
����������
�������

Citation: Wu, K. Multi-Messenger

Astrophysics of a Millisecond Pulsar

Orbiting around a Massive Black

Hole. Universe 2022, 8, 78.

https://doi.org/10.3390/

universe8020078

Academic Editors: Sergei B. Popov

and Ziri Younsi

Received: 26 November 2021

Accepted: 8 January 2022

Published: 27 January 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

universe

Article

Multi-Messenger Astrophysics of a Millisecond Pulsar Orbiting
around a Massive Black Hole
Kinwah Wu

Mullard Space Science Laboratory, University College London, Holmbury St Mary, Surrey RH5 6NT, UK;
kinwah.wu@ucl.ac.uk

Abstract: Extreme-mass-ratio and intermediate-mass-ratio binaries with a millisecond pulsar are
gravitational-wave sources that emit also electromagnetic radiation. The millisecond pulsars in these
binaries have complex orbital and spin dynamics, which are observable because of spin–orbit and
spin–spin coupling (through spin–curvature interaction). The strengths of the couplings generally
depends on the mass ratio between the pulsar and the black hole. The narrow mass range of neutron
stars gives an advantage in parameter extraction as it greatly reduces the search space, in particular,
in the determination of the black-hole mass, in gravitational wave experiments and radio pulsar
timing observations. Extreme-mass-ratio and intermediate-mass-ratio binaries with a millisecond
pulsar will help to resolve the astrophysical problems, concerning the applicability of the M-σ
relation for galactic spheroids extending to the very low-mass galaxies and whether or not low-mass
dwarf galaxies and globular clusters would harbour a nuclear intermediate-mass black hole. The
high-precision that can be achieved in gravitational wave experiments and radio pulsar timing
observations will provide an opportunity to directly detect gravitational clock effects that are arisen
from spin couplings. Radio monitoring of the orbital and spin evolution of the millisecond pulsar
in an extreme-mass-ratio binary can be used as a bootstrap method for correcting the drifts in the
phases in the gravitational waves from the extreme-mass-ratio and intermediate-mass-ratio binaries
caused by self-force.

Keywords: black hole physics; pulsars; gravitational waves; gravitation; time; relativistic processes

1. Introduction

Extreme-mass-ratio binarys (EMRBs) and intermediate-mass-ratio binarys (IMRBs)
are gravitational wave (GW) sources that are expected to be detected by the future space
GW observatory Laser Interferometric Space Antenna (LISA) (see [1,2]). EMRBs and IMRBs
containing a millisecond pulsar (MSP) are particular important, as the presence of the
pulsar (a neutron star) guarantees an electromagnetic counterpart of these GW sources.

These binaries are a useful apparatus for the studies of various astrophysics and
fundamental physics due to the stability of the MSPs’s rotation (see, e.g., [3]), which
provides a reliable local timing reference. Information regarding the system dynamics
can be extracted from the GWs and independently from the MSP’s pulsed radio emission.
Certain system parameters, such as the black hole (BH) mass, can also be determined from
the GWs and the MSP’s pulsed radio emission in high precision.

Studies of test objects orbiting around a BH (as in the EMRB, IMRB, extreme-mass-
ratio-inspiral (EMRI) and intermediate-mass-ratio-inspiral (IMRI) systems) often put focus
on the relativistic dynamics or on the GWs of the system (e.g., [4–6]). The test object is often
generic, without specifying whether it is a BH, a neutron star or simply a “particle”. BHs
are usually not directly observable when they are not accreting gas. In contrast, neutron
stars can be observed across the electromagnetic spectrum ranging from radio wavelengths
to gamma-ray wavelengths.

MSPs have rotational periods of ∼(1.4–30) ms (see [3,7]), and PSR J1748−2446ad, the
fastest spinning MSP known to date, has a rotational angular speed of 2π(716) s−1 [8],

Universe 2022, 8, 78. https://doi.org/10.3390/universe8020078 https://www.mdpi.com/journal/universe

https://doi.org/10.3390/universe8020078
https://doi.org/10.3390/universe8020078
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/universe
https://www.mdpi.com
https://orcid.org/0000-0002-7568-8765
https://doi.org/10.3390/universe8020078
https://www.mdpi.com/journal/universe
https://www.mdpi.com/article/10.3390/universe8020078?type=check_update&version=1


Universe 2022, 8, 78 2 of 16

corresponding to a speed almost 20% of the speed of light at the pulsar’s rotational equator.
In a EMRB, the MSP and the BH are in close proximity, and strong spin couplings facilitate
the exchange of angular momentum between the MSP, the BH and the binary orbit. The
angular-momentum exchange will lead to complex orbital and spin dynamics of the MSP,
and, in some situations, the orbit and spin precessions of the MSPs will show chaotic
patterns (see [9–11]). These dynamical behaviours of the system will be reflected in the
beaming of the pulsed radiation from the MSP (see, e.g., [12,13]).

