPP) including satellite-derived vegetation indices, light-72 

use efficiency models and process-based models (Piao et al., 2015; Zhu et al., 2016; Wu 73 

et al., 2018). However, these methods are often associated with large discrepancies due 74 

to uncertainties in model algorithm or input data (Guanter et al., 2014). Alternatively, 75 

satellite observations of solar-induced chlorophyll fluorescence (SIF), particularly from 76 

the Orbiting Carbon Observatory-2 (OCO-2) mission, provide a novel proxy for GPP 77 

across multiple spatiotemporal scales. These data are valuable for studying ecosystem 78 

dynamics and carbon–climate feedbacks (Walther et al., 2016; Sun et al., 2017). 79 

However, the spatially and temporally sparse SIF retrievals for OCO-2 constrain their 80 

applications from regional to global scales. The development of a global spatially 81 
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contiguous SIF dataset with finer resolution offers the possibility of accurately and 82 

repeatedly monitoring terrestrial photosynthesis and ecosystem productivity at various 83 

spatiotemporal scales (Zhang et al., 2018; Li & Xiao, 2019). Here, we use a new globally, 84 

reconstructed OCO-2 based SIF dataset (GOSIF) from 2001 to 2016, together with two 85 

widely-used satellite-based GPP products, to (1) analyze the spatial patterns and trends 86 

in productivity of the world's karst ecosystems; (2) investigate the progress of different 87 

countries in restoring these fragile ecosystems; and (3) assess the prominent 88 

environmental controls on the observed trends that include both climatic factors and land 89 

cover change. Fig. S2 briefly described the framework of this study. 90 

2.  Methods and Materials 91 

2.1.  Global OCO-2 based SIF dataset 92 

The advent of satellite-derived SIF data promises a new era in monitoring terrestrial 93 

ecosystems. Recent studies have confirmed that SIF retrieval from the Orbiting Carbon 94 

Observatory-2 (OCO-2) provide a powerful proxy for terrestrial GPP at multiple 95 

spatiotemporal scales (Sun et al., 2017; Li et al., 2018). However, the spatially and 96 

temporally sparse nature of OCO-2 data makes it challenging for the applications from 97 

the ecosystem level to the globe. Thus, we used a new global, 0.05° SIF data set (GOSIF) 98 

at an 8-day interval derived from OCO-2, MODIS and MERRA-2 data (Li & Xiao, 99 

2019). These SIF estimates were found to be significantly correlated with GPP data from 100 

91 FLUXNET sites (R2 = 0.73, p < 0.001). Compared with the coarse-resolution SIF 101 

data directly aggregated from discrete OCO-2 soundings, GOSIF has the advantages of 102 
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finer spatial resolution, globally continuous coverage and a much longer period. It is 103 

thus effective for assessing terrestrial photosynthesis and ecosystem function. More 104 

details of the methodology, validation, and spatiotemporal characteristics of this product 105 

can be found in the reference (Li & Xiao, 2019). In this study, we used the time-series 106 

GOSIF dataset from 2001 to 2016 (http://data.globalecology.unh.edu/data/GOSIF_v2/) 107 

to analyze long-term vegetation changes in global karst ecosystems. The annual mean 108 

SIF for each grid cell was derived from all the 8-day values within each year. Multi-year 109 

SIF averages were compared with MODIS and VPM GPP products. 110 

2.2.  Site-level observations of SIF 111 

Despite that the satellite-based GOSIF dataset has emerged as a novel and powerful 112 

approach for terrestrial vegetation monitoring, its robustness needs to be validated for 113 

large-scale applications. Fortunately, several ground-based spectrometer systems have 114 

been developed and installed at the eddy covariance (EC) towers in recent years, which 115 

provide continuous SIF observations (Magney et al., 2019),. In total of four tower sites 116 

including one subtropical evergreen forest (CN-HT), one subalpine conifer forest (US-117 

NR) and two temperate cropland were used in this study with available high-frequency 118 

SIF retrievals since 2017. The details of instrument specifications, data collection and 119 

processing procedures can be found in the literature (Zhang et al., 2021). As shown in 120 

Fig. S3, satellite-based SIF generally agreed well with ground-based SIF measurements 121 

over a variety of vegetation types. The coefficient of determination (R2) and root mean 122 

square error (RMSE) varied across different sites, with R2 ranging from the minimal of 123 

0.688 at CN-HT to the maximal of 0.874 at US-NR and RMSE ranging from the 124 
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maximal of 0.084 W m-2 μm-1 sr-1 at CN-DM to the minimal of 0.020 W m-2 μm-1 sr-1 at 125 

