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ABSTRACT
Bladder cancer remains one of the most common forms of cancer and yet there 

are limited small molecule targeted therapies. Here, we present a computational 
platform to identify new potential targets for bladder cancer therapy. Our method 
initially exploited a set of known driver genes for bladder cancer combined with 
predicted bladder cancer genes from mutationally enriched protein domain families. 
We enriched this initial set of genes using protein network data to identify a 
comprehensive set of 323 putative bladder cancer targets. Pathway and cancer 
hallmarks analyses highlighted putative mechanisms in agreement with those 
previously reported for this cancer and revealed protein network modules highly 
enriched in potential drivers likely to be good targets for targeted therapies. 21 of our 
potential drug targets are targeted by FDA approved drugs for other diseases — some 
of them are known drivers or are already being targeted for bladder cancer (FGFR3, 
ERBB3, HDAC3, EGFR). A further 4 potential drug targets were identified by inheriting 
drug mappings across our in-house CATH domain functional families (FunFams). Our 
FunFam data also allowed us to identify drug targets in families that are less prone to 
side effects i.e., where structurally similar protein domain relatives are less dispersed 
across the human protein network. We provide information on our novel potential 
cancer driver genes, together with information on pathways, network modules and 
hallmarks associated with the predicted and known bladder cancer drivers and we 
highlight those drivers we predict to be likely drug targets.

INTRODUCTION

Bladder cancer is the fifth most common cancer 
in western countries, where its most common form is 
urothelial carcinoma [1]. Its incidence increases with 
age—the highest proportion found in individuals above 65 
years old [2]—and there is a range of environmental risk 
factors described such as occupational carcinogens and 
lifestyle choices—smoking, obesity, physical inactivity 
among others [1].

Most of the drugs approved for bladder cancer are 
immunotherapeutics or chemotherapeutics that typically 
increase the median survival outcome of patients with 
metastatic bladder cancer to about 15 months, though 
posing a high burden in terms of toxicity [3]. The 
bulkiness of antibodies renders them less soluble, 
limiting their excretion from the kidney and raising 
their toxicity risk, which adds to the intrinsic toxicity 
of chemotherapeutics. However, several targeted drug 
therapies have been introduced that inhibit oncogenes 
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or activate tumour suppressor genes through signalling 
pathways (FGFR, PI3K/AKT/mTOR or EGFR2) and 
there are some promising results by small molecules 
targeting VEGFR, EGFR, mTOR, HDAC or FGFR3 
[4, 5]. Other therapeutic targets currently under 
development include the cell cycle regulation genes, 
heat shock proteins as well as genes of the immune 
system [6].

Even though initiatives developing targeted 
therapies for bladder cancer exist, more are needed to find 
therapies that better modulate the cellular processes that 
drive the oncogenic transformation. Considering their 
central role in tumour progression [7], cancer drivers are 
not only key to understand the mechanisms underlying 
tumour generation and cancer progression, but they are 
also the first option when looking for points of intervention 
to abort such processes in cancer development [8]. Recent 
strategies for identifying putative drivers, involve the 
detection of mutationally enriched genes—i.e. those that 
have mutation hotspots in the protein sequence or have 
been identified by enrichment of mutations across the 
protein domain family [9, 10]. Some approaches search for 
mutations clustering in the protein structure, since clusters 
lying close to protein functional sites are particularly 
indicative of driver mutations likely to be causing gain 
or loss of function [11]. Other strategies for detecting 
putative drivers use network modules enriched in mutated 
or highly expressed genes [12–16].

