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ABSTRACT
An algebraic modeling system (AMS) is a type of mathematical

software for optimization problems, which allows users to define

symbolic mathematical models in a specific language, instantiate

themwith given source of data, and solve themwith the aid of exter-

nal solver engines. With the bursting scale of business models and

increasing need for timeliness, traditional AMSs are not sufficient

to meet the following industry needs: 1) million-variable models

need to be instantiated from raw data very efficiently; 2) Strictly

feasible solution of million-variable models need to be delivered in a

rapid manner to make up-to-date decisions against highly dynamic

environments. Grassland is a rapid AMS that provides an end-to-

end solution to tackle these emerged new challenges. It integrates a

parallelized instantiation scheme for large-scale linear constraints,

and a sequential decomposition method that accelerates model solv-

ing exponentially with an acceptable loss of optimality. Extensive

benchmarks on both classical models and real enterprise scenario

demonstrate 6 ∼ 10x speedup of Grassland over state-of-the-art

solutions on model instantiation. Our proposed system has been

deployed in the large-scale real production planning scenario of

Huawei. With the aid of our decomposition method, Grassland

successfully accelerated Huawei’s million-variable production plan-

ning simulation pipeline from hours to 3 ∼ 5 minutes, supporting

near-real-time production plan decision making against highly dy-

namic supply-demand environment.
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1 INTRODUCTION
Mathematical optimization is a powerful analytics technology that

allows companies to make optimal decisions based on available busi-

ness data, widely applied in industry scenarios including logistics[9],

manufacturing[6], finance[7] and energy. It abstracts key features

of a complex business problem as an optimization model, which

consists of objectives (business goal), variables (decisions to be

made) and constraints (business rules). In such a way the business

problem is decomposed into two stages: conversion— converting the

problem to a canonical optimization model, and solving — finding

the optimal or approximated solution of the model.

In practice, the conversion stage consists of two steps. The first

step ismodeling, whichmeans writing down the expression of objec-

tive and constraints in a formulated way. E.g., using mathematical

expression

∑
𝑖∈𝑆 𝑥𝑖 ≤ 𝑐𝑎𝑝 to formulate a capacity constraint that

the total production amount of specific products should not exceed

the plant capacity. The second step is instantiation, which means

to generate a particular instance of the model when real data are

available. E.g., when we know today’s plant capacity is 𝑐𝑎𝑝 = 100

and available set of products is 𝑆 = {1, 3, 5}, we get a particular

instance of expression 𝑥1 + 𝑥3 + 𝑥5 ≤ 100 for today (and tomor-

row’s instance might be very different). For the solving stage, we

usually use solver engines that are sophisticatedly developed to

solve specific kinds of models, such as Gurobi, CPLEX, Mosek and

CLP. Decomposition methods may also apply when the model is

large. A toy example of mathematical optimization pipelines for

practical online business scenarios is shown in Figure 1, in which

the high-level system to handle both the conversion and solving

stages is usually called algebraic modeling system (AMS).

In recent years, the scale and complexity of business problems

are dramatically increased, e.g., a large electronics company can

involve over 10
5
types of products and 10

2
plants worldwide with
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Instantiation

Data

𝑆 = 1,3,5 ,
𝑐𝑎𝑝 = 100
𝑐 = [2,1,1,1,1]

max

𝑖∈𝑆

𝑐𝑖𝑥𝑖 s. t.

𝑖∈𝑆

𝑥𝑖 ≤ 𝑐𝑎𝑝

Symbolic 
Model

Solving

Canonical 
Model

max 2𝑥1 + 𝑥3 + 𝑥5
s. t. 𝑥1 + 𝑥3 + 𝑥5 ≤ 100

𝒙 ≥ 𝟎

Solution

𝑥1 = 100
𝑥3 = 𝑥5 = 0

(modeling)

Stage 1: conversion Stage 2: solving

Figure 1: A toy example of mathematical optimization
pipeline for practical business decision making scenarios.

different standard. As a result, their corresponding optimization

models become extremely massive and cumbersome. They not only

involve millions of decision variables, but also contain extremely

lengthy real-world business constraints, which cover numerous

case of real business logic (e.g., production hierarchy, inventory

control, supply-demand modeling, delay minimization, intra/inter-

factory transshipment and replacement) thus can take hundreds of

pages to document. While million-variable models can be a burden

for solving stage, instantiating hundred-page business constraints

efficiently as standard models is also highly nontrivial for conver-

sion stage. For end-to-end optimization, both the two stages can be

extremely time-consuming with traditional toolchain.

However, the information age calls for rapid optimization. Only
in this way can business decisions be frequently adjusted and up-

dated to reflect the latest state of fast-changing market, and fulfill

customers’ increasing need for timeliness. The more rapidly getting

optimized decisions from latest available data, the more timely the

company can respond to market change and other uncertainty fac-

tors. This especially applies to rolling horizon that a time-dependent

model is solved repeatedly. E.g., a manufacturing company that can

update its production plan in minutes (high re-planning periodicity)

to handle unexpected urgent orders or factory stoppage is more

competitive than its counterparts who have to wait for hours (low

re-planning periodicity) for a new optimized plan. The same goes

for other scenarios like logistics and finance, in which the timeli-

ness of business decisions is directly related to user experience and

profits, acting as a core competitiveness of modern enterprises.

Moreover, rapid optimization creates remarkable possibilities

for business intelligence. First, it can act as an analytical tool that

provides metrics for high-level business decisions. E.g., buyers can

evaluate different raw material purchase plans via running a “sim-

ulated” production planning model for each plan, and check their

corresponding order fulfillment rates. Second, it can serve as a basis

for larger or more complicated optimization. E.g., to strictly con-

serve order priority constraint (which is nonlinear), we can run

production planning multiple times, where high-priority orders are

planned before low-priority ones. All these build on the cornerstone

that a single shot of end-to-end optimization can be very rapid.

Sadly, current state-of-the-art AMSs are far from supporting

the aforementioned ambition of rapid optimization. In Figure 1,

for the conversion stage, they lack a principled design to stress

the efficiency of model instantiation, especially ignoring the paral-

lelization and vectorization of operations. This issue is minor for

normal-sized, simple models, but significantly raised as a major

bottleneck for million-variable, hundred-page documented business

scenarios. For the solving stage, they focus on lossless decomposi-

tion methods such as Benders decomposition, which are not widely

applicable since the special block structures they required are easily

broken in complex real scenarios. As a result, both two stages in

Figure 1 are desperately time-consuming (typically several hours)

in large-scale real scenarios, hindering companies from building

highly-responsive decision systems against fast-changing markets.

To achieve the ambition of rapid end-to-end optimization, both

the performance bottleneck of instantiation and solving must be

removed. In this paper, we propose two methods that fully address

the efficiency of the two stages respectively, and encapsulate them

as a new AMS, Grassland. For model instantiation, the motivation

is to take advantage of both the sparsity of the data and the modern

multiprocessor systems. While multiprocessor parallelism usually

accompanies with an extra cost of communication and synchroniza-

tion, we eliminate such a cost by a specially vectorized formulation

that fully exploits the parallelism of data. In such a way we devel-

oped a model instantiation algorithm that is not only comparable

with state-of-art AMSs in a single-threaded setting, but can also be

accelerated in direct proportion to the number of processor cores.

For model solving, we start from rolling horizon, a common busi-

ness practice for decision making, to decompose a full model into a

sequence of smaller models. While such a decomposition can lead

to a significant loss of global optimality, we propose a heuristic

of additional “aggregated master problem” to capture global opti-

mality, so as to minimize the loss. We also integrate our proposed

heuristics with an existing one to further improve the performance.

Our major contributions can be summarized as follows:

• Proposing a principled approach to stress the efficiency of

model instantiation for optimization problems with linear

constraints, by exploiting both the sparsity and parallelism

of data, represented as a new algebraic modeling language

with corresponding instantiation algorithms.

• Proposing Guided Rolling Horizon, a new decomposition

heuristics that accelerates solving exponentially for mathe-

matical optimization models with sequential structure with

an acceptable loss of optimality, which can also work with

other heuristics (Guided FRH) for better performance.

• Encapsulating our approaches as a new AMS, Grassland, and
conducting extensive experiments on both classical LP/MIP

models and real enterprise production planning scenarios.

This system has been deployed in Huawei’s supply chain man-

agement scenario, especially for production planning simulation of

our planning department. By reducing the end-to-end optimization

pipeline from hours to 3-5 minutes, Grassland achieves our ambi-

tion of rapid optimization in real industrial scenarios, playing an

essential role in the production plan decision making of Huawei

against highly dynamic supply-demand environment.