While the terms spin–spin and spin–orbit couplings have captured some aspects of
the spin–curvature interaction between the MSP and the BH, the two objects are subject to
a joint gravity and the spin–curvature interaction cannot always be linearly separated into
independent components. Nonetheless, the spin couplings will generate forces/torques on
the MSP that cannot be eliminated via co-ordinate transformation.

In the presence of these forces/torques, the motion of MSP is no longer along a
geodesic in space-time. It is described by a world line instead, though the equations of
motion (EOMs) of the MSP are still obtained from the conservation laws. If the self-gravity
is ignored, the orbital and spin evolution of MSP under the gravity of a massive BH, can
be determined using the Mathisson-Papapetrou-Dixon (MPD) equations [14–16], with an
appropriate choice of spin supplementary condition (SSC).

In astrophysics, measuring the masses of the nuclear BH in galaxies or stellar systems
is often non-trivial, and in fundamental physics, measuring time accurately in a non-
stationary gravitational field is enormously challenging. The multi-messenger studies of
EMRBs containing a MSP would provide new opportunities to resolve these astrophysics
and fundamental physics problems.

This work examines how the multi-messenger studies of EMRBs with a MSP would
help to verify the extension of the M-σ relation for galactic spheroids to the very low-mass
dwarf galaxies and whether or not intermediate-mass nuclear BHs reside in low-mass
galaxies and globular clusters. It also accesses the observability of gravitational clock
effects arisen from spin couplings in EMRBs and IMRBs and the possibility of obtaining a
bootstrap scheme to correct self-force effects in the GWs from EMRBs that contain a MSP
using radio pulsar monitoring observations

2. Orbital and Spin Dynamics of Extreme-Mass-Ratio Binaries

The [− + ++ ] metric signature and, unless otherwise stated, a natural unit system
with unity speed of light c and gravitational constant G, i.e., c = G = 1, are adopted. The
Schwarzschild radius of a BH, with a mass M, is therefore rs = 2M. The mass of the pulsar
is fixed to be m = 1.5 M� and the radius of the pulsar is assumed to be Rns = 10 km (see,
e.g., [17]). The dimensionless spin of the pulsar with spin period Pns is

ŝ =
s

mM
= 5.68× 10−7

(
1 ms
Pns

)(
106 M�

M

)
(1)

(with the pulsar treated as a uniform solid sphere). Without losing generality, the spin
period of the pulsar is fixed to be Pns = 1 ms in the calculations. Pulsars with this spin
period are referred to as MSPs hereafter, unless otherwise stated. The configuration of the
binary is shown in Figure 1.

In EMRB and EMRI systems, m� M, and the MSP can be considered as a spinning
test mass interacting with a stationary background gravitational field provided by a rotating
(Kerr) BH. In a stationary Kerr space-time, the line element is

−dτ2 =−
(

1− 2Mr
Σ

)
dt2 − 4aMr sin2 θ

Σ
dtdφ +

Σ
∆

dr2 + Σdθ2

+

(
r2 + a2 +

2a2Mr sin2 θ

Σ

)
sin2 θ dφ2

(2)
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in Boyer–Lindquist coordinates, where Σ = r2 + a2 cos2 θ, ∆ = r2 − 2Mr + a2, a (≡ J/M)
is the Kerr parameter of the BH, J is the angular momentum of the BH and (r, θ, φ) is
the spatial 3-vector in (pseudo-)spherical polar coordinates with the BH centre as the
origin. The point-mass approximation is generally used in the calculations in this work,
except in explicitly stated situations, where higher-order interactions or self-force effects
are discussed.

spinning black hole

spinning neutron star 

elliptical orbit

hyperbolical orbit 
(scattering)

before

after

Figure 1. An illustration of an extreme-mass-ratio system consisting of spinning neutron star, of mass
m, in an elliptic or a hyperbolic orbit around a spinning massive black hole, of mass M. The spin axes
of the neutron star and the black hole are represented by the purple arrows.

2.1. Mathisson-Papapetrou-Dixon Formulation

The orbital motion of a test object in a stationary gravitational field is a free fall,
i.e., represented by a geodesic in space-time. If the test object is rotating, there will be
forces/torques on the object, arisen from spin couplings. These forces/torques will cause
the object to deviate from a geodesic motion. The spin–orbit and spin–spin couplings
(as the leading orders of spin–curvature coupling [18]) may be explained in terms of a
gravito-electromagnetic ananlogue (see, e.g., [19–22]), although the spins coupling, taking
account of the non-zero size of the object and the higher-order effects, would require a
more proper treatment (see, e.g., [23–25]).