In this study, we build on CATH-MutFams—our 
in-house platform to identify cancer drivers [9], which 
exploits families of structurally and functionally similar 
protein domains from our in-house protein domain 
classification (CATH-FunFams) [17], to provide a 
computational platform that identifies putative bladder 
cancer driver genes and select possible drug targets. 
We obtained a set of known and putative bladder 
cancer driver genes from COSMIC’s Cancer Genome 
Census (CGC) [18], and CATH-MutFams. We added 
genes upregulated in bladder cancer that were also co-
expressed with the initial set of genes, and this set was 
then further expanded by means of protein network 
diffusion [19]. We carried out pathway, cancer hallmark 
and gene enrichment studies on the final set of putative 
bladder cancer targets. The pathways enriched included 
chromatin modification, myogenesis, checkpoint, notch 
signalling amongst others, all molecular events known 
to drive cancer biogenesis. The network characteristics 
of the potential targets such as a significant proportion 
of network hubs and bottlenecks, resemble those of 
genes associated with other cancers. Furthermore, we 
identified FDA approved drugs for some of our potential 
targets that are in druggable FunFams—CATH functional 
families previously found to be enriched in drug targets 
[20], thus suggesting that we found plausible targets 
for bladder cancer. In summary, we devised a strategy 
based on protein family and protein network analyses 

to identify bladder cancer drug targets that might be of 
interest for follow-up experiments to select therapeutics 
for repurposing.

RESULTS

Genes associated with bladder cancer

We obtained a set of 14 known bladder cancer drivers 
from CGC and 51 highly mutated bladder cancer genes 
from COSMIC—those with mutation frequency ≥ 4. This 
set was extended with 40 putative bladder cancer drivers 
from our in-house CATH-MutFams resource [9], giving 
a total of 105 non-redundant set of known and putative 
drivers. The mutationally enriched domain families 
(MutFams) contain genes that are relevant to bladder 
cancer as they are highly expressed in bladder cancer and 
are families that are often targeted in other forms of cancer 
[9]. Also, our sets of MutFam genes co-occur in modules 
with known cancer drivers from CGC (Supplementary 
Table 1 for list of MutFam genes). Furthermore, we 
examined the MutFam genes for distribution of mutations 
within them and the long tail effect (i.e. by which most 
mutations are found in a small set of genes but there is 
a long tail of genes with rare mutations) by comparing 
the mutational frequency between the CGC genes and 
MutFam genes, and found they were not statistically 
significantly different (Mann-Whitney U-test, P-val = 
0.072; Supplementary Figure 1). These multiple lines of 
evidence give additional confidence in combining these 
sets of data.

We identified 191 Hi-DEG (highly differentially 
expressed genes from the TCGA bladder cancer data; 
log2FC ≥ 4, adjusted p-value < 0.05). 138 (72%) of the 
Hi-DEG were up-regulated, and predominantly involved 
in muscle cell differentiation processes, while 53 (28%) 
were down-regulated, and mainly involved in remodelling 
the extracellular matrix. We then constructed a gene co-
expression matrix from the TCGA gene expression data and 
partitioned it into nine modules. Genes in the same module 
are significantly co-expressed, which suggests that they 
operate together in the same biological process. Therefore, 
each module is associated with a biological function that 
we characterised by its GO biological process category. 
Table 1 shows that the modules enriched in known and 
putative drivers and Hi-DEGs participate in relevant 
biological processes for bladder cancer development such 
as the progression of epithelial cells that is linked to the 
epithelial-mesenchymal transition, histone modification—
crucial for the epigenetic dysregulation that drives bladder 
cancer [21]—and muscle cell differentiation, which 
highlights the relevance of the modulation of smooth 
muscle cells in bladder tumour progression [22].

We combined the Hi-DEG genes and the known and 
putative drivers, within the three modules significantly 
associated with bladder cancer processes, into a seed-genes 
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set—we did not pick the other genes in the modules to 
minimise noise. This expanded the set of 105 known 
and putative drivers to 123 genes as 68 of the Hi-DEG 
were already in the seed-genes set. Of the additional 18 
Hi-DEG genes, 8 were found to be co-expressed with our 
set of 40 MutFam genes (Supplementary Table 2). This 
seed-genes set, therefore contained mutated genes from 
(CGC, COSMIC and CATH-MutFams) as well as highly 
differentially expressed genes from TCGA bladder cancer 
gene expression data. Although this represents a relatively 
small expansion of the original gene set, this analysis also 
provided further confidence in our putative drivers as it 
showed that 63% of our original set clustered in modules 
with genes that are dysregulated in bladder cancer. 

