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Abstract

This paper presents a novel three-dimensional fluid–structure interaction (FSI) approach, where the meshless smoothed
article hydrodynamics (SPH) method is used to simulate the motion of incompressible fluid flows, whilst structures are
epresented by a simplified approach based on particle–spring systems. The proposed FSI technique allows to use independent
patial–temporal resolutions for the fluid and structural computational domains. The particle–spring elastic constants are
alibrated and relationships with the mechanical material properties, Young’s modulus and Poisson’s ratio, are determined.
luid and structure computational domains are separated by interfaces made of triangular elements whose position is updated
uring the simulation following the structural deformation. The coupling of the two media at the fluid–structure interfaces is
andled by the introduction of solid and fluid boundary particles. This approach, automatically and without introducing further
omplexity, avoids the penetration of fluid particles into the solid domain. The efficiency and accuracy and the present method
re validated with analytical/benchmark solutions from the literature.
2022 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license

http://creativecommons.org/licenses/by/4.0/).

eywords: Smoothed particle hydrodynamics (SPH); Fluid–structure interaction (FSI); Particle–spring systems; Particle-based FSI; FSI
enchmark

1. Introduction

Fluid–structure interaction (FSI) is a key factor in many multi-physics problems, particularly in cardiovascular
iomechanics. In this framework, modeling pulsatile blood flow within complex domains, such as deformable vessels
r heart valves, is challenging and requires advanced FSI strategies. On one hand the walls move and deform under
he mechanical actions exerted by the blood, on the other hand the structure movement consequently influences the
aemodynamics. As a result, a two-way interaction between the fluid and the deformable structure occurs at the
nterface separating the two phases, where a suitable and sufficiently accurate matching solution must be imposed
n a consistent and physical manner.

Eulerian formulations are traditionally adopted for the fluid modeling, whilst structures are commonly more
onveniently described through Lagrangian approaches. The matching of the two media is usually achieved
mploying Arbitrary-Lagrangian–Eulerian (ALE) techniques [1–4] or Immersed Boundary (IB) strategies [5].
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An alternative FSI approach is based on the description of both fluid and structure phases through a Lagrangian
ormulation. Fully-Lagrangian solvers can lead to an efficient and consistent imposition of fluid–structure interface
oundary conditions, especially when large deformations are considered, thus avoiding mesh distorsion issues at
he FSI interface [6–9].

In the framework of the Lagrangian particle method, smoothed particle hydrodynamics (SPH) has recently
merged as one of the most efficient mesh-free techniques for simulating fluid flows [10]. Originally developed in
strophysics by Lucy [11] and Gingold and Monaghan [12], it was more recently successfully employed in a wide
ange of problems in engineering and sciences [13], including several FSI applications [14]. As a mesh-free particle
ethod, SPH conveniently treats multi-phase flows, highly complex geometries and large deformations, efficiently

apturing rapidly moving interfaces; therefore, complex FSI problems can be reliably simulated. Exploiting these
dvantages, a considerable number of SPH-based techniques for solving FSI problems were developed in the
ast. Several studies have adopted a partitioned approach, where SPH is used to solve the fluid domain, whilst a
eparate solver based on a different numerical method is employed to analyze the solid domain. Although partitioned
pproaches allow the selection of specialised solvers for each domain, ensuring the coherent transfer of information
load, displacement and velocities) through the interface between the two solvers is a very challenging task,
specially when the two solvers are very different in formulation. This is the case when coupling the SPH meshless
ethod with a mesh-based one, such as the finite element method (FEM), which is the most established approach for

tructural dynamic simulations [15–21]. Further complexity is introduced by the potentially large element distortion
hat characterizes FEM methods, and the need to enforce appropriate master–slave contact algorithms between the
wo solvers, which require the determination and application of contact forces to prevent the fluid particles from
enetrating into the solid domain [15,16]. Ghost particles schemes were introduced by other authors in the attempt
o better address these issues [20,21]. An alternative approach was proposed by Sun et al. [22], based on coupling
f a δ-SPH scheme for complex multi-phase flows and a Total-Lagrangian Particle solver for elastic structures, for
he modeling of violent FSI problems. SPH was also integrated with the element bending group (EBG) method for

odeling the interaction between viscous flows and membrane structures. The SPH-EBG coupling approach was
riginally proposed by Hosseini and Feng [23] to model the deformation of floating red blood cells, represented
y a set of discrete particles connected by nonlinear springs. The method was successively extended by Yang
t al. [24] to study the interaction between free-surface flows and flexible structures. However, the method has been
ostly applied to two-dimensional applications. Other authors proposed monolithic approaches, where the governing

quations for fluid flow and structure displacements are solved simultaneously by a single SPH solver, both in
he weakly-compressible SPH -WCSPH- [25,26] and the truly incompressible -ISPH- [27,28] schemes. Morikawa
nd Asai [29] proposed a two-way FSI technique by coupling a total Lagrangian SPH method enforced by the
ameson–Schmidt–Turkel stabilization procedure [30], for elastic solid bodies, and the fully explicit incompressible
PH scheme [31] for the fluid domain. Their coupling technique could avoid penetration of fluid particles into the
olid body by means of a non-penetration numerical algorithm.

A different FSI approach, based on a combination of lattice Boltzmann and lattice spring models (LBM and
SM, respectively), was proposed by Buxton et al. [32] to simulate the breathing-mode behavior of an elastic shell.
he lattice spring model consisted of a network of harmonic springs that connected regularly spaced mass points.
he basic model is restricted to the simulation of solid materials characterized by a Poisson’s ratio equal to 0.25,
nd more complex many-body interactions need to be introduced to vary this value [32]. SPH was also successfully
oupled with discontinuous approaches based on the description of the solid phase through particles connected
ia spring-like forces [33–35]. However, most of the discontinuous model, such as LSM or the discrete element
ethod (DEM), cannot model solid body of arbitrary Poisson’s ratio. For example, in the FSI models of Tan and
hen [33],Wu et al. [34], which are based on coupling SPH with DEM, the Poisson’s ratio of the solid material
eeds to be kept below certain critical values in order to guarantee a non-negative spring stiffness value. In this
ramework, Ng et al. [36] proposed a different approach based on coupling SPH with Volume Compensated Particle

ethod (SPH-VCPM) where axial interactions between solid particles are introduced to model large Poisson’s ratios.
A common limitation of SPH-based FSI approaches is that the spatial and temporal resolutions are usually not

ndependent for the fluid and solid computational domains. In particular, in FSI techniques where SPH formulation
s used for representing both fluid, and solid dynamics, a uniform particle spacing is generally used, despite the need
o implement multi-resolution schemes is widely recognised [27–29]. In fact, a constant resolution approach can

