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vehicle navigation
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ABSTRACT
When considering theworking conditions under which an unmanned surface vehicle (USV) operates, the nav-
igational sensors, which already have inherent uncertainties, are subjected to environment influences that
can affect the accuracy, security and reliability of USV navigation. To combat this, multi-sensor data fusion
algorithmswill be developed in this paper to deal with the raw sensormeasurements from three kinds of com-
monly used sensors and calculate improved navigational data for USV operation in a practical environment.
Unscented Kalman Filter, as an advanced filtering technology dedicated to dealing with non-linear systems,
has been adopted as theunderlying algorithmwith theperformance validatedwithin various computer-based
simulationswherepractical, dynamicnavigational influences, such asocean currents, provide force against the
vessel’s structure, are to be considered.
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1. Introduction

Development of autonomous vehicle control is advancing rapidly
within the maritime industry. Unmanned Surface Vehicles (USV)s
can provide benefits to both civilian applications and military oper-
ations. Increased interest in further development of USVs has been
witnessed worldwide, driven by their capabilities to perform a large
range of missions. A number of remotely controlled USVs have been
constructed and are in service, such as the CEE-USV developed
by CEE HydroSystems which is used to conduct mine tailings and
bathymetry surveys in Arizona, USA (CEE HydroSystems 2017).
Autonomous marine navigation is needed for new commercial and
civilian vessels. China has developed and unmanned cargo ship Jin
Dou Yun 0 Hao which has completed several test voyages since 2019
with subsequent order for the first autonomous container ship and
plans to build a fleet of unmanned cargo ships (Wang et al. 2020). In
Europe an EU project AEGIS (Advanced Efficient and Green Inter-
modal Services) aims is developing a system that autonomous surface
vessels to operate with autonomous port authorities (Rødseth et al.
2020). Naval interest in USVs has increased too in recent years, such
as the Royal Navy’s interest in the maritime demonstrator ‘Madfox’
designed to test and develop new technologies for the purposes of
undertaking a wide range of army operations including surveillance
and protection (Casola et al. 2018). The US Navy has a developing
Large Unmanned Surface Vessel as a potential replacement for its
large capacity warships (Costa et al. 2019).

In the meantime, the research into USVs for autonomous opera-
tions is undergoing active development and a key challenge resides
in developing autonomous navigation systems for such applications.
Note that with the rapid development of marine electronic navi-
gation technology, especially the Global Positioning System (GPS),
improving the viability of the USVs is attracting increasing atten-
tion from academic and commercial companies, driven by their
capability to undertake various maritime missions, which are listed
in Table 1.
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Table 1. Various examples of missions that USVs can accomplish.

Commercial missions Military missions

Marine monitoring Anti-terrorism forces
Marine waste detection Protection forces
Mapping the marine funds and mining Electronic warfare
Shipping Mine Countermeasure
Cooperate with UUVs and UAVs Anti-submarine warfare
Sea surveillance Post explosion assessment
Environmental monitoring Threat identification and classification
Water sampling Harbour patrol

In order to complete a mission, all autonomous USVs must have
positional certainty of location, be situationally aware in relation to
the surrounding environment, as well as other dedicated abilities, for
the specific tasks such as speed and directional control, path planning
ability and obstacle and hazard avoidance. If human remote control
were to be reduced and/or eliminated, certainmissionswould require
a high degree of autonomy within the USV’s functionality, there-
fore, researchers are keen to improve USV autonomy. According to
Liu et al. (2016), USV development is focused on four main aspects
(Table 2): USV hull and auxiliary structural elements; propulsion
and power systems; Navigation, Guidance and Control (NGC) sys-
tem; communication system and ground station. In order to increase
USVs’ level of autonomy, improvement in the NGC system is core to
that development. Navigation systems of this type and functionality
should have the ability to accurately determine the location of the
USV itself as well as perceiving the surrounding environment so that
safe paths of operation can be generated along which the USVwould
then transit.

As shown in Figure 1, an autonomous navigation system, also
referred to as the Navigation Guidance and Control (NGC) system,
is composed of three modules: a data acquisition module (Naviga-
tion), a path planning module (Guidance), and an advanced con-
trol module (Control). First, the data acquisition module acquires
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Figure 1. Autonomous navigation system (NGC system) of an unmanned surface vehicle.

Table 2. Four main research sectors and main research results of USVs.

Research sectors Main research results

USV hull and auxiliary
structural elements

• Kayaks hull structure (Curcio et al. 2005)
• Catamarans hull structure (Naeem et al. 2008)
• Trimarans hull structure (Peng et al. 2009)
• Wave resistant hull structure (Guan et al. 2021)

Propulsion and power
systems

• Water-jet powered USV (Han et al. 2017)
• High-speed diesel-electric hybrid USV (Zhuang

et al. 2021)
• Renewable energy powered USV (Zhou et al.