The bladder cancer subnetwork encodes relevant 
biological processes

In order to obtain an ample set of potential 
bladder cancer targets, we modelled a bladder cancer 
subnetwork by looking for the neighbours of the seed set 
in a comprehensive human protein interaction network, 
by means of the DIAMOnD network diffusion algorithm 
[19]. DIAMOnD seeks to find genes connected to a set of 
seed genes based on the significance of that connectivity. 
It is a well-established method that provides network 
context to our set of putative bladder cancer genes and 
allows us to expand the set in a reliable manner. Thus, 

we obtained a protein subnetwork of 323 proteins which 
comprises 123 proteins of the seed set, and 200 proteins 
added by means of network analysis (Figure 1). The 323 
proteins that comprise the bladder cancer subnetwork 
are important in the context of the broad human protein 
network. Characteristically, 61.60% of them are hubs 
in the general network and thus have high connectivity. 
This proportion of hubs is higher than we expect by 
random (randomisation test; p-value = 2.984 × 10−47), as 
is the proportion of bottlenecks (i.e. proteins with high 
betweenness centrality) among the proteins that form the 
bladder cancer subnetwork (randomisation test; p-value = 
8.347 × 10−20). 146 (73%) of the proteins added through 
the diffusion approach (DIAMOnD) were found to be hubs 
and bottlenecks in the network confirming the validity of 
extending the set in this way as hubs and bottlenecks are 
clearly of interest, since other studies have shown they are 
typically enriched in cancer sets and are generally likely to 
be drug targets and disease proteins [23, 24].

Pathway and biological process analysis of the 
bladder cancer subnetwork based on evidence from three 
independent functional enrichment analyses uncovered 
three processes that drive bladder cancer: cell cycle/
mitotic division, activation of invasion and metastasis, and 
steroid hormone related processes (Figure 1 and Table 2).

Cell cycle dysregulation—that leads to abnormal 
proliferation and apoptosis of the tumour cell—is a 
hallmark for several forms of cancers [25]. Chromatin 

Table 1: Modules detected using hierarchical clustering of the gene co-expression network
Module #Genes #Known and putative drivers #Hi-DEG GO biological process

Mod1 67 13 2 Epithelial cell morphogenesis
Mod4 127 32 30 Muscle cell differentiation
Mod9 138 23 5 Transcription regulation

Table 2: Summary table for the biological processes associated with oncogenic transformation of 
bladder cancer identified by enrichment studies
Summarised terms GO-annotations Hallmark Signatures KEGG pathway Common proteins

Cell cycle/mitotic 
division

ATP-dependent 
chromatin 
remodelling, 
Nucleosome 
organisation

G2M checkpoints, 
E2F targets

MAPK signaling 
process

TP53, RB1, CDKN2A, 
HRAS, MYC, ERBB3, 
JUN, HDAC5, HDAC2, 
FOS

Activating invasion 
and metastasis

Intracellular receptor 
signaling pathway, 
Hormone-mediated 
signaling

Myogenesis, WNT-
catenin signaling, 
P53 pathways, Notch 
signaling

WNT-signalling, 
PI3K-Akt signaling

PPARD, RXRA, 
CTNNB1

Steroid hormone 
related processes

Steroid hormone 
mediated signaling 
pathway

No hallmarks 
identified

Sphingolipid 
signaling, Estrogen 
signaling, Thyroid 
hormone signaling

THRB, ESR1, CTNNB1, 
NCOA3, PGR, NCOA1, 
RXRG, HDAC1
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modifications besides playing a fundamental role in 
transcriptional regulation can result in a lack of DNA 
repair mechanisms increasing the chance of genomic 
instability, mutations, cell senescence and cell death 
[26]. Figure 1 shows that our bladder cancer subnetwork 
encodes the cancer hallmark capabilities of: sustaining 
chronic proliferation (G2M checkpoints, E2F targets 
and P53 pathway hallmark signatures), resisting cell 

death (apoptosis signature), and activating invasion and 
migration (TNFA signalling via NFkB); which are also 
associated with the deregulation of cell cycle generally 
observed in cancers.