esult too expansive in applications when the fluid and solid domains are characterized by different scale lengths,
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as the finest resolution required for each of the two domains needs to be applied to the whole system. In this
context, Zhang et al. [26] recently proposed a multi-resolution approach, where spatial discretisation is applied
with different resolutions to the fluid and structure. Yet, the fluid and solid discretization are not completely untied,
and a coarser resolution is required for the fluid. Therefore, this approach is not accurate in applications where
the fluid domain needs higher spatial resolution, for example when near wall flow structures need to be captured
or fluids are highly viscous non-Newtonian. The problem of the decoupling of fluid and solid particle dimensions
remains a significant issue even when SPH is coupled with other discontinuous approaches for the description of the
solid phase. In this context, a single particle size is typically employed for the solid and fluid domains [35,36]. The
use of different resolutions for the two domains introduces a number of further limitations. This is, for example,
the case of SPH-DEM approaches, where the SPH smoothing length of the fluid needs to be sufficiently larger than
the solid particle diameter [33,34]. In order to overcome the computational efforts deriving from a unique particle
dimension for the fluid and structural domains, hardware acceleration platforms, such as graphics processing units
(GPUs) have become a valid and interesting strategy. Recently, O’Connor and Rogers [37] presented a numerical
model based on a unified SPH framework for free-surface flows with flexible fluid–structure interaction, accelerated
with a graphics processing unit (GPU). The method, implemented within the open-source SPH code DualSPHysics
for weakly-compressible flows, involved a Total Lagrangian model to solve the structural dynamics and did not
require the geometrical knowledge of the fluid–structure interface.

This paper presents a new three-dimensional FSI approach, based on the coupling between ISPH for the fluid
flow dynamics and a particle–spring model for the structure movements. The proposed approach is mainly focused
on the impact of the structural deformation on the fluid dynamics. Therefore, a simplified description for the solid
phase is chosen, where structures are represented by a finite number of moving particles regularly spaced, which are
connected via spring-links, similarly to the LSM. A procedure to calibrate the spring elastic coefficients is proposed
and practical relationships relating the spring constants and the material mechanical properties are determined and
described. Differently from the common discontinuous approaches, the introduction of these relationships allows to
set a wide range of values for the Poisson’s ratio of the material. The proposed method allows to use different spatial
and temporal discretization for the fluid and the structure. This is a major advantage in a number of cardiovascular
studies, where the solid components often consist of thin structures composed of multiple layers with different
material properties and highly nonlinear constitutive laws (e.g. vessel walls, heart valve leaflets, etc.).

A new efficient and easy treatment of the interface separating the fluid and solid computational domains is
proposed. The interface is identified by boundary nodes that follow the solid deformation and apply the forces
exerted by the fluid on the structure. On the other hand, appropriate coupling conditions are imposed at the fluid
wall through the mirror particle procedure. This approach, automatically and without introducing further complexity,
avoids the penetration of fluid particles into the solid domain. This is a relevant issue of FSI partitioned approaches,
typically addressed by enforcing complex non-penetration numerical algorithms [15,16,29].

Due to its simplicity, the method is straightforwardly implementable and extendable in a WCSPH scheme as well.
Moreover, since the dynamics of both fluid and structure are modeled using particle-based methods, the proposed FSI
method can easily be parallelized on multiple Central and/or Graphical Processor Unit (CPU and GPU, respectively)
architectures. The model is validated through the Womersley’s analytical solution for pulsatile flow in a cylindrical
vessel [38] and the benchmark computational test proposed by Turek and Hron [39].

The presented FSI approach is developed and implemented in the open-source PANORMUS (PArallel Numerical
pen-souRce Model for Unsteady flow Simulations) package, distributed under the terms of the GNU General
ublic License [40], which contains a SPH solver for incompressible flows [41].

. Smoothed particle hydrodynamics

.1. Basic SPH formulation

In the present approach, the fluid domain is modeled by means of SPH numerical method. SPH is based on the
efinition of a kernel function W , with smoothing length h f , which allows to express the generic hydrodynamic
ariable a at point x through the convolution integral

⟨a(x)⟩ =

∫
a(x′) W (x − x′, h f )dx′ (1)
D

3
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where D is the fluid domain and W (x − x′, h f ) is the kernel function value depending on the distance between x
and x′. The kernel function takes null values for distances |x − x′

| larger than kh f , where k is a constant whose
alue depends on the shape of the specified kernel function. In this paper the Wendland function [42] is used (where
= 2).
In the discretized form of the scheme, the fluid domain is represented by a finite number of fluid particles which,

hile moving satisfying Navier–Stokes equations, carry fluid properties such as position, mass, velocity, pressure,
tc. Each fluid particle i has a support domain, indicated as Ωi , which includes all the neighboring j particles having
distance di j less than kh f from the i particle. In the particle approximation, the convolution integral equation (1)

or the generic i particle can be approximated as the summation over the Ni particles lying into its support domain
i

ai =

Ni∑
j=1

m j

ρ j
a(x j ) Wi j (2)

here x j is the j th particle position, ai ≈ ⟨a(xi )⟩, m j and ρ j are the mass and density of the neighboring particle
j , respectively, and Wi j = W (xi − x j , kh f ) is the value of the kernel function at the distance di j between particles

and j .
In this paper, in the starting reference configuration the fluid particles were arranged at an isotropic initial distance

x equal to kh f /2 (where k = 2 for the Wendland function). This leads to a ratio h f /∆x = 1. Although this is
slightly below the values commonly used in the literature, which typically range between 1.2 and 1.33 [43–48], it
has been shown in previous works to provide good accuracy in the solution [41,49–51], whilst limiting the number
of mirror particles to be generated (this is a major advantage when the boundaries have a heavy influence and the
ratio between the domain surface and volume is large).

First derivatives of a are obtained through the derivative of the kernel function using the Basic or Difference
Gradient Approximation (Eqs. (3) and (4), respectively)

∂a
∂x

⏐⏐⏐⏐
i
= −

Ni∑
j=1

m j

ρ j
a j

∂Wi j

∂x

⏐⏐⏐⏐
i

(3)

∂a
∂x

⏐⏐⏐⏐
i
= −

Ni∑
j=1

m j

ρ j

(
ai − a j

) ∂Wi j

∂x

⏐⏐⏐⏐
i

(4)

while the Laplacian operator at the position of the i th particle is expressed by the Morris’ formula [52]

∇
2a
⏐⏐
i =

Ni∑
j=1

2
m j

ρ j

(
xi − x j

)
· ∇Wi j

d2
i j

(
ai − a j

)
(5)

here the symbol ’·’ indicates the scalar product and ∇Wi j is the gradient of the kernel function.

.2. Boundary treatment

Additional particles, named mirror particles in the following, are generated at solid walls to impose suitable
oundary conditions. Specifically, these particles are introduced through the mirroring, with respect to the solid
alls, of the particles having distances no larger than kh f from the boundaries. In order to simplify the mirroring
rocedure, boundaries are discretized into triangles, so as to ease the identification of normal directions (they
ie in planes) and the distance from the particles to be mirrored. For more details regarding the mirror particle
rocedure, see among others [41]. In the proposed approach, fluid and solid computational domains are separated
y FSI interfaces through which the share of information (loads, displacements and velocities) occurs. The FSI
nterfaces overlap the existing fluid boundaries in contact with the structure. Therefore, these boundaries, which are
xed for rigid walls, become moving boundaries for the fluid when FSI conditions are imposed, without requiring
dditional building of interface boundary surfaces. As for fixed solid walls, virtual particles are introduced through
he mirroring of the fluid particles close to the boundary. When the no-slip boundary condition is imposed at the

all, the velocity of the mirror is set equal to 2ui −up, where up is the velocity of the effective particle generating

4
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the mirror particle and ui is the velocity of the triangle through which the mirror has been generated. The velocity
i is null for fixed walls and is equal to the rate of displacement of the solid when FSI condition is considered.

