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Abstract—In this paper we present full-wave signal
models for magnetic and electric field measurements in
magnetic resonance imaging (MRI). Our analysis is based
on a scattering formalism in which the presence of an
object or body is taken into account via an electric
scattering source. We show that these signal models can be
evaluated, provided the Green’s tensors of the background
field are known along with the dielectric parameters of
the object and the magnetization within the excited part
of the object. Furthermore, explicit signal expressions
are derived in case of a small homogeneous ball that is
embedded in free space and for which the quasi-static
Born approximation can be applied. The conductivity and
permittivity of the ball appear as explicit parameters in the
resulting signal models and allow us to study the sensitivity
of the measured signals with respect to these dielectric
parameters. Moreover, for free induction decay signals we
show through simulations that under certain conditions it
is possible to retrieve the dielectric parameters of the ball
from noise-contaminated induction decay signals that are
based on electric or magnetic field measurements.

Index Terms—Magnetic resonance imaging, scattering
formalism, Born approximation, free induction decay,
dielectric parameter retrieval

I. INTRODUCTION

The influence of biological tissue on a typical mag-
netic resonance imaging (MRI) experiment (and previ-
ously in nuclear magnetic resonance (NMR) or zeug-
matography [1]) has been investigated almost as long
as the imaging modality exists. Most of this research
has focussed on the signal to noise ratio (SNR) of the
received signals [2], and on the influence of tissue on the
antenna sensitivity patterns [3]. Both of these aspects
play an important role in understanding the structure
of the received signal, of course, and are taken into
account in signal optimization frameworks as shown in
the recent work [4], for example. However, the influence
of scattering currents induced in biological tissue through
the magnetization itself is neglected in research on this
matter up till now.
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Due to the relationship between the SNR and the MRI
background field there is a continuing push to higher
field strengths to achieve improved SNRs and faster scan
times. These improvements do come at a cost as with
higher field strengths also the frequency at which the
MRI measurement is performed increases. This higher
frequency leads to new challenges in RF coil design,
for example, and the received signals are generally more
sensitive to changes in the dielectric (tissue) parameters
as well.

In RF coil design a major challenge at higher fields is
to achieve a uniform excitation of the region of interest
(ROI). Since the size of the object is on the order of
the wavelength, non-uniform RF fields and interference
patterns may appear within the ROI. Possible solutions
are increasing antenna array sizes and combining antenna
types, although it has been demonstrated that such an ap-
proach has diminishing returns for larger array sizes [5].
Another approach is varying the array elements, using
dipoles [6], combining loops and dipoles [7], [8], or
using “special” fractionated dipoles [9]. In most of these
approaches the goal is to optimize the so-called ultimate
intrinsic signal to noise ratio (UISNR) or, in other words,
to approximate ideal current patterns which would lead
to the highest SNR [4]. Originally the term UISNR
was introduced in [10], but additions have been made
ever since, covering parallel MRI [11], current patterns
required to attain this ratio [4], and addition of the
specific absorption rate (SAR) [12].

For the SAR all of the above-mentioned challenges
are combined, as the higher heterogeneity of the RF
fields leads to a local increase in tissue heating, which
limits the amount of current that can be used to power
a measurement and thus limits the SNR that can be
obtained for a specific field strength and antenna array.
Validated simulation techniques may be used to obtain
more accurate local SAR estimates and may lead to
antenna designs with reduced restrictions on the antenna
currents that can be employed, or dielectric pads (passive
shimming) can be used to improve the field homogeneity
and reduce local heating effects [13].

In this paper, we focus on the signal modeling part
and derive full-wave signal models based on Maxwell’s
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equations. Electric and magnetic field measurements are
considered and we show that the resulting signals are due
to the time-varying magnetization inside the object and
the induced electric scattering currents, each weighted
by their own receive field as determined by the coil or
antenna that is used for reception. The signal models can
be explicitly evaluated provided the Green’s tensors of
the background medium and the medium parameters of
the object are known. Moreover, to gain further insight
into how the electromagnetic medium parameters of
the object influence the measured signal, explicit time-
and frequency-domain signal models are derived for a
special case, where the background medium consists
of air and the object is a homogeneous ball that is
uniformly excited and for which the Born approximation
applies. Quasi-static signal representations are derived
from the full-wave signal models and through a series
of numerical experiments we verify our models for
the received signals. Finally, we demonstrate that under
certain conditions it is possible to retrieve the dielectric
parameters of the ball from measured free induction
decay signals that are based on electric or magnetic
field measurements. Electromagnetic field simulations
are presented in which we validate our approach.

We present our analysis in the Laplace- or s-domain,
since it allows us to easily obtain frequency-domain
solutions by letting s → jω via the right-half of the
complex s-plane, or time-domain field responses using
standard Laplace transformation rules.

II. THEORY

Let Dobj be a bounded domain occupied by a pen-
etrable object that is present in an MR scanner. We
assume that the complete object or part of this object
has been excited during the transmit state of the scanner.
More precisely, we assume that the temporal derivative
of magnetization ∂tM(x, t) is nonzero within the sub-
domain Dex ⊆ Dobj and vanishes outside this domain. In
other words, ∂tM(x, t) has the domain Dex as its spatial
support and Dex = Dobj if the complete object is excited.