Beyond deregulation of checkpoint, the MAPK 
signalling pathway has also been known to contribute to 
the activation of the oncogenic transformation of bladder 
tissues [27]. We see other signs of the activation of cell 

Figure 1: (A) Enriched GO-biological processes; (B) enriched cancer hallmark signatures; (C) enriched KEGG pathways identified for 
the bladder cancer subnetwork. Annotated on each bar plot is the protein ratio in each process within the putative bladder cancer sets.
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invasion and metastasis in the hallmark signatures of 
the canonical beta catenin and P53 signalling pathways 
that have been described to crucially contribute to the 
transformation of non-muscle invasion bladder cancer 
to muscle invasive bladder cancer [28]. Myogenesis—a 
process also described as the invasion of the muscle—
occurs in the advanced stage of the cancer and further 
strengthens our identification of activating invasion and 
metastasis as one of the hallmarks of bladder cancer 
through this functional enrichment study.

Our bladder cancer subnetwork also encodes several 
hormone related processes. There is some debate about the 
influence of hormones in bladder carcinogenesis, however, 
our analysis together with experimental evidence [29, 
30] suggest that bladder cancer is a hormone-dependent 
malignancy.

Drug targets in the bladder cancer subnetwork

Since the number of drugs available for the treatment 
of bladder cancer is very limited, our aim in this work is to 
identify putative bladder cancer driver genes that could be 
potential drug targets. We therefore investigated whether 
FDA-approved drugs could be repurposed, by mapping 
them onto the up-regulated proteins in the bladder cancer 
subnetwork (Figure 2).

21 proteins from the bladder cancer subnetwork 
bind 53 drugs with high affinity (pChEMBL ≥6, see 
Materials and Methods). 6 (DPP9, ERBB2, ERBB3, 
FGFR3, PIK3CA and RXRA) (Figure 2) are from the 
original set of known and putative drivers and 15 are 
from the extended set obtained by network diffusion. 18 
of them are either hubs (17) or bottlenecks (18). Two of 
these (FGFR3 and ERBB3) are known cancer drivers in 

CGC [18] and already being targeted by drugs for bladder 
cancer. A further two (EGFR and HDAC3) are known to 
be highly expressed in bladder cancer and are also being 
targeted by drugs for bladder cancer. Some of these 21 
targets bind more than one drug (Figure 2). 30 of these 
drugs, associated with 16 of the putative drug targets, are 
antineoplastic drugs that inhibit cell growth and block cell 
proliferation, as recorded by their anatomical therapeutic 
code. Some of the drugs bind to more than one target, 
suggesting possible benefits for polypharmacology. 
Furthermore, these drugs have not yet been considered for 
the treatment of bladder cancer. They are currently used in 
the treatment of other cancers (breast, prostate, and liver 
cancers) and it is therefore reasonable to assume that they 
could be refocused for bladder cancer treatment.

In order to increase the number of targets for which 
drugs could be repurposed, we also determined whether 
drugs could be inherited from relatives in druggable 
CATH-FunFams—i.e., CATH-FunFams that are associated 
with drugs because some of their relatives bind clinically 
approved drugs; (see Materials and Methods). In addition 
to the 21 proteins that have been already associated with 
at least one drug, we found a further 4 potential drug 
targets that mapped to druggable CATH-FunFams and 
were upregulated in cancer based on our gene expression 
analysis (NR1H2, NR1H3, NR5A1, THRB). This gave a 
total of 25 putative drug targets.

We had previously calculated side effect propensity 
for all druggable CATH-FunFams. 18 out of the 25 putative 
drug targets mapped to druggable CATH-FunFams, having 
a low likelihood of side effects (Figure 3). 3.30.50.10.
FF4220, a nuclear receptor family particularly likely to 
be free of side effects, contains proteins such as RXRA, 
RXRB and RXRG which show high expression in bladder 

Figure 2: Number of drugs that bind potential drug targets from the bladder cancer subnetwork.
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cancer and are currently drug targets in other cancers 
(breast and prostate). Therefore, drugs used to target them 
in these cancers could be potentially harnessed for the 
treatment of bladder cancer.