Inflow and outflow boundaries are treated in a similar way, introducing additional particles to impose the required
ressure and velocity boundary conditions. Moreover, the particles leaving or entering the domain through open
oundaries are dealt in an efficient way, satisfying the global mass conservation requirement. The procedure is
escribed in detail in [50].

.3. ISPH procedure

In the existing SPH solver contained in the PANORMUS software, a fractional-step procedure is used to solve
he momentum and continuity equations for incompressible flows [41]. The procedure allows to obtain the velocity
r+1 at the updated (r + 1)th time step as the sum of the non-solenoidal intermediate velocity u∗ and the corrective
elocity uc.

In the predictor-step, u∗ is obtained solving the momentum equations without the pressure gradient term

u∗

i − ur
i

∆t f
=

[
3
2

Dr
i −

1
2

Dr−1
i

]
+ g (6)

where ∆t f is the time step of the fluid computational model, g is the mass force per unit mass, ur
i is the i particle

velocity at the r th time step and D is the diffusive term expressed through a second-order Adams–Bashforth scheme.
By using Eq. (5), the diffusive term for the i particle can be expressed as

Di =

Ni∑
j=1

(νi + ν j )
m j

ρ j

(xi − x j ) · ∇Wi j

d2
i j

(ui − u j ) (7)

here νi is the kinematic viscosity of the i particle.
The corrective velocity field uc is irrotational and its potential ψ ∆t f is obtained solving the Pressure Poisson

Equation (PPE)

∇
2ψ = −

∇ · u∗

∆t f
(8)

hich, in the SPH approximation, reads as
Ni∑
j=1

2
m j

ρ j

(xr
i − xr

j ) · ∇Wi j

d2
i j

(ψi − ψ j ) =
1

∆t f

Ni∑
j=1

m j

ρ j
(u∗

i − u∗

j ) · ∇Wi j (9)

Eq. (9) is solved using Neumann boundary conditions at the solid walls

∂ψ

∂n

⏐⏐⏐⏐
i
=

ur+1
in − u∗

in

∆t f
(10)

here n is the direction normal to the boundary, ur+1
in and u∗

in are the normal components of the assigned wall
elocity and intermediate velocity, respectively, at the intersection point between the boundary and the normal line
tarting from the i particle. It should be noted that ur+1

in is equal to zero for fixed walls, whilst it is equal to the FSI
nterface velocity in the proposed FSI approach. On the other hand, an extrapolation from the interior of the domain
s used to obtain the intermediate velocity u∗

in [53]. The discretized Pressure Poisson equations (9) are solved using
or the whole fluid domain a single equation system whose solution is obtained through a pre-conditioned BicGStab
lgorithm [54].

In the corrector-step, the corrective velocity uc
i and the updated solenoidal velocity ur+1

i of the i particle can be
btained as

uc
i = ∇ψ∆t f ≈ −∆t f

Ni∑
j=1

m j

ρ j

(
ψi − ψ j

)
∇Wi j (11)

The updated velocity field is thus obtained as sum of the intermediate and corrective velocities
r+1 ∗ c
ui = ui + ui (12)

5
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Fig. 1. 3D sketch of the solid particles in the reference configuration. Light blue dots: solid particles; red dot: i solid particle; blue dots:
olid particles neighbor to i (dmax ≤

√
3 hs ).

The position xr+1
i of particle i can be updated using the mean velocity between the r th and (r +1)th time instants

xr+1
i = xr

i +
ur+1

i + ur
i

2
∆t f (13)

. The proposed numerical model

.1. Solid model

As mentioned in the introduction, the proposed approach is aimed at improving the accuracy of fluid dynamic
nalyzes in cases where the compliance of the structure can have a relevant effect on the fluid motion. Hence,
mplementing a complex formulation able to capture the complex constitutive laws characterizing the soft tissues

echanics is out of the current scope. Therefore, a simplified technique was employed for the representation of the
olid, based on particle–spring systems. Specifically, the solid is represented by a finite number of particles having a
onstant distance hs in the reference configuration (Fig. 1). Each solid particle is linked to the neighboring particles
f the same phase at a distance equal or lower than

√
3 hs . As a result, a solid particle internal to the domain has 26

or 8 neighboring particles in the 3D and 2D approximations, respectively. In Fig. 1, the generic solid particle i is
represented by a red dot, whilst the particles to which i is connected are represented by dark blue dots. The generic
solid particle i has associated material properties, such as mass mi and volume h3

s (hence the particle density is
ρi = mi/h3

s ).
Contrary to the SPH method, in the hypothesis of full integrity of the continuum linear elastic solid phase, the

links between solid particles were set not to change in time, so that the particle i maintains the same neighboring
particles j for the whole simulation. Each pair i − j of mass points is connected via a spring having an elastic
constant ke. Fig. 2a represents a 2D sketch of the spring system for a generic solid particle i in the reference
configuration. The rest distances from i to the j neighboring particles are denoted as l0,i j , while in the deformed
states they are indicated as li j .

Under the influence of external actions (e.g. imposed loads or displacements) the reference configuration can
change (Fig. 2b) and the spring lengths are updated accordingly. The solid structure thus deforms achieving a
configuration where these external forces are counterbalanced by opposing internal forces. Consequently, the springs

experiencing tension or compression respond by applying forces, attempting to preserve their rest length. Indicating

6
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w

a

Fig. 2. 2D sketch of the spring system centered at the particle i . (a) reference configuration; (b) deformed configuration. Blue dots: solid
particles in reference configuration; red and black dots: i particle in reference and deformed configuration, respectively; blue and gray dots:
solid particles neighbor to i in reference and deformed configuration, respectively.