The MPD formulation (see, e.g., [26]), which is constructed from Einstein’s equation
based on the conservation law, is often used to determine the orbital and spin dynamics
of rotating test objects in a stationary gravitating field. This gives the EOMs a MSP in a
gravitational field provided by a Kerr BH:

ṗµ = −1
2

Rµ
ναβuνsαβ +Fµ ; (3)

ṡµν = pµuν − pνuµ + T µν (4)

Refs. [14–16], with the Dixon force Fµ and the Dixon torque T µν

Fµ≡ −1
6

Jαβγσ∇µRαβγσ ; (5)

T µν≡ 4
3

Jαβγ[µRν]
γαβ (6)

(see, e.g., [27]). Here, uµ = dxµ/dτ is the unit tangent vector along the worldline of the
centre of mass of the MSPs, and the “over-dot” above the variables represents a covariant
derivative along this worldline (i.e., ṗµ ≡ uν∇ν pµ), and Jαβγσ is the quadrupole tensor of
the MSPs. For the quadrupole induced by spin-coupling with gravity,

Jαβγσ = 4υ[αχ(υ)β][γυσ] (7)
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(see [28]), and

χ(υ)βγ =
3
4

CQ

m

[
sβsγ − 1

3
s2
(

gβγ + υβυγ
)]

, (8)

where υα = pα/m and
√−pµ pµ = m. The polarisability constant CQ is determined by

the structure, and hence the equation of state, of the MSPs. It is normalised such that
CQ = 1 corresponds to a BH. For neutron stars, CQ ∼ (3.1–7.4) (see [29,30]), and CQ = 6,
appropriate for strong spin-couplings, was adopted by Li et al. [27] in the study of
hyperbolic EMRB systems (see also Kimpson, Wu and Zane [31] for the systems with
bounded orbits with the inclusion of the mass quadrupole).

In the MPD formulation, the EOMs are not a set of close first order differential equa-
tions. There are 18 variables but only 14 independent equations. Four additional indepen-
dent equations are therefore required, and they can be provided by introducing a SSC. A
commonly used SSC is the Tulczyjew–Dixon (TD) condition (see [32–34]), which states

sµν pν = 0 , (9)

and it is adopted in the calculations shown in this work. This projection yields

sµ = − 1
2m

εµναβ pνsαβ ; (10)

sµν =
1
m

εµναβ pαsβ , (11)

in which the σ0123 = +1 permutation is adopted for the Levi–Civita tensor, i.e., εµναβ =√− g σµναβ. With the implement of TD SSC, the dynamic equations for the orbital and spin
evolution of the MSP may then be expressed as

dpα

dτ
=− Γα

µν pµuν + λ

(
−1

2
Rα

βµνuβsµν +F α

)
; (12)

dsα

dτ
=− Γα

µνsµuν

+ λ

[(
− 1

2m2 Rγβµνuβsµν +Fγ

)
sγ pα − 1

2m
εα

βµν pβT µν

]
. (13)

The dynamics equations above contain a parameter switch λ, which was introduced by
Singh [35] to suppress spin–curvature coupling and was also used by in some later studies,
(see, e.g., [36,37]) for demonstrative purposes. Spin-curvature coupling is fully considered
when λ is set to unity, and spin–curvature coupling is ignored when λ is set to zero.
Quadrupole-curvature coupling is included when both CQ and λ are both non-zero, and
quadrupole-curvature coupling is ignored when CQ equals zero regardless of the value of
λ (see [27]).

2.2. Orbital and Spin Dynamics of Bound and Unbound Systems

A non-rotating test object revolving around a BH follows geodesics in space-time, if
the gravitational radiation and its back reaction are ignored, and its dynamic is described
by Equation (12) with λ = 0. The motion of the test object is confined in a plane, i.e.,
a consequence of conservation of orbital angular momentum (as measured by a distant
observer). The above would not hold if the test object is rotating, and test object will interact
with the binary system through spin–orbit and spin–spin (via spin–curvature coupling).

Orbital angular momentum is no longer a conserved quantity in the presence of spin-
couplings, and, as a consequence, the MSP’s orbit becomes non-planar and non-circular.
Figures 2 and 3 show the orbits of a MSP (with a spin period of 1 ms) around a more
massive Kerr BH (of a mass M = 2× 106 M�, 105 M� and 103 M�) with a spin parameter
|a/M| = 0.99.
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As shown, the orbits are non-circular and not close. They do not lie on a plane. The
orbits appear to show more complex patterns when for larger m/M ratios. Moreover,
orbits that are retrograde with respect to the BH spin, (a/M = −0.99) show stronger
deviations from circular motion than orbits that are prograde with respect to the BH spin
(a/M = +0.99). The MSP’s spin would precess and nutate when the MSP revolves around
a black hole. Figure 4 shows the precession and nutation of the MSP’s spin. The spin
precession and nutation depend on the strength of the spin–curvature coupling and hence
on the separation between the MSP and the BH. However, the trend of dependence is not
obvious.
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Figure 2. Orbits of MSPs around a Kerr BH with a spin a/M = +0.99 (prograde orbit with respect
to the BH spin, upper panels) and −0.99 (retrograde orbit with respect to BH spin, lower panels).
The black hole masses are 2× 106 M�, 105 M� and 103 M� (left to right). The mass of the MSP is
m = 1.5 M�. The spin period of the MSP is 1 ms, and the spinning axis is tilted at an angle of π/4
toward the BH initially. Adopted from Singh, Wu and Sarty [37].
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Figure 4. Precession and nutation of the MSP spin for a MSP in 100 quasi-circular orbits around a
Kerr BH with a/M = 0.998. The semi-major axes of the MSP orbits are r/M = 10, 100 and 1000 (from
left to right). Adopted from Kimpson, Wu and Zane [11].