Network modules in the comprehensive protein 
network to reveal the most promising targets for 
bladder cancer 

To further validate the potential targets, we 
identified so far, we investigated whether they were 
clustered together in network modules containing known 
bladder cancer genes. We tested this using a different 
module detection approach, MCODE, which finds clusters 

of highly densely connected regions in our comprehensive 
human protein network. We searched for network modules 
that were enriched in known cancer genes. We identified a 
number of modules that contain both our putative bladder 
cancer proteins and between 3 to 11 known cancer genes 
(Supplementary Table 3). This connectivity to known 
bladder cancer genes gives further compelling evidence 
of their involvement in bladder cancer. We found the 
potential targets are distributed in 18 modules that contain 
between 1 and 4 potential targets. Three modules (modules 
11, 12 and 16; Supplementary Figure 2) also contain one 
known bladder cancer driver from CGC (ERBB3). 

Module 11 is involved in histone modification. It 
contains the known bladder cancer driver CDK1NA, 

Figure 3: Number of relatives in druggable CATH-FunFams. Functional annotations of the families are given in Supplementary 
Table 1. Proteins from the set of potential targets that are currently targeted by drugs (blue bars). Proteins not targeted by drugs (green 
bars). Each druggable CATH-FunFam has been annotated by the median network similarity (range 0–1), where high values indicate 
significant likelihood that drugs targeting relatives of the CATH-FunFam will be free from side effects. Side effect values were based on 
our data from [20].
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and 8 drivers associated with other types of cancer. 
Furthermore, it has 7 putative bladder cancer drivers, 
including the hypoxia inducible factor HIF1A that triggers 
the coordination of chromatin regulating genes [31]. 
HIF1A is both a bladder cancer driver and a potential 
drug target identified by our drug mapping studies. It 
belongs to a CATH-FunFam that has low likelihood of 
exhibiting side effects, thus suggesting that HIF1A may 
represent a good drug target for bladder cancer. FDA 
approved topoisomerase inhibitor topotecan may affect 
HIF1A and is being used in the treatment of other forms 
of cancer such as lung, ovarian and cervical cancer and 
therefore may be suitable for repurposing for the treatment 
of bladder cancer. We hope with sufficient experimental 
and clinical trials, the topoisomerase inhibitor, topotecan, 
could be used in the treatment of bladder cancer. Although, 
we should emphasise that topotecan in common with 
other cancer drugs is not without its side effects—in fact 
topotecan is associated with haematological and immune 
system toxicity. However, in some contexts its therapeutic 
advantages could outweigh its side effects. It is already 
approved by the FDA and the SIDER side effect index 
(Supplementary Table 4) for topotecan is in similar range 
with other drugs.

Proteins in module 12 are associated with chromatin 
remodelling, some of which have also been implicated in 
prostate cancer. This network module contains the known 
bladder cancer driver TSC1 (and 9 other-known cancer 
drivers) and 5 putative bladder cancer drivers one of 
which is RXRA, whose mutation activates the peroxisome 
proliferator-activated receptors, which switch on genes 
driving cell proliferation [32]. RXRA also belongs to 
a druggable CATH-FunFam with low probability of 
side effects. FDA approved drugs such as tretinoin 
and bexarotene have been shown to modulate RXRA 
expression level [33] and therefore could potentially be 
repurposed for the treatment of bladder cancer.

Module16 is enriched in genes associated with the 
mTOR signalling pathway. mTOR signalling is known to 
be affected in most cancers and alteration of this pathway 
occurs in about 72% of bladder cancers [34]. This network 
module has 6 putative bladder cancer drivers including 
PPARG and CDK9 and the known bladder cancer driver 
ERBB3. The FDA approved drugs vandetanib and 
bosutinib that bind to ERBB3 are in trials for the treatment 
of prostate cancer [35], suggesting their possible suitability 
for bladder cancer once approved. Although ERBB3 and 
CDK9 belong to CATH-FunFams with some propensity 
for side effects, these targets are still of interest and being 
considered for other cancers.