2015)
Navigation, Guidance and
Control

• Computer-vision based environment perception
(Chen et al. 2021)

• Motion planning and decision-making (Wang
et al. 2021)

• Automatic control (Zhou et al. 2019)
• Validation and verification (Haseltalab et al. 2020)
• Docking control (Li et al. 2020)

Communication system
and ground station

• USVs based future maritime communication net-
works (Yang et al. 2019)

• Underwater communication based on USVs (Lv
et al. 2021)

information pertaining to the USV’s own position, speed and head-
ing (obtained using various navigation sensor). It also constructs
the surrounding operational environment by detecting target ships
(TSs). Based on this information, the path planning module is then
tasked to generate a safe path, usually defined by a series of way-
points, along which the USV will navigate. Finally, the advanced
control module uses the generated waypoints, which may be either
predetermined as part of a mission or generated by the path plan-
ning algorithm, as reference points to guide the USV, to ensure that
the USV adheres to the generated path by controlling its propulsion
and steering system.

While at sea, accuratemeasurements of position, speed, and head-
ing are vital to ensure a vessel reaches its destination safely. The
need for accurate positional information is critical once the vessel is
on passage. Other vessel traffic and waterway hazards can increase
the complexity of the manoeuvring that may be required and the
risk of accidents (National Coordination Office 2014). Therefore,
the data acquisition module responsible for obtaining and process-
ing real time navigational data constitutes the fundamental compo-
nent of an autonomous navigation system. This research focuses on
the navigation and guidance function of USV operation, with par-
ticular focus on improvements in reliability and resilience of the

navigation function through use of data fusion methodologies that
can be applied to disparate navigation sensor and data gathering
technologies.

It will be through the reinforcement of such technologies that the
author will seek to provide novel solutions to the problems that can
affect the security and reliability of transit for autonomous USVs
caused by failings to which standard navigation devices are prone.
This work supports and complements work on path planning and
fleet orientation ofUSVs that has been carried out by other colleagues
in the marine research group of UCL. Typical works include the
investigation on multi-USV planning and coordination (Zhou et al.
2019), machine-learning powered automatic control (Wang et al.
2021) and multi-task allocation for multi-agent systems in ocean
environments (Ma et al. 2021). Togetherwith theseworks, the success
of the work in this paper, where sensing and perception technologies
have been well addressed, can well complete an autonomous navi-
gation system and provide critical control/guidance commends for
USVs when navigating in challenging maritime environments.

Contemporarily, the most widely used navigation method is the
Global Navigation Satellite System (GNSS), which can provide abso-
lute positional information in open areas. However, the GNSS can
suffer from problems of signal reliability and continuity under harsh
environmental conditions. If the GNSS were to fail, then the con-
sequences for an autonomous USV could be disastrous. The ship
would have limited certainty as to its current position and other
navigational instruments working off the data provided may have
their functionality degraded. Therefore, instead of relying solely on
the satellite navigation system, the recent trend is to acquire con-
tinuous and acceptably precise navigational data by interfacing a
dead-reckoning (DR) system and using multi-sensor data fusion
(MSDF) techniques (Appriou 2014).

It also should be noted that the operating conditions of USVs
are often hazardous and unpredictable. Therefore, accurate and reli-
able navigational data is a primary demand to ensure the safety
of the USV. Integrated navigation systems that comprise multiple
sensors are normally employed to provide more accurate, continu-
ous and reliable navigational data (Allerton and Jia 2005; Stateczny
and Kazimierski 2011; Groves 2013; Paulino et al. 2019). This has
many advantages, such as improving system reliability and robust-
ness, extending measurement coverage, increasing data confidence
and improving resolution (Xie and Wan 2011). Through the use of
multiple sensors, the system could gather a large amount of nav-
igational data. If this is an outcome, then the optimal estimation
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techniques applied to fuse the data obtained will reside at the core
of a multi-sensor navigation system.

It should be noted that an accurate estimation of USVs naviga-
tional data is critical to ensure a safe navigation for USVs, which
includes facilitating path planning algorithms calculating collision
free trajectories and controllers generating reliable control com-
mands. Such a motivation is inspired by the authors’ previous field
trials on a practical USV, Springer USV, at Roadford Lake, UK.
During the tests, an optimised trajectory was generated using an
improved A∗ algorithm and a PID control was implemented on
the Springer to track waypoints and follow the trajectory. From the
results, it has been found that even a fine-tuned PID controller could
not ensure a perfect tracking performance, i.e. a deviation was always
generated between the actual path taken by the Springer and the
planned trajectory due to various environmental influences. With-
out a good estimation of a vessel’s state (position or velocity), such
a deviation could be well reduced, which will seriously affect the
controller’s performance.

This paper therefore proposes a reliable multi-sensor data fusion
algorithm based upon unscented Kalman filter (KF) technology to
properly address the reliable navigation problem for USVs. The pro-
posed algorithm is able to deal with the raw sensor measurements
from three types of sensors (inertial measurement unit (IMU), GPS
and electronic compass) and calculate improved navigational data
for USV operation in a practical environment. The algorithm pre-
sented in this paper is an upgraded work to a previous publication
at INEC 2020 (Liu et al. 2020), which provides a detailed discussion
on the future navigational technologies for USVs. In that paper, KF
based fusion technologies have been reviewed anddesigned butwith-
out full consideration of the non-linear dynamic characteristics of
USVs’ motion. This paper therefore elevates the work in (Liu et al.
2020) by first proposing a full non-linear dynamic model of the USV.
Next, an unscented Kalman filter (UKF) algorithm, which is spe-
cialised in providing estimation for non-linear systems, is used as the
underlying filtering algorithm formulti-sensor data fusion. Intensive
simulations with different USVmotionmodels have been carried out
to validate the effectiveness of the proposed algorithms.