The orbit and spin dynamics of a rotating object around a massive gravitating object
is intrinsically chaotic, because of the effective gravitational potential, even considering
only spin–orbit coupling (see, e.g., [22]), i.e., ignoring the spin–spin and higher-order spin
couplings. Thus, a MSP orbiting around Kerr BH is expected to show complex and even
chaotic patterns in the precession of the MSP’s orbit and spin.

Figure 5 shows the comparison of the orbital dynamics of EMRBs in the presence and
in the absence of spin couplings for both elliptical and hyperbolic orbits. The spin couplings,
when present, are considered up to a quadrupole order (with CQ = 6). As shown, the orbits
are planar when spin couplings are absent (top panels, Figure 5). In the cases of elliptical
orbits, the complex orbital patterns is a manifestation of general relativistic precession (cf.
the precession of Mercury’s orbit around the Sun). When the spin–curvature couplings are
present, the orbits of the MSP are not confined to a plane in both the elliptic and hyperbolic
cases (bottom panels, Figure 5). The orbit also precesses, i.e., the orientation of the normal
vector of the orbital plane is no longer fixed.

Some Remarks on the Spin Supplementary Conditions

The Mathisson–Pirani SSC [15,38] is an alternative to the Tulczyjew–Dixon SSC [33,34]
adopted above. It assumes that sµνuν = 0, instead of sµν pν = 0. Examples of other
commonly used conditions are the Cornaldesi–Papapetrou SSC [39], the Newton–Wigner
SSC [40] and the Ohashi–Kyrian–Smerák SSC [41,42]. These SSCs generally take the form:
sµνVν = 0, where Vν is a time-like vector, and they generally give acceptable physics
solutions to the MPD equations (see [5,43–45] for discussions of various SSCs).

The momentum of the test object is

pµ = muµ − uν
D sµν

dτ
. (14)

The quantity m = −pνuµ will become the ordinary rest mass of the test object when the
spin of the object approaches zero (see, e.g., [46]). Spin-curvature couplings will generate
forces/torques on a spinning object, which has a non-zero physical extent, and the object
will be pushed away from geodesic motion. If omitting the effects caused by the emission
of GW and the presence of self-forces, then

D sµν

dτ
≈ 0 , (15)
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keeping on the first leading order term (see, e.g., [5]). Thus, m is a constant of motion. It
follows that pµ ≈ muµ, and sµν is parallel transported along uµ, i.e., sµνuν ≈ 0, and hence,
the Mathisson–Pirani condition and the Tulczyjew–Dixon condition reconcile.
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Figure 5. Comparison of the elliptical (left and middle panels) and hyperbolic orbits (right panels)
of a 1-msMSP in the vicinity of a 106-M� Schwarzschild BH, in the absence of spin coupling (λ = 0
and CQ = 0, top panels) and in the presence of quadrupole-order spin coupling (λ = 0 and CQ = 6,
bottom panels). For the elliptical orbits, 50 cycles were shown. The maximum orbital distances to
the BH are about 50 M and 20 M (left and middle panels, respectively), and the minimum distances
to the BH are about 10 M (for all cases regardless of the orbits being elliptical or hyperbolic. Cases for
three initial speeds, of 10km s−1, 104 km s−1 and 105 km s−1 are shown. The plots are provided by
Kaye Jiale Li (UCL-MSSL).

3. Multi-Messenger Astrophysics and Physics
3.1. Millisecond Pulsars as High-Precision Clocks

MSPs are extremely stable gyros, with the drift of their spin periods about 1 cycle over
the Hubble time (see, e.g., [3] for a review). The rotational stability makes the MSPs among
the most reliable, high-precision clocks in the Universe [3,47–49]. The predictability of the
spin evolution of MSPs, at least for most of them, implies that tracking the spin evolution
of MSPs requires only infrequent monitoring [47]. Combining high-precision pulsar timing
analyses and high-precision measurements in GW observations, the extreme-mass-ratio
systems will be a means for us to tackle some of the challenging important problems in
astrophysics and fundamental physics.

Timing analysis of MSPs generally requires the integration of streams of signals over a
large number (∼104) of pulsation cycles, i.e., not relying on the arrival of single individual
pulses (see, e.g., [50] for the determination of the complex orbital dynamics of the triple
system containing the 2.73-ms MSP PSR B1620-26). Thus, a sufficient number of pulse cycles
are required to be registered over the period of the GWs, so that we construct meaningful
joint analysis in high timing precision, using the information extracted from the GWs and
electromagnetic waves.
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The orbital period of the MSP around the BH

Po ≈ 9.8π (2χ)3/2
(

M
106M�

)
s , (16)

with χ = Ro/rs, where Ro is the orbital radius of the MSP, and rs (=2 M) is the Schwarzschild
radius of the BH. Thus, for M = 106 M� and χ = 10, the number of pulses from a 1-ms
MSP to be tracked in one orbital revolution will be about 2.75× 106.