US-NR. Considering that there are still mismatch of the footprint between satellite and 126 

ground-based measurements, such direct comparison demonstrated the potential of 127 

global OCO-2 based SIF dataset. 128 

2.3.  MODIS GPP product 129 

The MOD17A2 GPP product is the first operational satellite-driven dataset to 130 

repeatedly monitor global vegetation productivity at 1-km resolution and an 8-day 131 

interval (Zhao et al., 2005). The dataset is widely used for natural resource and land 132 

management, global carbon cycle research, ecosystem status assessment, and 133 

environmental change monitoring (Tang et al., 2014). The MOD17 algorithm is based 134 

on the light use efficiency (LUE) model that relates vegetation photosynthesis to the 135 

amount of photosynthetically active radiation (PAR) absorbed by plants during the 136 

growth period. The old MODIS GPP product (C4) was revealed to have considerable 137 

uncertainties owing to problems in the data inputs. Zhao et al. (2005) rectified these 138 

products by optimizing the data processing methods and modifying key parameters, 139 

thereby generating improved GPP estimates (C5.5). The 8-day composite 1-km fraction 140 

of photosynthetically active radiation (FPAR) and leaf area index (LAI) data from the 141 

MOD15 product were used as the remotely-sensed vegetation property dynamic inputs 142 

to the algorithm. Data gaps in the MODIS LAI/FPAR caused by cloud cover were filled 143 

with information from accompanying quality-assessment flags. For the daily 144 

meteorological dataset required to drive the algorithm, the 6-h National Center for 145 

Environmental Prediction/Department of Energy (NCEP/DOE) reanalysis II data were 146 
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employed. The associated Biome Parameter Lookup Table (BPLUT) was also updated 147 

for different vegetation types. These GPP products over the period 2001–2015 at 8-day, 148 

monthly, and annual time steps are currently available from the Numerical 149 

Terradynamic Simulation Group (NTSG) of the University of Montana 150 

(http://www.ntsg.umt.edu/project/mod17).  151 

2.4.  VPM GPP product 152 

The Vegetation Photosynthesis Model (VPM) GPP product (V20) is based on an 153 

improved LUE model driven by satellite remote sensing data from MODIS and climate 154 

data from NCEP Reanalysis II dataset (Zhang et al., 2017). The two main input data 155 

comprising the enhanced vegetation index (EVI) and land surface water index (LSWI) 156 

in the VPM model were derived from the MOD09A1 (C6) land surface reflectance data 157 

with a spatial resolution of 500 m and an 8-day time interval. In addition, the VPM GPP 158 

product employed a state-of-the-art vegetation index gap-filling and smoothing 159 

algorithm and considered the C3/C4 difference in plant photosynthesis pathways, which 160 

solved several critical problems in the main GPP products such as the widely-used 161 

MOD17A2. The GPP of each pixel was calculated by area‐weighted averaged GPP, 162 

which was derived from area fraction maps of C3/C4 plants and land use datasets 163 

(MCD12Q1). Across 25 eddy covariance flux tower sites, the VPM GPP estimates 164 

showed better accuracy in terms of cross‐site variability and interannual variability 165 

compared to MOD17 GPP (Wu et al., 2018). In this study, the global VPM GPP products 166 

between 2001 and 2016 were used for the auxiliary analysis with a spatial resolution of 167 

0.05°×0.05°. These 8-day, monthly and annual data can be downloaded freely from the 168 

http://www.ntsg.umt.edu/project/mod17
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website https://doi.org/10.6084/m9.figshare.c.3789814. 169 

2.5. Temperature and precipitation data 170 

The Global Land Data Assimilation System (GLDAS) combines satellite and 171 

ground-based observations, using advanced surface modeling and data assimilation 172 

techniques, in order to generate optimal fields of land surface states and fluxes (Hiroko 173 

& Rodell, 2016). At present, GLDAS drives four land surface models (LSM): Noah, 174 

Catchment, the Community Land Model (CLM) and the Variable Infiltration Capacity 175 

(VIC). GLDAS version 2 has two components: one forced entirely with the Princeton 176 

meteorological forcing data (GLDAS-2.0) and the other forced with a combination of 177 

model and observation-based datasets (GLDAS-2.1). This study used the Noah LSM-178 

based GLDAS-2.1 data at 0.25° resolution from 2001 to 2016 to reveal the dominant 179 

factors influencing the long-term trends in annual mean SIF across global karst 180 

ecosystems. The monthly meteorological data are generated through temporal 181 

averaging of the 3-h products and can be downloaded via 182 

http://disc.sci.gsfc.nasa.gov/uui/datasets?keywords=GLDAS. Then, the temperate and 183 

precipitation data were synthesized into yearly products  (mean annual temperature 184 

and annual total precipitation). 185 

2.6. CCI Land Cover data 186 

A new time series of consistent global land cover data at 300 m spatial resolution 187 

from 1992 to 2015 is provided by the European Space Agency known as the Climate 188 