DISCUSSION

The approval by the FDA of erdafitinib—a small 
molecule targeting FGFR3—in 2019 for the treatment of 
bladder cancer [5] is an important addition to the relatively 

small arsenal against this cancer and signifies the intent to 
support more targeted therapies as well as chemotherapy 
and immunotherapy, which is in line with our aim in this 
work. That is, we aimed to uncover new potential targets 
by means of a bladder cancer subnetwork modelled on 
genes dysregulated in bladder cancer and putative bladder 
cancer drivers—identified by the enrichment of mutations 
across domain families encoded in CATH-MutFams [9]. 
Further confidence in our bladder cancer subnetwork 
comes from the observation that most of the proteins 
in it participate in several biological processes relevant 
to bladder cancer such as pathways associated with 
chromatin modification and myogenesis—a phenomenon 
associated with muscle invasive bladder cancer—and 
bladder cancer hallmark signatures (G2M-checkpoint, 
apoptosis and invasion and metastasis signalling through 
P53 and Wnt). 

Since our subnetwork analysis could result in the 
selection of some false positives, we sought to reduce 
noise by focusing on network modules enriched in known 
cancer drivers and putative drivers that are targeted by 
FDA approved drugs. Thus, we ended up with a set of 
25 potential bladder cancer targets, some of which are 
indeed already targets of drugs involved in therapies for 
other cancers. Interestingly, several of our potential targets 
are currently in clinical trials for the treatment of bladder 
cancer including EGFR, HDAC3, FGFR3, ERBB3 [4, 5, 
36]. We offer insightful suggestions of bladder cancer 
targets that can be validated experimentally, and since 
all the drug information provided here comes from drugs 
approved for clinical use, any successful validation 
could be rapidly deployed in the clinic. Our screening 
approach serves an important step in filtering out drugs 
that are likely to have side effects i.e. because they can 
bind to multiple relatives highly dispersed in the network 
and therefore likely to be acting in different biological 
systems. This considers the structural similarity in the 
binding pockets in human paralogs in the same family as 
drug target. However, scanning all the putative binding 
pockets in human structure is beyond the scope of our 
current study.

Furthermore, the limited access of patients to 
clinical trials together with their high cost and availability 
of drugs could be potential handicaps in developing 
successful clinical trials; furthermore, the lack of suitable 
patients is also a concern in precision oncology. However, 
there are abundant reports of successful developments 
in this area, where sometimes there are small cohorts 
with the precise molecular alteration that constitutes the 
therapeutical basis. Furthermore, some of our target genes 
with low mutation rates (HDAC1 and PARP1) are actually 
in clinical trials for bladder cancer. However, this topic is 
beyond the scope of our work. Our aim was to identify 
putative druggable targets with potential for bladder 
cancer therapies, which can be investigated and developed 
building on our results.
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MATERIALS AND METHODS

The complete workflow is illustrated in Figure 4 
below.

CATH functional families

CATH Functional Families (CATH-FunFams) are 
families of structurally and functionally similar protein 
domains within CATH domain structure superfamilies. 
CATH domain structure superfamilies are identified by 

automated structure and sequence-based protocols and 
distant homologues are validated by manual curation 
[37]. To generate FunFams, protein domains in UniProt 
sequences are assigned to CATH superfamilies by 
scanning the sequences against a library of HMMs for all 
CATH. The CATH-Resolve-Hits algorithm [38] is then 
used to identify domain boundaries. CATH-FunFams are 
then identified by agglomerative clustering of sequences 
in the domain superfamily to generate a hierarchical tree. 
In brief, sequence clusters are first generated using CD-
HIT [39] to cluster relatives with 90% or more sequence 

Figure 4: Overview of the study design.
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identity. Sequence profiles (HMMs) are generated for 
each cluster using HMMer3 [40] and all against all 
HMM-HMM comparisons performed using HHsuite 
[41] followed by merging of the highest scoring cluster 
pairs. Sequences in the new cluster are realigned and a 
new HMM built. This merging of clusters is repeated 
until a single cluster remains. The hierarchical tree is 
subsequently cut into separate families having distinct 
specificity determining residues by the FunFHMMER 
algorithm [42] which uses an entropy based method 
(Groupsim [43]) to identify residues differentially 
conserved between clusters. We used functional families 
(FunFams) from version 4.2. of the CATH database [20].