Measurements are carried out outside the object and
take place in free space. To set up the data models
that describe our measurements, we first consider a
surface S with unit normal ν and closed boundary curve
C with a unit normal τ along this curve such that τ
and ν are oriented according to the right-hand rule. The
surface S has an area A and the position vector of its
barycenter is denoted by xR. The surface is completely
located in air and is used to measure the electromotive

or magnetomotive force given by

V̂emf(s) =

∫
x∈C

Ê·τ d` and Îmmf(s) =

∫
x∈C

Ĥ·τ d`,

(1)
respectively. Using Maxwell’s equations and assuming
that the area A of the surface is sufficiently small
(diameter much smaller than the smallest wavelength of
interest), we have

V̂emf(s) = −s
∫
x∈S

B̂·ν dA ≈ −sµ0A Ĥ(xR, s)·ν, (2)

where we have used B̂ = µ0Ĥ, since the measurement
surface S is located in air. Similarly, for the magneto-
motive force we obtain

Îmmf(s) = s

∫
x∈S

D̂ · ν dA ≈ sε0A Ê(xR, s) · ν, (3)

where we have used D̂ = ε0Ê. Assuming that a mea-
surement is linear and time-invariant, we can generalize
our field measurement description to

d̂h(s) =

∫
x∈Drec

m̂h(x, s) · Ĥ(x, s) dV (4)

and

d̂e(s) =

∫
x∈Drec

m̂e(x, s) · Ê(x, s) dV, (5)

in which a volumetric receiver is used to obtain the
measured signals. The receiver is completely located
outside the object, occupies the receiver domain Drec,
and its action on the electromagnetic field inside the
receiver domain is described by the vectorial receiver
functions m̂h and m̂e for magnetic and electric field
measurements, respectively. Note that the electro- and
magnetomotive forces are special cases of (4) and (5).
In particular, with

m̂h(s) = sµ0Aδ(x− xR)ν, (6)

and
m̂e(s) = sε0Aδ(x− xR)ν, (7)

we have d̂h(s) = −V̂emf(s) and d̂e(s) = Îmmf(s). Since
an electromotive force measurement is characterized by
(4) and (6), these equations provide a model for a
magnetic field measurement. Similarly, a magnetomotive
force measurement is characterized by (5) and (7) and
these equations provide a model for an electric field
measurement. Below, we take the general signal models
(4) and (5) as a starting point and consider the electro-
and magnetomotive forces as special cases.
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A. Scattering Formalism

To further develop the signal models (4) and (5), the
magnetic and electric field strengths inside the receiver
domain are obviously required. To this end, we set up
a scattering formalism and write the electromagnetic
field as a superposition of a background and a scattered
field. The background field is defined as the field that
is present when the constitutive parameters within the
object domain are the same as the parameters of the
background medium, while the scattered field takes the
presence of the object into account. Assuming that the
background can be accurately described by a background
conductivity σb(x), a background permittivity εb(x), and
a permeability µb(x), the Laplace-domain background
field satisfies the Maxwell equations

−∇× Ĥb + σbÊ
b + sεbÊ

b = 0, (8)

and

∇× Êb + sµbĤ
b = −K̂, (9)

where K̂ is the Laplace transform of µ0∂tM with
M(x, t) the time-varying magnetization with the domain
Dex as its spatial support. Across interfaces where the
background medium parameters exhibit a jump, the
above Maxwell’s equations have to be supplemented
by the appropriate boundary conditions and if perfectly
conducting structures are present in the background
configuration, then the boundary condition for a perfectly
conducting structure has to be included as well, of
course. For general inhomogeneous background configu-
rations that can be described in terms of the background
medium parameters, the above Maxwell equations can
only be solved numerically. Formally, however, we can
express the electromagnetic background field in terms of
the Green’s tensors of the background medium as

Ĥb(x, s) =

∫
x′∈Dex

Ĝ
HK

(x,x′, s) · K̂(x′, s) dV (10)

and

Êb(x, s) =

∫
x′∈Dex

Ĝ
EK

(x,x′, s) · K̂(x′, s) dV, (11)

where Ĝ
HK

and Ĝ
EK

are the magnetic current to mag-
netic field and magnetic current to electric field Green’s
tensors of the background medium.

Furthermore, the scattered field {Ĥsc, Êsc} satisfies
the Maxwell equations

−∇× Ĥsc + σbÊ
sc + sεbÊ

sc = −Ĵsc (12)

and

∇× Êsc + sµbĤ
sc = 0, (13)

where Ĵsc is the Laplace transformed dielectric scattering
source given by

Ĵsc(x, s) =
{
σ̂(x)− σb(x) + s[ε̂(x)− εb(x)]

}
Ê(x, s)

(14)
for x ∈ Dobj, where σ̂(x) is the conductivity of the
object and ε̂(x) its permittivity. The object is assumed
to have no contrast in its permeability with respect to
the background medium.

For the scattered field we have the integral represen-
tations

Ĥsc(x, s) =

∫
x′∈Dobj

Ĝ
HJ

(x,x′, s) · Ĵsc(x′, s) dV (15)

and

Êsc(x, s) =

∫
x′∈Dobj

Ĝ
EJ

(x,x′, s) · Ĵsc(x′, s) dV, (16)

where Ĝ
HJ

and Ĝ
EJ

are the electric current to magnetic
field and electric current to electric field Green’s tensors
of the background medium. Having the integral repre-
sentations for the background and scattered fields at our
disposal, we can now further develop the full-wave signal
models (4) and (5).

B. Full-Wave Signal Model

Writing the total magnetic and electric fields in the
receiver domain as a superposition of the background
and scattered fields and using the integral representations
(10), (11), (15), and (16), the signal models of (4) and
(5) become

d̂h(s) =∫
x∈Dant

m̂h(x, s) ·
∫

x′∈Dex

Ĝ
HK

(x,x′, s) · K̂(x′, s) dV dV

+

∫
x∈Dant

m̂h(x, s) ·
∫

x′∈Dobj

Ĝ
HJ

(x,x′, s) · Ĵsc(x′, s) dV dV

(17)

and

d̂e(s) =∫
x∈Dant

m̂e(x, s) ·
∫

x′∈Dex

Ĝ
EK

(x,x′, s) · K̂(x′, s) dV dV

+

∫
x∈Dant

m̂e(x, s) ·
∫

x′∈Dobj

Ĝ
EJ

(x,x′, s) · Ĵsc(x′, s) dV dV.