Change Initiative Land Cover (CCI-LC) products (V2). These annual products are 189 

https://doi.org/10.6084/m9.figshare.c.3789814
http://disc.sci.gsfc.nasa.gov/uui/datasets?keywords=GLDAS
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made available through the following website: 190 

http://maps.elie.ucl.ac.be/CCI/viewer/download.php. The CCI-LC product used the 191 

land cover classification system developed by the United Nations (UN) Food and 192 

Agriculture Organization (FAO), with a view of being compatible with the plant 193 

functional types used in climate models (Poulter et al., 2015). Several studies have 194 

demonstrated that CCI-LC products have the largest overall accuracy when compared 195 

with another five global land cover datasets including IGBP DISCover, UMD, GLC, 196 

MCD12Q1 and GLCNMO (Yang et al., 2017). This study analyzed the time-series CCI-197 

LC products from 2001 to 2015 to explore the effect of land cover changes on global 198 

karst ecosystem productivity. The land cover classes are grouped into nine IPCC land 199 

categories (cropland, forest, grassland, shrubland, sparse vegetation, wetland, 200 

settlement, bare area and water) for research purpose. 201 

2.7. Trend analysis in global SIF 202 

The long-term trends of annual mean SIF across terrestrial ecosystems in the karst 203 

areas were analyzed through the non-parametric Mann-Kendall (M-K) test (Gocic & 204 

Trajkovic, 2013). The M-K method provides the possibility of testing for non-linear 205 

development in SIF consistently increasing or decreasing, and does not assume a specific 206 

distribution for the time-series data and is insensitive to outliers. Because of these 207 

advantages, it has been widely used for trend analysis recently (Fensholt et al., 2012). 208 

The Theil-Sen method was then used to quantify the magnitude of changes over time. 209 

This study assessed the frequency distribution of the trends derived from each pixel in 210 

accordance to the significance level (p-value) of the change (with p<0.01, p<0.05 and 211 

http://maps.elie.ucl.ac.be/CCI/viewer/download.php
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p>0.05 indicating that the increasing or decreasing trends are very significant, significant 212 

and insignificant, respectively). The proportions of the karst areas in the top ten 213 

countries/region showing significant greening or browning were also evaluated. 214 

2.8. Contribution rates 215 

Using the results of the trend analysis for annual average SIF across global karst 216 

areas over the period 2001–2016, the contributions to the restoration of karst 217 

ecosystems by countries/region were also assessed. The net changes in SIF for a specific 218 

area took into account the effects from both statistically significant greening and 219 

browning areas, as well as the magnitudes of trends for each pixel. The areas with 220 

statistically insignificant trends were set as zero contribution. 221 

𝐶𝑗 =
∑ 𝑇𝑖,𝑗  𝑛

𝑖=1

∑  𝑚
𝑗=1 ∑ 𝑇𝑖,𝑗  𝑛

𝑖=1

                                                        (1) 222 

where 𝐶𝑗  is the contribution rate of the country j; m is the number of countries 223 

containing karst ecosystems (m=150 here); n is the pixels with a statistically significant 224 

trend in the country j; and 𝑇𝑖,𝑗 is the trend of each pixel. This study used percentages 225 

to represent the contribution rate of each country to the overall global change. 226 

2.9. Spatial correlation analysis 227 

The correlation and partial correlation coefficients were performed to reveal the 228 

environmental controls, including the temperate and precipitation, on the inter-annual 229 

dynamics of SIF across global karst areas (Wang et al., 2019). The formula of Pearson's 230 

correlation coefficient (r) was as follows: 231 
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𝑟𝑥𝑦 =
∑ (𝑥𝑖 − 𝑥̅)(𝑦𝑖 − 𝑦̅)𝑛

𝑖=1

√∑ (𝑥𝑖 − 𝑥̅)2𝑛
𝑖=1 √∑ (𝑦𝑖 − 𝑦̅)2𝑛

𝑛=1

                                    （2） 232 

where n is the length of the time series data; i is the number of year, i=1, 2,˖˖˖16; and xi 233 

(yi) and 𝑥̅ (𝑦̅ ) are the values of the i year and the averages of these years, respectively. 234 