Fig. 3. Elastic force for the generic spring i − j1. Symbols as in Fig. 2.

with li j the instantaneous updated distances from i to the j neighboring particles, the internal elastic force fi j,e
acting on i to restore the initial distance l0,i j (see Fig. 3) can be expressed as

fi j,e = ke hs
(
l0,i j − li j

)
x̂i j (14)

here x̂i j = (xi − x j )/ li j is the unit vector directed from i to j .
Therefore, the total elastic force acting on the generic mass point i (fi,e) is the sum of all the elastic forces

generated from all the springs connected to i , whose number is indicated as Ni

fi,e =

Ni∑
j=1

fi j,e (15)

In order to model the Poisson’s effect, a volumetric force fv is introduced, which opposes variations in the volume
associated with each solid particle. Specifically, the generic solid particle i generates a force, with magnitude wi ,
that acts towards all the j particles linked to i . The magnitude wi is proportional to the difference l̄0,i − l̄i where l̄0,i
nd l̄ are the average distances from i and its neighboring particles in the reference and deformed configurations,
i

7
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Fig. 4. 2D sketch of the volumetric force determination. Empty black dots: particles neighbor to j1. Other symbols as in Fig. 2. (a) and
b) forces of magnitude wi and w j1 exerted by the particles i and j1, respectively, in all the directions to restore their volume.

espectively. This can be expressed as

wi = kv hs

⎛⎝ 1
Ni

Ni∑
j=1

l0,i j −
1
Ni

Ni∑
j=1

li j

⎞⎠ = kv hs
(
l̄0,i − l̄i

)
(16)

here kv is a coefficient whose value is related to the Poisson’s ratio. On the other hand, the magnitude of the
olumetric force w j generated by the generic particle j , neighbor to i , is

w j = kv hs

⎛⎝ 1
N j

N j∑
s=1

l0, js −
1

N j

N j∑
s=1

l js

⎞⎠ = kv hs
(
l̄0, j − l̄ j

)
(17)

where N j is the total number of particles linked to j , and the average distances l̄0, j and l̄ j are calculated considering
j and its neighboring particles (indicated with s in the summation). Figs. 4a,b show wi for the particle i and w j1

for the particle j1 neighbor to i , respectively. Therefore, when considering the equation for the particle i , a further
force is added to the elastic force. Considering the pair i − j , this force has magnitude equal to w j and is oriented
in the direction of the spring (fi j,v = w j x̂i j ). In order to ensure that the action–reaction principle is satisfied, the
magnitude of the volumetric force acting between particle i and j is defined as the mean value between wi and
w j . Thus, the volumetric force for the spring i − j reads as

fi j,v =

(
wi + w j

2

)
x̂i j (18)

n Fig. 5a schematic representation of the volumetric forces acting on the particle i is shown.
The determination of the spring coefficients ke and kv in relation to the Young’s modulus and Poisson’s ratio of

he material is discussed in detail in Section 4.
In order to impose external loads, boundary nodes, named skin nodes in the following, are introduced at the

ertices of triangles describing the boundary of the solid phase (represented by red dots in Fig. 6). As it will be
escribed in Section 3.2, the same procedure is used at the FSI interface to share the information (positions, forces
nd velocities) between fluid and solid computational domains.

When imposing stress loads on the boundary triangles, a corresponding force is associated to the skin nodes.
pecifically, the stress is converted into force by multiplying it by the surface of the triangle on which it acts. The
esulting force is equally reparted on the three skin nodes at the triangle vertices. Each skin node is associated to the
olid particles with distance lower than hs from it and the skin force is thus distributed over these particles (whose
umber is indicated with n). In particular, as described in Fig. 6, the force of the skin node A, which is indicated
s fext,A, is reparted between the adjacent internal solid particles (B and C , with n = 2 in the figure). Therefore,

fext,A .
he force exerted by the skin node A towards its neighboring solid particle B and C is equal to 2

8



A. Monteleone, G. Borino, E. Napoli et al. Computer Methods in Applied Mechanics and Engineering 392 (2022) 114728

w
n
z
a
f

w

c
s

Fig. 5. 2D of the total volumetric force acting on the particle i . Symbols as in Fig. 4.

Fig. 6. 2D sketch of the skin nodes management. Blue lines: boundary triangles; red dots: skin nodes; blue dots: solid particles.

The total force acting on the solid particle i is expressed as

fi,tot =

Ni∑
j=1

fi j,e +

Ni∑
j=1

fi j,v +

Ns∑
s=1

fext,s

n
− fi,d = fi,e + fi,v + fi,ext − fi,d (19)

here fi,ext is the sum of the external forces exerted by the s skin nodes belonging to the solid structure (whose
umber is Ns) in the vicinity of i (for example, particle D in Fig. 6 has two skin nodes), whilst the external force is
ero if i has a distance greater than hs from the boundary triangles (e.g. particle E in the same figure). In Eq. (19),
dissipative force, fid , is included to prevent oscillations of the particles about their equilibrium positions. This

orce is expressed as a fraction of the velocity ui of the i particle

fi,d = β
mi

∆ts
ui (20)

here β is a damping coefficient and ∆ts is the time step of the structure computational model.
It should be noted that Eq. (19) remains valid even when a strain is imposed to the material. In this case, the

orresponding displacement is transferred from the skin nodes to the neighboring internal particles. Eq. (19) is thus

implified removing the third term by the right-and-side (fi,ext = 0).

9
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The dynamics of each solid particle i in a mass–spring network can be described using the Newtonian law of
motion

fi,tot = mi
dui

∆ts
(21)

After having calculated the forces, an explicit second-order accurate in time Adams–Bashforth scheme is used
o calculate the updated velocity

u(r+1)
i = u(r )

i +

(
3
2

f (r )
i,tot −

1
2

f (r−1)
i,tot

)
∆ts
mi

(22)

he updated positions are thus calculated using the mean values of the velocity at r + 1th and r th time instants

x(r+1)
i = x(r )

i +

(
u (r+1)

i + u (r )
i

2

)
∆ts (23)

he positions of the skin nodes are updated in turn, using the average displacement calculated form the neighboring
olid particles

x(r+1)
s = x(r )

s +
1

Nk

Nk∑
k=1

(
x(r+1)

k − x(r )
k

)
(24)

where the subscript k is used to indicate the solid particles close to the skin node s.
The time step is set in order to satisfy the Courant–Friedrichs–Lewy condition

∆ts <=
lmin

c
(25)

here lmin is the length of the shortest spring and c is the wave propagation velocity which, in 3D-continuum, can
e expressed as c =

√
E (1−ν)

(1+ν) (1−2ν) ρs
, with E corresponding to the Young’s modulus, ν to the Poisson’s ratio, and

ρs to the solid density.

3.2. Fluid–structure interaction approach

As described above, in the proposed FSI approach, the fluid and the structure are represented by a finite number
of particles having different physical properties and initial distance depending on the phase to which they belong.
Moreover, fluid and solid computational domains are separated by interface triangles where kinematic and dynamic
boundary conditions are imposed.

A bi-dimensional sketch of the two computational domains at the FSI interface is shown in Fig. 7, where the
FSI triangles are discretized into line segments due to the 2D representation. The FSI interface between solid and
fluid computational domains on one hand is employed to impose the hydraulic thrust to the solid domain, on the
other hand is used to move the wall of the fluid computational domain under the effect of the solid deformation.

Specifically, after having updated the fluid particle velocity (Eq. (12)), the stress at the centroid xc of each FSI
triangle is calculated. Since the SPH method allows to obtain hydrodynamic values at the position of the internal
particles, an extrapolation procedure is used to obtain wall values starting from the interior of the fluid domain. To
this aim, the pressure pc on the triangle centroid xc is calculated using a Taylor series expansion carried out around
the closest effective particle to xc (particle A in Fig. 8a)

pc = pA +

NA∑
j=1

m j

ρ j

(
pA − p j

) ∂WA, j

∂xα
(xc − xA) (26)

here xA is the position of the closest particle A, NA is the number of fluid particles lying inside the support
omain of A (ΩA), index α is defined based on the summation convention on repeated indices, WA, j is the kernel
unction considering the distance (dAj ) between the particle A and its neighbor particle j .