(18)
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Interchanging the order of integration and using the
reciprocity properties of the Green’s tensors [14] allows
us to write the signal representations as

d̂h(s) =

∫
x′∈Dex

K̂(x′, s) · Ŵmg
h (x′, s) dV

−
∫

x′∈Dobj

Ĵsc(x′, s) · Ŵmg
e (x′, s) dV

(19)

and

d̂e(s) =−
∫

x′∈Dex

K̂(x′, s) · Ŵel
h (x′, s) dV

+

∫
x′∈Dobj

Ĵsc(x′, s) · Ŵel
e (x′, s) dV,

(20)

where we have introduced the receive fields for a mag-
netic field measurement as

Ŵmg
h (x′, s) =

∫
x∈Drec

Ĝ
HK

(x′,x, s) · m̂h(x, s) dV, (21)

and

Ŵmg
e (x′, s) =

∫
x∈Drec

Ĝ
EK

(x′,x, s) · m̂h(x, s) dV, (22)

while the receive fields for an electric field measurement
are given by

Ŵel
h (x′, s) =

∫
x∈Drec

Ĝ
HJ

(x′,x, s) · m̂e(x, s) dV, (23)

and

Ŵel
e (x′, s) =

∫
x∈Drec

Ĝ
EJ

(x′,x, s) · m̂e(x, s) dV, (24)

Equations (19) and (20) are the full-wave signal models
for a magnetic and electric field measurement, respec-
tively, in which the magnetic-current source (magnetiza-
tion) and the scattering source contribute to the measured
signal both weighted by their respective antenna receive
fields. These receive fields depend on the Green’s tensors
of the background medium and the coils or antennas
used for reception and clearly provide us with a means
to optimize the received signal. In particular, in high-
field MRI so-called signals voids are often observed in
the resulting image, which are due to wave interference
effects that take place within the body [15]. The impact
of these interference effects on the received signal is
captured by the second term on the right-hand sides
of equations (19) and (20). Therefore, the above signal
models can be used to minimize interference effects

by designing receiving antennas or coils for which the
corresponding magnetic receive fields Ŵmg

h or Ŵel
h are

dominant and as uniform as possible. High permittivity
pads [16] are also often used to eliminate signals voids
in an MR image and the above signal models can be
used to optimize these pads and their location as well,
since their presence can be taken into account in the
scattering current Ĵsc(x, s). In practice, the pads are
placed in the neighborhood and on top of the body
part that needs to be imaged. From the above signal
models it immediately follows that to have an effect on
the received signal and ultimately an MR image, a pad
should be placed at a location where the electric receive
fields Ŵmg

e and Ŵel
e do not vanish. If this leads to an

unrealistic pad location, then different receive antennas
or different receive locations (or both) must be used to
image a desired field of view in which signal voids are
eliminated or minimized.

Finally, in principle the above signal models may
also be used to retrieve the dielectric properties of the
body part of interest. In this case, receiving antennas
must be used for which the electric receive field Ŵmg

e

and Ŵel
e are optimized and the second terms on the

right-hand sides of (19) and (20) are dominant. In fact,
in Section III-C we will show that for the specific
case of a homogeneous ball located in an air-filled
background this is essentially the case for an electric
field dipole measurement, but not for a magnetic field
dipole measurement. In general we have to resort to
the signal models of equations (19) and (20), however,
to design receive antennas or coils that are sensitive to
the dielectric parameters of the object or body part of
interest.

To evaluate these models, first the magnetization (and
hence the magnetic-current source K̂) must be known
within the excited part Dex of the object, since the
time variations of this field quantity generate the ra-
diated electromagnetic field. Second, the conductivity
and permittivity profiles of the object must be known.
This allows us to determine the electric field strength
within the object by solving a forward problem with the
magnetic-current density K̂ in Dex as a source. Finally,
the Green’s tensors of the background medium must be
known as well to determine the receive fields (21) –
(24). In general, these tensors can only be determined
through simulations, since the background is inhomo-
geneous. In conclusion, the full-wave signals can be
evaluated in principle, provided that (i) the magnetization
in Dex is known, (ii) the conductivity and permittivity
profiles of the object are known, and (iii) the Green’s
tensors of the background medium are known. Note
that frequency-domain responses are obtained by letting
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s → jω and time-domain signal responses involve
temporal convolutions of the magnetic-current source
and the dielectric scattering source with their respective
receive fields, since their Laplace-domain counterparts
all are s-dependent in general.

C. Simplified Full-Wave Signal Models for a Ball Lo-
cated in Free-Space

Given the above observations, we consider a specific
configuration for which it is possible to develop signal
models that explicitly show how the received signals
depend on the conductivity and permittivity of the object.
In particular, we first consider a background medium
consisting of free space. The Green’s tensors of the
background medium and the receive fields for electro-
or magnetomotive force measurements (dipole measure-
ments) can then be determined explicitly. Second, we
take a small homogeneous ball with a constant con-
ductivity σ and permittivity ε as our object of interest.
Explicit signal models can then be developed provided
the radius of the ball is sufficiently small.

Let the background medium be free space and con-
sider an electro- or magnetomotive force measurement.
For an electromotive force measurement, the receive
function m̂h is given by (6) and since the background
medium is free space, the Green’s tensors are explicitly
known [14] and the receive fields follow as

Ŵmg
h (x′, s) = sµ0AĜ

HK
(x′,xR, s) · ν

=
A

4π|x′ − xR|3
exp(−sτ)

[
(1 + sτ)p1 + (sτ)2p2

]
(25)

and

Ŵmg
e (x′, s) = sµ0AĜ

EK
(x′,xR, s) · ν

=
sµ0A

4π|x′ − xR|2
exp(−sτ)(1 + sτ)n× ν,

(26)

where τ = c−10 |x′ − xR| with c0 is the electromagnetic
wave speed in vacuum. Clearly, τ is the travel time from
the point of integration x′ to the receiver location xR.
Furthermore, p1 = 3n(n ·ν)−ν, and p2 = n(n ·ν)−ν
with n = (x′ − xR)/|x′ − xR| the unit vector pointing
from the receiver location to the point of integration.