The partial correlation coefficient (𝑟𝑦𝑧·𝑥 ) was calculated to reveal the dominant 235 

climate factor controlling the variability in SIF. In this way, when assessing the degree 236 

of correlations between SIF and temperature (or precipitation), the effect of 237 

precipitation (or temperature) is removed: 238 

𝑟𝑦𝑧·𝑥 =
𝑟𝑦𝑧 − 𝑟𝑦𝑥𝑟𝑧𝑥

√(1 − 𝑟𝑦𝑥
2 )(1 − 𝑟𝑧𝑥

2 )
                                                 （3） 239 

where 𝑟𝑦𝑧·𝑥  represents the partial correlation coefficient between y and z without 240 

consideration of the impact of x; and 𝑟𝑦𝑧 , 𝑟𝑦𝑥 , 𝑟𝑧𝑥 are the simple correlation coefficients 241 

between two variables. Through these analyses, the study identified the dominant 242 

environmental controlling factor of each pixel.  243 

3.  Results 244 

3.1. Trends in vegetation dynamics across global karst areas 245 

The satellite-based SIF data exhibited an overall positive trend for a large 246 

proportion of the global karst area since the start of the new millennium (Fig. 1, Fig. S4). 247 

The mean annual greening trend was equivalent to 0.0004 W m-2 μm-1 sr-1 yr-1. Areas 248 

with a significant increase in vegetation SIF (p<0.05) covered approximately 31.1% of 249 

global karst ecosystems, of which one fifth was concentrated in China's southwestern 250 

karst area, making China one of the largest, spatially coherent region of vegetation 251 
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restoration (Fig. S5). The majority (78.02%) of China's karst area experienced 252 

significant greening trends, with only less than 1.2% experiencing browning (Table 1). 253 

The EU also made a large contribution to the global greening, with 42.44% of its karst 254 

area experiencing increasing trends in SIF and only 0.35% showing significant declines. 255 

Only a few regions (~2.7% of the global karst area) were identified as having 256 

experienced significant negative change over the study period (Fig. S6). Among the top 257 

ten countries/region with the largest extent of karst environment (Table 1), Brazil was 258 

the only one exhibiting a larger extent of browning (19.43%) than greening (15.83%). 259 
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 260 

Fig. 1 Spatial trends of annual mean SIF across global karst ecosystems during the period 2001–2016. The frequency distribution of the significance level (p-value) of 261 

the trends is derived using the results for all pixels.  262 
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Table 1 Vegetation dynamics in the top ten countries/region (EU) with the world's largest karst areas 263 

Rank Country Karst area (km2) 

Percentage of total  

land area 

Proportion of areas 

showing greening 

Proportion of areas showing 

browning 
Contribution rate (ranking) 

1 Russia 1931825.67 11.5% 25.89% 2.01% 11.82% (3) 

2 Canada 1601205.13 16.1% 29.78% 2.81% 6.78% (4) 

3 China 1121944.83 11.9% 78.02% 1.14% 43.66% (1) 

4 United States 905863.79 9.6% 14.24% 2.56% 2.03% (5) 

5 EU 835650.37 19.1% 42.44% 0.35% 11.92% (2) 

6 Saudi Arabia 612979.41 31.9% 28.00% 6.98% 0.22% (9) 

7 Mexico 606455.46 30.9% 23.03% 2.26% 2.00% (6) 

8 Australia 343070.60 4.4% 8.98% 1.10% 0.75% (7) 

9 Brazil 271195.98 3.2% 15.83% 19.43% -1.85% (10) 

10 Iran 255116.45 15.7% 30.14% 1.10% 0.71% (8) 

Note: The countries of the European Union (EU) are considered together given the large total karst area and relatively small size of some EU countries. Statistics of 264 

the proportion of areas showing greening or browning were significant at 0.05 p-level. 265 
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Vegetation dynamics in global karst area were also examined by comparing the 266 

variations in annual mean SIF and GPP (MODIS and VPM) products from 2001 to 2016 267 

(Fig. 2). The annual global mean SIF had a significant increasing trend of 3.85×10-4 W 268 

m-2 μm-1 sr-1 yr-1. Although global mean VPM GPP exhibited a similar positive trend 269 

(4.02 g C m-2 yr-1, p<0.001), no significant trend was identified for MODIS GPP 270 

(p>0.05). Pearson correlation analysis also showed consistency between the SIF dataset 271 

and VPM GPP results (p<0.001, r=0.925) (Fig. S7). Long-term dynamics in the SIF and 272 