2 RELATEDWORK
Algebraic modeling systems/languages is a relatively mature field

starting from the late 1970s, with many sophisticatedly designed



open-source and commercial software available. They can be di-

vided into three categories. 1) Classical standalone systems with

particular modeling language syntax, such as AMPL[10], GAMS[5]

and ZIMPL[14]. They are usually more efficiently developed and

easier to use for non-programmers; 2) Standalone modeling pack-

ages based on specific programming languages, such as YALMIP[15]

for MATLAB, Pyomo[13] for Python, and JuMP[16] for Julia. Their

modeling efficiency usually lies on the host language. 3) The mod-

eling API as an integrated part of several solver engines, such as

Gurobi[11] and Mosek[3], which usually provides solver-specific

features.

For the model instantiation process, while most of the aforemen-

tioned AMSs stress the universality of modeling, hardly any of them

take the efficiency issue (e.g., parallelization and vectorization) into

full consideration, especially for large-scale scenarios with millions

of variables. One may argue that such efficiency issue could be

leaved to practitioners. However, it is not practical for hundred-

page documented complex optimization models to be manually

analyzed line-by-line for instantiation efficiency, as if manual calcu-

lation of gradients is not practical for complex deep learning models

(although neither of them contains theoretical difficulties!). For com-

plex models, principled design must be given to achieve practical

implementation efficiency. While machine learning communities

benefit enormously from such principledly designed frameworks

such as TensorFlow[1] and PyTorch[17] , industrial optimization

practitioners call for an analogous framework that boost the instan-

tiation of highly complex business optimization models.

For decomposition methods of large-scale model solving, most

of the current literature focuses on lossless decomposition such

as Benders decomposition or column generation[4], in which the

global optimality is guaranteed. However, such methods require a

special block structure that is not easily satisfied in realistic com-

plex scenarios. It is common that one or more types of constraints

break the block structure, and blind use of decomposition methods

will usually lead to performance degradation or even infeasibility.

However, compared with feasibility, strict global optimality is not

so crucial in most of the application scenarios. A fast-generated

good solution is usually more appealing than a time-exhausting per-

fect one, which is the application foundation of heuristics methods.

Existing lossy decomposition methods like forward rolling horizon

[8] include a simple heuristics that aggregate future information to

speedup the solving. In this way strict global optimality is slightly

satisfied to exchange for more potential of acceleration. A detailed

introduction is provided in Section 4.2.

3 EFFICIENT INSTANTIATION OF LINEAR
CONSTRAINTS IN OPTIMIZATION

To design a rapid AMS, the first challenge is the efficiency of model

instantiation for the emerging large-scale applied scenarios. In this

section, we describe the model instantiation problem of mathe-

matical optimization, and propose a general scheme to instantiate

large-scale linear constraints efficiently, with both sparsity and

parallelism taken into account.

3.1 Preliminaries
In this section, we give a brief introduction to mathematical opti-

mization. Amathematical optimization (programming) problem can

be represented in the following way: given a function 𝑓 : 𝑆 → R
from a set 𝑆 to real numbers, find an element 𝑥0 ∈ 𝑆 so that ∀𝑥 ∈ 𝑆 ,
𝑓 (𝑥0) ≤ 𝑓 (𝑥) (minimization) or 𝑓 (𝑥0) ≥ 𝑓 (𝑥) (maximization).

Here 𝑓 , 𝑆 and 𝑥 ∈ 𝑆 are called objective function, feasible region

and constraint respectively.

For the majority of optimization types in practice that can be

solved efficiently, 𝑆 is a convex polytope. That is, to optimize an ob-

jective function subject to linear equality and inequality constraints,

which can be expressed in canonical form as

min 𝑓 (x)
subject to Ax = b, x ≥ 0

(1)

in which 𝐴 is called constraint matrix. 𝑓 (x) = c𝑇 x for linear pro-

gramming (LP) and 𝑓 (𝑥) = 1

2
x𝑇Qx + c𝑇 x for quadratic program-

ming (QP). Mixed integer programming (MIP) adds additional inte-

ger constraints 𝑥𝑖 ∈ Z, 𝑖 ∈ 𝑍 on LP. Some special types of optimiza-

tion contains nonlinear constraints such as conic and semidefinite

optimization, which are out of this paper’s scope.

Practically, while objective function 𝑓 (x) describe the business
goal which is only a single expression, constraint matrix A can rep-

resent numerous business rules which contain millions of expres-

sions that are much more time-consuming to instantiate. Therefore,

we focus more on the efficiency of constraints instantiation in the

following text.

3.2 Problem description and challenges
In this section, we describe the model instantiation problem of

mathematical optimization, as well as its challenges in large-scale

scenarios.

3.2.1 Problem description. While solver engines take canonical

mathematical optimization problems as input, end users rarely

write canonical problems directly. Instead, they develop symbolic
representations of models in a human-readable language, which is

called algebraic modeling language (AML). A symbolic representa-

tion of a model is a template of model without any concrete data.

The place where concrete data should exist is represented by place-
holders. When a symbolic model needs to be solved with given

data, both the data and AML-based symbolic model are fed into

AMS. AMS will compile the symbolic model, and fill the model with

concrete data to generate a canonical representation for the solver

engine. We name this process as model instantiation and conclude

the input/output of this process as follows

Input (1) Symbolic representation of the model and (2) data.

Output Canonical representation of the model.

To show the procedure of model instantiation, we show an ex-

ample of a simplified classical minimum-cost flow model. Consider

a direct graph with a set 𝑉 of nodes and a set 𝐸 of edges, decision

variable 𝑥𝑖, 𝑗 represents the amount of current flowing from node 𝑖

to node 𝑗 . 𝑠𝑖 is the supply/demand at each node 𝑖 . For each node 𝑖 ,

flow out

∑
{ 𝑗 | (𝑖, 𝑗) ∈𝐸 } 𝑥𝑖, 𝑗 minus flow in

∑
{ 𝑗 | ( 𝑗,𝑖) ∈𝐸 } 𝑥 𝑗,𝑖 must equal

the supply/demand 𝑠𝑖 . Every flow corresponds to a cost 𝑐𝑖, 𝑗 , and the



model finds flows that minimize the total cost. The input/output

for this model’s instantiation is as follows

Input:
• Symbolic representation of the model:

min

∑︁
(𝑖, 𝑗) ∈𝐸

𝑐𝑖, 𝑗𝑥𝑖, 𝑗

subject to 𝑒𝑥𝑝𝑟𝑖 = 𝑠𝑖 , ∀𝑖 ∈ 𝑉 , x ≥ 0 (2)

in which 𝑒𝑥𝑝𝑟𝑖 =
∑︁

{ 𝑗 | (𝑖, 𝑗) ∈𝐸 }
𝑥𝑖, 𝑗 −

∑︁
{ 𝑗 | ( 𝑗,𝑖) ∈𝐸 }

𝑥 𝑗,𝑖 (3)

in which 𝑖 , 𝑗 are index placeholders denoting the index of

expression 𝑒𝑥𝑝𝑟 and variable 𝑥 .𝑉 , 𝐸 and 𝑆 are data placehold-

ers whose value need to be specified in model instantiation

process.

• Data: 𝑉 ∗ = {1, 2, 3, 4}, 𝐸∗ = {(1, 2), (2, 4), (1, 3), (3, 4)}, 𝑠∗ =
[1, 0, 0,−1], 𝑐∗ = 1

Output:
• Canonical representation of the model: (1) in which

c = [0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0]𝑇

A =

00
0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

−1
1

0

0

0

0

0

0

0

0

0

0

0

0

0

−1
0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

−1
0

1

0

−1
1

0

0

0

0

0

0
b = [1, 0, 0,−1]𝑇

x = [𝑥1,1, · · · , 𝑥4,1, · · · , 𝑥1,4, · · · , 𝑥4,4]𝑇

Feed c, A and b into a LP solver engine and we can get the

solution of decision variable x. We will discuss the example output’s

generation process later in Section 3.3.2.