Identification of known and putative driver genes

We compiled a set of putative bladder cancer genes 
from Catalogue of Somatic Mutation in Cancer (COSMIC) 
[18] and known bladder cancer genes from COSMIC’s 
Cancer Genome Census (CGC)—the CGC curates genes 
that are highly annotated with mis-sense mutations and 
for which there is evidence that the mutation is causally 
implicated in driving oncogenesis. We obtained genes 
having missense mutations associated with bladder cancer 
from COSMIC-version 84, by searching for keywords 
such as “UROTHELIAL” or “BLADDER”. COSMIC 
provides the numbers of observed mutations in each 
sample for each gene, and calculates the mutation ratio 
of the gene, i.e., the fraction of the observed mutations 
to the numbers of samples tested. We selected genes with 
mutation ratio above 3%. 

Putative bladder cancer drivers were also extracted 
from CATH-FunFams enriched in cancer mutations, 
termed CATH-MutFams. CATH-MutFams were identified 
by testing for statistically significant enrichment of 
mutations found within CATH-FunFam domain 
boundaries compared to the gene as a whole [9]. We only 
selected genes provided at least one domain within them 
mapped to a MutFam, and were expressed in bladder, as 
per tissue expression data from the Human Protein Atlas 
[44]. We selected the top quartile (by mutation count) of 
mutated genes from each MutFam.

Finding gene modules enriched with drivers in 
the bladder cancer gene co-expression matrix

We obtained the most recent RNA-seq data for 
bladder cancer from the Genomic Data Commons (GDC) 
data portal [45] by means of the R-package TCGAbiolinks 
[46] (dataset = “BLCA” and run_date = “20160128”, level 
= “3”). We used the RNA-seq expression data for 408 
bladder cancer samples and 19 healthy samples obtained 
from The Cancer Genome Atlas (TCGA; bladder cancer). 

We identified genes differentially expressed 
in bladder cancer using the EdgeR quantile adjusted 
conditional likelihood method (qCML) [47]. P-values were 

corrected using Benjamini-Hochberg (BH) multiple tests at 
FDR of 5%. We filtered the differentially expressed genes 
by their fold change (FC) to select highly differentially 
expressed genes with log2FC above 4 and with a corrected 
p-value < 0.01 these were named Hi-DEG.

The top 5000 differentially expressed genes ranked 
by FC were used to build the co-expression matrix, 
in which each coefficient Sij reflects the connection 
between the genes (i,j), captured using the bi-weight mid-
correlation values between their expression counts [48].

We transformed the gene co-expression matrix 
into a weighted adjacency matrix by raising it to a power 
(β ≥ 1), as defined in Zhang and Horvath [49]; since gene 
expression data is often noisy, it is useful to emphasise 
strong correlations and to punish weak correlations. The 
choice of β determines the connectivity patterns and 
topological properties of the network. For example, high 
values of β decrease the number of node links, to reduce 
spurious connections; but if β is too high the resulting 
network may have too few connections to be informative. 
As many real networks have been found to show a scale-
free topology [50], we assumed that the gene co-expression 
matrix should satisfy a scale-free topology at least 
approximately, and therefore chose a value that maximised 
the scale-free fit index [51] while at the same time did 
not reduce excessively the connectivity. In summary, we 
chose the lowest β that results in an approximate scale-free 
topology [49], β = 8. Supplementary Figure 3.

WGCNA calculates a topological overlap matrix 
(TOM) from the weighted gene co-expression network, 
which measures a gene similarity (co-expression) that is 
not limited to gene pairs but considers gene relationships 
across the whole weighted gene matrix. Subsequently 
unsupervised hierarchical clustering is used to define 
modules in this matrix based on the dissimilarities 
between clusters. Therefore, genes within the same 
module are densely interconnected. The cutree-Dynamic 
function in WGCNA allows pre-setting the minimum 
module size expected. This was set at 30 as this has been 
shown to be optimal in previous studies [52, 53]. All 
genes not significantly co-expressed were grouped into an 
additional module, which was not considered for analysis. 
The modules were annotated with summary GO-biological 
process terms obtained using REVIGO [54].