GPP products over the same period were also evaluated across the top ten 273 

countries/region with the largest karst areas (Fig. 3). There were no significant changes 274 

for MODIS GPP over all countries, while SIF and VPM GPP generally exhibited similar 275 

trends. Despite their large total area, the karst ecosystems in the USA showed no obvious 276 

changes in SIF or GPP during the period. In contrast, significant increases were evident 277 

for Russia and China. Most notable was the trend in SIF for China's karst vegetation 278 

which was nearly five times as large as the global average. 279 

 280 

 281 

 282 

 283 

 284 

 285 
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 286 

Fig. 2 Long-term dynamics in SIF and GPP (MODIS and VPM) products across global karst area 287 

for the period 2001–2016. 288 

 289 
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 290 

Fig. 3 Long-term dynamics in SIF and GPP (MODIS and VPM) products in the top ten countries/region with the largest karst areas around the world during the period 291 

2001–2016.292 
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3.2. Spatial differences in satellite-observed ecosystem productivity across global karst 293 

areas 294 

As a direct proxy for vegetation photosynthesis, the satellite-based SIF provides a 295 

global perspective on terrestrial GPP across the ecologically-fragile karst regions (Fig. 296 

4). In general, the multi-year mean GOSIF data exhibited strong spatial heterogeneity in 297 

gross carbon uptake during the period 2001–2016. The largest SIF values appeared 298 

primarily in tropical (e.g. Central Africa, Brazil and Mexico) and subtropical (e.g. 299 

Southwest China, Southeast USA) regions. Europe's karst ecosystems also exhibited 300 

relatively high SIF. In contrast, most karst areas in the mid- and high latitudes exhibited 301 

low SIF values (e.g. West Asia, Russia, Canada, western USA and Australia). 302 

Comparison of the spatial patterns of multi-year mean MODIS and VPM GPP products 303 

over global karst areas (Fig. 5) demonstrated generally good agreement between state-304 

of-the-art satellite data-driven approaches and the SIF observations. Despite similar 305 

global patterns, the GPP estimates from MODIS and VPM varied in magnitude. In 306 

general, GPP values derived from VPM were larger than those of the MODIS product 307 

for karst areas in the eastern USA, Brazil, southwestern China and Europe. In addition, 308 

comparison of satellite-based GPP products with SIF retrievals across the top ten 309 

countries/region (i.e. the EU) with the largest karst areas (Fig. 6) demonstrated the 310 

consistent performance of the different proxies in monitoring spatial patterns in 311 

ecosystem productivity. The largest SIF and GPP values are identified in Mexico and 312 

Brazil, followed by the EU, China and USA. In contrast, the smallest are found within 313 

the karst areas of predominantly arid/semi-arid Iran and Saudi Arabia. 314 
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 315 

Fig. 4 Spatial patterns of multi-year mean SIF across the world's karst areas during the period 2001–316 

2016 (a) and typical karst landscapes (b and c). Multi-year mean SIF in the top ten countries/region 317 

(EU) with the largest karst area around the world are indicated. Error bars are ± 1 standard error of 318 

the mean. The image (b) is Sierra Gorda, Mexico (downloaded from 319 

http://upload.wikimedia.org/wikipedia/commons/e/e9/Karst_minerve.jpg.) and image (c) is the 320 

Jinfoshan karst area of southwestern China (photographed by Dr. Pingheng Yang, the Research Base 321 

of Karst Eco-environments at Nanchuan in Chongqing, Ministry of Nature Resources, Southwest 322 

University, China). 323 

http://upload.wikimedia.org/wikipedia/commons/e/e9/Karst_minerve.jpg.
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 324 

Fig. 5 Magnitude and spatial patterns of multi-year mean MODIS GPP (a) and VPM GPP (b) across 325 

terrestrial ecosystems in global karst area. 326 
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Fig. 6 Multi-year mean SIF and GPP (MODIS and VPM) products in the top ten countries/region 327 

with the largest karst areas. Error bars are ±1 standard error of the mean. 328 
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3.3. Contributions to the restoration of global karst ecosystems by country 329 

The absolute contributions to the global net changes were jointly determined by the 330 

karst area and magnitude of the changes. On the basis of the trend analysis in annual 331 

mean SIF across the karst regions between 2001 and 2016, the contribution rates of 332 

each country/region (the EU) to the restoration of ecologically-fragile karst areas are 333 

summarized in Fig. 7. Overall, the net increase mainly occurred in the northern 334 

hemisphere, while smaller increases and declines in SIF were more concentrated in the 335 

southern hemisphere. The top ten countries/region with the largest karst area 336 

contributed 78.04% of the global karst vegetation increase (Table 1). Most notably 337 