For a quasi-circular orbit, the ratio of time scale of GW loss to the orbital period is
roughly given by

τgw

Po
∼ 5v5/2

192π

(
M
m

)(
M

m + M

)1/2
, (17)

where v = r̄/M and r̄ is the mean orbital separation [37]. For (M/M�) ∼104–106 and
(r̄/M) ∼10–100, τgw/Po ∼104–109. Thus, the fraction of orbital energy loss to emission of
GW is insignificant, for the purposes of the astrophysical problems considered below.

3.2.M-σ Relation of Galaxies and Intermediate-Mass Black Holes in Galactic Spheroids

Observations showed that large galaxies (those with masses above ∼1010 M�) gener-
ally harbour a massive BHs at their centres. The masses of these nuclear BHs are found
to correlate with the dynamical properties of the galaxies, and hence the mass of their
galactic spheroid components (see [51–53]). This correlation is manifested in an empirical
M− σ relation, which suggests a co-evolution of galactic spheroids and their nuclear BH.
(HereM is the mass of the nuclear BH, and σ is velocity dispersion of stars in the galactic
spheroid.)

Studies have indicated that this empirical relation may not uniformly hold for all
types of galaxies, and it seems to deviate at the low-mass end where the dwarf galaxies are
located (see, e.g., [54]). Some low-mass galaxies are found to have a dense stellar cluster
at their centre instead of a nuclear BH (see [55]), though some fraction of dwarf galaxies
would contain a nuclear BH. If theM− σ can be extrapolated beyond the very low-mass
galactic spheroids to the globular clusters (see [56–58]), then the nuclear BHs should have
masses ∼102–104 M� [59,60].

BHs in this mass range are generally referred to as the intermediate mass BH (IMBHs),
distinguishing them from the stellar-mass BHs in X-ray binaries, e.g., GRO J1655-40
(see [61]), and the supermassive BH in AGN, e.g., the M87 AGN [62]. It is still under
debates if most of the very low-mass galactic spheroids and and some globular clusters
would contain an IMBH or not at their centres.

A BH can grow its mass by accreting gas. It can also gain mass by coalescing with
another BH or by capturing stars in its neighbourhood, and the latter would occur in dense
stellar environments, e.g., the central regions of ultra-compact dwarf galaxies or the cores
of globular clusters, if a nuclear BH is present. LIGO observations have shown that the
merging of two neutron stars can produce a BH [63] and the coalescence of two BHs will
form a more massive single BH (see [64]). The recent LIGO discovery of a remnant BH of
mass ≈ 142M� from the coalesce of two BHs [65] provide an unambiguous evidence for
the existence of IMBHs, at least in the mass range of ∼100–200 M�.

Determining the masses of BHs is a challenging task. There are substantial uncer-
tainties, especially in deriving the stellar kinematics associated with the nuclear BHs in
the low-mass galaxies using optical/IR spectroscopic data (see, e.g., [52,54,66]). Accurate
determination of the nuclear BH masses in the low-mass galaxies is crucial for establishing
a properM-galaxy relations (including theM− σ relation) across the mass spectrum of
galaxies and for verifying the presence of nuclear IMBHs, at least in a fraction of the very
low-mass galaxies, and perhaps also in the globular clusters.

GW experiments can determine the masses of the objects in a binary system. In the
context of measuring the masses of nuclear BHs in galaxies, the accuracy would maintain
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at similar levels across the BH mass spectrum from the IMBHs to the supermassive BH. If a
pulsar is present, orbiting around the BH, i.e., forming an EMRB or an IMRB, the BH mass
can also be determined independently from pulsar timing observations. Spin couplings
depend on the mass ratio between the two components in a binary (see, e.g., [22,67,68]). A
MSP will provides an advantage over a BH in the EMRB or IMRB, because of its narrow
mass range around 1.5 M� would greatly reduce the parameter space of consideration.

Figure 6 shows the variation in the time dilation factor of the pulsed emission from a
pulsar revolving around a non-rotating BH over the pulsar’s orbital cycle (see [69]). The
orbital variations in the time dilation factor of the pulse emission and the orbital period are
measurable, and hence the BH mass and the viewing inclination of the pulsar orbit can be
determined in the pulsar timing observations. For the rotating BH, the orbital variations
in time dilation factor is affected by frame dragging and spin couplings. This introduces
additional variations in the time dilation factor. The BH mass can still be determined,
together with the BH spin as an additional undetermined variable.