We used a binomial test to measure the 
overrepresentation of the drivers set in each module, 
only the modules with Benjamini-Hochberg corrected 
for multiple testing p-values <0.05 were kept for further 
analysis. These genes were compiled with the known and 
putative drivers into the seed genes set.

Finding the network neighbours of the seed 
genes set

We generated a comprehensive human protein-
protein interaction (PPI) network using interaction 
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data (physical interactions, complexes, regulatory, 
phosphorylation, and expression data) from the Pathway 
Commons database (v10) [55]. We then used a kernel-
based approach to extend the network by combining it 
with the gene co-expression matrix above. The Commute 
Time (CT) kernel is a matrix transformation that captures 
the topology of the network by quantifying the closeness 
between the nodes that has previously been found to 
give good performance when combining heterogeneous 
data sets. We first transformed each matrix into its CT-
kernel, and then combined the two kernels to generate a 
consensus kernel, which gave the consensus network used 
in this study. Our network consisted of 17,853 proteins and 
724,786 interactions.

The network neighbourhood of a set of genes 
contains information about the biological processes 
the genes are participating in [19, 56]. For example, 
the DIAMOnD algorithm developed by the Barabasi 
group identifies network neighbours by considering the 
connectivity patterns around the genes of interest based 
on connectivity significance and can therefore detect more 
distantly connected genes i.e., outside the immediate local 
topology [19]. We applied DIAMOnD to the consensus 
network to search for genes in the neighbourhood of the 
seed gene set. We expanded the network neighbourhood 
of the seed set up to 200 genes identified by DIAMOnD. 
These new genes–the neighbours gene set–were selected 
and added to the seed genes set only if they were expressed 
in bladder/urothelial cells, using data from the Human 
Protein Atlas [44]. We kept the subnetwork containing 
the 123 seed and 200 neighbours’ genes sets for further 
analysis. 

Network analysis of the bladder cancer genes

We analysed the topology of the PPI subnetwork 
containing the 323 putative bladder cancer genes, using 
measures such as degree and betweenness centrality. Hubs 
and bottlenecks were identified as the top 20% of the 
proteins in the consensus network ranked by their degree 
and betweenness centrality, respectively. The proportion 
of hubs and bottlenecks in the putative bladder cancer 
proteins was compared to 10,000 random networks of 
equal numbers of genes and Mann Whitney u-test was 
used to assess the significance difference between the 
proportions of the putative bladder cancer proteins and 
random proteins.

In order to analyse the modular structure of the 
bladder cancer genes subnetwork, we used the MCODE 
clustering algorithm [57] with default parameters on 
the whole network. We used ClusterProfiler [58] and 
a hypergeometric test to determine which terms and 
pathways from the Gene Ontology (GO) [59], the 
Kyoto Encyclopaedia of Genes and Genomes (KEGG) 
[60], and the cancer hallmark signatures from the 
Molecular Signature Database (MSigDB) [61] were more 

significantly associated with the modules than expected 
by chance.

Finally, we sought to test whether the putative 
bladder cancer genes would be suitable drug targets, by 
(i) mapping drugs to putative bladder cancer associated 
proteins: we obtained drugs targeting the bladder cancer 
genes from ChEMBL [62]–a database of bioactive 
molecules and their activity. We kept only high affinity 
drug-target associations, where the drugs bound directly 
to the target with a p-ChEMBL value ≥6 which implies 
affinity ≤1 μM. (ii) mapping bladder cancer genes to 
81 druggable FunFams highly enriched in drug targets 
with demonstrated value for drug repurposing [20]. We 
assigned clinically approved drugs to the bladder cancer 
genes through inheritance of drug-target association 
between relatives within the druggable FunFam. (iii) 
measuring the propensity for side effects: we used an 
established in-house method [20] that performs regression 
analyses to assess the association of known side effects 
for drugs bound to relatives in a given FunFam with the 
dispersion of their relatives in a protein functional network 
built from the STRING database [63].
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