3.2.2 Challenges of model instantiation. While model instantia-

tion seems trivial from a theoretical perspective (it can be easily

achieved in polynomial time compared with model solving), the

challenge is that, the time complexity can still be extremely high

if we directly follow the literal meaning of mathematical expres-

sions to instantiate models, especially for constraints. Consider the

following general equality constraint

𝑒𝑥𝑝𝑟𝑖1, · · · ,𝑖𝑁 = 𝑠𝑖1, · · · ,𝑖𝑛 , ∀𝑖1 ∈ 𝑉1, · · · , 𝑖𝑁 ∈ 𝑉𝑁
The time complexity of direct instantiation is𝑂 ( |𝑉1×· · ·×𝑉𝑁 | |𝑒𝑥𝑝𝑟 |)
in which |𝑒𝑥𝑝𝑟 | is the computation cost to instantiate a single ex-

pression. For example, the time complexity of constraint (2)’s direct

instantiation is 𝑂 ( |𝑉 | |𝐸 |) since by definition, we need to iterate

every node 𝑖 (∀𝑖 ∈ 𝑉 in (2)), and search for edges whose heads

or tails are equal to 𝑖 (sum operation

∑
{ 𝑗 | (𝑖, 𝑗) ∈𝐸 } and

∑
{ 𝑗 | ( 𝑗,𝑖) ∈𝐸 }

in (3)). This is clearly unbearable if we have a sparse graph with

millions of vertices and edges.

In application scenarios, such a lack of principled, efficient model

instantiation scheme results in serious performance issues. A sur-

prising fact is that model instantiation costs similar or even more

time than model solving in many large-scale, complex enterprise

scenarios. While ad-hoc solutions may exist for specific kind of

problems
1
, our aim is to develop an AMS which is efficient for

1
For example, an ad-hoc solution for instantiate Expression 3’s instantiation is to

pre-index the edge by both head and tail node.

 

𝑖,𝑗 ∈𝐸

 

𝑖,𝑗 ∈𝐸𝑇

𝑥𝑖,𝑗 𝑥𝑗,𝑖

-

expr𝑖

 

𝑖,𝑗 ∈𝐸

𝑥𝑖,𝑗

Global index 

placeholders 

in 1st sum 

operator

𝐺1 = (𝑖)

Local index 

placeholders in 

1st sum operator 

𝐿1 = (𝑗)

1st sum 

operator
Variable

Coefficient (1, omitted) 

Set data placeholder 

in 1st sum operator. 

In this example 𝐸
represents a set of 

pairs.

𝐸 = { 𝑢1, 𝑣1 , … }

Figure 2: The expression tree of expression (3), with global
index placeholder 𝑖 and local index placeholder 𝑗 .

general linear model instantiation, whose model definition can be

in arbitrary forms.

3.3 A principled scheme of efficient linear
constraint instantiation

In this section, we propose a principled scheme to instantiate linear

constraints efficiently. The motivation is to design an AML with a

corresponding instantiation algorithm that fully exploit the sparsity

and parallelism of data.

3.3.1 A new AML with symbolic multidimensional expression. To
represent a model symbolically with AML, the main task is to

develop a symbolic representation of mathematical expressions in

objective function and constraints. In our system, for a model with

𝐾 types of constraints (e.g., the balance constraint (3) is one type
of constraint. A typical applied model can contain dozens of types

of constraints), we formulate the symbolic representation as the

following format:

min 𝑒𝑥𝑝𝑟𝑜𝐺𝑜

subject to (𝑒𝑥𝑝𝑟 𝑖𝐺 , 𝑠𝑖𝑔𝑛𝑖 , 𝑟ℎ𝑠
𝑖
𝐺 ), 1 ≤ 𝑖 ≤ 𝐾

(4)

in which the 𝑖th type of constraint is formulated as a triple (𝑒𝑥𝑝𝑟𝐺 ,
sign, 𝑟ℎ𝑠𝐺 ). That is, a symbolic expression 𝑒𝑥𝑝𝑟𝐺 , a sign (=, ≥ or ≤),
and a symbolic array 𝑟ℎ𝑠𝐺 . For example, (2) can be represented as

a triple (𝑒𝑥𝑝𝑟𝐺 ,=, 𝑠𝐺 ) in which 𝐺 = (𝑖). Here we assume that all

constants are moved to the right hand side of the equation, and

omit the superscript 𝑖 of 𝑒𝑥𝑝𝑟 𝑖
𝐺
for simpler notation.

It is important to notice that the symbolic expression 𝑒𝑥𝑝𝑟𝐺 is

multidimensional. That is, it represents a list of indexed expressions
instead of a single one. For example, 𝑒𝑥𝑝𝑟𝑖 in (3) actually represents

a list of expressions [𝑒𝑥𝑝𝑟1, · · · , 𝑒𝑥𝑝𝑟 |𝑉 |]. Therefore, while a normal

symbolic expression 𝑒𝑥𝑝𝑟 can be represented as an expression tree

whose non-leaf and leaf nodes are operators and terms respectively,

A multidimensional expression should be added with additional

index placeholders𝐺 to denote the index of expressions, represented

as 𝑒𝑥𝑝𝑟𝐺 . It consists of the following elements

• (Global) index placeholders 𝐺 = (𝑔1, · · · , 𝑔𝑁 ), a tuple of one
or more placeholders representing the index of expressions,

defined at the root of the expression tree. Global index place-

holders can appear anywhere in the expression tree. e.g.,

𝐺 = (𝑖) in (3), and the index placeholder 𝑖 also appears in

the logical condition of two sum operators in (3). Here the

bracket in 𝐺 = (𝑖) indicates that 𝐺 is a tuple even if 𝑁 = 1.



• Operators (non-leaf nodes), receiving one or more nodes as

operands. Some specific operators such as sum (

∑
) include

local index placeholders that are only valid in the scope of

these operators. E.g. the sum operator

∑
{ 𝑗 | (𝑖, 𝑗) ∈𝐸 } in (3) re-

ceives 𝑥𝑖, 𝑗 as an operand, and include local index placeholder

𝑗 that is only valid in the scope of this sum operator. We will

discuss the sum operator in detail later.

• Terms (leaf nodes), a variable with its corresponding coef-

ficient. Their indices can be denoted by previously defined

global and local index placeholders. e.g. 𝑥𝑖, 𝑗 in (3) is a term

with variable 𝑥𝑖, 𝑗 and coefficient 1.

and a example is shown in the left part of Figure 2.

In this work we mainly focus on the linear constrainted scenario

that includes three operators: add (+), subtract (−) and sum (

∑
).

While the add and subtract operators are trivial, we discuss the sum

operator in detail. In our formulation, we number all sum operators

in a expression, and sum operators take a fixed format: the 𝑘th sum

operator is assigned to a symbolic logical condition (𝐺𝑘 ∥𝐿𝑘 ) ∈ 𝑆𝑘 .2
“∥” denotes the concatenation of tuples. For example, the 1st (𝑘 = 1)

sum operator

∑
(𝑖, 𝑗) ∈𝐸 in (3) contains a logical condition (𝑖, 𝑗) ∈ 𝐸.

It consists of

• Global index placeholders 𝐺𝑘 = (𝑔𝑘1 , 𝑔𝑘2 , · · · ), a tuple whose
elements are the index placeholders from𝐺 . e.g.,𝐺1 = (𝑖) in∑
(𝑖, 𝑗) ∈𝐸 .

• Local index placeholders 𝐿𝑘 = (𝑙1, 𝑙2, · · · ), which is only valid

in the scope of this sum operator. e.g., 𝐿1 = ( 𝑗) in
∑
(𝑖, 𝑗) ∈𝐸 .

• Data placeholder 𝑆𝑘 : A symbolic placeholder representing a

set of fixed-sized index tuples. The size of each tuple is |𝐺𝑘 | +
|𝐿𝑘 |. e.g., edge set placeholder 𝐸 in

∑
(𝑖, 𝑗) ∈𝐸 , representing a

set of direct edges (i.e., pair of node indices).

An example is shown in the right part of Figure 2.

3.3.2 An efficient model instantiation algorithm. To instantiate a

multidimensional expression 𝑒𝑥𝑝𝑟𝐺 given data 𝑆∗, a simple way is

to enumerate all possible combinations of global index placeholders

𝐺 (denoted as space(𝐺)), and traverse through the expression tree

for each combination to generate every single algebraic expression.

This is usually the literal meaning of mathematical expressions.