On the other hand, the deviatoric part of the stress tensor is calculated directly on the centroid xc, using the

elocity values of the internal fluid particles with distance shorter than kh f from xc (Fig. 8b). Specifically, by

10
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Fig. 7. 2D sketch of the fluid and solid computational domains. Gray squares: SPH fluid particles; black squares: SPH fluid particles inside
the support domain (ΩS) of the particle S; empty squares: mirror particles; bold blue line: FSI interface; blue and red dots: internal and
skin nodes, respectively.

Fig. 8. Scheme of stress determination at the triangle interface. Red dots: skin nodes; gray squares full and empty: SPH fluid and mirror
articles, respectively. (a) Support domain ΩA of the closest effective particle A to the triangle centroid. Black full and empty squares: SPH
uid particle lying in ΩA; (b) support domain Ωc of the triangle centroid including all the internal and mirror fluid particles (black full and
mpty squares, respectively) with distance less that kh f from xc .

mploying the SPH Basic Gradient Approximation (Eq. (3)), the derivative of the α-th velocity component in the
- direction can be obtained as

∂uα
∂xβ

= −

Nc∑
j=1

m j

ρ j
uα, j

∂Wc, j

∂xβ
(27)

where the sum is extended to the total number of particles Nc inside the support domain Ωc of the triangle
entroid and W is the kernel function considering the distance between the point x and its neighbor internal fluid
c, j c

11



A. Monteleone, G. Borino, E. Napoli et al. Computer Methods in Applied Mechanics and Engineering 392 (2022) 114728

T

a
o

b
T
b
t
a

m
v
w
s
i
fl
t
s
a
[
s
a
e

F
t
t
t
m
i
e
p
∆
t

particles j . Therefore, the stress σ n on the triangle surface of normal direction n can be obtained as follows

σn,β = pc nβ − 2νρ
3∑
α=1

nα
∂uα
∂xβ

, with β = 1, 2, 3 (28)

he force exerted from the fluid domain on the FSI triangle is calculated by multiplying the stress σ n by the area
At of the triangular face. This force is equally distributed over the three skin nodes placed at the triangle vertices
s discussed above. Thus, the force fext,s at each skin node s, which is used to define the third term of Eq. (19), is
btained as

fext,s =
1
3

At σ n (29)

Under the effect of the forces exerted by the fluid, the solid deforms and the skin nodes modify their position
ased on Eq. (24). This displacement is transferred to the boundaries of the fluid domain at the FSI interface.
he velocity of the FSI interface is calculated at each FSI triangle averaging the velocity of the three skin nodes
elonging to it. This velocity is then applied as boundary condition for the fluid at the FSI interface. Specifically,
he component of this velocity normal to the triangular face is introduced in Eq. (10) (ur+1

in term in the equation)
s boundary condition of the PPE through the mirror particles generated at the FSI interface.

In general, when a partitioned approach is adopted for the simulation of FSI problems, one of the sub-domains
ay need substantially smaller time steps than the other, acting as a bottleneck from the solution time point of

iew. In this context, Hermange et al. [55] employed a SPH-FE coupled method to model violent FSI problem
ith a Conventional Parallel Staggered (CPS) procedure. Specifically, they adopted a SPH weakly compressible

cheme which imposes very small time steps with a parallel procedure to alleviate the CPU costs coupled with an
mplicit FE solver. The CPS procedure assumes that, due to the very small time step of the WCSPH scheme, the
uid pressure load does not vary significantly between two consequent time instants. Since the fluid time step is

ypically the smallest one, the SPH solver sends its time steps and pressure loads to the FE solver and receives the
tructure node positions and velocities. Subsequently, both solvers evolve in time and the calculation time of fluid
nd solid solvers are overlapped by a synchronous updating. This CPS approach was optimized by Hermange et al.
56] to simulate tire hydroplaning on rough ground. In this version, several fluid time steps are allowed within each
olid time step, and a linear extrapolation of the structure positions is performed for each fluid time step. Moreover,
check of the ratio between the fluid and solid time steps is done following the variations of the fluid loads at the

nd of each loop.
In the present work, although both schemes adopted for the fluid and the solid models are explicit, the Courant–

riedrichs–Lewy (CFL) condition imposed to determine the time step size yields to very different time steps for
he two computational domains. In fact, due to fluid incompressibility (as discussed in Section 2.3), the velocity
o be imposed in the CFL condition for this domain corresponds to the maximum fluid particle velocity, while for
he solid model, which is deformable, the velocity to be considered corresponds to the wave propagation in the

aterial (c in Eq. (25)). Therefore, being c is much higher than the maximum particle velocity, the CFL condition
s necessarily more stringent in the solid model, which requires a much smaller time. Hence, in order to improve
fficiency, a dual time step procedure similar to that proposed by Hermange et al. [56] is employed, where the solid
hase performs multiple time steps for each time step of the fluid phase. In particular, the time step for the solid
ts , that satisfies Eq. (25), is selected as a fraction of ∆t f . To this aim, ∆t f = n ∆ts with n an integer number,

herefore, Eqs. (21)–(24) are solved n-times in a single fluid time step ∆t f .
A flow chart of the adopted method is shown in Fig. 9. This includes the following steps:

I. In the predictor-step, the intermediate fluid velocities are calculated (Eq. (6));
II. The PPE system is solved (Eq. (8));

III. In the corrector-step, the corrective fluid velocities are obtained (Eq. (11));
IV. The fluid particle velocities and positions are updated (Eqs. (12) (13));
V. The fluid stress on the FSI interface are calculated (Eq. (28));

VI. The fluid forces are assigned to the skin nodes (Eq. (29));
VII. The total forces on the solid particles are calculated (Eq. (19)) and Eq. (21) is explicitly solved employing
the time step for the solid (∆ts);

12
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Fig. 9. Flow chart of the proposed method.

VIII. The solid particle velocities and positions are updated (Eqs. (22) and (23)), as well as the positions of the
skin nodes (24). The procedure start again from the previous item for n times;

IX. The boundaries of the fluid domain are updated and the velocity of the FSI interface is imposed as boundary
condition for the PPE (Eq. (10));

he simulation time is advanced by one fluid time step (t = t + ∆t f ).

4. Determination of the spring coefficients

In this section, the procedure to obtain relations between the spring coefficients (ke and kv) and the material
properties (Young’s modulus and Poisson’s ratio) is described. In particular, in Sections 4.1 and 4.2 it is demonstrated
that the spring constant, ke, is linked to the Young’s modulus, E , through a factor of proportionality λ, which is
ndependent of the geometry and particle resolution. Also, the defined spring network system results in a constant
oisson’s ratio ν equal to 0.35. Section 4.3 describes how the limitation of a constant Poisson’s ratio can be overcome

hank to the introduction of the coefficient kv , which imposes an additional forces on each solid particle to control the
olume variation during loading. The final relations are integrated in the solid solver, which automatically computes
nd assigns the pair of coefficients ke and kv to render the requested Young’s modulus and Poisson’s ratio.