China, which has only 7.0% of the global karst area, accounted for 43.66% of the 338 

observed total net change. The EU (11.92%), Russia (11.82%) and Canada (6.78%) also 339 

made significant contributions. Although the USA has the fourth largest karst area, its 340 

contribution to global net change was only 2.03% (Table 1). Brazil was the only country 341 

amongst the top ten with a negative overall contribution (-1.85%).342 
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 343 

Fig. 7 The contribution rates (%) of each country in restoring global karst ecosystem productivity. The countries of the European Union (EU) are considered together 344 

given the large total karst area and relatively small size of some EU countries. 345 
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3.4. Environmental controls on vegetation restoration 346 

In order to explore the environmental controls on trends in vegetation dynamics 347 

across global karst area, we firstly performed a correlation analysis between time-series 348 

of SIF and meteorological data (Figs. 8 and 9). The analysis indicated that a large 349 

proportion of the changes in world's karst ecosystems were related to temperature and 350 

precipitation. More specifically, the area exhibiting significantly positive correlations 351 

was over twice as large as that associated with significantly negative correlations. 352 

Interestingly, temperature exerted predominantly positive effects in the northern 353 

hemisphere and negative effects in the southern hemisphere (e.g. Brazil, South Africa 354 

and Australia). Precipitation mainly exhibited negative correlations in high-latitude 355 

countries such as Russia and Canada. Partial correlations were also conducted to better 356 

understand the dominant environmental controls (Figs. S7 and S8). Results 357 

demonstrated spatial variability in the dominance of either temperature or precipitation 358 

upon SIF trends (Fig. 10). Approximately 17.26% of the total karst areas was strongly 359 

affected by precipitation (p<0.05); 10.70% of the area was obviously impacted by 360 

temperature (p<0.05); and only 3.66% of the area was jointly controlled by precipitation 361 

and temperature (p<0.05). A clear and consistent trend existed between the changes in 362 

precipitation and vegetation across a large portion of the global karst area. The karst area 363 

of eastern Canada was the largest spatially coherent region dominated by a positive 364 

relationship between temperature and vegetation productivity as indicated by SIF (Fig. 365 

10, Fig. S8).366 
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 367 

Fig. 8 Spatial correlation analysis of annual mean SIF and temperature across terrestrial karst ecosystems during the period 2001–2016. The frequency distribution of 368 

the significance level (p-value) of the correlations is derived for each pixel.369 
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 370 

Fig. 9 Spatial correlation analysis of annual mean SIF and precipitation across terrestrial karst ecosystems during the period 2001–2016. The frequency distribution 371 

of the significance level (p-value) of the correlations is derived for each pixel. 372 
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 373 

Fig. 10 Dominant climatic factors (precipitation and temperature) controlling long-term trends in annual mean SIF across global karst ecosystems between 2001 and 374 

2016. The partial correlation coefficients between SIF and temperature/precipitation that are significant at the 0.05 p-level are shown. The figure uses the positive and 375 

negative values to describe the effects of temperature and precipitation, respectively. The proportions of karst area associated with dominant factors are indicated. 376 
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As reported above, the individual contribution of each country to the net increase 377 

in SIF for global karst ecosystems varied, ranging between 43.66% (China) and -1.85% 378 

(Brazil) for the top ten countries/region (the EU). The study further examined the effect 379 

of land cover changes due to human activities on karst areas in these two contrasting 380 

countries (Fig. 11). In China, forest, cropland and grassland together occupy over 85.0% 381 

of the total karst area (Fig. S9). With the implementation of a number of ecological 382 

restoration projects in China since 2001, large-area afforestation and conservation 383 

efforts improved the karst vegetation in approximately 45.10% of the regional change 384 

(Fig. 11a), which accounted for 36.93% of the increase in terrestrial SIF. In Brazil, 385 

forest, shrubland and cropland are the dominant land covers, occupying over 90% of 386 

the nation's karst areas (Fig. S10). Over the period 2001–2016, more than half of the 387 

land-cover changes were due to deforestation and this accounted for 64.71% of Brazil's 388 

decline in SIF for karst ecosystems (Fig. 11b). 389 
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 390 

Fig.11 Percentage of each land cover succession pattern amongst all land cover succession patterns 391 

from 2001 to 2015 in the karst areas of China (a) and Brazil (b), respectively. (c) and (d) refer to 392 

regions of grain-for-green programme in China and deforestation in Brazil, respectively. 393 