2. Literature review

The Kalman Filter (KF), a linear recursive data processing algorithm,
is extensively used in vehicle navigation. It processes all available
attributes, regardless of their precision, to estimate the current value
of the variables of interest, using knowledge of the system and mea-
surement device dynamics; the statistical description of the system
noise, measurement errors, and uncertainty in the dynamic models;
as well as available information regarding initial conditions of the
variables of interest (Maybeck 1979; Choi et al. 2020; Han et al. 2021).
If the input data fits the predefined linear dynamics and statistical
models and a priori knowledge is known, the KF can provide an opti-
mal estimate of the state vector, in a minimum variance sense (Gelb
1974). As a result, the KF has become the most common technique
for estimating the state of a linear system, particularly in naviga-
tion systems. Rodriguez and Gomez (2009) developed three sensor
fusion algorithms based onKalman Filtering to locate an agricultural
land vehicle by trying different combinations of existing navigation
sensors. The first KF algorithm takes measurements from a GPS
module and a steering angle sensor and outputs fused navigational
data, i.e. position, heading and speed of the vehicle. The second KF
algorithm they developed was used to provide corrections to GPS
measurements from an electronic compass. They integrated an IMU
with a GPS system with an extra steering angle sensor in the final
algorithm for system linearisation. They concluded that combining
a complementary sensor is an effective way to improve GPS signals.

However, a practical application of a KF to a specific problem
requires correct configuration of its parameters. Li et al. (2015) used
the KF to process themeasurements from a conventional strap-down
inertial navigation system to track a vehicle’s attitude. They applied
the developed algorithm to a practical vehicle with a rocking base
and the repeated alignment achieved a precision of 0.04° over 180 s.
Most of the other approaches using conventional KFs in navigation
that can be found in published sources only deal with sensor sam-
ple integration in linear systems, or pre-processes the sensor signals
to linearise the integrated system (Baselga et al. 2009; Xie and Wan
2011; Maklouf et al. 2013).

In practice, most systems are non-linear and the KF is incapable
of making estimations with sufficient accuracy. Therefore, variant
KFs have been developed to accommodate non-linear applications
in the real world. Bijker and Steyn (2008) designed an IMU/GPS
integrated system with two minor extended Kalman Filters (EKFs)
to determine an unmanned airship’s navigational data, i.e. attitude,
velocity and position. They found that using one major EKF with all
the navigational data as inputs generates more accurate estimations
but requires more processing power. The trade-off between the accu-
racy and processing power has been mitigated by splitting the single
EKF into twominor EKFs, namely the attitude estimator andposition
estimator. Saderzadeh (2010) proposed an EKF algorithm to handle
the navigation error of a mobile robot. It was demonstrated that esti-
mation at the primary state would introduce error into the system
and the convergence rate of the EKF algorithm is low. Mousazadeh
et al. (2018) used the EKF to estimate an USV’s state and position.
Although the authors did not provide the computational time of the
EKF based algorithm, it necessitates the computation of a complex
Jacobian matrix at each time step, hindering its adaptation to real
time applications. Zhang et al. (2005) implemented an Unscented
Kalman Filter (UKF) to improve theGPS, the IMUand the electronic
compass measurements. The authors implemented both UKF and
EKF and tested them in a practical land vehicle. The results showed
that aUKF is able to produce estimated navigational datawith greater
accuracy than those generated by an EKF. The superior performance
of a UKF over an EKF was further proved by Zhai et al. (2014) for
GPS/INS integrated navigation, Choi et al. (2010) for on-board orbit
determination using GPS observations, Lee et al. (2017) for nanosat
attitude estimation and Gao et al. (2018) for INS/GNSS/CNS inte-
gration. Another interesting work was undertaken by Marchel et al.
(2020), where anEKFhas been integrated for a simultaneous location
andmapping (SLAM) problemusing range and bearing information.
The proposedmethod was used to calculate an optimised position of
navigational aids such that moving vessels can be better guided when
navigating in a congested area.

Another variant of KF used for unmanned vehicle navigation
was proposed by Motwani et al. (2013). They developed an Interval
Kalman Filter (IKF) based algorithm to estimate the yaw dynamics
of an uninhabited surface vehicle called Springer during operation.
The system to determine Springer’s yaw dynamic is linear, but the
authors improved the conventional KF by adding the boundaries of
system uncertainties to the algorithm using interval system models
(Motwani et al. 2013). In recent years, a growing interest in devel-
oping mathematical techniques to deal with the impracticality of the
conventional KF and its variants, such as fuzzy logic, adaptive esti-
mations (Gao et al. 2012; Li et al. 2015; Meng et al. 2016; Motwani
et al. 2016; Liu et al. 2019) has been witnessed.