.1. Analysis of the ke spring coefficient

A solid cube of length L = 0.01 m (shown in Fig. 10a) is considered and a tension stress analysis is performed
y imposing a constant strain ϵz = 0.5% on the two cube faces of normal direction z. The two faces of the cube,
f normal z, are thus moved by a quantity 1

2δz =
1
2ϵz L along their positive normal direction. As discussed in

Section 3.1, the displacement is transferred from the skin nodes lying in the two loaded faces of the cube (red dots
in Fig. 10 and indicated as moving skin nodes in the remaining of this paper) to their neighboring solid particles
(indicated as moving solid particles). The true stress is thus obtained by summing up the total force acting on the
moving solid particles and dividing this force by the updated area of the two moving faces. The Young’s modulus
is obtained by dividing the stress by the imposed strain ϵz , while the Poisson’s ratio is determined as the opposite

of the ratio of transverse strains (ϵx or ϵy = ϵx in Fig. 10b) to axial strain ϵz .

13
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Fig. 10. (a) Cube of length L = 0.01. Blue lines: boundary triangles; red dots: moving skin nodes; black dots: skin nodes; (b) initial (light
gray) and deformed (blue) solid geometry. The deformation in the z direction is imposed (ϵz = 0.5%), whilst the transversal deformations
are ϵx =

(L f,x −L)
L and ϵy =

(L f,y−L)
L in the x and y-directions, respectively.

Fig. 11. Spring constant ke and Young’s modulus E with kv = 0.

In this analysis, several values of ke were used, whilst kv was kept equal to zero, and the corresponding E and ν
alues were measured. The ke values were selected equally spaced in the range of 0÷3500000 to obtain a Young’s
odulus in the range 0 ÷ 10 MPa. Results are summarized in Table 1 where some of the selected ke coefficients

re reported with the obtained Poisson’s ratio, Young’s modulus and ratio λ = E/ke. The results show that, while
imposing kv = 0, the resulting Poisson’s ratio keeps constant and is equal to ν = 0.35. As shown in Fig. 11, the
evolution of the Young’s modulus with the spring elastic coefficient ke is perfectly linear

E = λ ke (30)

where λ = 2.75. As discussed in Section 4.3, when the kv coefficient is used to modify the Poisson’s ratio, the

arameter λ becomes a function of kv .

14
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k

Fig. 12. Parallelepiped of base L2 and length L z used for the convergence analysis.

Table 1
Analysis of the Young’s modulus E with the spring elastic constant ke and Poisson’s ratio with
kv = 0.

ke [N/m2] −ϵx/ϵz [–] −ϵy/ϵz [–] E [Pa] λ [–]

1000 0.35 0.35 2750 2.75
10 000 0.35 0.35 27 500 2.75
100 000 0.35 0.35 275 000 2.75
1 000 000 0.35 0.35 2 750 000 2.75
3 500 000 0.35 0.35 9 625 000 2.75

Fig. 13. Convergence analysis of the ratio λ = E/ke (a) and ν (b) changing the solid particle distance hs and the length L z . The coefficient
v = 0 is zero.
15



A. Monteleone, G. Borino, E. Napoli et al. Computer Methods in Applied Mechanics and Engineering 392 (2022) 114728

p
r
s
(
g
g
(

4

i
c
w
b
t
c

I
w

i

t

5

5

t

4.2. Convergence analysis on the hs parameter and on the geometry

The dependence of λ and ν on the particle distance hs and on the geometry was investigated. To this aim, a
arallelepiped with square transversal cross-section L2 was subjected to uniaxial tensile load and analyzed for a
ange of axial lengths L z varying from L/10 to 4L (see Fig. 12). Consistently with the test discussed above, a
train ϵz = 0.5% was applied and the values of E and ν were obtained. Fig. 13 shows the evolution of λ and ν
Fig. 13a and b, respectively) with the number of particles along the height of the parallelepiped (L z/hs). In the
raphs, the red lines correspond to the values obtained with L z = L (cube case). As it can be observed, for both
raphs the curves having different L z tend to a common asymptotic value equal to λ = 2.73 (Fig. 13a) and ν = 0.35
Fig. 13b).

.3. Analysis of the kv spring coefficient

In order to allow the selection of a specific Poisson’s ratio of the material, the coefficient kv was introduced
n the analysis. Again, a cube of length L subjected to a strain ϵz = 0.5% was considered. In this case, for each
oefficient ke in the range 0 ÷ 3 500 000 (used to determine the ke − E relation in Section 4.1), the coefficient kv
as varied selecting equally spaced values in the range −200 000÷5 500 000 to obtain a Poisson’s ratio distribution
etween 0.2÷0.5. As a result, two curves kv−ν and kv−λ were determined. It was found that, ν and λ depend on
he ratio kv/ke, as shown in Fig. 14. The obtained relations ν = f1(kv/ke) (Fig. 14a) and λ = f2(kv/ke) (Fig. 14b)
an be expressed as

ν = −0.0626 exp
(

−1.997
kv
ke

)
− 0.08659 exp

(
−0.4996

kv
ke

)
+ 0.4996 (31)

λ = −0.1524 exp
(

−1.818
kv
ke

)
− 0.2156 exp

(
0.2114

kv
ke

)
+ 3.111 (32)

t should be noted that, in Eq. (30), the coefficient λ is constant for kv = 0 and depends on the parameter kv/ke

hen kv ̸= 0.
In order to identify the pair of coefficients ke and kv yielding the desired value of ν and E , Eqs. (30)–(32) are

ntegrated in the solid solver. Graphically, the procedure can be summarized as:

• The diagram in Fig. 14a is used to identify the value of kv/ke providing the desired value of ν;
• the graph shown in Fig. 14b is used in turn to select the coefficient λ, corresponding to the kv/ke previously

selected;
• the ke coefficient is obtained from Eq. (30) and used to model the required Young’s modulus.

For example, a Poisson’s ratio of 0.45 is highlighted in Fig. 14a which corresponds to kv/ke = 1.995 (read in
he first graph) and λ = 2.965 (read in the second graph).

. Results and discussion

.1. Pipe deformation analysis

Womersley’s deformable wall analytical solution for pulsatile flow in a cylindrical vessel [38] was employed for
he validation of the FSI model. To this aim, a straight elastic cylindrical tube with internal radius a = 5 · 10−3 m

and length L = 2 a was modeled (Fig. 15a). The tube wall was given a constant thickness h = a/10 = 5 · 10−4 m,
which satisfies the thin-walled assumption, and was modeled as a linear elastic material with constants E = 1 MPa
and ν = 0.35. The material density was set to ρs = 1100 kg/m3. The fluid was modeled as an incompressible
Newtonian fluid with constant density ρ f = 1060 kg/m3 and dynamic viscosity µ = 3.5 · 10−3 Pa s (similar to
blood).