4.  Discussion and Conclusion 394 

Karst rocky desertification has been reported in many regions including the 395 

Mediterranean European, Dinaric Karst regions of the Balkan Peninsula, over a large 396 

part of Southwest China, and most alarmingly, even in tropical rainforest areas underlain 397 

by karstic geology such as in Haiti and Barbados (Jiang et al., 2014). These changes 398 

have tremendous environmental impacts with social-economic consequences at local to 399 

national scales. It has been reported that severe soil erosion accompanied by vegetation 400 

degradation within these ecologically-fragile areas have led to bedrock exposure 401 

creating desert-like landscapes, reducing land productivity. As a result, economic 402 
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development has been constrained and poverty of local communities exacerbated (Yan 403 

& Cai, 2015). Investigations of the dynamics of global karst ecosystems and the 404 

associated driving forces are required in order to develop effective environmental 405 

protection and sustainable development strategies. 406 

In recent years, satellite-based observations and model simulations have revealed 407 

the widespread greening of the Earth. Previous studies attributed the greening trend of 408 

global vegetated area to the dominant role of climate change (Forzieri et al., 2017; 409 

Keenan et al., 2018) in addition to the effect of anthropogenic activities (Fan et al., 2019). 410 

Nevertheless, climatic impacts on vegetation dynamics across different biomes and 411 

climate zones are contrasting (Tang et al., 2017; Chen et al., 2019; Wang et al., 2021). 412 

Forzieri et al. (2017) found that the increasing trend in leaf area index (LAI) contributed 413 

to the warming of boreal zones through a reduction of surface albedo and to an 414 

evaporation-driven cooling in arid regions. Our study has shown that vegetation changes 415 

in most global karst area were affected by precipitation, and that only relatively small 416 

area such as karst ecosystem in Canada, was dominantly influenced by temperature (Fig. 417 

10). Climate warming was generally favorable for vegetation growth in global karst 418 

areas except those in Brazil, South Africa and Australia (Fig. S8). Increasing 419 

precipitation benefited vegetation restoration in most areas besides the northern high 420 

latitudes (Fig. S9). In the karst region of eastern Canada, temperature declines resulted 421 

in vegetation decrease, whereas increases in precipitation in Southwest China 422 

significantly contributed to ecological restoration (Brandt et al., 2018). In the karst 423 

regions of tropical Brazil, the apparent vegetation degradation was mainly driven by 424 
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climatic anomalies and human disturbance (Marengo et al., 2017; Servino et al., 2018). 425 

Recently, model projections have suggested future increases in extreme climate events 426 

such as droughts and heat waves around the world (Beniston et al., 2007; Zscheischler 427 

et al., 2018), which will exert substantial pressure to the fragile karst ecosystems. The 428 

sensitivity of ecosystems to climate perturbations can be partly reduced by appropriate 429 

human management (Tong et al., 2018) but this clearly requires commitment from 430 

governments.  431 

Vegetation monitoring from traditional optical Earth observation (EO) datasets is 432 

generally limited to the green canopy layer with less sensitivity to biomass (Tian et al., 433 

2016; Fan et al., 2019; Huang et al., 2021). As a result, the spatial pattern and trends of 434 

productivity of global karst ecosystems remain poorly resolved. Whilst uncertainties 435 

remain in the reconstructed global continuous SIF dataset, it provides direct and spatially 436 

explicit information for quantitative monitoring of terrestrial photosynthesis and 437 

ecosystem functions across multiple spatial and temporal scales. The spatial differences 438 

in satellite-based ecosystem productivity across the globe are intrinsically determined 439 

by the climate and vegetation-related characteristics. In the tropics and subtropics, owing 440 

to favorable hydrothermal conditions, terrestrial ecosystems including forest, grassland 441 

and shrubland are green almost all year round (Fig. S1). However, a large proportion of 442 

vegetation in the mid- and high-latitudes is only active in summer and is then dormant 443 

in winter. Yu et al. (2021) stated that ecologists should not only be able to monitor 444 

dynamic changes in ecological processes, reveal mechanisms governing such processes, 445 

and quantitatively assess ecosystem responses to human activities and climate changes, 446 
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but also provide accurate early warning of ecosystem changes. 447 

Over the past few decades, intensive human pressure on land resulting from large 448 

and rapidly growing human populations has been identified as a major threat to the 449 

sustainable development of karst regions (Peng et al., 2011), especially in rural areas 450 

such as Southwest China (Yang et al., 2017). Karst regions, lying in the upper reaches 451 

of two of China's large rivers (the Yangtze and Pearl river), provide resources, in 452 

particular water, for the two most economically-developed areas in China which are 453 

located downstream in the rivers' delta regions (Bai et al., 2013), while limited 454 

conservation measures for these areas were in place during the 20th century. At the 455 

beginning of the new millennium, the State Council of China released the 'Outline of the 456 