The variations associated with the off-plane orbital motion caused by spin couplings
(see Figures 3 and 5) will alter in the arrival time of the pulses in the radio emission from the
pulsar. The off-plane variations shown in Figure 3 are of the order of 10 km, corresponding
to a light travelling time of ∼30 µs. Variations of such time scales can be easily resolved in
the pulsar timing observations.

Figure 6. Time dilation factor of pulsed radiation from a pulsar located at different orbital phases.
The black curve corresponds to the case that the pulsar orbits around a Schwarzschild black hole
at a radial r = 25M, and the colour curves corresponding to a mass distributions within the same
orbital radius (see [69] for details). The viewing inclination angles are i = 65◦ (left panel) and i = 85◦

(right panel).

3.3. Gravitational Physics—Possibilities and Opportunities
3.3.1. Time Dilation and Gravitational Clock Effects

Radiation emitted from the vicinity of a BH will be redshifted when it reaches a distant
observer. It is a time dilation effect, caused by difference between the time measured by
the clock of the emitter deep in the BH’s gravitational well and the time measured by the
clock of the observer far away. This clock effect implies that the spin period measured by
a distant observer is longer than the proper spin period of a pulsar orbiting around a BH
as that in an EMRB or IMRB. In relativistic binary systems, additional gravitational clock
effects can also be caused by spin couplings. These effects can be illustrated as follows.

Consider first the case in which the neutron star is slowly rotating such that the
couplings related to its spin is less significant than to the other gravitational couplings.
The neutron star is then a point test mass (in contrast to the pole-dipole mass as the MSP
in the MPD formulation discussed in the previous sections). The interaction between the
neutron star’s orbital motion and the BH’s rotation leads to a difference in the periods for
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the neutron star to complete a prograde orbit and a retrograde orbit, with respect to the
BH’s spin, when measured by a distant observe. The difference of the two periods is

T+ − T− =
4π

[c]

(
J cos i
M [c]

)[
4− 2 tan2 i cos2 ϕ0

[1 + e cos(ϕ0 − g)]2
− 3

(1− e2)1/2

]
, (18)

as given by Mashhoon, Iorio and Lichtenegger [70], where the prograde orbit is denoted by
“+” and the retrograde orbit by “−”, J is the proper angular momentum of the BH, e is the
orbital eccentricity, i is orbital inclination relative to the BH’s spin axis, (ϕ− g0) is the true
anomaly, ϕ0 is value of the azimuthal angle ϕ at t = 0, and g0 = (g− f ). The explicit form
of f can be found in Mashhoon, Iorio and Lichtenegger [70]1 . In the above expression and
in this subsubsection, unless otherwise stated, we keep the gravitational constant G and
the speed of light c explicitly, instead imposing the convention of the natural unit system,
for clarity in physics.

In terms of the dimensionless BH spin parameter a∗, which is related to a BH’s angular
momentum as J = [G]M2a∗/[c],

T+ − T− =
4π

[c]

(
J

M [c]

)
= 2π a∗

(
rs

[c]

)
= 2π a∗ ts , (19)

for a circular orbit with an inclination i = 0, where ts (= rs/[c]) is the time for light to
traverse across the Schwarzschild radius rs of the BH. The time difference depends only
on the parameters of the Kerr BH, the spin and the mass, but not the orbital radius of the
neutron star, indicating that the effect is topological. It vanishes, if the BH is not rotating
(i.e., a∗ = 0) or the traverse time ts approaches zero (when either M→ 0 or [c]→ ∞). For
the BHs relevant to the astrophysical systems considered here,

T+ − T− ≈ 31
(

a∗

0.5

)(
M

103 M�

)
ms . (20)

This time difference is non-negligible. It is about a few min for an extreme Kerr BH with a
mass similar to that of the BH in the Galactic Centre and ∼1 d for an extreme Kerr BH with
mass similar to that of the supermassive BH in the M87 galaxy.

This clock effect may be understood in the context gravito-electromagnetism. With-
out losing generality, consider that the pulsar’s orbit is circular, with a radius ro in
Schwarzschild radial coordinate, and has a zero orbital inclination. The periods of the
prograde and retrograde orbits can then be expressed as

T± = Pk (1 + Gge ± Ggm) , (21)

where Pk the Kepkerian period, given by Pk = 2π/Ωk = 2π(ro
3/[G]M)1/2, and Ωk is

the Keplerian frequency. The deviations from the Keplerian motion is represented by a
gravito-electric correction factor Gge and a gravito-magnetic correction factor Gge. The
gravito-electric effect is the same for prograde and retrograde orbits. The gravito-electric
correction factor is given by

Gge =
3
2

(
[G]M
c2 ro

)
=

3
4

(
rs

ro

)
(22)

(see [70] for the derivation). On the other hand, the gravito-magnetic correction factor is
given by

Ggm =

(
Ωk J

M[c]2

)
=

1
2

(
ΩLS

Ωk

)
=

1
2
(Ωkts) a∗ , (23)
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but the sign of the gravito-magnetic factor is opposite for the prograde orbit and for the
retrograde orbit. The gravito-magnetic effect is caused by the BH’s rotation. It is therefore
associated with the reference-frame dragging in space time (see, e.g., [20]). As shown
in Equation (23) the gravito-magnetic correction factor can be expressed in terms of the
Lense–Thirring frequency,

ΩLS =
2 [G]J
ro3 [c]2

=
(

Ωk
2 ts

)
a∗ . (24)

The gravito-electric and gravito-magnetic corrections alter the gravitational potential,
which is otherwise as that given in the Newtonian–Keplerian formulation. These alter-
nations will induce a gravitational redshift/blueshift, i.e., the amount of time dilation,
depending on interacting angular momenta—the orbital of the neutron star, L, and that of
the rotation of the BH, σ.