Similarly, for a magnetomotive force measurement,
the receive function m̂e is given by (7) and the receive
fields follow as

Ŵel
h (x, s) = sε0AĜ

HJ
(x,xR, s) · ν

= − sε0A

4π|x′ − xR|2
exp(−sτ)(1 + sτ)n× ν,

(27)

and

Ŵel
e (x, s) = sε0AĜ

EJ
(x,xR, s) · ν

=
A

4π|x′ − xR|3
exp(−sτ)

[
(1 + sτ)p1 + (sτ)2p2

]
.

(28)

Note that Ŵmg
e and Ŵel

h are proportional to each other
and Ŵmg

h = Ŵel
e .

Second, we take a small ball as our object of interest.
The ball is centered at the origin of our reference frame
and has a radius a > 0. It is characterized by a constant
conductivity σ and permittivity ε, and its permeability is
equal to that of free space. We assume that the radius a is
so small that the ball is excited throughout (Dex = Dobj)
and time variations of the magnetization (and hence
the magnetic-current source K̂) are uniform, that is,
K̂ does not vary with position within the ball. For a
given magnetization, the magnetic-current source is now
known and the total electric field within the ball can be
computed by solving the integral equation

Ê(x′, s) = Êb(x′, s)

− χ̂(γ̂20 −∇∇·)
∫
x′∈Dobj

Ĝ(x− x′, s)Ê(x′, s) dV,

(29)

for the electric field Ê(x′, s) with x′ ∈ Dobj. In the
above equation, γ̂0 = s/c0 is the propagation coefficient
of free space, χ̂ = ε̂r − 1 + σ̂/(sε0) is the contrast
of the ball, Ĝ is the scalar Green’s function of free
space, and Êb can be determined from (11), since K̂ is
known. In the next section, we will essentially follow
such an approach, except that we will determine the
electric field in the time-domain using FDTD for a given
magnetization. Here, we use the above integral equation
to arrive at the desired signal models. Specifically, let
us consider frequencies of operation s and a ball of
radius a with conductivity and permittivity values σ̂ and
ε̂, respectively, such that the condition

(2a|γ̂0|)2|χ̂| � 1 (30)

is satisfied. For three-dimensional scalar wave field prob-
lems, this is a sufficient condition for the Neumann
series to converge [17], [18]. In addition, let us assume
that there is (essentially) no charge accumulation at the
boundary of the ball. The gradient-divergence term is
then negligible and the above integral equation turns into
a scalar integral equation for each component of the
electric field. Moreover, since we consider frequencies
and dielectric parameters for which (30) holds, we may
approximate

Ê(x′, s) ≈ Êb(x′, s). (31)
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Now provided the quasi-static condition |2aγ̂0| � 1 is
also satisfied, this background field is essentially given
by

Êb(x′, s) = −1

3
K̂× x′ (32)

with x′ ∈ Dobj. Notice that this background field does
not have a radial component, which is consistent with our
assumption of no charge accumulation at the boundary.
Also note that if the quasi-static condition |2aγ̂0| � 1
holds, then (30) can be satisfied for |χ̂| � 1 [18].

Provided the quasi-static and Born approximation
hold, the dielectric scattering source within the ball is
given by

Ĵsc(x′, s) = [σ̂ + s(ε̂− ε0)]Ê(x′, s)

= −1

3
[σ̂ + s(ε̂− ε0)]K̂(s)× x′,

(33)

for x′ ∈ Dobj. Substitution in (19) and (20), we obtain
the signal models

d̂h(s) = K̂(s) ·
∫
x′∈Dobj

Ŝmg(x′, s) dV (34)

and

d̂e(s) = −K̂(s) ·
∫
x′∈Dobj

Ŝel(x′, s) dV, (35)

where the vectorial sensitivity functions are given by

Ŝmg(x′, s) = Ŵmg
h + χ̂ex

′ × Ŵmg
e (36)

and
Ŝel(x′, s) = Ŵel

h + χ̂ex
′ × Ŵel

e (37)

with χ̂e = [σ̂ + s(ε̂ − ε0)]/3 = sε0χ̂/3. Substituting
expressions (25) – (28) for the receive fields in the above
equations and assuming that the time derivative of the
magnetization is band-limited and centered around the
(Larmor) frequency ω0 such that the conductivity and
permittivity can be considered constant on this frequency
band, we obtain by applying an inverse Laplace trans-
form the time-domain signals

dh(t) = µ0∂tM(t)
t∗
∫
x′∈Dobj

Smg(x′, t− τ) dV, (38)

and

de(t) = −µ0∂tM(t)
t∗
∫
x′∈Dobj

Sel(x′, t− τ) dV, (39)

for t > 0, where the asterisk denotes convolution in time
and the time-domain sensitivity functions are given by

Smg(x′, t) =
A

4π|x′ − xR|3
3∑

k=0

τkδ(k)(t)rmg
k (40)

and

Sel(x′, t) =
A

4π|x′ − xR|3
3∑

k=0

τkδ(k)(t)rel
k , (41)

where δ(k) is the kth derivative of the Dirac distribution.
Explicit expressions for the expansion vectors rmg,el

k , k =
0, 1, 2, 3, are given in the Appendix.