The detailed process is illustrated in Algorithm 1. For example, to

instantiate (3) with given data 𝑉 ∗ and 𝐸∗, this expression’s index
placeholders is 𝐺 = (𝑖), and all possible values of 𝑖 are space(𝐺) =
{1, 2, 3, 4}. Thenwe iterate all elements of space(𝐺). e.g., when 𝑖 = 1,

we iterate 𝐸 to generate sub-expression

∑
(1, 𝑗) ∈𝐸 𝑥1, 𝑗 = 𝑥1,2 + 𝑥1,3

and

∑
( 𝑗,1) ∈𝐸 𝑥 𝑗,1 = 0, then the expression will be 𝑒𝑥𝑝𝑟1 = 𝑥1,2 +

𝑥1,3. In a similar way we get 𝑒𝑥𝑝𝑟2 = 𝑥2,4 − 𝑥1,2, 𝑒𝑥𝑝𝑟3 = 𝑥3,4 −
𝑥1,3, 𝑒𝑥𝑝𝑟4 = −𝑥2,4 − 𝑥3,4.

However, this approach is extremely exhaustive with time com-

plexity 𝑂 ( |space(𝐺) | |𝑆∗ |). In this section, we propose an efficient

model instantiation algorithm based on the AML proposed in pre-

vious section, whose result is identical to Algorithm 1 but with

|𝑂 (𝑆∗) | time complexity.

Lemma 3.1. For expression tree of 𝑒𝑥𝑝𝑟𝐺 , without loss of generality,
we assume that every path from a leaf node to the root will go through
at least one sum operator.

2
Here we simplify the denotation {𝐿𝑘 | (𝐺𝑘 ∥𝐿𝑘 ) ∈ 𝑆𝑘 } as (𝐺𝑘 ∥𝐿𝑘 ) ∈ 𝑆𝑘

Algorithm 1 Exhaustive model instantiation algorithm

Input: Symbolic multidimensional expression 𝑒𝑥𝑝𝑟𝐺 , set data 𝑆∗

Output: Constraint matrix𝐴

1: Initialize 𝐴 as an empty matrix, with number of columns equal to number of

variables.

2: for𝐺∗ ∈ space(𝐺) do
3: Generate 𝑒𝑥𝑝𝑟 ∗

𝐺
by replacing symbolic index placeholders𝐺 and data place-

holder 𝑆 with concrete value𝐺∗ and 𝑆∗ respectively in all nodes of 𝑒𝑥𝑝𝑟𝐺
4: Do an in-order traversal to 𝑒𝑥𝑝𝑟 ∗

𝐺
to generate the algebraic expression. When

visiting the 𝑖th sum operator, traverse through corresponding set data 𝑆∗𝑖 in its

logical condition.

5: Add one row to𝐴 with the generated expression.

6: end for
7: return𝐴

Proof. For the leaf node whose path to the root does not include

any sum operator, we can insert a “dummy” sum operator

∑
𝐺 ∈𝑆𝑖

before the node with set data 𝑆∗
𝑖
= space(𝐺). This operator does

not contain any local index placeholders so will not change the

result of Algorithm 1. □

Lemma 3.2. Let 𝐼 (𝑛𝑜𝑑𝑒) = {𝑖 |𝑖th sum operator is on the path from
node to root}. Without loss of generality, we assume that for every
leaf node of the expression tree, {𝑔|𝑔 ∈ 𝐺 𝑗 , 𝑗 ∈ 𝐼 (𝑛𝑜𝑑𝑒)} = 𝐺 .

Proof. From Lemma 3.1 we know that 𝐼 (𝑛𝑜𝑑𝑒) ≠ ∅. If ∃𝑔′ ∈ 𝐺
so that 𝑔′ ∉ {𝑔|𝑔 ∈ 𝐺 𝑗 , 𝑗 ∈ 𝐼 (𝑛𝑜𝑑𝑒)}, we select one sum operator∑
(𝐺𝑖 ∥𝐿𝑖 ) ∈𝑆𝑖 on 𝐼 (𝑛𝑜𝑑𝑒) and expand𝐺𝑖 to𝐺𝑖 ∥𝑔′. For set data 𝑆∗𝑖 , we

replace each tuple data (𝑔∗
𝑖1
, · · · , 𝑔∗

𝑖𝑁
, 𝑙∗
𝑖1
, · · · ) to a set of expanded

tuple {(𝑔∗
𝑖1
, · · · , 𝑔∗

𝑖𝑁
, 𝑔∗

𝑗
, 𝑙∗
𝑖1
, · · · ) |𝑔∗

𝑗
∈ space(𝑔 𝑗 )}. In this way we

enumerate all possible value of 𝑔 𝑗 for every tuple data in 𝑆∗
𝑖
, so will

not change the result of Algorithm 1. □

With Lemma 3.1 and Lemma 3.2, we propose a model instantia-

tion algorithm. Different from Algorithm 1 that fixes the value of

all global index placeholders and traverses the expression tree for

|space(𝐺) | times, this algorithm traverses the expression tree only

once, and records the corresponding value of index placeholders

dynamically as “context information” when traverse through con-

crete set data 𝑆∗
𝑖
of 𝑖th sum operator. When the leaf node (term)

is reached, all the index placeholders in the term is replaced by

the actual value recorded in the context information. Meanwhile,

the actual value of all global index placeholders 𝐺 in the context is

snapshotted and attached to the index-replaced term. When the tra-

verse process is finished, we aggregate terms with the same global

index. The detailed algorithm is shown in Algorithm 2.

For example, to instantiate (3), we traverse the expression tree of

(3) in Figure 2. When we arrive at the first sum operation

∑
(𝑖, 𝑗) ∈𝐸 ,

we iterate the value (𝑖, 𝑗) ∈ 𝐸 and record the context information

(e.g., record 𝑖 = 1, 𝑗 = 2 for the first edge). When we reach the leaf

node 𝑥𝑖, 𝑗 , we replace the index placeholder with the correspond-

ing value recorded in context information (e.g., we get 𝑥1,2), and

attach the actual value of all global index placeholders to the term

(e.g., attach 𝑖 = 1 to 𝑥1,2, represented as (1, 𝑥1,2)). When we finish

the traverse process, we will get (1, 𝑥1,2), (2, 𝑥2,4), (1, 𝑥1,3), (3, 𝑥3,4),
(2,−𝑥1,2), (4,−𝑥2,4), (3,−𝑥1,3), (4,−𝑥3,4). By aggregating termswith

the same global index, we will get the same result as Algorithm 1.

Proposition 3.1. The outputs of Algorithm 1 and Algorithm 2
are identical given the same input.



Algorithm 2 Efficient model instantiation algorithm

Input: Symbolic multidimensional expression 𝑒𝑥𝑝𝑟𝐺 , set data 𝑆∗

Output: Constraint matrix𝐴

1: procedure Replace(node, context) // node is a leaf node (term)

2: Replace the index placeholders of coefficient and variables with concrete values

in context, and return the replaced term

3: end procedure
4: procedure Replace(𝐺 , context) // G is a tuple of placeholders

5: Replace the global index placeholders in𝐺 with concrete values in context,

and return

6: end procedure
7: procedure Iterate(node, context)
8: if node is a leaf node then
9: terms← (Replace(node, context), Replace(𝐺 , context))

10: else if node is the 𝑖th sum operator then
11: terms← emply list

12: Retrieve the concrete data 𝑆∗𝑖 of the 𝑖th sum operator from 𝑆∗

13: Filter all (𝑔∗
1
, · · · , 𝑔∗

𝑁
) ∈ 𝑆∗𝑖 with the condition that 𝑔∗𝑗 = context(𝑔𝑗 ) if

𝑔𝑗 appears in the mapping key of the context

14: for (𝐺∗𝑖 , 𝐿∗𝑖 ) ∈ 𝑆∗𝑖 do
15: context’← AddMapping(context,𝐺𝑖 → 𝐺∗𝑖 , 𝐿𝑖 → 𝐿∗𝑖 )
16: terms← terms ∥ Iterate(child, context’)
17: end for
18: else if node is an add operator then
19: terms← Iterate(left, context) ∥ Iterate(right, context)
20: else if node is a sub operator then
21: terms← Iterate(left, context) ∥ −Iterate(right, context)
22: end if
23: return terms

24: end procedure
25: Initialize𝐴 as an empty matrix sized |𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠 | × |𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 |.
26: Initialize context as an empty mapping from symbolic index placeholder to con-

crete value.

27: terms← Iterate(root node of 𝑒𝑥𝑝𝑟𝐺 , context)

28: for (term,𝐺∗) ∈terms do
29: Map𝐺∗ and variable to matrix index 𝑟𝑜𝑤 and 𝑐𝑜𝑙

30: 𝐴 [𝑟𝑜𝑤, 𝑐𝑜𝑙 ] = coefficient of variable

31: end for
32: return𝐴

Proof. To simplify the demonstration we omit the coefficient

in all terms, which can be treated similarly to the variables.