The effects of these angular-momentum couplings are similar to those in atoms
(see [71–74]), where the Coulomb potential is perturbed by the interactions between the
orbits and spins of the electrons and nuclei, e.g., Zeeman and hyperfine splittings (cf. con-
tunuous Stern–Gerlach effect, see [75]). Analogous to Zeeman and hyperfine splittings, the
gravito-magnetic corrections are contributed by the (s · L) and (s · σ) couplings, together
with the (L · σ) coupling (see Figure 7), where s is the spin of the MSP, L is the orbital
angular momentum of the MSP and σ is the spin of the BH.

Ls

s
<latexit sha1_base64="q7a61czfWM8ut7WYMzBrGufxvgk=">AAAB/nicbVBLSwMxGMz6rPW1Kp68BIvgqexKUY9FLx4r2Ad0l5LNZtvQPJYkK5Sl4F/x4kERr/4Ob/4bs+0etHUgZJj5PjKZKGVUG8/7dlZW19Y3Nitb1e2d3b199+Cwo2WmMGljyaTqRUgTRgVpG2oY6aWKIB4x0o3Gt4XffSRKUykezCQlIUdDQROKkbHSwD3Og0iyWE+4vWCg6ZAjOB24Na/uzQCXiV+SGijRGrhfQSxxxokwmCGt+76XmjBHylDMyLQaZJqkCI/RkPQtFYgTHeaz+FN4ZpUYJlLZIwycqb83csR1EdBOcmRGetErxP+8fmaS6zCnIs0MEXj+UJIxaCQsuoAxVQQbNrEEYUVtVohHSCFsbGNVW4K/+OVl0rmo+5f1xn2j1rwp66iAE3AKzoEPrkAT3IEWaAMMcvAMXsGb8+S8OO/Ox3x0xSl3jsAfOJ8/WgyVvg==</latexit>�

absence of  
spin coupling

presence of 
spin coupling

spin-orbit coupling

spin-spin coupling

black hole

millisecond pulsar(s)

Figure 7. Schematic illustrations of the splitting of the gravito-magnetic correction factors (given
by 2Gem) in the presence of angular-momentum couplings. The interaction between the spin and
the orbit of the MSP is proportional to (s · L), and the interaction between the spins of the MSP and
the BH is proportional to (s · σ). There will be different gravito-magnetic correction factors for the
parallel and the anti-parallel states, giving rise to a relative time dilation between the two states
measured by a distant observer.

Measuring the timing difference between T+ and T− arisen from spin-couplings is
challenging (see [70,76,77]). Firstly, we need a system with two test masses orbiting in two
identical but opposite orbits around a rotating gravitating object. Secondly, we need two
stable and reliable timing references, one within the system and another associated with
the observer. However, these difficulties can be overcome if we could idenify a suitable
EMRB containing a MSP.

The MSP, which is a highly stable gyro, will provide a reliable local timing reference
within the system. The complex and chaotic nature of the MSP’s orbital motion implies that
the flipping of the angular momentum L will lead to different combinations of (s · L) and
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(L · σ) coupling, and hence detectable change in the combined gravito-magnetic correction
factor. While the proper spinning period of the MSP is stable, the spinning period of the
MSP measured by the observer will depend on gravito-magnetic correction arisen from the
combination of (s · L), (s · σ) and (L · σ) couplings. This could lead to measurable period
differences (see Equation (20)) in EMRB and IMRB, and the presence of a MSP, which
provides the timing reference, makes possible the measurements of such gravitational clock
effect.

3.3.2. Self-Force in Gravitational Waves

The MPD formulation has assumed that the orbiting MSP is in a stationary space time
provided by the BH, ignoring that the space time is dynamical with the gravity contributed
also by the spinning MSP, i.e., the presence of a self-force. The dynamics of the MSP is
determined by a non-linear combination of gravity due to the MSP and the BH. Studies of
self-force in EMRI systems and the comparison of its effect with those arisen from spin–orbit
coupling have been conducted in many studies (e.g., [78–81]).

The self-forces may be broadly divided into two categories, one associated with
dissipative processes and another associated with non-dissipative processes. The leading
order of dissipative self-force is the radiative reaction (see [80]) caused by the emission of
GWs, which carry away energy and angular momentum from the system (see [82–86]). The
dissipative self-force is in general stronger than the non-dissipative self-forces such as those
caused by spin couplings.