Fig. 15b describes the boundary conditions imposed on the fluid domain. Specifically, at the tube wall, which
corresponds to the FSI interface (represented by blue triangles in Fig. 15b), the proposed FSI approach was applied
(Section 3.2). The procedure described in [50] was employed to impose pressure boundary conditions for the fluid

at the tube inflow and outflow cross-sections (indicated as A and B in the figure). Zero pressure was set at the
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a

Fig. 14. (a) Poisson’s ratio as function of kv/ke; (b) ratio between the Young’s modulus and the elastic coefficient λ = E/ke as function
of kv/ke .

cross-section B, whilst a uniformly distributed pressure oscillating in time was assigned at the A cross-section, by
defining a sinusoidal function with period T = 0.8 s, angular frequency ω =

2π
T = 7.8540 rad/s and amplitude

P = 6 Pa. The resulting Womersley number is equal to W o = a
√
ω ρ f
µ

= 7.711. Inflow and outflow cross-sections
re kept fixed in the axial direction during the simulation.

The isotropic particle initial distances were set to h f = 250.0 · 10−6 m for the fluid and hs = 150.0 · 10−6 m for
the solid, which results in 40 SPH fluid particles along the tube internal diameter D and 3 solid particles along the
tube thickness h. It should be noted that, due to the small tube thickness compared to its length, a limited number
of solid particles was used along the thickness to reduce the computational efforts.

In Fig. 16 the sagittal and transversal cross-sections of the fluid and solid computational domains are shown
(images on the left and on the right, respectively). In the figure, internal and skin nodes are represented by blue

and red dots, respectively, whilst SPH fluid particles are represented by gray squares.

17
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Fig. 15. (a) Tube geometry. Internal diameter D = 2 a, length L = 2 a, wall thickness h = a/10; (b) boundary conditions. Blue lines:
interface FSI triangles.

Fig. 16. Particle representation considering longitudinal and transversal sections of the tube (on the left and on the right, respectively). Gray
squares: SPH fluid particles; blue and red dots: internal and skin nodes, respectively.

In order to write the Womersley solution in a standard form, the following three non-dimensional parameters are
introduced

Ω =

√
ρ f ω

µ
a

Λ =

(
i − 1
√

2

)
Ω

ζ = Λ
r
a

(33)

In the case of a compliant tube, the change in pressure is transmitted with a finite speed. Specifically, a local
increase in pressure in an elastic tube is able to locally expand the tube diameter, forming a bulge, which acts as
a hydraulic compliance (accumulates and releases some of the fluid as the pressure changes). The bulge advances
along the tube axis at a speed referred as the wave speed and indicated as c, which depends on the degree of
elasticity of the tube.
18
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Fig. 17. Axial velocity u in the axis position (r = 0) at the middle section x = L/2. Red continuous line: analytical solution (Eq. (35));
lack circles: numerical results.

The expected wave speed c can be determined from the wave speed equation, whose solution gives a value of c
s a function of parameters of the fluid and tube wall. The wave speed equation reads as[

(g − 1)(ν2
− 1)

]
z2

+

[
ρsh
ρ f a

(g − 1) +

(
2ν −

1
2

)
g − 2

]
z +

2ρsh
ρ f a

+ g = 0,

with

z =
E

1 − ν2

h
ρ f ac2

and

g =
2 J1

Λ J0
(34)

here J0 and J1 are the Bessel functions of first kind and order zero and one, respectively. It should be noted
hat, in the presented test case, because of the limited length of the tube, the phenomenon can be considered as
nstantaneous and no phase shift of the pressure curve can be observed along the tube axis.

The analytical solution for the axial velocity u reads as

u (x, r, t) =
−4 us

Λ2

[
1 − G

J0 (ζ )

J0 (Λ)

]
eiω(t− x

c ) (35)

ith

G =
2 + z (2ν − 1)

z (2ν − g)

where G is the elasticity factor, us = −
ks a2

4µ is the maximum velocity in steady flow (which is equal to 1.0714 m/s)
nd r is the distance along the tube radius. In Fig. 17, the velocities (black circles) at the axis (r = 0) at the
idspan are compared with the analytical formula (red continuous line) for 14 periods. As it can be observed, the

umerical results are in very good agreement with the analytical ones after 7 periods. The initial mismatching is a
onsequence of the numerical simulation starting from a rest configuration, while the analytical solution models a
ystem already in its regime oscillatory pattern. Hence, few periods are needed before the analytical and numerical
odels become comparable.
Fig. 18 shows the velocity profiles along a tube diameter positioned at x = L/2, at three different time instants

(t1 = 12 T , t2 = 12 T + T/4, t3 = 12 T + T/2) during the 12−th oscillation period. It should be noted that the
fluid axial velocity matches the deformation rate of the solid at the wall where the kinematic coupling condition is
imposed. Specifically, after calculating the loads exerted by the fluid on the solid through Eq. (28), the forces are
assigned to the solid skin nodes (Eq. (29)). As a consequence of these forces, the solid deforms and the interface
boundary triangles move accordingly.
19
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C

Fig. 18. Axial velocity profiles at the middle section (x = L/2) of the tube. Red continuous line: analytical solution (Eq. (35)); black dots:
numerical results. t1 = 11 T , t2 = 11 T + T/4, t3 = 11 T + T/2.

Fig. 19. Tube wall displacement at x = 0 as function of time. Red line: analytical solution (Eq. (36)); black circles: numerical results.

In Fig. 19, the wall radial displacement δ at the inflow cross-section was compared to the analytical solution
whose equation reads as

δ(x, t) =
a P

2ρ f c2 (1 − Gg) eiω(t− x
c ) (36)

A good agreement between analytical and numerical results can be observed even for the radial wall displacement.

5.2. Flow-induced vibration of an elastic beam behind a cylinder

In this section, a canonical and challenging FSI verification problem is considered. The problem consists of a
two-dimensional channel flow past a thin elastic cantilever beam attached to the lee side of a rigid circular cylinder.
The present test case was initially proposed by Turek and Hron [39] and then widely adopted as benchmark for
FSI solvers dealing with the presence of a deformable solid elastic structure (see, e.g., [57–59]).

A schematic of the test case with geometric dimensions and boundary conditions is shown in Fig. 20a, whilst
a detail of the solid computational domain is shown in Fig. 20b. The channel has length L = 2.5 m and height
H = 0.41 m. The rigid cylinder (dashed black line in Fig. 20a) has diameter D = 0.1 m and is centered at point

= (2D, 2D), whilst the cantilever beam has length l = 3.5D and thickness b = D/5. It should be noted that
the cylinder and beam are slightly off-center with respect to the channel axis, so as to promote the onset of any

physical instabilities.
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Fig. 20. (a) Sketch of the two-dimensional flow-induced vibration of a flexible beam (gray surface) attached to a rigid cylinder (dashed
black line). D = 0.1 m, H = 4.1D, l = 3.5D, b = D/5, L = 25D. Position of the cylinder center: C = (2D, 2D). Red line: FSI interface.

oint A: centroid of the cross-section at the distal end of the beam structure. (b) Detail of the computational solid domain. Blue and gray
oints: solid particles and skin nodes, respectively; gray circle: rigid cylinder.