⇒: In Algorithm 1, assume there is a variable 𝑥𝐺∗𝑥 ,𝐿
∗
𝑥
in ex-

pression 𝑒𝑥𝑝𝑟𝐺∗ , from Lemma 3.2 we know that the union of all

𝐺𝑖 in 𝐼 (𝑥𝐺∗𝑥 ,𝐿∗𝑥 ) equals to 𝐺 . Without loss of generality we let

𝐼 (𝑥𝐺∗𝑥 ,𝐿∗𝑥 ) = 1, · · · , 𝑀 , then follow the depth-first iteration of Algo-

rithm 1, we can find a sequence (𝐺∗
1
∥𝐿∗

1
∈ 𝑆∗

1
, · · · ,𝐺∗

𝑀
∥𝐿∗

𝑀
∈ 𝑆∗

𝑀
)

so that

⋃𝑀
𝑖=1𝐺𝑖 = 𝐺 and

⋃𝑀
𝑖=1𝐺

∗
𝑖
= 𝐺∗. For Algorithm 2, we can

follow the same sequence in the depth-first iteration and accumu-

late the mapping 𝐺𝑖 → 𝐺∗
𝑖
, 𝐿𝑖 → 𝐿∗

𝑖
in context. Therefore when

the leaf node is finally reached, the context will contain𝐺 → 𝐺∗,
then by the Replace procedure we get variable 𝑥𝐺∗𝑥 ,𝐿

∗
𝑥
in expression

𝑒𝑥𝑝𝑟𝐺∗ in Algorithm 2.

⇐: In Algorithm 2 assume there is a variable 𝑥𝐺∗𝑥 ,𝐿
∗
𝑥
in expres-

sion 𝑒𝑥𝑝𝑟𝐺∗ , the context information stores mapping 𝐺 → 𝐺∗

when Iterate reached the leaf node, then following Lemma 3.2

we also have a sequence (𝐺∗
1
∥𝐿∗

1
∈ 𝑆∗

1
, · · · ,𝐺∗

𝑀
∥𝐿∗

𝑀
∈ 𝑆∗

𝑀
) so that⋃𝑀

𝑖=1𝐺𝑖 = 𝐺 and

⋃𝑀
𝑖=1𝐺

∗
𝑖
= 𝐺∗. Thus when 𝑒𝑥𝑝𝑟𝐺 is fixed into

𝑒𝑥𝑝𝑟𝐺∗ in Algorithm 1, we can follow the same sequence and get

variable 𝑥𝐺∗𝑥 ,𝐿
∗
𝑥
in expression 𝑒𝑥𝑝𝑟𝐺∗ . □

3.3.3 Parallelization of the model instantiation algorithm. While

Algorithm 1 is extremely exhaustive, it is easy to be paralleled by

simply letting each worker instantiate a partition of concrete index

set space(𝐺). In this section we show that Algorithm 2 can also be

fully paralleled by transiting index partition to data partition.

g1 g2 g3

(0, 0, 1)
(0, 0, 3)
(0, 1, 2)
(0, 2, 4)
(1, 0, 0)
(1, 1, 1)
(2, 1, 2)
(2, 2, 0)

(0, 0, 1)
(0, 0, 3)
(1, 0, 0)

(0, 1, 2)
(1, 1, 1)
(2, 1, 2)

(0, 2, 4)
(2, 2, 0)

Data partition 
along index g2

P1={0}, P2={1}, 
P3={2}

S*

S1
*

S2
*

S3
*

Figure 3: An example of data partition.

Given a set data 𝑆∗, its corresponding index placeholders 𝐺 and

a partition of all possible values of 𝑘th index placeholder 𝑔𝑘 ∈ 𝐺
(denoted as {𝑃1, · · · , 𝑃𝑀 },

⋃
𝑖 𝑃𝑖 = space(𝑔𝑖 )), a data partition of set

data 𝑆∗ over 𝑘th index 𝑔𝑘 is to partition 𝑆∗ to𝑀 subset 𝑆∗
1
, · · · , 𝑆∗

𝑀
,

so that 𝑆∗
𝑖
= {(𝑔∗

1
, · · · , 𝑔∗

𝑁
) | (𝑔∗

1
, · · · , 𝑔∗

𝑁
) ∈ 𝑆∗, 𝑔∗

𝑘
∈ 𝑃𝑖 }. That is,

the 𝑖th subset of the data only contains the index tuple whose 𝑘th

element is in 𝑖th partitioned index subset 𝑃𝑖 . An example is shown

in Figure 3.

Then we have the following proposition:

Proposition 3.2. Running Algorithm 1 on a subset of all possible
global index value (𝑔∗

1
, · · · , 𝑔∗

𝑁
) ∈ space(𝐺) with condition 𝑔∗

𝑘
∈ 𝑃 , is

equivalent to running Algorithm 2 on a subset of data (𝑔∗
1
, · · · , 𝑔∗

𝑁
) ∈

𝑆∗ with condition 𝑔∗
𝑘
∈ 𝑃 .

Proof. The proof is similar to Proposition 3.1 with some details

on sequence sharing between algorithms. For ⇒, the sequence

(𝐺∗
1
∥𝐿∗

1
∈ 𝑆∗

1
, · · · ,𝐺∗

𝑀
∥𝐿∗

𝑀
∈ 𝑆∗

𝑀
) can still be transferred to Al-

gorithm 2 whose data 𝑆∗ is filtered by condition 𝑔∗
𝑘
∈ 𝑃 , since

space(𝐺) is also filtered in Algorithm 1 to make sure only 𝑔∗
𝑘
∈ 𝑃

will appear in the sequence. For similar reason⇐ holds. □

With Proposition 3.2 we can fully parallelize Algorithm 2. For

example, to distribute the instantiation process of (3) equally to

two workers, by applying Proposition 3.2, we can do data partition

on 𝐸∗ as 𝐸∗
1
= {(1, 2), (2, 4), (1, 3)}, 𝐸∗

2
= {(1, 2)} for worker 1, 𝐸∗

1
=

{(3, 4)}, 𝐸∗
2
= {(2, 4), (1, 3), (3, 4)} for worker 2. Applying Algo-

rithm 2, worker 1 will generate (1, 𝑥1,2), (2, 𝑥2,4), (1, 𝑥1,3), (2,−𝑥1,2),
worker 2 will generate (3, 𝑥3,4), (4,−𝑥2,4), (3,−𝑥1,3), (4,−𝑥3,4). It is
easy to check that the results are identical.

4 SEQUENTIAL DECOMPOSITION OF
LARGE-SCALE OPTIMIZATION

The second challenge for a rapid AMS is the solving time. Extremely

large-scale mathematical optimization models usually take huge

amount of time to solve, and the scale of data may even bump up due

to sudden business need (e.g., big promotion), resulting in potential

risk of timeout or even unsolvability. In this section, we introduce a

lossy decomposition method (Guided FRH) for massive sequential

models. While the feasibility of solutions is strictly maintained, the

decomposition methods make a trade-off between optimality and

efficiency.

4.1 Preliminaries: Sequential Decision Making
and Rolling Horizon

Sequential (or dynamic) decision making widely exists in applied

scenarios. For example, we may need to decide the production

amount of specific items in a range of dates, in which the prior



decisions will influence successive ones. More formally, for a se-

quential model of linear constraints with 𝑇 periods, its decision

variables x can be divided into 𝑇 row vectors x1, · · · , x𝑇 , so that

the constraints can be formulated as

A1x𝑇1 = b1

A2 [x1, x2]𝑇 = b2
· · ·

A𝑇 [x1, x2, · · · , x𝑇 ]𝑇 = b𝑇

which indicates that the constraint matrix has a block triangular

structure. Here we assume the decision variables share the same

semantic meaning in each period, and use 𝑥𝑖𝑡 to denote the 𝑖th

variable in period 𝑡 . We refer to [4] for a detailed introduction.

To make sequential decisions in a dynamic environment, a com-

mon business practice is rolling horizon (RH)[19]. That is, we do

planning in a relatively long time window (planning horizon) us-

ing the latest available information, and only accept the generated

decisions in the first several time steps (re-planning periodicity).

When the re-planning periodicity passed, we start a new planning

horizon with updated environment information, and repeat the

above procedure.

From this perspective, compared with the decision in the re-

planning periodicity that will be actually applied, the planning

after the re-planning periodicity is more likely a “simulation-based

guidance” to reach the global optimum. That is, although the deci-

sions after the re-planning periodicity is never actually executed,

we assume that they will be executed on a simulation basis, so that

the global optimum in a longer range is considered.