For a MSP in quasi-circular orbits with an effective radius r̄, the precession period of
the MSP spin is given by

Psp ≈
2π

〈ωLN〉
∼ 4π

3
r̄5/2

M2 (m + M)1/2 (25)

in terms of the system parameters. Here ωLN = (3/2)(M/r̄3)(|LN|/m) is the precession
frequency (see [36,72,87]), 〈ωLN〉 is the average of it over a MSP orbital cycle, LN is the
Newtonian angular momentum. The ratio of time scale of radiative loss due to the emission
of GW to the MSP’s spin precession period is therefore

τgw

Psp
∼ 3 v3/2

128π

(
M
m

)(
M

m + M

)3/2
, (26)

where v = r̄/M. For m = 1.5 M�, M/m > 106–109 and v ∼50–100, the ratio τgw/Psp >
105. This analysis shows that the MPD equations are justified for the calculations of orbital
and spin dynamics of the MSP, despite the presence of the dissipiative self-force.

The effect of dissipative self-force would, however, be detectable in the monitoring
observations of the MSP, when tracking its spin precession over a substantial number
(∼105) of cycles. As timing analysis of pulsed radio emission from MSP does not require
knowing pre-requisite knowledge of the emission wave-forms and their drifts such as those
arisen from radiative reaction, unlike in the GW experiments, observations of evolution of
the orbital and spin dynamics would give us a means to empirically derive a correction
scheme for the dissipative self-force on the wave-form drift in the GWs from the EMRBs
containing an observable MSP.

The non-dissipative self-force, to the first order, is comparable to the equivalent force
arisen from the spin–orbit coupling (see [78,86,88]), in terms of mass ratio m/M. For
the EMRB and EMRI binaries considered here, the leading term of the correction to the
precession rate of the MSP’s spin, due to the conservative part of the first order self-force, is
roughly given by

ω1st ∼
( m

M

) M
r̄

ωLN (27)
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(see [67,89]). Comparing this with Equation (25), we may conclude it is smaller than that
due to MSP’s spin ωsp by a factor of M/r̄ in addition to mass-ratio factor (see [36]).

The rough analysis above has assumed a quasi-circular MSP orbit, and the effects of
the self-forces depends on the orbital eccentricity. It is important to include the effects of
the self-force when modelling the secular evolution of the orbital and the spin dynamics of
MSP in an EMRB or IMRB, in particular, for generating the GW templates.

In addition to the time shift and width variation of the pulses due to the precession
and nutation of the spin, and the orbital deviation from geodesic motion (studied in [37]),
the bending of light (i.e., gravitational lensing) due to the black hole’s gravity can be
non-negligible. Nonetheless, monitoring of the evolution of pulsed radio emission from
the MSPs in EMRBs and IMRBs will give us a useful empirical tools to gauge and adjust
the theoretical modelling of the GWs from these binaries in the presence of spin-coupling
and self-forces.

4. Summary and Conclusions

EMRBs and IMRBs containing a MSP are GW sources with an observable electromag-
netic counterpart. The spin–spin and spin–orbit coupling (via spin–curvature interaction)
between the MSP and the BH lead to non-planar orbital motion and precessions in the
spin and the orbit of the pulsar. The couplings have observational signatures that can be
identified in the GWs from the binary and pulsed radio radiation from the MSP. With the
high-precision that can be achieved in GW experiments and radio pulsar timing observa-
tions, the EMRBs and IMRBs containing a MSP provide us a useful mean to tackle some
challenging problems in astrophysics and in fundamental physics.

An accurate determination of the mass of the nuclear BH in the low-mass galactic
spheroids will better establish the applicability of the M− σ relation for spheroids of
low-mass dwarf galaxies. The identification of nuclear BHs with masses of ∼103–104 M�
in low-mass galaxies or globular clusters will confirm the presence of IMBHs. It will also
provide estimates to the occupancy of nuclear BH in these stellar systems. The radio pulsar
timing and GW observations of EMRBs with a MSP will give us the opportunity to detect
gravitational clock effects arisen from spin couplings directly.

Monitoring of the evolution orbital and spin dynamics of the MSP in EMRBs using
radio observations will track the phase drifts in the orbital motion of MSP caused by self-
force effects. This will provide a means to derive an empirical scheme to correct for the
self-force effects in the GW observations of EMRBs and IMRBs. In summary, the presence of
a MSP (a fast spinning neutron star) in the EMRBs and EMRIs places this group of binaries
into a special class of relativistic systems, and we can take advantage of high precision
multi-messenger observations to tackle various challenging problems in astrophysics and
fundamental physics.
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Note
1 We have adopted the expression for the (T+ − T−) given in Mashhoon, Iorio and Lichtenegger [70] to illustrate the clock effect

arisen from the coupling between the pulsar’s orbit and the BH’s spin, and alternative derivations would lead to different
expressions.
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