A comparison of different KF technologies is summarised in
Table 3. Most of the current research in USV navigation focuses on
using variant filtering techniques to fuse raw sensor measurements
without considering practical uncertainties associated with the sen-
sors themselves within varied environments (Ccolque-Churquipa
et al. 2018; Mousazadeh et al. 2018; Wang et al. 2018). There is
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Table 3. Comparison of current sensor data fusion algorithms.

Sensor fusion algorithms Feature

Kalman Filter (Kalman 1960) Used in linear system
Extended Kalman Filter (Kalman and Bucy
1961)

Linearise the non-linear system using
Taylor expansion

Unscented Kalman Filter (Julier and Uhlmann
1997)

Generates several Sigma points and
propagate them through the
non-linear state function directly

Interval Kalman Filter (Chen et al. 1997) Add boundaries to system uncertainty

a knowledge gap in developing a practical autonomous navigation
system to address the above practical problems in real-life USV
developments.

3. Nonlinear USV navigationmodel and system
measurementmodel

3.1. Nonlinear USVmotionmodel

The working condition of an intelligent USV operation is time-
varying. The state of an autonomous navigation system incorporates
the USV’s navigational data, i.e. position (p), velocity (v) and head-
ing (θ), which are governed by a discrete time state-space model of
the USV dynamic system in a two-dimensional navigation frame.
Instead of fully relying on the system model, the acceleration rate
(a) and rotation rate (ω), which can be measured by inertial sen-
sors, are used to compute each of the models of navigational data
using discrete integration. The integration of the inertial measure-
ments brings a more accurate ship motion model that can then be
expressed as:

p(k) = p(k − 1)+ T × v(k − 1)+ 1
2
T2 × a(k − 1) (1)

v(k) = v(k − 1)+ T × a(k − 1) (2)

θ(k) = θ(k − 1)+ T × ω(k) (3)

where T is the processing time between two consecutive sampling
steps.

Equations (1) to (3) can be viewed as the transition state mod-
els with p, v and θ being the state of the system, which are the

estimation objects of the Kalman filter. Therefore, the state vector x
with required data can be defined as:

x = [px py vx vy θ]T (4)

where px and py represent the positions in a north-east navigation
frame, vx and vy are velocities and θ is the heading of the USV.

From the start ofUSVoperation, the on-board IMUstarts tomea-
sure the motions of the USV, that is, the accelerometer measures
the accelerations and the gyroscope measures the angular veloc-
ity of the USV. Normally, acceleration rates provided by the IMU
are along the inertial frame, which can be approximated as the
body frame; whereas, other navigation information has been pre-
sented in the navigation frame. It therefore should convert the IMU
data from the inertial frame to the navigation frame by using the
rotation matrix:

[
anx
any

]
=

[
cos∅ −sin∅
sin∅ cos∅

] [
aix
aiy

]
(5)

As shown in Figure 2, the heading that can be obtained from the com-
pass is the clockwise angle referenced to North. Therefore, the anti-
clockwise rotation angle from inertial frame (i-frame) to navigation
frame (n-frame) is equal to the heading:

[
anx(k)
any(k)

]
=

[
cosθ(k) −sinθ(k)
sinθ(k) cosθ(k)

] [
aix(k)
aiy(k)

]
(6)

It can be observed that the conversion of the frames generates the
non-linearity of the system. Unscented Kalman filtering, uses an
unscented transform to propagate designed Sigma points and cal-
culates the mean of the propagated point to compute the optimal
estimation of the input data. It has been used increasingly in vehi-
cle navigation in recent years (Ma et al. 2014; Meng et al. 2016).
As stated previously, when the frame rotation angle is equal to the
heading of the USV, the non-linear dynamic model can then be
obtained by combining Equation (6) and Equations (1) to (3) as

Figure 2. Conversion from i-frame to n-frame.



JOURNAL OF MARINE ENGINEERING & TECHNOLOGY 71

below:

f ′(x) =

⎛
⎜⎜⎜⎝

ṗx
ṗy
v̇x
v̇y
ψ̇

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

vx
vy

cosψaix − sinψaiy
sinψaix + cosψaiy

ω

⎞
⎟⎟⎟⎠ (7)

3.2. Systemmeasurementmodel

A GNC system obtains the absolute observations (measurements)
of the USV’s position and heading from a GPS sensor and an elec-
tronic magnetic compass. The absolute measurements are associated
with random noises, which are described as Rooted Mean Square
(RMS) errors in the sensor manuals. RMS error indicates that at 68%
probability that the measurement lies within the range of the error
from the true position and twice the range at 95% probability. There-
fore, the sensor models of GPS can be defined with an additive noise
component as:

po = pi + νg (8)

The major magnetic measurement error results from the distortion
of the Earth’s magnetic field by nearby ferrous effects, sensor noise
and magnetic interference. In practical applications, compasses are
mounted in vehicles and platforms that usually have ferrous materi-
als nearby. These nearby ferrous materials will generate permanent
magnetic fields (hard irons) or varying magnetic fields (soft irons) to
distort the Earth’s magnetic field. Soft irons affect the magnetometer
output by varying amounts depending on the compass orientation.
This varying bias effect will distort the shape of the 2D magnetic
field locus from a circle into an ellipse. Hard and soft iron distortions
are the major error sources for magnetic compasses and compensat-
ing for these effects is essential to their application (Langley 2003).
Normally, a calibration process is conducted to remove the bias after
installation since the bias is constant without change of installation
environment. In a similar manner to the GPS module, the electronic
compass also provides absolute measurements of vehicle’s headings
with an additive random noise that can be expressed as Equation (9).