In the above signal models, propagation effects and
travel times from the ball to the receiver are fully taken
into account. However, when the receivers are located
not too far from the ball (in a sense to be made precise)
then the signals may be simplified even further. To this
end, we substitute the receive fields of (25) – (28) in
(36) and (37) and arrange the resulting expressions in
such a way that the sensitivities are expanded in terms
of vectors that do not depend on the distance |x′ − xR|.
Carrying out these steps, we find for the magnetic field
sensitivity function

Ŝmg(x′, s) =
A

4π|x′ − xR|3
exp(−sτ)·[

p1 + (sτ)(p1 + q̂mg) + (sτ)2(p2 + q̂mg)
]
,

(42)

while for the sensitivity function for an electric field
measurement, we have

Ŝel(x′, s) =
A

4π|x′ − xR|3
exp(−sτ)·[

χ̂ex
′ × p1

+ (sτ)(χ̂ex
′ × p1 + Y0q

el)

+ (sτ)2(χ̂ex
′ × p2 + Y0q

el)
]

(43)

with q̂mg = Z0χ̂e[(x
′ ·ν)n− (x′ ·n)ν] and qel = ν×n.

Note that the vectors

p1,2 + q̂mg and χ̂ex
′ × p1,2 + Y0q

el (44)

are s-dependent, but do not depend on |x′−xR|. We can
now use the above expressions to investigate which terms
contribute to the received signals measured at different
receiver locations. Specifically, let us first consider the
case where we place the receiver near (almost at) the
surface of the ball (|xR| = a(1 + ε), with ε > 0 small).
In this case, |s|τ ≤ |γ̂02a| � 1 and the receive field can
be considered quasi-static. The signals models simplify
to

d̂h(s) ≈ d̂QS
h (s)

=
A

4π

[
K̂ ·

∫
x′∈Dobj

p1

|x′ − xR|3
dV

+ sµ0χ̂eK̂ ·
∫
x′∈Dobj

(x′ · ν)n− (x′ · n)ν

|x′ − xR|2
dV

]
(45)
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and

d̂e(s) ≈ d̂QS
e (s)

= − A

4π

[
χ̂eK̂ ·

∫
x′∈Dobj

x′ × p1

|x′ − xR|3
dV

+ sε0K̂ ·
∫
x′∈Dobj

ν × n

|x′ − xR|2
dV

] (46)

and their time-domain counterparts are given by

dQS
h (t) =

µ0A

4π

[
∂tM ·

∫
x′∈Dobj

p1

|x′ − xR|3
dV

+
σµ0

3
∂2tM ·

∫
x′∈Dobj

[(x′ · ν)n− (x′ · n)ν]

|x′ − xR|2
dV

+
εr − 1

3

1

c20
∂3tM ·

∫
x′∈Dobj

[(x′ · ν)n− (x′ · n)ν]

|x′ − xR|2
dV

]
(47)

and

dQS
e (t) = −µ0A

4π

[
σ

3
∂tM ·

∫
x′∈Dobj

x′ × p1

|x′ − xR|3
dV

+
εr − 1

3
ε0∂

2
tM ·

∫
x′∈Dobj

x′ × p1

|x′ − xR|3
dV

+ ε0∂
2
tM ·

∫
x′∈Dobj

ν × n

|x′ − xR|2
dV

]
,

(48)

for t > 0 explicitly showing that time variations of
the magnetization are received without any propagation
delay in the quasi-static limit. We observe that for a
magnetic field measurement, the conductivity and per-
mittivity are present in the intermediate-field contribution
to the signal (1/distance2 term), while for an electric
field measurement the dielectric properties of the ball
show up in the near field contribution to the signal
(1/distance3 term).

As we move away from the ball, the travel time τ
will obviously increase. The above quasi-static signal
models remain valid, however, provided that |s|τ � 1 for
all x′ ∈ Dobj. Obviously, the quasi-static signal models
can no longer be used as soon as this inequality is not
satisfied.

Finally, for later convenience we write the quasi-static
signals as

dQS
h (t) = ∂tM · ah

1(xR) +
σµ0

3
∂2tM · ah

2(xR)

+
εr − 1

3

1

c20
∂3tM · ah

2(xR) (49)

a

O x

y

1 2 3
ε, σ, µ

d2

d3

Fig. 1: Free induction decay signal measurement setup. A
homogeneous ball with a radius a, centered at the origin
has a permittivity ε, conductivity σ, and permeability µ.
Relaxation times T1 and T2.

TABLE I: Dielectric medium parameters of white matter
for different background fields [19], [21]. The resonance
(and therefore measurement) frequency for each mag-
netic field strength is determined by the Larmor preces-
sion frequency fL = γB0, where γ = 42.58 MHz/T is
the proton gyromagnetic ratio and B0 the magnitude of
the background field.

B0 [T] 1.5 3 7 11.2
fL [MHz] 63.9 127.7 298 476.9

σ [S/m] 0.3 0.3 0.4 0.5
εr 68 53 44 41

and

dQS
e (t) =

σ

3
∂tM · ae

1(xR) +
εr − 1

3
ε0 ∂

2
tM · ae

1(xR)

+ ε0 ∂
2
tM · ae

2(xR), (50)

where the expressions for the expansion vectors ae,h
k (xR),

k = 1, 2, are easily obtained from (47) and (48).

III. SIMULATIONS

To test the validity of our signal models and to study the
influence of the permittivity and conductivity of the ball
on these signals, we consider the configuration illustrated
in Fig. 1. In this configuration, all geometrical parame-
ters are fixed and wavelength independent, since we want
to investigate this setup in MR scanners with different
background fields. In particular, the radius of the ball is
set to a = 2.5 cm, and we use three receivers located
on the x-axis to measure the various field responses.
With Receiver 1 we carry out surface measurements, and
in our simulations this receiver is located at a distance
d1 = 2.5 · 10−6 cm from the ball. Receiver 2 is located
at a distance d2 = 25 cm from the ball and, finally,
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Receiver 3 is located at a distance d3 = 50 cm from the
ball. All three receivers are loops that have a circular
surface area with a radius of 2 cm. This is the setup of
our computer phantom, and all measurements described
in this section are numerical simulations performed on
this phantom. When we carry out a magnetic field mea-
surement (emf), the loop is oriented in the x-direction
(ν = ix), while for an electric field measurement (mmf)
we orient the loop in the z-direction (ν = iz). The signal
models will be evaluated for background fields of 1.5 T,
3 T, 7 T, and 11.2 T. The ball that we consider consists of
white matter and its conductivity and relative permittivity
values at the Larmor frequencies that correspond to these
background fields are listed in Table I. In all cases, the
relative permeability is taken to be equal to one. For
the relaxation times of white matter we take those of
a 3T background field, T1 = 900 ms and T2 = 75 ms
[22], and we use these values for all background fields
under consideration. More information on the dielectric
properties of tissue can be found in [19] and [20], for
example.