In our large-scale scenario, the size of the planning horizon is

limited due to the scalability of solver engines. To enlarge the range

of future information involved in the optimization and reach global

optimum in a longer time window, we adopt the idea of “guid-

ance” in rolling horizon, but with a more computational efficient

approach.

4.2 Forward Rolling Horizon
To begin with, we introduce a simple method, Forward Rolling

Horizon (FRH) [8] to illustrate the basic idea. For a large sequential

model 𝑃 with length 𝑇 , we divide the model into ℎ sub-models

𝑃1, · · · , 𝑃ℎ . Each sub-model 𝑃𝑖 starts at sequence period 𝑡𝑖 and ends

at period 𝑡𝑖+1 − 1. The sub-problems are solved in a sequential

manner so that the model 𝑃𝑖 can take advantage of the solutions

of 𝑃1, · · · , 𝑃𝑖−1. To guide each sub-model 𝑃𝑖 towards the global

optimum, we aggregate the future information from period 𝑡𝑖+1 to
the last period into𝑀 periods (𝑀 = 1 by default), and attach it to the

end of the sub-model. Therefore, except for the last sub-model, each

sub-model consists of 𝑡𝑖+1 − 𝑡𝑖 +𝑀 periods. The FRH optimization

procedure is shown in Figure 4a.

4.3 Guided Rolling Horizon
In this section, we propose Guided Rolling Horizon (Guided RH),

which decompose a raw sequential problem into a main problem

and a sequence of sub-problems, with all constraints strictly satis-

fied and global optimality largely preserved.

period

Sub Problem 0

Sub Problem 1

Sub Problem 2

Sub Problem 3

(a) Forward RH (FRH), [8]
period

Master 
Problem

Sub Problem 0

Sub Problem 1

Sub Problem 2

Sub Problem 3

(b) Guided RH
period

Master 
Problem

Sub Problem 0

Sub Problem 1

Sub Problem 2

Sub Problem 3

(c) Guided FRH

Figure 4: Forward rolling horizon and proposed decomposi-
tion methods for large-scale mathematical optimization.

For a raw sequential problem with 𝑇 periods and 𝑁 decision

variables in each period, the Guided RH optimization plan consists

of three steps:

Data aggregation Aggregate all feed-in data from 𝑇 periods

to ℎ periods, in which ℎ is the number of sub-models. Every

data element at period 𝑖 in the aggregated data represents

the data elements from period 𝑡𝑖 to 𝑡𝑖+1 − 1 in the original

data. E.g., aggregate data from daily to weekly.

Master problem solving Construct a “shrunk” master prob-

lem with ℎ periods using the aggregated data, then solve

it. The master problem provides a high-level, soft guidance

to the actual rolling-horizon procedure afterwards, there-

fore all the integer constraints can be omitted. Similar to

data aggregation step, every solution element 𝑧𝑖
𝑘
at period

𝑘 in this master problem represents the solution elements

𝑥𝑖𝑡𝑘
, · · · , 𝑥𝑖

𝑡𝑘+1−1 in the original problem.

Sub problems solving To transit the master problem’s aggre-

gated solutions to an applicable solutions, we apply the

rolling horizon method on the original problem, with ad-

ditional guided constraints and objectives to make the two

solutions aligned. In each horizon 𝑘 (from period 𝑡𝑘 to pe-

riod 𝑡𝑘+1 − 1), we add soft constraints to each variable group

along period axis, to minimize the gap between applicable

solutions 𝑥𝑖𝑡𝑘
, · · · , 𝑥𝑖

𝑡𝑘+1−1 and the aggregated solution 𝑧
𝑖
𝑘
. i.e.,

min 𝑜𝑏 𝑗 +
𝑁∑︁
𝑖=1

_𝑘 (𝑢𝑖𝑘 + 𝑣
𝑖
𝑘
)

𝑠 .𝑡 . A𝑘 [x1, x2, · · · , x𝑘 ]𝑇 = b𝑘
𝑡𝑘+1−1∑︁
𝑗=𝑡𝑘

𝑥𝑖𝑗 − 𝑧
𝑖
𝑘
= 𝑢𝑖

𝑘
− 𝑣𝑖

𝑘
, ∀𝑖 ∈ {1, · · · , 𝑁 }

𝑢𝑖
𝑘
≥ 0, 𝑣𝑖

𝑘
≥ 0, ∀𝑖 ∈ {1, · · · , 𝑁 }
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Figure 5: The fine-tuning procedure. The grey variables are
fixed while the green variables are to be re-optimized. State
variables whose value are determined by other variables
keep free in the whole sequence.

in which x1, · · · , x𝑘−1 are already solved and fixed in previ-

ous sub-problem solving. 𝑜𝑏 𝑗 is the original objective of the

problem, 𝑢𝑖 and 𝑣𝑖 are auxiliary variables that help minimize

the L1 loss

∑
𝑖 |
∑𝑡𝑘+1−1

𝑗=𝑡𝑘
𝑥𝑖
𝑗
− 𝑧𝑖

𝑘
|. _𝑘 is the weight control-

ling to what extent should the applicable solution be aligned

with the aggregated solution in horizon 𝑘 . It is optional to

re-solve the master problem with current horizon’s solution

fixed to reduce the cumulative error between master and

sub-problems. It is also possible for sub-problems to overlap

with each other. For many real scenarios, only the solution

of first 𝐾 periods is needed, in this case we can stop after

solving 𝑙 horizons so that 𝑡𝑙+1 > 𝐾 .

The procedure of Guided RH is shown in Figure 4b.

4.4 Guided FRH
While both FRH and Guided RH guide rolling horizon towards

long-term global optimality, there is no conflict between them.

Therefore, we can further improve the optimality by replacing the

rolling horizon solving procedure of Guided RH with FRH so as to

combine the two methods. The procedure of Guided FRH is shown

in Figure 4c.

4.5 Fine-tuning of approximated solutions
When we get an approximated solution x1, · · · , x𝑇 of a sequential

model with the above decomposition methods, it will be beneficial

if we can do some fine-tuning to the solution to further boost the

global optimality. A possible method is to re-optimize the variable

in the first 𝑘th periods, with other variables fixed. Since the solution

is already a feasible one, the re-optimized solution will not be worse

than the original solution. Notice that there might be some “state

variables” whose value are fully determined by other variables.

These variables will keep free in the whole sequence, so that the

change of previous decisions can still propagate to the later periods.

The procedure of fine-tuning is shown in Figure 5.

5 EVALUATION
In this section, we first conduct offline benchmarks against current

state-of-the-art AMSs on model instantiation efficiency, and then

deployed Grassland in Huawei’s production planning scenario for

nearly half a year. By providing near-real-time production planning

simulation, Grassland plays an essential role in Huawei’s supply

chain management against highly dynamic supply-demand envi-

ronment.

P-Median

Offshore

Wind Farming

Food

Manufacture I

Gurobi Py API 410.20 533.71 744.39

JuMP 278.08 169.08 789.86

ZIMPL 174.00 400.47 399.16

AMPL 15.94 17.71 31.65

Grassland (S) 35.91 18.85 80.83

Grassland (M) 2.09 1.67 5.28
Table 1: Model Instantiation Benchmark. Total time (in sec-
onds) to process the model definition and produce the out-
put file in CPLEX LP format.

5.1 Offline Model Instantiation Benchmark
Before online experiment, we first benchmark our system against

several widely-used modeling software on some typical mathemat-

ical optimization problems, to evaluate the scalability and effective-

ness of proposed model instantiation method.

5.1.1 Test Problems. We select three typical problems from JuMP

[16] and Gurobi modeling examples [12].

• P-Median: This model is used in [13, 16] to compare the

modeling efficiency of Pyomo and JuMP with other AMSs.

• Offshore Wind Farming: This model in Gurobi modeling

example minimize the cost of laying underwater cables to

collect electricity produced by an offshore wind farm.

• Food Manufacture I: This model in Gurobi modeling ex-

ample is a blending problem. Multiple raw materials are

combined in a way to achieve the lowest cost.

5.1.2 Compared Modeling Softwares. In the following experiments,

we compare the following modeling software. Modeling software

implemented in interpreted languages such as Pyomo [13] are not

included due to lack of efficiency in the prior benchmark works

[13, 16].

• GurobiModelingAPI [11]: The Python interface of Gurobi,
which provides the standard implementation of Gurobi mod-

eling examples.

• ZIMPL [14]: The modeling language in SCIP Optimization

Suite, written in plain C.

• JuMP [16]: A modern AML implemented in Julia, which is

reported to achieve high efficiency comparable to commer-

cial products such as AMPL, with the benefits of remaining

in a high-level modern language.