θo = θi + νh (9)

where pi and θi are the true position and heading respectively; po and
θo are the noisymeasurements; and νg and νh are the uncertaintywith
a normal distribution with the standard deviation of their RMS error
value rg and rh.

Therefore, the measurement model z can be denoted as:

z(k) =
[

p(k)
θ(k)

]
+

[
νg(k)
νh(k)

]
. (10)

Based upon the observation equation in KF, the complete measure-
ment equation can be rewritten as:

z(k) =
⎡
⎣ 1 0 0 0 0 0

0 1 0 0 0 0
0 0 0 0 0 1

⎤
⎦

⎡
⎢⎢⎢⎣

px(k)
py(k)
vx(k)
vy(k)
θ(k)

⎤
⎥⎥⎥⎦ + ν(k) (11)

where ν represents additive systemmeasurement noise, which is also
assumed to be white noise with zero mean and standard deviations
given by rg and rh.

R, the covariance of measurement noise ν is then given by:

R = cov(ν) =
⎡
⎣ rg2 0 0

0 rg2 0
0 0 rh2

⎤
⎦ (12)

The marine environment is uncertain and complex for USV navi-
gation. There are various aspects that could cause position offset,
especially environmental influences. Tidal current, wind and wave
impacts are the most significant effects that would cause drift and
deviation from course of a vessel moving on the water surface. In this
context, the trajectory of an USV is complex and cannot be charac-
terised simply as operating along a straight line or a curve of fixed
radius in practice. If using a conventional Kalman Filter, the sys-
tem has to be linear, and in the previous section the non-linearity
caused by the frame conversion was neglected by assuming that only
minimal heading change will occur during each time step. However,
such an approximation may lead to large errors in practical appli-
cations, especially when the USV is not following a straight line.
Thus, Kalman Filter variants such as the Extended KF (EKF) and
the Unscented KF (UKF) have been developed and used to deal with
non-linear systems. It is for this reason that an UKF based multi-
sensor data fusion algorithm has been developed in this paper to deal
with issues that might occur in real world practical conditions when
estimating the navigational data of the USV.

4. Unscented Kalman filter

Based on themeasurements, the observationmodel has the same lin-
ear equation as Equation (11). For an n dimensional random variable
x with mean m and covariance P, the UKF employs the unscented
transformation to form a set of 2n+1 weighted points, which are
also called Sigma points. The working procedures of the UKF are
also composed of the prediction and estimation steps as the con-
ventional KF. In the autonomous navigation system with the above
dynamic model and measurement model, the mean and covariance
of the required navigational data are computed using the following
steps:

Step 1: Form 2n+1 sigma points around the x at the last state
(n = 5 where the dimension of state vector x is 5) using Equations
(13) to (15):

χ0(k − 1) = m(k − 1) (13)

χ i(k − 1) = m(k − 1)+ √
n + λ

[√
Pi(k − 1)

]
(14)

χ i+n(k − 1) = m(k − 1)− √
n + λ

[√
Pi(k − 1)

]
,

i = 1, . . . , n (15)

The constant weights Wm
i and Wc

i that are associated to each
sigma point are computed as follows:

Wm
0 = λ/(n + λ) (16)

Wc
0 = λ

(n + λ)
+ (1 − α2 + β) (17)

Wm
i = Wc

i = 1/2(n + λ), i = 1, . . . , 2n (18)

where λ = α2(n + κ)− n. The parameters α and κ determine the
spread of the sigma points around the mean. β describes the dis-
tributed information, of which the optimal value is 2 for Gaussian
distribution.

Step 2: Propagate the calculated sigma points through the
dynamic model

χ̂ i(k) = f (χ i(k − 1)), i = 0, . . . , 2n (19)

Step 3: Compute the predicted mean m−(k) and the predicted
covariance P−(k) bymultiplying each weight to the associated Sigma
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point as following:

m−(k) =
2N∑
i=0

Wm
i χ̂ i(k) (20)

P−(k) =
2N∑
i=0

Wc
i (χ̂ i(k)− m−(k))(χ̂ i(k)− m−(k))T

+ Q(k − 1) (21)

where N is the dimension of the expended state space, which equals
to Nx + Nw + Nν . Nx is the dimension of the original state that
equals to n; Nw and Nν are the dimensions of the white noise
w and ν.

Step 4: For a linear observation model, sigma points are not
required at the correction stage that results in reduced computa-
tional cost and higher accuracies. The Kalman Filter gain to correct
the prior belief by reducing the mean square error is computed by
Equations (22) and (23):

K(k) = P−(k)HTS(k)−1 (22)

Figure 3. Calculation of Tidal effect to the USV speed.