The signals that we receive are free induction decay
(FID) signals as generated by the time-varying magneti-
zation

Mx(t) = M eqe−t/T2 cos(ω0t) (51)

My(t) = −M eqe−t/T2 sin(ω0t) (52)

and

Mz(t) = M eq(1− e−t/T1), (53)

where ω0 = γB0 is the Larmor frequency, T1 and T2 are
the longitudinal and transverse relaxation times, respec-
tively, and M eq is the equilibrium magnetization. For a
proton spin density ρ = 6.69 · 1028 m−3 (water) and at
T = 310.15 K, the equilibrium magnetization evaluates
to M eq ≈ 0.0031B0. The above components of the
magnetization form the solution of the Bloch equation
with initial condition M(0) = M eqix. For t > 0, the
above solution describes how the magnetization relaxes
back to its equilibrium M = M eqiz as time increases.

A. Validating the Born approximation

Before we carry out our signal analysis, we first
validate the Born approximation for all background fields
under consideration, since our signal models are based
on this approximation. Specifically, we compute the
time-domain electromagnetic field due to the magneti-
zation given by (51) – (53) using an in-house UPML-
FDTD code. In our FDTD model, the conductivity and
permittivity values of the ball at the various Larmor

Fig. 2: Validation of the Born approximation for various
background fields. Dashed (red) lines: Vemf as determined
from the magnetic field of the FDTD simulation. Solid
(blue) line: the signal model of (38). The receiver is
located at xR = [3.2, 0.0, 0] cm and the medium param-
eters of the ball are listed in Table I.

frequencies are selected according to Table I. Subse-
quently, we use the computed FDTD field responses and
subsequently compute the electromotive force Vemf at
the receiver location xR = [3.2, 0, 0] cm. The dashed
lines in Fig. 2 show the resulting signals for various
background fields. The solid lines in this figure depict
the signal model of (38) at the same receiver location
and for the same background fields. This latter model
is based on the quasi-static Born approximation (31)
and (32), while obviously no such approximation has
been applied in our FDTD simulations of our computer
phantom. From Fig. 2 we observe that the signals based
on FDTD modeling and the signals based on the quasi-
static Born approximation overlap thereby validating that
for this configuration and for all background fields of
interest, the Born approximation indeed provides us with
an accurate signal description.
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B. Quasi-Static Signal Analysis

In the Laplace-domain, the quasi-static signal models
hold provided that the condition |s|τ � 1 is satisfied for
all x′ ∈ Dobj and all frequencies s of interest. For the
FID signals as generated by the magnetization of (51)
– (53), the Larmor frequency is the only non-vanishing
oscillation frequency, and we can set s = jω0 in the
above condition to obtain the quasi-static requirement
that 2πλ−10 |x′ − xR| � 1 should hold for all x′ ∈ Dobj,
where λ0 is the wavelength in free space. Introducing
the maximum distance dmax = max

x′∈Dobj
|x′−xR|, the quasi-

static condition is satisfied if 2πdmax/λ0 � 1. Table II
lists 2πdmax/λ0 for the three receivers mentioned above
and for different background fields. From this table,
we expect the quasi-static approximation to hold for
Receiver 1 and essentially all background fields under
consideration. For Receiver 2, the quasi-static signal
models are expected to hold for 1.5 T and possibly
3 T background fields, while for Receiver 3 the quasi-
static field approximation possibly holds at 1.5 T only.
Figures 3 – 5 show the full wave signal model of (38)
(solid line) and the quasi-static signal model of (47)
(dashed line) for the electromotive force Vemf at the three
receivers of Fig. 1. Since a quasi-static electromotive or
magnetomotive force signal analysis leads to the same
conclusions, we present results for the electromotive
force only.

From Figs. 3 – 5 we observe that the quasi-static
parameters of Table II quite accurately predict when a
quasi-static signal model can be used. Specifically, for
Receiver 1 the value of 2πdmax/λ0 is at or below 0.5 for
all background fields and Fig. 3 shows that the full and
quasi-static signals essentially overlap. For Receiver 2,
however, we observe that the quasi-static model overlaps
with the full-wave model for a background field of 1.5 T,
but starts to deviate from the full-wave model for a
background field of 3 T. For even higher background
fields the quasi-static model is no longer valid, which
is consistent with Table II, since 2πdmax/λ0 is larger
than one in this case. These results indicate that the
quasi-static signal model coincides with the full-wave
model as long as 2πdmax/λ0 ≤ 0.5. This observation
is consistent with the full-wave and quasi-static signal
models for Receiver 3 shown in Fig. 5. In this case, the
quasi-static signal model already deviates from the full-
wave model for a background field of 1.5 T for which we
have 2πdmax/λ0 ≈ 0.74. For higher background fields
the quasi-static signal approximation definitely does not
hold at Receiver 3 and we have to resort to the full-wave
model of (47) in this case.