No-slip boundary condition is imposed on the top and bottom walls of the channel, on the fixed cylinder and
n the fluid–structure interface separating the beam from the liquid (indicated by red lines in Fig. 20a). Inflow and
utflow boundary conditions are employed at the left and right sides of the fluid domain, respectively. Specifically,
t the outflow section null velocity derivatives and zero pressure are imposed, whilst at the inflow section a parabolic
elocity profile is prescribed as follows

u(y) = 1.5u
y (H − y)

(H/2)2 (37)

here u is the mean inflow velocity.
As regards the solid domain, fixed positions and velocities are imposed to the particles attached to the cylinder.

These fixed particles (indicated in Fig. 20b) are included in the structure calculation, but their positions and velocities
are not updated during the time integration step.

Since PANORMUS software is three-dimensional and, on the other hand, the test case is two-dimensional, only
one layer of fluid and solid particles is simulated, imposing periodic boundary conditions on the channel faces
having z-direction normal. To this aim, these periodic faces are assigned a distance equal to the particle reference
distance (h f and hs for the fluid and solid domain, respectively). In the simulation, the solid reference distance
was set to hs = 0.001 m, resulting in 20 solid particles along the beam thickness (b/hs = 20), whilst in the fluid
domain the smoothing length was set to h f = 5 hs = 0.005 m.

The so-called FSI3 test case of Turek and Hron [39] was selected, due to its specific complexity, resulting
from the combination of the model parameters: high solid deformations and equal value for the solid and fluid
densities. In particular, in the FSI3 test case, the mean inflow velocity is u = 2 m/s, the Reynolds number is
21
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Table 2
Physical parameters for FSI3 benchmark case of Turek and Hron [39].

Parameter Value

Fluid density (ρ f ) 1000 kg/m3

Kinematic viscosity (ν f ) 0.001 m2/s
Inlet mean velocity (u) 2 m/s
Reynolds number (Re) 200
Structure density (ρs ) 1000 kg/m3

Young’s modulus (E) 5.6 · 106 Pa
Poisson ratio (ν) 0.4

Fig. 21. Evolution in time of the vertical displacement of the point A.

Re =
u D
ν f

= 200 and the solid and fluid densities are identical and are equal to ρs = ρ f = 1000 kg/m3. The fluid is
odeled as incompressible and Newtonian, whereas the structure is linear elastic and compressible. A summary of

he material properties for the fluid and structural domains is provided in Table 2. In order to achieve the required
olid mechanical properties, relations (30)–(32) are solved imposing ν = 0.4 and E = 5.6 · 106 Pa. The resulting
lastic constants imposed in the solid model are ke = 2 · 106 N/m2 and kv = 7.89 · 105 N/m2.

Fig. 21 shows a diagram of the y-coordinate y(t) of the centroid of the cross-section at the distal end of the beam
tructure (point A) as a function of time, after reaching periodic self-sustained oscillations. The amplitude Am and

frequency f A of the oscillation of point A in y-direction were determined and compared with literature [39,57–59].
n particular, Am =

δmax,A−δmin,A
2 , with δmax,A and δmin,A indicating the maximum positive and negative lateral

isplacements of point A. Considering the average value over ten periods, the resulting amplitude and frequency of
scillation are Am = 0.04 m and f A = 4.8 Hz, respectively. Comparison of the obtained results with the literature,
ummarized in Table 3, confirms the good agreement with the results from previous studies. Also the Strouhal
umber St = f A D/u was calculated (right column in Table 3), resulting in a value slightly lower than the average

in the literature, although consistent with some of previous studies [59].
The snapshots of the velocity fields at four instants are shown in Fig. 22, corresponding to the extreme and

intermediate deflections during the oscillation cycle of point A. To better highlight the region close to the flexible
eam, only a portion of the computational domain is shown Fig. 22.

In order to highlight the vortex forming near the fluid–structure interface, an enlargement of the near beam region
s shown in Fig. 23, where the velocity vectors and the beam position are represented at the same time instant as
n Fig. 22.

. Conclusions

In this study, a FSI technique has been implemented in the framework of the Lagrangian particle methods.
moothed particle hydrodynamics method has been employed for the fluid dynamics modeling, while a simplified
pproach, based on particle–spring systems, has been developed for the description of the structure motion. The
onstants of the springs describing the solid phase mechanical response have been related to the structure mechanical
22
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Table 3
Comparison of flapping behavior against literature. Dimensionless oscillation ampli-
tude of the point A in y-direction (Am/D) and Strouhal number (St = f A D/u) with
f A the frequency on oscillation of the point A.

Methods Am/D St

Present 0.40 0.24
Bhardwaj and Mittal [57] 0.41 0.28
Li et al. [58] 0.41 0.26
Nestola et al. [59] 0.41 0.24
Turek and Hron [39] 0.36 0.26

Fig. 22. Streamwise particle velocity at four time instants (indicated in Fig. 21).

properties, determining simple relationships with the Young’s modulus and Poisson’s ratio of the material. This
feature overcomes the limitations of LSM basic schemes by allowing to set a wide range of values for the Poisson’s
ratio. At the interfaces separating the two computational domains, coupling conditions have been imposed to take
into account the interaction of the two phases. To this aim, additional boundary particles are introduced. On one
hand, the actions of the fluid on the structure are computed using an extrapolation procedure from the SPH domain,
and applied as boundary conditions to the solid phase. On the other hand, as a consequence of the structure
deformation, velocities and displacements of the wall are imposed to the fluid domain through the mirror particle
procedure. This procedure naturally avoids the penetration of fluid particles into the solid domain. Numerical results
23
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Fig. 23. Velocity vectors and beam position at four time instants (indicated in Fig. 21).

are in good agreement with the Womersley’s analytical solutions and the benchmark test proposed by Turek and
Hron [39].

Of course, there are several limitations within the proposed discrete solid model. In particular, as the methodology

is mainly aimed at modeling the fluid dynamics, advantage was taken of the simplicity of a particle–spring model

24
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for the solid phase description. This, at this stage, does not model the complex non-linear constitutive behavior
characterizing soft tissues, nor their anisotropic behavior. However, the method has shown to be very versatile and
suitable to easily incorporate more complex constitutive models.

On the other hand, an important advantage of the proposed FSI method is that the spatial–temporal discretization
f the fluid and solid are not related, allowing to optimize the computational efficiency by refining each domain
ased on the specific case.

In conclusion, the proposed approach is suitable to be expanded to the modeling of crucial solid–liquid problems
ypical of cardiovascular studies such as the dynamics of cardiovascular valves, or the formation, growth and
ehavior of thrombi and plaques interacting with the blood flow. In this framework, such FSI analysis based on
article model could become a versatile tool supporting the understanding of complex physiological phenomena
nd the development of new therapeutic solutions.
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