10th Five-year Plan of National Economical and Social Development', which clearly 457 

declared to fight against disastrous rocky desertification issues in southwestern China. 458 

Subsequently, a series of key national ecological restoration projects including the 459 

Natural Forest Protection Project, the Grain to Green Programme, the Karst Rocky 460 

Desertification Comprehensive Control and Restoration Project and the River Shelter 461 

Forest Project were launched to restore degraded karst and other ecosystems. The year 462 

2001 is therefore an ideal starting point with which to compare changes in China's karst 463 

environments and thereby to assess of the effects of these schemes. Our results indicate 464 

that China contains one of the largest coherent karst regions and accounts for 43.66% 465 

of the observed total net change in global SIF between 2001 and 2016 (Table 1, Fig. 7). 466 

These findings corroborate other recent studies that have suggested that implementation 467 

of the afforestation and reforestation projects during this period has significantly 468 
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increased vegetation growth and ecosystem carbon sequestration for mitigating global 469 

climate change (Lu et al., 2018; Tong et al., 2018). In addition, this study found that 470 

except China, the EU, Russia, Canada, the USA and several Southeast Asia countries 471 

also made positive contributions.  472 

Within South America, karst landscapes cover 2% of the land area (370, 809 km2), 473 

the majority of which is in Brazil and comprises woody savanna from open grasslands 474 

to forests. Despite a persistent and widespread increase in SIF for global karst 475 

ecosystems, this study found that approximately 19.43% of the karst area in Brazil was 476 

subject to serious vegetation degeneration over the period 2001–2016. As a result, Brazil 477 

makes a negative contribution to global greening of karstic environments (Fig. 7, Table 478 

1). Currently, Brazil has become a global agricultural leader in the production of 479 

commodity raw crops such as soybean, sugarcane, cotton, and corn (Zalles et al., 2019). 480 

These crops often have short growth periods constraining their contribution to ecosystem 481 

productivity. Meanwhile, the carbon uptake by crops during their growth will be released 482 

to the atmosphere after much shorter periods compared to the forests that they often 483 

replace (West et al., 2010). Despite several strategic conservation measures to reverse 484 

deforestation (Nepstad et al., 2014), the rate of forest removal remains high in Brazil, 485 

endangering the long-term sustainability of the country and the global climate system 486 

(Schielein et al., 2018). Fig. 11 showed that the proportion of forest area declined over 487 

the study period. Artaxo (2019) reported that Amazonian forest, including in those areas 488 

underlain by karstic geology, is now suffering from losses at an accelerated rate through 489 

human-lit fires for agriculture. A recent study (Matricardi et al., 2020) also revealed that 490 
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long-term forest degradation even surpassed deforestation in the Brazilian Amazon. 491 

Chen et al. (2019) reported the leading and impressive changes in agricultural 492 

production in Brazil, but the greening from croplands is nearly offset by the browning 493 

of forest. Besides, this study revealed that many countries in East Africa such as 494 

Tanzania, Mozambique, Madagascar and South Africa are experiencing browning in the 495 

past decades. Therefore, irrational land use and forest cutting could result in serious land 496 

degradation, and the decrease of vegetation productivity. It is crucial for a global joint 497 

action on karst environmental protection, otherwise gains in one area can be easily offset 498 

by loss in other areas. These analyses have immediate implications for societal grand 499 

challenges in relation to climate change mitigation as formulated by the UN Sustainable 500 

Development Goals. 501 

Our study found that these satellite-derived products were easy to characterize 502 

spatial differences in vegetation productivity across global karst ecosystems (Figs. 1 503 

and 2). However, contrasting performances were revealed when such products aimed 504 

to capture interannual or long-term dynamics, just like Figs. 5 and 6 showed that these 505 

remote sensing variables exhibited significantly different trends both globally and in 506 

different countries. Compared with the MODIS GPP product, the SIF observations 507 

indirectly confirmed the better performance of the VPM GPP results (Chen et al., 2019). 508 

It can be ascribed to an improved light use efficiency parameter with the separate 509 

treatment for C3/C4 photosynthesis pathways in the VPM model. Thus, the knowledge 510 

derived from the global assessment herein can improve our understanding of both global 511 

and regional ecosystem dynamics. Meanwhile, appropriate ecosystem management can 512 
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help to ensure regional ecological security and sustainable development. Nevertheless, 513 

it is necessary to take into account the country's own level of socio-economic 514 

development and the difficulty of restoring karst areas in the region. This forms an 515 

important foundation for a better management of karst ecosystems that include an 516 

effective mitigation of vegetation degradation.  517 
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