Finally, the dotted lines in Figs. 3 – 5 show the

Fig. 3: Electromotive force at Receiver 1 for various
background field strengths and a ball of white matter.
The dielectric parameters are listed in Table I. Solid line:
full wave signal model of (38); dashed line: quasi-static
signal model of (47); dotted line: sum of the last two
terms on the right-hand side of (47).

contribution of the conductivity and permittivity terms
(the last two terms on the right-hand side of (47)) to the
total quasi-static signal (47). We also observe that the
contribution of these terms is small for lower background
fields, but increases as the background field strength
increases. These simulation results indicate that the con-
ductivity and permittivity of the ball can be retrieved
from a quasi-static electromotive force measurement,
provided the SNR of the signals and the background field
strengths are sufficiently large and the quasi-static field
approximation holds. Another option is, of course, to
use an electric field measurement (magnetomotive force
measurement) as a basis for conductivity and permittivity
retrieval, since for such a measurement these quantities
contribute to the signal via the near-field as opposed to
an electromotive force measurement, where the medium
parameters contribute to the signal via the intermediate
field.
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TABLE II: Background fields and normalized distances

B0 [T] 1.5 3 7 11.2

λ0 [m] 4.69 2.35 1.01 0.63
2a/λ0 0.01 0.02 0.05 0.08

Rec. 1: 2πdmax/λ0 0.07 0.13 0.31 0.5
Rec. 2: 2πdmax/λ0 0.40 0.80 1.87 3.00
Rec. 3: 2πdmax/λ0 0.74 1.47 3.44 5.50

Fig. 4: Electromotive force at Receiver 2 for various
background field strengths and a ball of white matter.
The dielectric parameters are listed in Table I. Solid line:
full wave signal model of (38); dashed line: quasi-static
signal model of (47); dotted line: sum of the last two
terms on the right-hand side of (47).

C. Conductivity and Permittivity Retrieval

Since the quasi-static signal models under the Born
approximation are all valid for computer phantom
measurements carried out with Receiver 1 and all back-
ground fields of interest, we now use these models at
this receiver location to retrieve the conductivity and
permittivity of the ball (white matter).

Let us start with the signal model for a magnetic field
measurement given by (49). Introducing the functions
dh
1(t) = ∂tM · ah

1(xR), dh
2(t) = µ0∂

2
tM · ah

2(xR), and

Fig. 5: Electromotive force at Receiver 3 for various
background field strengths. The dielectric parameters are
listed in Table I. Solid line: full wave signal model
of (38); dashed line: quasi-static signal model of (47);
dotted line: sum of the last two terms on the right-hand
side of (47).

dh
3(t) = c−20 ∂3tM · ah

2(xR), we have

dBorn
h;QS(t) = dh

1(t) +
σ

3
dh
2(t) +

εr − 1

3
dh
3(t), (54)

for t > 0. Similarly, for the electric field signal model
we have

dBorn
e;QS(t) =

σ

3
de
1(t) +

εr − 1

3
de
2(t) + de

3(t), (55)

for t > 0 with de
1(t) = ∂tM · ae

1(xR), de
2(t) = ε0∂

2
tM ·

ae
1(xR), and de

3(t) = ε0∂
2
tM · ae

2(xR).
Subsequently, we introduce the time instances tn =

(n − 1)∆t for n = 1, 2, ..., N with (N − 1)∆t = Tobs,
where Tobs is the length of the observation interval, and
consider the above signals at these time instances to
obtain

dh = dh
1 +

σ

3
dh
2 +

εr − 1

3
dh
3 (56)

and

de =
σ

3
de
1 +

εr − 1

3
de
2 + de

3, (57)
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where dh = [dBorn
h;QS(t1), d

Born
h;QS(t2), ..., d

Born
h;QS(tN )]T is an N -

by-1 column vector and all other vectors in the above
equation are defined similarly.

Since we consider FID signals as generated by the
magnetization of (51) – (53), it immediately follows that
the vector dh

1 and dh
3 and the vectors de

2 and de
3 are

linearly dependent. Therefore, we consider the modified
(scattered) data equations

d̃h = Ahc and d̃e = Aec (58)

with c = 1
3 [σ, εr− 1]T , d̃h = dh−dh

1, d̃e = de−de
3 and

the matrices Ah and Ae have the column partitioning
Ah = (dh

2,d
h
3) and Ae = (de

1,d
e
2). Finally, noise is

added to the data and we attempt to reconstruct the
medium parameters as

c∗ = argmin
c
‖d̃h,e

n −Ah,ec‖22 (59)

where d̃h,e
n = d̃h,e + n is the noisy data vector with

n the noise vector. With T0 = 2π/ω0, we first take
Tobs = 3T0 = O(10−8,9) s in our minimization problem.
Clearly, the exponential decay of the FID signal can be
neglected in this case. With an SNR of 20 dB the conduc-
tivity and permittivity are determined by solving the cor-
responding least-squares problem (59) and the retrieved
parameters are depicted in Fig. 6 along with the exact
conductivity and permittivity values of white matter and
for various background fields as listed in Table I. From
this figure, we observe that for the magnetic field (emf)
measurement model, the error in the retrieved medium
parameters decreases as the background field strength
increases. At 1.5 T and 3 T, the medium parameters
cannot be retrieved, but accurate medium parameters are
obtained only at 11.2 T. Since the dielectric medium
parameters contribute via the near field to a signal that
is based on an electric field (mmf) measurement, we
expect that when the electric field measurement model is
used, these parameters can be reliably recovered for low
and high background fields. From Fig. 6 we observe that
this is indeed the case and similar to the magnetic field
measurement model, the reconstruction results improve
as the strength of the background field increases. The
reconstructed medium parameters at various background
fields when electric and magnetic field measurement
models are used are summarized in Table III. Finally,
we mention that we have repeated this experiment on an
observation interval Tobs = 3T2 = O(10−2) s and found
similar results, showing that the electrical properties can
also be recovered on an O(10−2) time scale.

IV. DISCUSSION AND CONCLUSIONS

In this paper, we have presented full wave signal
models for MRI field measurements. The models show
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Fig. 6: Reconstructed permittivity (top) and conductivity
(bottom) values using an EMF or MMF computer
phantom measurement for various field strengths.