• AMPL [10]: A leading, widely-used commercial AMS.

• Grassland (Single-threaded): The implementation of our

proposed method in Section 3.3 with only one thread.

• Grassland (Multi-threaded): The implementation of our

proposed method, including parallelization described in Sec-

tion 3.3.3 (64 threads).

5.1.3 Results. The benchmark result on all the problems is shown

in Table 1. It is shown that Grassland achieve absolute predom-

inance over all other modeling software. While single-threaded

Grassland already achieve 4-5x speedup over the fastest open-

source modeling software (ZIMPL) and comparable with the lead-

ing commercial software (AMPL), multi-threaded Grassland further

achieves 6-10x speedup over AMPL.
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Figure 6: Offline model instantiation benchmark on (a) P-Median (b) Offshore Wind Farming (c) Food Manufacture I.
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Figure 7: Online experiment results. (a) Comparison between baseline and different decomposition methods on time cost and
optimality. (b) Same as (a) with fine-tuning of first 20 periods. (c) Comparison of model instantiation efficiency.

We also tested the software on different scales of models. The

result is shown in Figure 6. It is shown that Grassland has superior

performance over all scale of models.

5.2 Online Experiment
5.2.1 Background: Production planning and supply-demand analy-
sis. Production planning is the planning of production activities to

transform raw materials (supply) into finished products, meeting

customer’s order (demand) in the most efficient or economical way

possible. It lies in the core of manufacturing companies’ supply

chain management, directly influencing the profit and customer

satisfaction. Mathematical optimization is a mainstream method for

production planning, and [18] provides a comprehensive introduc-

tion to this. As a world-leading electronic manufacturer, Huawei

provides more than ten thousand kinds of end products, with even

much more kinds of raw materials and intermediate assemblies,

to satisfy millions of demands from all over the world. Modeling

in such a large-scale scenario involves millions of variables and

constraints.

While mathematical optimization can deliver near-optimal pro-

duction planning solution for a certain input of supply and demand,

The demand and supply itself is always changing with high uncer-

tainty due to external dynamic factors. Our planning department

needs to react quickly to such changes to ensure business continu-

ity, which is called supply-demand analysis. To support the analysis,
a crucial process is production planning simulation which returns

the final planning result (e.g., fulfillment rate) for a certain input of

supply and demand, helping planners evaluate and improve their

analysis. For example, when several raw materials are suddenly

unavailable, planners may try different ways to increase the supply

of alternative materials and run production planning simulation for

each of them, adjust the supply iteratively to increase the fulfillment

rate of related end products, and get the final supply adjustment

decision.

5.2.2 Dataset and Compared Methods. The dataset is from real pro-

duction environment which consists of all needed manufacturing

data in 78 weeks (one week per period). The instantiated model

consists of 5,957,634 variables, 3,443,465 constraints and 30,366,971

nonzero elements in the constraint matrix. In the following ex-

periments, we compare the result before and after the application

of Grassland in the production planning simulation scenario. The

baseline is the original method before the deployment of Grassland,

which is quite standard: ZIMPL is used for modeling and instantia-

tion, and the instantiated full model is directly solved without any

decomposition. The decomposition methods in section 4 (RH, FRH,

Guided RH, Guided FRH) are tested separately. Sequence length

𝑇 = 78, number of submodels ℎ = 8, fine-tuning periods 𝑘 = 20. All

models are solved via Mosek ApS[3].
3

5.2.3 Results. The main result is shown in Figure 7a. Our proposed

methods can achieve significant acceleration (15-35x faster) than

baseline method, while the feasibility is strictly maintained and

3
Note that we cannot deploy more efficient solvers like CPLEX on Huawei’s online

enterprise environment due to export restriction of the US (so as advanced AMSs like

AMPL). However, all solvers always deliver exact optimal solution if possible, and

have similar exponential curves between problem scale and solving time. Therefore

the selection of external solvers will not change the optimality and solving time ratio.



the loss of objective is small. For Guided FRH, it can achieve 15x

acceleration with only 0.36% of the objective loss. Practically, such

a tiny optimality loss does not cause sensible issues (0.1% ∼ 0.2%

fluctuation of fulfillment ratio), especially considering that multiple

source of more dominant error exist in complex business models

such as prediction and approximation error.

The fine-tuning result is shown in Figure 7b in which the first 20

periods of the problem is re-optimized following Section 4.5. It is

shown that fine-tuning can significantly narrow the gap between

the objective value of decomposition methods and the optimal one.

Additionally, for instantiation efficiency in online scenarios, we

compare Grassland with two legacy systems that we previously de-

veloped and deployed in online environment, based on ZIMPL and

Gurobi Modeling API respectively. We use the number of periods

involved to control the model size. The result is shown in Figure 7c.

It is shown that the result is aligned with offline benchmarks in

Figure 6.

6 CONCLUSION
In this paper, we propose Grassland, an algebraic modeling system

that is efficient in large-scale mathematical optimization scenar-

ios, including a parallelized instantiation scheme for general linear

constraints, and a lossy sequential decomposition method that ac-

celerates large-scale model solving exponentially. We perform both

offline benchmarks and online deployment in Huawei’s produc-

tion planning scenario. The results demonstrate the significant

superiority of Grassland over strong baselines.

APPENDIX
A IMPLEMENTATION DETAILS
As an algebraic modeling system, Grassland is implemented in five

layers:

Modeling API (AML) The grassland modeling API is imple-

mented as a Python package grassland (gl).
Intermediate representation (IR) layer This layer plays as

a bridge between Modeling API and highly-efficient c++

backend. Models defined by Grassland modeling API is trans-

lated into a unified, JSON-based intermediate representation

with six components (variables, constants, index placehold-

ers, expression graphs, constraints and bounds).

Decomposition layer Implements four decomposition meth-

ods in section 4 (RH, FRH, Guided RH, Guided FRH).

Model instantiation layer Implements the parallelizedmodel

instantiation scheme in Section 3.3.2 and Section 3.3.3. The

parallelization is implemented by multi-threaded program-

ming. Due to the extreme efficiency of our proposed method,

even the float-to-string conversion becomes a significant bot-

tleneck. Here we apply Ryu [2] to accelerate the conversion.

Solver layer Calls different solver engine to solve the instan-

tiated model or sub-model and return back the solution.

B INTEGRATIONWITH ROUNDING
PROCEDURE

In applied optimization pipeline, there usually exist some integer

constraints for decision variables. To achieve this, a mixed integer

Test Problem #(variables) #(constraints) #(nonzeros)

P-Median 5,050,000 5,000,164 15,050,000

Offshore Wind Farming 4,170,120 4,220,120 10,425,300

Food Manufacture I 5,006,394 14,974,502 39,932,750

Table 2: The basic statistics of the benchmark test problems
in Table 1.

programming model or an external heuristics rounding procedure

may apply. However, the efficiency of rounding procedure can

heavily rely on the scale of the model, as well as the number of

integer constraints. With the above decomposition methods, we can

round the variables at the same time when we solve each sub-model.

Since the sub-model is significantly smaller than the original one,

the rounding procedure will also be largely accelerated.

C TEST PROBLEMS FOR MODEL
INSTANTIATION

The basic statistics of the benchmark test problems in Table 1 is

listed in Table 2. Problem data is randomly generated while main-

taining the feasibility, and we control the size of the data to generate

different scale of models in Figure 6.

D EXPREIMENTAL SETTING
For offline model instantiation benchmark, all benchmarks are run

on a server with 32-core (64-thread) CPUs and 192GB memory.

The output format of all constructed problems is set to CPLEX LP

format (a standard LP/MIP format that is supported by most of

the mathematical solvers). The identity of all constructed problems

by different softwares on small and medium size are checked by

actual solving with Gurobi with the same optimized objective value,

and checked by static comparison script for extremely large size

that cannot be directly solved in reasonable time. MIP problems are

relaxed into LP in the identity checking process to extend scalability.

For multi-threaded Grassland, the size of thread pool is set to 64.

The basic information of the benchmark problems are shown in

Table 2.

For online experiment. all experiments are run on a Huawei

cloud server with 32-core (64-thread) CPUs and 256GB memory.

All models are solved via Mosek ApS[3]. For production planning

problem, the sequence length 𝑇 = 78 and we use number of sub-

models ℎ = 8, fine-tuning periods 𝑘 = 20 for all decomposition

methods.