Figure 4. Simulation scenario 1: testing environment in Southampton east Cowes. (a) shows the satellitemapwith planed line trajectory of the USV, a constant current is also
simulated along the water flow; (b) gives the binary map that converted from the satellite map with the drifted trajectory of the USV caused by three different currents.



JOURNAL OF MARINE ENGINEERING & TECHNOLOGY 73

S(k) = HP−(k)HT + R (23)

The optimal estimations x̂(k) andP(k) of the navigation systemgiven
observation z(k) are updated by applying the Kalman Filter gain as
shown in Equations (24) and (25).

x̂(k) = x̂−
(k)+ K(k)[z(k)− Hx̂−

(k)] (24)

P(k) = (I − K(k)H)P−(k) (25)

5. Simulations of an UKF basedmulti-sensor data fusion
algorithm

In order to simulate a USV operation in a practical environment,
waypoint tracking missions have been simulated according to the
map of the environment. The simulated USV calculates its distance
and bearing to the next waypoint from the start. Once it researches
proximity to the predesigned waypoint, which is termed waypoint
clearance, it then searches for the next waypoint and steers to it
until it reaches the final destination. The condition for a waypoint
clearance is:

|pUSV − pwp| =
√
(pxUSV − pxwp)2 + (pyUSV − pywp)2 < d (26)

where pUSV = (pxUSV , pyUSV) is the current position of the USV,
pwp = (pxwp, pywp) is the position of the target waypoint, d is the pre-
designed minimum radius around the waypoint. The USV can be
considered as having reached the waypoint by entering the circle of
radius d around the waypoint.

According to the waypoint clearance condition, the operation of
the USV is adjusted by changing its headings to track the target
waypoint as follows:

if heading − bearing < ω ∗ T, then the USV turns clockwise at the
angular velocity ω, heading = heading + ω ∗ T;

if heading − bearing > ω ∗ T, then the USV turns anti-clockwise at
the angular velocity ω, heading = heading − ω ∗ T;

if heading − bearing = ω ∗ T, then the USV remains its current
direction, heading = heading,

Where ω is the angular velocity of the USV and T is the sampling
time of the system. In this paper, the sampling time of the system is
1 s that is the same as the sampling rate of a typical GPS module.

Accordingly, the sampling rate of the electronic compass has also
been chosen at 1 s. The IMU normally provides measurement at a
higher rate, for example 0.02 s, and an average of its sampled value in
1 s has been employed in the system.

The proposed algorithmhas been implemented and verified using
Matlab simulations during development. Measurements obtained
from different navigational sensors including a GPS, an electronic
compass and an IMU have been simulated by adding noises to
the true values. For the GPS and the electronic compass, the read-
ings are defined as the true value plus a white, normally dis-
tributed random measurement, noise with specific variance, which
are normally provided in the sensor’s manual. For the inertial mea-
surements of the IMU, there will be an additional constant bias
due to the magnetic field interference to the MEMS chips, and
it can be predicted by suitable calibration. In a practical envi-
ronment, sensor measurements accuracies could degrade. In this
section, the simulated sensor noise settings may be larger than
those in the sensor manuals and differ to the UKF predefined
noise models that are based on the manuals. The sensor noise

Table 4. predefined sensor noises for simulations in practical
environment.

Noise

Sensor Measurement Bias Variance

IMU Acceleration ax 0.03m/s2 0.004m/s2
Acceleration ay 0.02m/s2 0.004m/s2
Rotation rateω 0.28◦/s 0.033◦/s

GPS Position px 0 8m
Position py 0 7m

Electronic Compass Headingψ 0 1◦

Table 5. Simulation scenario 1: mean square errors.

Method MSE 0.5m/s MSE 0.3m/s MSE 0.15m/s Units

UKF_position px 4.972 4.746 3.8618 m2

UKF_position py 4.4747 4.2782 3.7013 m2

GPS position pgpsx 66.6812 56.5433 63.4131 m2

GPS position pgpsx 51.0834 48.0087 48.4819 m2

UKF_headingψ 0.1109 0.0926 0.0892 deg2
Electronic Compassψc 0.9261 0.9469 1.0015 deg2

Figure 5. Simulation scenario 1: the converted binary map with the simulated GPS measurements and fused position results: (a) current: 0.5m/s; (b) current: 0.3m/s; (c)
current: 0.15m/s.



74 W. LIU ET AL.

Figure 6. Simulation scenario 1: Actual headings, compass measurements and fused heading results: (a) current: 0.5m/s; (b) current: 0.3m/s; (c) current: 0.15m/s.
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Figure 7. Simulation scenario 1: Rooted mean square errors (RMSEs) of the USV’s positions and headings for the environment with three different currents.

settings are listed in Table 4 and the noisy sensor readings are simu-
lated by generating random errors from a normal distribution with
fixed mean.