TABLE III: Reconstruction results for EMF and MMF
receivers as displayed in Figure 6.

B0 [T] 1.50 3 7 11.20

σTrue [S/m] 0.30 0.30 0.40 0.50
σ̂EMF [S/m] 0.26 0.41 0.37 0.50
errEMF[%] 12.80 40.94 8.05 0.18
σ̂MMF [S/m] 0.30 0.30 0.40 0.50
errEMF[%] 1.40 0.43 0.98 0.32

εTrue
r 68 53 44 41
ε̂r

EMF 50.73 61.45 45.66 41.11
errEMF[%] 25.39 15.95 3.78 0.26
ε̂r

MMF 67.44 52.51 43.64 41.00
errEMF[%] 0.82 0.92 0.83 0.01
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that the magnetization and the induced electric scatter-
ing currents contribute to the measured signals, both
weighted by their respective receive fields that are de-
termined by the antenna that is used for reception. We
have shown that to evaluate the models, the Green’s
tensors of the background medium must be known,
along with the dielectric properties of the object and
the magnetization within the excited part of the object
must be known as well. For inhomogeneous background
media, the Green’s tensors can only be evaluated nu-
merically in general, which may be a formidable task
especially if electrically large objects are of interest.
Moreover, for given dielectric medium profiles and a
given magnetization, the electric field strength within
the object must be computed, since it is required to
determine the electric scattering source. In other words,
apart from numerically computing the Green’s tensors
of the background medium, a forward problem for the
electric field strength must be solved as well. Despite
these computational bottlenecks, direct evaluation is pos-
sible in principle. Additionally, the models can be easily
extended to include contrasts in permeability, but at the
expensive of having to solve a coupled forward problem
for the electric and magnetic field within the object of
interest.

To obtain explicit closed-form signal representations
for electric and magnetic field measurements, we have
considered a homogeneous ball that is embedded in free-
space. Obviously, the Green’s tensors of the background
medium are now known and if the dielectric parame-
ters and radius of the ball are “sufficiently small,” the
quasi-static Born approximation applies meaning that the
electric field within the ball may be approximated by the
quasi-static background field, which is explicitly known.
Obviously, there is now no need to solve a forward
problem and the medium parameters show up explicitly
in the resulting signal models. Travel time effects are still
included in these models, since the Born approximation
applies to the electric field within the ball only. Quasi-
static signal models may be obtained, however, for
receiver locations for which travel time effects can be
neglected. These signal models directly generalize the
standard quasi-static models as normally used in MRI
and clearly show how the dielectric parameters of the ball
influence the measured signals. In fact, for FID signals
obtained from an electric or magnetic field measurement,
we demonstrated that the dependence of the signals on
the medium parameters can even be used to retrieve these
parameters. Specifically, using simulations we showed
that for high background fields (7T and 11.2 T), electric
(mmf) and magnetic (emf) field measurements allow for
reliable parameter reconstructions, while at lower field

strengths only electric field measurements can essentially
be used, because the dielectric parameters show up in the
near-field of an electric field measurement and not in the
near-field of a magnetic field measurement.

The simplified quasi-static models have their limita-
tions, of course, and care should be taken when applying
these models, since they are valid for a ball and under
very special circumstances only (quasi-static field and
Born approximation applies). However, it is straightfor-
ward to construct a spherical phantom complying with
these assumptions for a real world experimental setup,
and it is straightforward to measure the FID to validate
this model, which the authors aim to do in future work.

Obviously, the full-wave models do not suffer from
these limitations and allow us to determine how inhomo-
geneous dielectric tissue profiles influence the measured
signals. To validate the full-wave models measurements
of a more complex phantom can be used in much the
same way as the validation of the simplified model. How-
ever, careful calibration of the phantom and measurement
setup as well as more complex full-wave simulations
are necessary in this case. Large-scale computations are
required to determine the effects of the conductivity and
permittivity profiles on the measured signals, but the
models can potentially be used in a wide variety of
applications. For a known object and excitation profile,
for example, the receive fields of the antennas can be
optimized for sensitivity to the electric properties, or to
avoid signal voids by minimizing interference effects.
Optimizing for the local specific absorption rate (SAR)
which leads to tissue heating can also be performed
by minimizing the electric field sensitivity for areas of
high conductivity (since SAR is related to the product
of these two quantities). In conclusion, complex wave
propagation effects that take place within a body part of
interest are captured by the signal models presented in
this paper and the models allow for signal and antenna
optimization in a variety of MR applications.

APPENDIX

The expansion vectors in the vectorial sensitivity func-
tion Smg of (40) for a magnetic field measurement are
given by

rmg
0 = p1, (60)

rmg
1 = p1 +

1

3
Z0σ [(x′ · ν)n− (x′ · n)ν], (61)

rmg
2 = p2 +

1

3
Z0σ [(x′ · ν)n− (x′ · n)ν]

+
1

3
(εr − 1)

(x′ · ν)n− (x′ · n)ν

|x′ − xR|
, (62)
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rmg
3 =

1

3
(εr − 1)

(x′ · ν)n− (x′ · n)ν

|x′ − xR|
, (63)

where Z0 is the impedance of vacuum and εr the rela-
tive permittivity of the ball. Furthermore, the expansion
vectors in vectorial sensitivity function Sel of (41) for an
electric field measurement are given by

rel
0 =

σ

3
x′ × p1, (64)

rel
1 = Y0q +

σ

3
x′ × p1, (65)

rel
2 = Y0q +

σ

3
x′ × p2, (66)

rel
3 =

1

3
Y0(εr − 1)

x′ × p2

|x′ − xR|
, (67)

where Y0 = (ε0/µ0)
1/2 is the admittance of vacuum,

and

q = ν × n +
1

3
(εr − 1)

x′ × p1

|x′ − xR|
. (68)

Note that these expansion vectors are independent of s,
but do depend on the distance |x′ − xR|.
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