Software version:

• Gurobi Modeling API (7.5.1, released in Jul 2017)
4

• ZIMPL (3.4.0, released in June 2020)

• JuMP (0.21.3, released in June 2020)

• AMPL (20200810, released in Aug 2020)

E EXPERIMENTAL RESULT
The detailed result of online experiment is shown in Table 3 and

Table 4.

4
Due to export restrictions, we cannot purchase and deploy the latest version of Gurobi

in Huawei’s enterprise environment.



Method

Model

instantiation time

Solving

time

Total

time

Objective

(×109)
Baseline 857.00 3135.16 3992.16 5.15626

RH 4.94 40.80 45.74 (+7.45%) 5.54017

FARH 8.54∗ + 6.78 67.68 83.00 (+0.81%) 5.19818

G-RH 28.84∗∗ + 8.79∗ + 6.20 73.31 117.14 (+2.11%) 5.26513

G-FARH 30.99∗∗ + 11.07∗ + 7.43 167.62 217.11 (+0.36%) 5.17477
Table 3: Sequential decomposition benchmark on demand-
supply analysis problem. In “Model instantiation time” col-
umn, timemarked with “*” is the time for data compression,
time marked with “**” is the time to generate guided con-
straints and objectives.

Method

Model

instantiation time

Solving

time

Total

time

Objective

(×109)
Baseline 857.00 3135.16 3992.16 5.15626

RH 8.16 150.35† + 40.80 199.31 (+3.52%) 5.33775

FARH 8.54∗ + 9.19 147.11† + 67.68 232.52 (+0.78%) 5.19651

G-RH 28.84∗∗ + 8.79∗ + 9.29 138.11† + 73.31 258.34 (+1.26%) 5.22104

G-FARH 30.99∗∗ + 11.07∗ + 9.93 116.41† + 167.62 336.02 (+0.33%) 5.17321
Table 4: Fine-tuning benchmark on demand-supply analysis
problem. In “Solving time” column, timemarked with “†” is
the extra solving time for fine tuning.

F PRODUCTION PLANNING MODEL
While real-world production planning models are complex with lots

of variants for different scenarios, here we show a self-contained,

simplified version with only three types of constraints. We refer to

[18] for a detailed introduction.

min

∑︁
𝑡,𝑝,𝑖

𝐶𝑚𝑡,𝑝,𝑖𝑚𝑡,𝑝,𝑖 +
∑︁
𝑡,𝑝,𝑖

𝐶𝑥𝑡,𝑝,𝑖𝑥𝑡,𝑝,𝑖 +
∑︁
𝑡,𝑝,𝑖

𝐶
𝑝𝑢𝑟

𝑡,𝑝,𝑖
𝑝𝑢𝑟𝑡,𝑝,𝑖

+
∑︁

𝑡,𝑝,𝑖,𝑖′, 𝑗

𝐶
𝑟𝑝

𝑡,𝑝,𝑖,𝑖′, 𝑗𝑟𝑝𝑡,𝑝,𝑖,𝑖
′, 𝑗 +

∑︁
𝑡,𝑝,𝑖, 𝑗

𝐶𝑟𝑡,𝑝,𝑖, 𝑗𝑟𝑡,𝑝,𝑖, 𝑗

𝑠 .𝑡 . 𝑖𝑛𝑣𝑡,𝑝,𝑖 = 𝑖𝑛𝑣𝑡−1,𝑝,𝑖 + 𝑖𝑛𝑏𝑜𝑢𝑛𝑑𝑡,𝑝,𝑖 − 𝑜𝑢𝑡𝑏𝑜𝑢𝑛𝑑𝑡,𝑝,𝑖 (5)

𝑖𝑛𝑏𝑜𝑢𝑛𝑑𝑡,𝑝,𝑖 =
∑︁
𝑡 ′
𝑥𝑡 ′,𝑝,𝑖 +

∑︁
𝑡 ′
𝑝𝑢𝑟𝑡 ′,𝑝,𝑖 +

∑︁
𝑝′
𝑠𝑡,𝑝′,𝑝,𝑖

+
∑︁
𝑖′, 𝑗

𝑟𝑝𝑡,𝑝,𝑖,𝑖′, 𝑗 +
∑︁
𝑗

𝑟𝑡,𝑝,𝑗,𝑖 + 𝑃𝑂𝑡,𝑝,𝑖 +𝑊𝐼𝑃𝑡,𝑝,𝑖

𝑜𝑢𝑡𝑏𝑜𝑢𝑛𝑑𝑡,𝑝,𝑖 =
∑︁
𝑗

𝐵𝑡,𝑝,𝑖, 𝑗𝑥𝑡,𝑝,𝑗 +
∑︁
𝑝′
𝑠𝑡,𝑝,𝑝′,𝑖 +

∑︁
𝑖′, 𝑗

𝑟𝑝𝑡,𝑝,𝑖′,𝑖, 𝑗

+
∑︁
𝑗

𝑟𝑡,𝑝,𝑖, 𝑗 + 𝑧𝑡,𝑝,𝑖

for (𝑡, 𝑝, 𝑖) ∈ 𝑃
𝑚𝑡,𝑝,𝑖 =𝑚𝑡−1,𝑝,𝑖 − 𝑧𝑡,𝑝,𝑖 + 𝐷𝑡,𝑝,𝑖 (6)

for (𝑡, 𝑝, 𝑖) ∈ 𝑃∑︁
𝑖′
𝑟𝑝𝑡,𝑝,𝑖,𝑖′, 𝑗 ≤ 𝐵𝑡,𝑝,𝑖, 𝑗𝑥𝑡,𝑝,𝑗 (7)

for (𝑡, 𝑝, 𝑖, 𝑗) ∈ 𝐵𝑂𝑀

Indices:

• 𝑖, 𝑖 ′, 𝑗 : items (raw material, sub-assembly or end product).

• 𝑝: plant.
• 𝑡 : period.

Decision variables:

• 𝑥𝑡,𝑝,𝑖 , 𝑝𝑢𝑟𝑡,𝑝,𝑖 , 𝑧𝑡,𝑝,𝑖 : the production/purchase/deliver amount

of item 𝑖 in plant 𝑝 at period 𝑡 .

• 𝑠𝑡,𝑝,𝑝′,𝑡 : the transit amount of item 𝑖 from plant 𝑝 to plant 𝑝 ′

at period 𝑡 .

• 𝑟𝑡,𝑝,𝑖, 𝑗 : the amount that item 𝑖 replace item 𝑗 in plant 𝑝 at

period 𝑡 .

• 𝑟𝑝𝑡,𝑝,𝑖,𝑖′, 𝑗 : the amount that item 𝑖 ′ replace item 𝑖 to produce

item 𝑗 in plant 𝑝 at period 𝑡 .

State variables (whose value is determined by other decision

variables):

• 𝑖𝑛𝑣𝑡,𝑝,𝑖 : the inventory amount of item 𝑖 in plant 𝑝 at period

𝑡 .

• 𝑚𝑡,𝑝,𝑖 : the delay amount of item 𝑖 in plant 𝑝 at period 𝑡 .

All the value of decision and state variables are not less than

zero.

Some important constants (note that not all constants are listed

due to space limit. Every sum operation contains a constant that

controls the range of indices):

• 𝐶𝑚,𝐶𝑠 ,𝐶𝑝𝑢𝑟 ,𝐶𝑟𝑝 ,𝐶𝑟 : the cost of delay, transition, purchase

and replacement. (Delay cost will usually dominate the ob-

jective)

• 𝑃 [𝑡, 𝑝, 𝑖]: item 𝑖 will be produced in plant 𝑝 at period 𝑡 .

• 𝐵𝑂𝑀 [𝑡, 𝑝, 𝑖, 𝑗]: 𝑗 is the parent of 𝑖 in plant 𝑝 at period 𝑡 .

• 𝐵𝑡,𝑝,𝑖, 𝑗 : number of item 𝑖’s amount that need to be consumed

to producing one item 𝑗 .

• 𝑃𝑂𝑡,𝑝,𝑖 ,𝑊 𝐼𝑃𝑡,𝑝,𝑖 : the amount of purchase order (PO) / work-

in-progress (WIP) of item 𝑖 in plant 𝑝 at period 𝑡 .

Constraints:

• Equation 5: inventory constraint. The current inventory

amount equals to last period’s inventory plus inbound minus

outbound.

• Equation 6: delay constraint. The current delay amount

equals to last period’s delay amount plus delivery amount

minus demand amount.

• Equation 7: replacement constraint. For all component-assembly

relation, the sum of replacement amount cannot exceed the

needed amount for assembly’s production.
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