5.1. Simulation scenario 1: line trajectory

The simulation area is based on the existing environment of
Southampton east Cowes. Variable water currents that affect the
USV’s trajectory and heading are classified as an environmental

disturbance. According to the environment agency, in the Southamp-
ton Water area, the tidal current at the mouth peaks at 0.7m/s on
the flood and 1.0m/s on the ebb. The estuary flow rates are up to
0.5m/s and up to 0.25m/s towards the head of the rivers. The two
main components of the currents are the speed and direction. In this
simulation, a constant current at speed vc along the direction of the
water flows that causes drifting of the USV’s position has been sim-
ulated as in Figure 3. The velocity of the USV, with respect to the
shore-based reference, can then be calculated as:
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[
vrx
vry

]
=

[
vux + vc × cosα
vuy + vc × sinα

]
(27)

The start and end points of the USV’s trajectory are chosen to cross
the water according to the satellite map as illustrated in Figure 4. The
actual length of the map is 4000m ∗ 4000m and scaled to 800m
∗ 800m in this simulation. The mission of the USV is to track to
the end point (517, 125m) from the start point (365, 728m) by fol-
lowing a straight line trajectory. Three simulations were conducted
each with the water current in the same direction on the ebb using a
different but constant speed for each simulation. The data of the cur-
rentswas chosen according to the previous recorded information and
tide tables for the currents in the Solent and SouthamptonWater. As
shown in Figure 4(b), the planned straight line trajectory is altered by
the influence of thewater current. The blue line represents the altered
trajectory by a current of 0.15m/s. The black line (in the middle)
represents the altered trajectory with a current of 0.3m/s. The green
line that shows the greatest deviation from the ideal straight line rep-
resents the trajectory altered by a current of 0.5m/s. As would be
expected the higher the velocity of the influencing current the greater
the effect leading to drift from the ideal path. The initial state of the
system is:

x(1) = [
365 728 0.5 −0.866 150

]T (28)

In the simulations, the USV completed all three missions by tracking
to the predesigned end points using the methodology demonstrated
earlier in this section and reached the end point in the environments
under the influence of three different water current speeds, 0.5, 0.3
and 0.15m/s respectively. The trajectory results are displayed in the
converted binary maps shown in Figure 5(a–c). In each figure, the
actual drift affected trajectories of the USV that are represented by
black lines. The simulated GPS measurements are denoted as blue
dots. The red lines represent the trajectories formed by the estimated
positions of the developed UKF based multi-sensor data fusion
algorithm. The insets in each figure that are enlargements of part of
the trajectories demonstrate the details of the simulation results. It
can be seen that the red lines are very close to the black lines. The

blue dots indicate that there is more noise for all three simulations,
which indicates the developed UKF based multi-sensor data fusion
algorithm is able to provide more accurate estimations of the USV’s
positions and reduce the error from the raw GPS measurements in a
practical environment with water currents effects.

The estimated results of the USV headings in the environments
with three different currents are illustrated in Figure 6(a–c). The
effects on theUSV’s navigational data aremore clearly shown in these
three figures.When the speed of the water current is higher, the USV
has to make more heading corrections to mitigate against the cur-
rent influence, but it takes less time for the USV to reach the end
point because the direction of the water current generally coincides
USV’s planned direction. Regardless of the speed of the current, it is
clear that the red lines representing the fused headings closely adhere
to the actual headings (black lines) with less obvious error than the
compass raw measurements (blue lines) as shown in the enlarged
insets.

The improved performance of the algorithm is further exempli-
fied in Figure 7, in which the rooted mean square errors (RMSEs) of
the USV’s positions in the x-axis and y-axis and USV headings are
demonstrated. The figure clearly shows the RMS error of the fused
positions in both the x-axis and y-axis are reduced to around 2 m
and the RMS error of the fused heading is reduced to less than 0.4°
regardless of the water current speed. Table 5 lists the mean square
errors, after the USV completes its mission that provide numerical
proofs.

5.2. Simulation scenario 2: two turningmanoeuvres

After proving the effectiveness of the developed UKF based multi-
sensor data fusion algorithm in a simple mission with a straight
line trajectory in a practical marine environment with three differ-
ent constant current speeds, scenario 2 simulates a more complex
environment with variable water currents and assigns manoeuvring
missions to the USV instead of following a straight line. Two way-
points were set for the USV to conduct manoeuvres. The initial state
is shown in Equation (29) and the planned start point, manoeuvring

Figure 8. Simulation scenario 2: testing environment in Solent. (a) shows the satellitemapwith planedwaypoint tracking trajectory of the USV, a varying current is simulated
along the coastline; (b) gives the binary map that converted from the satellite map with the drifted trajectory of the USV caused by the varying current.
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Figure 9. Simulation scenario 2: the converted binary map with the simulated GPS measurements and fused position result of planned trajectory 1.

Table 6. Waypoint settings in simulation scenario 4.4.

Planned Trajectory Start point Waypoint 1 Waypoint 2 End point

T1 (765,728) (650,385) (320,190) (30,250)
T2 (765,728) (580,385) (380,190) (30,250)
T3 (765,728) (650,200) (320,260) (30,250)

waypoints and the end point are shown in Table 6.

x(1) = [
765 728 −0.5 −0.866 210

]T (29)

Figure 8(a) shows three planned manoeuvring trajectories and the
water current at the speed of 0.5m/s in varied directions. The drifted
trajectories are illustrated in Figure 8(b).

Similar to the Simulation scenario 1, Figures 9–11 display the
drift influenced trajectories (the black lines) of the USV for the
three different missions. The GPS measurements, denoted as blue

dots, are scattered around and the fused trajectories are presented
as red lines. The fused trajectories are all closer to the actual tra-
jectories regardless of the different waypoint positions. Figure 12
shows the actual headings (black line), compass measurements
(blue dots) and fused headings as red lines. From the enlarged
insets, it can be seen clearly that no matter where the manoeu-
vring waypoints are, the fused headings are much closer to the
actual headings than the compass measurements. Even though the
USV conducts more complicated manoeuvres in a more complex
environment, the developed algorithm still performs satisfactorily in
estimating the navigational data for each mission. The RMS errors
and MSEs, shown in Figure 13 and Table 7, provide further evi-
dence of the algorithm’s capability in reducing raw sensor measure-
ments for USV navigation. It can be concluded that the UKF based
multi-sensor data fusion algorithm can generate good results for
USV navigation in a practical environment with no restrictions on
path planning.
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Figure 10. Simulation scenario 2: the converted binary map with the simulated GPS measurements and fused position result for planned trajectory 2.

Table 7. Simulation scenario 2: mean square errors.

Method MSE (Tr1) MSE (Tr2) MSE (Tr3) Units

UKF_position px 5.1926 5.7334 3.2977 m2

UKF_position py 3.7565 4.8809 3.7728 m2

GPS position pgpsx 60.1971 63.1284 64.2108 m2

GPS position pgpsx 46.8124 47.041 46.8535 m2

UKF_heading θ 0.0956 0.0863 0.0876 deg2
Electronic Compass θ c 0.9799 0.9473 0.9822 deg2

6. Conclusions and future works

In this paper the effect of the inherent accuracies of navigational
sensors on USV navigation was examined. Initially the use of mul-
tiple sensors to overcome such inaccuracies was proposed when it
was determined that USV positional uncertainty would still exist
and this uncertainty was quantified. To improve positional certainty
data fusion techniques were investigated, primarily for the statically

positioned USV. It was found that although the predictive-corrective
iterative methodology improved positional estimation certainty, the
results conversion was still affected by each particular sensors’ bias
and inaccuracy. To reduce the effects of the sensor noise Kalman
Filtering was investigated as a means to improve the accuracy of
the navigational data. A system measurement model was developed
and tested by simulations with manufacturer’s sensor noise perfor-
mance data applied. Navigational positioning results using the UKF
showed close correlation between the actual USV position and that
of the predicted UKF position and improved upon the raw sensor
data indication of position.

The improved accuracy of position prediction would be of great
importance for motion planning and control, which are essential
functions within a guidance module. For example, an improved
position accuracy can assist with motion planning algorithms to
generate collision-free paths with improved reliability as a USV per-
ceives more accurately about where it starts from. In the meantime,
a more accurate estimation of a USV’s position during navigation
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Figure 11. Simulation scenario 2: the converted binary map with the simulated GPS measurements and fused position results for planned trajectory 3.

can essentially improve the trajectory tracking performance. When
a more accurate actual position information is acquired, a more pre-
cise control input can be generated by comparing it with the reference
value, which as a result makes trajectory tracking (control output)
more robust.

In terms of the future works, the UKF performance can be further
improved by adding adaptability into the evaluation of systems and
measurements covariances. This could be possibly done by integrat-
ing fuzzy logic rules when values are updated and determined. In
addition, more practical evaluations, such as the real experimental
tests, will need to be conducted. Work to build a new USV platform
at UCL is on-going, and it is planned that a new NGC system inte-
grated with the algorithms proposed in this paper will be developed
and mounted on this USV platform for validation and verification.
When it comes to practical field tests, the integration of real-time
environmental data would be of importance, and these data (ocean
currents, tidal currents or winds) can be expressed in the format of
vector fields that have direct influences on vessels’ velocities.

Looking beyond the advance of technologies, a full integration of
unmanned ships into future maritime transportation requires fur-
ther investigations into ships behaviours in complex practical areas.
When unmanned ships are navigating together with other types of
manned vessels in the same area, it is important to have a thorough
understanding of different ships’ collision avoidance behaviours,
manoeuvring characteristics, communication strategies and naviga-
tion priorities. Given the level of complexity and difficulty associated
with large-scale practical trials, it would be more promising to carry
out such an investigation in a high-fidelity simulation environment.
A pioneering work (Haseltalab et al. 2020) has been conducted by
a collaborative research team with members from the Netherlands,
Italy, Belgium and China, where a Collaborative Autonomous Ship-
ping Experiment (CASE) was carried out to emulate future shipping
environments, within whichmovement behaviours of different types
of ships can be well simulated and studied. Also, with the advance of
virtual reality (VR) and augmented reality (AR), a virtual-real sim-
ulation environment (Yang et al. 2020) with near-real environment
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Figure 12. Simulation scenario 2: actual headings, compass measurements and fused heading results (a) planned trajectory 1; (b) planned trajectory 2; (c) planned
trajectory 3.
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Figure 13. Simulation scenario 2: rooted mean square errors (RMSEs) of the USV’s positions and headings for three different planned trajectories.

aspects can be created as a crucial testing platform to bridge
the gap between pure computer-based simulations and real field
trials.
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